圆基础知识练习

合集下载

圆的基础知识点及习题

圆的基础知识点及习题

圆基础训练题1一、知识点1、与圆有关的角——圆心角、圆周角(1)图中的圆心角 ;圆周 角 ; (2)如图,已知∠AOB=50度,则∠ACB= 度; (3)在下图中,若AB 是圆O 的直径,则∠AOB= 度;题2、圆的对称性:(1)圆是轴对称图形,其对称轴是任意一条 的直线;圆是中心对称图形,对称中心为 .(2)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.如上图,∵CD 是圆O 的直径,CD ⊥AB 于E∴ = , =3、点和圆的位置关系有三种:点在圆 ,点在圆 ,点在圆 ; 例:已知圆的半径r 等于5厘米,点到圆心的距离为d ,(1)当d =2厘米时,有d r ,点在圆 (2)当d =7厘米时,有d r ,点在圆 (3)当d =5厘米时,有d r ,点在圆4、直线和圆的位置关系有三种:相 、相 、相 .例:已知圆的半径r 等于12厘米,圆心到直线l 的距离为d , (1)当d =10厘米时,有d r ,直线l 与圆 (2)当d =12厘米时,有d r ,直线l 与圆 (3)当d =15厘米时,有d r ,直线l 与圆5、圆与圆的位置关系:例3:已知⊙O 1的半径为6厘米,⊙O 2的半径为8厘米,圆心距为 d , 则:R+r= , R -r= ;(1)当d =14厘米时,因为d R+r ,则⊙O 1和⊙O 2位置关系是:OACB EOAB D(2)当d =2厘米时, 因为d R -r ,则⊙O 1和⊙O 2位置关系是: (3)当d =15厘米时,因为 ,则⊙O 1和⊙O 2位置关系是: (4)当d =7厘米时, 因为 ,则⊙O 1和⊙O 2位置关系是: (5)当d =1厘米时, 因为 ,则⊙O 1和⊙O 2位置关系是: 6、切线性质:例:(1)如图,PA 是⊙O 的切线,点A 是切点,则∠PAO= 度(2)如图,PA 、PB 是⊙O 的切线,点A 、B 是切点, 则 = ,∠ =∠ ;6题7、三角形的外接圆的圆心——三角形的外心——三角形的 交点;三角形的内切圆的圆心——三角形的内心——三角形的 交点; 例:画出下列三角形的外心或内心(1)画三角形ABC 的内切圆, (2)画出三角形DEF 的外接圆, 并标出它的内心; 并标出它的外心二、练习: (一)填空题1、如图,弦AB 分圆为1:3两段,则»AB 的度数= 度, ¼ACB 的度数等于 度;∠AOB= 度,∠AC B = 度,第1小题2、如图,已知A 、B 、C 为⊙O 上三点,若»AB 、»CA 、»BC 的 度数之比为1∶2∶3,则∠AOB= ,∠AOC= , ∠AC B = ,3、如图1-3-2,在⊙O 中,弦AB=1.8cm ,圆周角∠ACB=30○ ,则 ⊙O 的半径等于=_________cm .4、⊙O 的半径为5,圆心O 到弦AB 的距离OD=3,则AD= ,AB 的长为 ;5、如图,已知⊙O 的半径OA=13㎝,弦AB =24㎝,则OD= ㎝。

01 圆(知识回顾+夯实基础练)六年级上册数学单元考点精讲+优选易错题 北师大版(含答案)

01  圆(知识回顾+夯实基础练)六年级上册数学单元考点精讲+优选易错题   北师大版(含答案)

【考点精讲+期中期末通用讲义—北师大版】六年级上册数学单元考点精讲+优选易错题(基础版)01 圆一、圆的认识(一)1.圆的特征:由一条曲线围成的封闭图形,圆上任意一点到圆心的距离都相等。

在食指绕拇指旋转一周的过程中,拇指所按的点不变,食指与拇指间的距离不变。

2.圆的画法。

(1)手指画圆法。

以拇指为固定点,食指与拇指间的距离不变,将食指绕拇指旋转一周,食指的运动轨迹就形成了一个圆。

(2)实物画圆法。

把圆形物体放在纸上固定不动,用笔沿实物的边缘描一周,就画成了一个圆。

(3)系绳画圆法。

用一个图钉、一根线(没有弹力)和一支笔画圆的方法:用图钉将线的一端固定在一点上,用笔将线拉直并绕这个固定的点旋转一周,就画成了一个圆。

用图钉、线和笔画圆时,图钉要固定好,线要拉直。

(4)圆规画圆法。

根据圆心到圆上任意一点的距离(即半径)都相等,可以用圆规来画圆。

步骤如下:①把圆规的两脚分开,定好两脚间的距离(即半径);②把带有针尖的一只脚固定在一点(即圆心)上;③把带有铅笔的一只脚绕这个固定点旋转一周,就可以画出一个圆。

用圆规画圆,针尖所在的位置是圆心,两脚间的距离是半径。

3.圆的各部分名称。

(1)圆心。

画圆时,圆规带有针尖的脚所在的点叫圆心。

圆心一般用字母O表示。

(2)半径。

用圆规画圆时,圆规两脚之间的距离就是所画圆的半径,即圆心到圆上任意一点的距离叫半径。

半径一般用字母r表示。

在同一个圆里,所有半径的长度都相等。

1.同一个圆里有无数条半径,长度都相等。

2.直径是圆内最长的线段。

(3)直径。

通过圆心并且两端都在圆上的线段叫作直径。

直径一般用字母d表示。

在同一个圆里,所有直径的长度都相等。

4.圆的各部分之间的关系。

圆有无数条直径,无数条半径;同圆(或等圆)中的直径都相等,半径都相等;直径的长度是半径的2倍,可以表示为d=2r或r=d2。

5.圆心和半径的作用:圆心确定圆的位置,半径决定圆的大小。

6.圆在生活中的应用。

汽车车轮、自行车的车轮、球、齿轮、方向盘、圆规、井盖、钟表、水杯、环岛……1.判断直径和半径时,一定要看其是否经过圆心。

圆(全)知识点习题及答案

圆(全)知识点习题及答案

圆一、本章知识框架二、本章重点1.圆的定义:(1)线段OA绕着它的一个端点O旋转一周,另一个端点A所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.2.判定一个点P是否在⊙O上.设⊙O的半径为R,OP=d,则有d>r点P在⊙O 外;d=r点P在⊙O 上;d<r点P在⊙O 内.3.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角.圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等.③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角.④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.⑤圆内接四边形的对角互补;外角等于它的内对角.(3)弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角叫弦切角.弦切角的性质:弦切角等于它夹的弧所对的圆周角.弦切角的度数等于它夹的弧的度数的一半.4.圆的性质:(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2)轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.垂径定理及推论:(1)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.(2)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.(3)弦的垂直平分线过圆心,且平分弦对的两条弧.(4)平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦.(5)平行弦夹的弧相等.5.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三个角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的2倍,通常用G表示.(4)垂心:是三角形三边高线的交点.6.切线的判定、性质:(1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线.②到圆心的距离d等于圆的半径的直线是圆的切线.(2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点.③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.7.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.8.直线和圆的位置关系:设⊙O 半径为R,点O到直线l的距离为d.(1)直线和圆没有公共点直线和圆相离d>R.(2)直线和⊙O有唯一公共点直线l和⊙O相切d=R.(3)直线l和⊙O 有两个公共点直线l和⊙O 相交d<R.9.圆和圆的位置关系:设的半径为R、r(R>r),圆心距.(1)没有公共点,且每一个圆上的所有点在另一个圆的外部外离d>R+r.(2)没有公共点,且的每一个点都在外部内含d<R-r(3)有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切d=R+r.(4)有唯一公共点,除这个点外,的每个点都在内部内切d=R-r.(5)有两个公共点相交R-r<d<R+r.10.两圆的性质:(1)两个圆是一个轴对称图形,对称轴是两圆连心线.(2)相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点.11.圆中有关计算:圆的面积公式:,周长C=2πR.圆心角为n°、半径为R 的弧长.圆心角为n°,半径为R,弧长为l 的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为R,母线长为l 的圆柱的体积为,侧面积为2πRl ,全面积为.圆锥的侧面展开图为扇形,底面半径为R,母线长为l,高为h的圆锥的侧面积为πRl ,全面积为,母线长、圆锥高、底面圆的半径之间有.一、知识点1、与圆有关的角——圆心角、圆周角(1)图中的圆心角;圆周角;(2)如图,已知∠AOB=50度,则∠ACB= 度;(3)在上图中,若AB是圆O的直径,则∠AOB= 度;OA B3、点和圆的位置关系有三种:点在圆,点在圆,点在圆;例:已知圆的半径r等于5厘米,点到圆心的距离为d,(1)当d=2厘米时,有d r,点在圆(2)当d=7厘米时,有d r,点在圆(3)当d=5厘米时,有d r,点在圆4、直线和圆的位置关系有三种:相、相、相.例:已知圆的半径r等于12厘米,圆心到直线l的距离为d,(1)当d=10厘米时,有d r,直线l与圆(2)当d=12厘米时,有d r,直线l与圆(3)当d=15厘米时,有d r,直线l与圆5、圆与圆的位置关系:例:已知⊙O1的半径为6厘米,⊙O2的半径为8厘米,圆心距为 d,则:R+r= , R-r= ;(1)当d=14厘米时,因为d R+r,则⊙O1和⊙O2位置关系是:(2)当d=2厘米时,因为d R-r,则⊙O1和⊙O2位置关系是:(3)当d=15厘米时,因为,则⊙O1和⊙O2位置关系是:(4)当d=7厘米时,因为,则⊙O1和⊙O2位置关系是:(5)当d=1厘米时,因为,则⊙O1和⊙O2位置关系是:6、切线性质:例:(1)如图,PA是⊙O的切线,点A是切点,则∠PAO= 度(2)如图,PA、PB是⊙O的切线,点A、B是切点,则 = ,∠ =∠;7、圆中的有关计算(1)弧长的计算公式:例:若扇形的圆心角为60°,半径为3,则这个扇形的弧长是多少? 解:因为扇形的弧长=()180所以l =()180= (答案保留π)(2)扇形的面积:例6:①若扇形的圆心角为60°,半径为3,则这个扇形的面积为多少? (3)圆锥:例:圆锥的母线长为5cm ,半径为4cm ,则圆锥的侧面积是多少?解:∵圆锥的侧面展开图是 形,展开图的弧长等于 ∴圆锥的侧面积=8、三角形的外接圆的圆心——三角形的外心——三角形的 交点;三角形的内切圆的圆心——三角形的内心——三角形的 交点;基础练习一。

九年级圆的基础知识点、经典例题和课后习题

九年级圆的基础知识点、经典例题和课后习题

圆【知识梳理】1.圆的有关概念和性质(1) 圆的有关概念①圆:平面上到定点的距离等于定长的所有点组成的图形叫做圆,其中定点为圆心,定长为半径.②弧:圆上任意两点间的部分叫做圆弧,简称弧,大于半圆的弧称为优弧,小于半圆的弧称为劣弧.③弦:连接圆上任意两点的线段叫做弦,经过圆心的弦叫做直径.(2)圆的有关性质①圆是轴对称图形;其对称轴是任意一条过圆心的直线;圆是中心对称图形,对称中心为圆心.②垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧.说明:根据垂径定理与推论可知对于一个圆和一条直线来说,如果具备:①过圆心;②垂直于弦;③平分弦;④平分弦所对的优弧;⑤平分弦所对的劣弧。

上述五个条件中的任何两个条件都可推出其他三个结论。

③弧、半圆、优弧、劣弧:弧:圆上任意两点间的部分叫做圆弧..,简称弧.,用符号“⌒”表示,以CD为端点的弧记为“”,读作“圆弧CD”或“弧CD”。

半圆:直径的两个端点分圆成两条弧,每一条弧叫做半圆..。

优弧:大于半圆的弧叫做优弧..劣弧:小于半圆的弧叫做劣弧..。

(为了区别优弧和劣弧,优弧用三个字母表示。

)④弧、弦、圆心角的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等.推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角是直角;90”的圆周角所对的弦是直径.⑤等圆:能够完全重合的两个圆叫做等圆,半径相等的两个圆是等圆。

⑥等弧:在同圆或等圆中,能够互相重合的弧叫做等弧..。

⑦圆心角:顶点在圆心的角叫做圆心角....⑧弦心距:从圆心到弦的距离叫做弦心距....(3)对圆的定义的理解:①圆是一条封闭曲线,不是圆面;②圆由两个条件唯一确定:一是圆心(即定点),二是半径(即定长)2.与圆有关的角(1)圆心角:顶点在圆心的角叫圆心角。

圆心角的度数等于它所对的弧的度数.(2)圆周角:顶点在圆上,两边分别和圆相交的角,叫圆周角。

九年级数学--圆知识点和典例训练

九年级数学--圆知识点和典例训练

1圆的对称性主要内容:(一)圆的定义及相关概念1. 圆是到一定点的距离等于定长的所有点组成的图形。

这个定点叫做圆心,定长叫做半径。

圆也可以看作是一个动点绕一个定点旋转一周所形成的图形。

同一圆的半径相等,直径相等,直径等于半径的2倍。

2. 圆的基本元素:(1)弦:连结圆上任意两点的线段叫做弦。

经过圆心的弦叫直径。

(如图)(2)弧:圆上任意两点间的部分叫做弧。

简称弧,弧用符号表示。

(3)半圆、劣弧、优弧圆的任意一条直径的两个端点分圆成两条弧。

每一条弧都叫做半圆。

小于半圆的弧叫做劣弧。

CD* EC.大于半圆的弧叫做优孤-用三个字母表示:嬴(4)圆心角顶点在圆心的角,叫做圆心角。

/ COD(5)同心圆、等圆、等弧同心圆:圆心相同,半径不相等的两个圆叫做同心圆。

等圆:能够重合的两个圆叫等圆。

半径相等的两个圆也叫等圆。

等弧:在同圆与等圆中,能够互相重合的弧叫等弧。

3. 圆是轴对称图形,也是中心对称图形。

经过圆心的直线是对称轴。

圆心是它的对称中心。

4. 圆心角、弧、弦之间的关系定理:在同一个圆中,如果圆心角相等,那么它们所对的弧相等,所对的弦也相等。

推论:在同一个圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等。

(2)T金=后二N盘0B = ZA'OB'5 AB=A'B l如图,用几何语言表示如下:O O 中,(1)vZ AOB =Z A'OB'(3)v AB = A'B'/. ZAOB= ZA'OB1, 恳=品例3.在O O 中,弦AB = 12cm ,点O 到AB 的距离等于 圆的半径。

分析:根据O 到AB 的距离,可利用垂径定理解决。

解:过O 点作OE 丄AB 于E •/ AB = 12丄直 B = -xl2 = 62 2由垂径定理知:虹二 BE 二丄AB 二 625.直径垂直于弦的性质(垂径定理)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

圆知识点及练习基础.doc

圆知识点及练习基础.doc

1圆的基本概念和性质1.要确定一个圆,需要知道和・2.已知③。

的直径为4cm,则。

的面积为,周长为o3.如果的周长为10兀,那么它的半径为4.到定点。

的距离等于2 cm的点的构成的图形是以为圆心,为半径的圆.5.在同圆中,如果A B=2CD,那么弦AB、CD的关系为AB 2CD.6._______________________ 圆是轴对称图形,它有条对称轴,是直线;圆还是中心对称图形,对称中心是7.弧分为,,8.一个圆的最长弦长为1 Ocm,则此圆的半径是9.判断:(1)直径是弦.()(2)弦是直径.()(3)半圆是弧,但弧不一定是半圆.()(4)半径相等的两个半圆是等弧.()(5)长度相等的两条弧是等弧.()(6)周长相等的圆是等圆.()(7 )面积相等的圆是等圆.()。

10.如图:AB、AC是。

的两条弦,旦AB=AC。

求证:Z1=Z2 =13、已知:如图,两同心圆的直径AC、BD相交于。

点.求证:AB二CD.C13、如图:在矩形ABCD中,对角线AC和BD交于点0,试说明点A、B、C、D在同一个圆上,并画出这个圆。

圆的基本概念和性质21.⑴过圆心⑵垂直于弦⑶平分弦⑷平分优弧⑸平分劣弧,知二得三,注意(1)(3)推(2)(4)(5)时,平分弦得直径中的弦是2.在同圆或等圆中,相等的孤所对的弦,相等的弦所对的优孤和劣孤分别4.已知。

0 的直径AB=10cm,弦CD_LAB 于M, H 0M=3cm,则CD=。

5.半径是2^3 cm的圆中,垂直平分半径的弦长为o6.AB是。

的直径,弦CD1AB,垂足是E,如果AB=10, CD=8,那么AE=。

7.已知P为。

0内一•点,旦0P = 2cm,如果CDO的半径是3c【n,那么过点P的最长的弦长为;最短的弦长为o8.已知AB是。

0的弦,弦CD过圆心且平分弦AB于M,若OM=DM,则匕AOB_ ______ 09.在半径为2cm的圆中,垂直平分半径的弦长为10.如图,半径为1cm的圆中,弦MN垂直平分弦AB,则MN=cm011.某公园的一石拱桥石圆弧形(劣弧),其跨度石24cm,拱的半径石13cm,则拱高为__________12.已知弓形的弦长为6cm,高为2cm,则含这个弓形的圆的直径长为13.在半径为5cm的圆中,弦AB〃CD, AB二6cm, CD=8cm,则AB和CD的距离是11.如图,AB是。

圆的有关性质练习及答案(供参考)

圆的有关性质练习及答案(供参考)

1° ° D CB A O圆的有关性质【知识要点】 1.圆的定义:(1)动态定义:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 所形成的图形叫做圆。

(2)静态定义:在平面内到定点(圆心O )的距离等于定长(半径r )所有点的集合叫做圆:2.圆的相关概念弦:直径:弧:半圆弧:优弧:劣弧:等弧:同心圆:3.垂径定理及推论:垂直于弦的直径平分弦,并且平分弦所对的两条弧。

由此得到推论:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

(2)弦的垂直平分线,经过圆心, 并且平分弦所对的两条弧。

4.圆的轴对称性:(1)圆是轴对称图形;(2)经过圆心的每一条直线都是它的对称轴;(3)圆的对称轴有无数条。

5..圆的旋转不变性圆是以圆心为对称中心的中心对称图形6.圆心角、弧、弦关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对弦的弦心距相等。

7.弧的度数等于它所对的圆心角的度数。

8..圆周角定理及推论:在同圆或等圆中,同弧或等弧所对的圆周角相等,并等于这条弧所对的圆心角的一半.推论:(1)半圆(或直径)所对的圆周角是直角.90°的圆周角所对的弦是直径.(2)三角形的一边上的中线等于这边的一半,则这个三角形是直角三角形9:三角形:圆内接三角形;圆:三角形的外接圆 四边形:圆内接四边形圆:四边形的外接圆 定理:圆内接四边形的对角互补【基础和能力训练】 一、选择题1.平行四边形的四个顶点在同一圆上,则该平行四边形一定是( )A.正方形 B.菱形 C.矩形 D.等腰2.(2014•毕节地区)如图,已知⊙O 的半径为13,弦AB 长为24,则点O 到AB 的距离是( ) A 6 B 5 C 4 D 33. ( 2014•珠海)如图,线段AB 是⊙O 的直径, 弦CD 丄AB ,∠CAB =20°,则∠AOD 等于( ) A 160° B 150° C 140° D 120°4.(2015湖南常德)如图,四边形ABCD 为⊙O 的内接四边形,已知∠BOD =100°,则∠BCD 的度数为( ) A 、50° B 、80° C 、100° D 、130°5.(2015上海)如图,已知在⊙O 中,AB 是弦,半径OC ⊥AB ,垂足为点D ,要使四边形OACB 为菱形,还需要添加一个条件,这个条件可以是( )A 、AD =BD ;B 、OD =CD ;C 、∠CAD =∠CBD ;D ∠OCA =∠OCB .6. 如图:是小明完成的.作法是:取⊙O 的直径AB ,在⊙O 上任取一点C 引弦CD ⊥A B.当C 点在半圆上移动时(C 点不与A 、B 重合),∠OCD 的平分线与⊙O 的交点P 必( ) A 。

圆基础知识

圆基础知识

《圆》基础知识复习1、在同一个圆内,直径总是半径的()倍,用字母表示为(),半径是直径的(),用字母表示为()。

2、画圆时,圆规两脚间的距离是圆的()。

3、圆的周长与直径的关系是(),圆的周长与半径的关系是()。

圆面积的计算公式是()。

4、把一个圆平均分成若干份,拼成一个平行四边形,平行四边形的底等于(),平行四边形的高等于()。

5、把一个圆平均分成若干份,拼成一个长方形,长方形的长等于(),长方形的宽等于()。

因为长方形的面积= 长X宽,则圆的面积= ()X ()= ()。

6、把圆形的草绳剪开并拼成一个三角形,三角形的底等于(),三角形的高等于()。

因为三角形的面积= 底X高÷ 2,则圆的面积= ()X ()÷ 2 = ()。

7、长方形有()条对称轴,正方形有()条对称轴,等腰三角形有()条对称轴,等边三角形有()条对称轴,等腰梯形有()条对称轴,菱形有()对称轴,圆有()条对称轴,半圆有()条对称轴,平行四边形()对称轴。

8、圆的周长总是直径的()倍。

圆的周长总是直径的()倍多一些。

9、圆的周长除以直径的商是一个固定的数,我们把它叫做(),通常用字母()表示,计算时取近似值()。

10、我国南北朝时期著名的数学家()得到了π的两个分数形式的近似值,这一成就在世界上领先了约1000年。

11、周长相等的圆和长方形、正方形,()的面积最大。

12、圆是()图形,()是它的对称轴,圆有()对称轴。

13、半圆的周长等于(),公式为()。

14、把圆切拼成一个长方形后,长方形的周长比圆的周长增加了(2r ),面积不变。

《圆》的应用1、圆的半径扩大3倍,圆的周长就扩大()倍,圆的面积就扩大()倍2、圆的直径扩大3倍,圆的周长就扩大()倍,圆的面积就扩大()倍。

3、小圆的直径等于大圆的半径,则小圆的周长等于大圆周长的(),小圆的面积等于大圆面积的()4、大圆的半径等于小圆半径的3倍,则大圆的周长等于小圆周长的()倍。

人教版第24章圆的知识点及典型例题

人教版第24章圆的知识点及典型例题

圆知识点总结一.圆的定义1.在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫圆.这个固定的端点O叫做圆心,线段OA叫做半径.以O点为圆心的圆记作⊙O,读作圆O.2.圆是在一个平面内,所有到一个定点的距离等于定长的点组成的图形.3.确定圆的条件:⑴圆心;⑵半径,其中圆心确定圆的位置,半径长确定圆的大小.二.同圆、同心圆、等圆1.圆心相同且半径相等的圆叫做同圆;#2.圆心相同,半径不相等的两个圆叫做同心圆;3.半径相等的圆叫做等圆.三.弦和弧1.连结圆上任意两点的线段叫做弦.经过圆心的弦叫做直径,并且直径是同一圆中最长的弦,直径等于半径的2倍.2.圆上任意两点间的部分叫做圆弧,简称弧.以A B、为端点的弧记作AB,读作弧AB.在同圆或等圆中,能够重合的弧叫做等弧.*3.圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.在一个圆中大于半圆的弧叫做优弧,小于半圆的弧叫做劣弧.4.从圆心到弦的距离叫做弦心距.5.由弦及其所对的弧组成的图形叫做弓形.四.与圆有关的角及相关定理1.顶点在圆心的角叫做圆心角.将整个圆分为360等份,每一份的弧对应1︒的圆心角,我们也称这样的弧为1︒的弧.圆心角的度数和它所对的弧的度数相等.2.顶点在圆上,并且两边都和圆相交的角叫做圆周角.…圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论1:在同圆或等圆中,如果两个圆周角相等,它们所对的弧一定相等.推论2:半圆(或直径)所对的圆周角是直角,90︒的圆周角所对的弦是直径.(在同圆中,半弧所对的圆心角等于全弧所对的圆周角)3.顶点在圆内,两边与圆相交的角叫圆内角.圆内角定理:圆内角的度数等于圆内角所对的两条弧的度数和的一半.4.顶点在圆外,两边与圆相交的角叫圆外角.【圆外角定理:圆外角的度数等于圆外角所对的长弧的度数与短弧的度数的差的一半. 5.圆内接四边形的对角互补,一个外角等于其内对角.6.如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.7.圆心角、弧、弦、弦心距之间的关系定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量分别相等. :五.垂径定理1.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; 2.其它正确结论:⑴ 弦的垂直平分线经过圆心,并且平分弦所对的两条弧;⑵ 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧. ⑶ 圆的两条平行弦所夹的弧相等. \3.知二推三:⑴直径或半径;⑵垂直弦;⑶平分弦;⑷平分劣弧;⑸平分优弧.以上五个条件知二推三.注意:在由⑴⑶推⑵⑷⑸时,要注意平分的弦非直径. 4.常见辅助线做法:⑴过圆心,作垂线,连半径,造RT △,用勾股,求长度;⑵有弧中点,连中点和圆心,得垂直平分. 相关题目: {1.平面内有一点到圆上的最大距离是6,最小距离是2,求该圆的半径 2.(08郴州)已知在O ⊙中,半径5r =,AB CD ,是两条平行弦,且86AB CD ==,,则弦AC 的长为__________.. 六.点与圆的位置关系 1.点与圆的位置有三种:⑴点在圆外⇔d r >;⑵点在圆上⇔d r =;⑶点在圆内⇔d r <.》2.过已知点作圆⑴经过点A 的圆:以点A 以外的任意一点O 为圆心,以OA 的长为半径,即可作出过点A 的圆,这样的圆有无数个. ⑵经过两点A B 、的圆:以线段AB 中垂线上任意一点O 作为圆心,以OA 的长为半径,即可作出过点A B 、的圆,这样的圆也有无数个.⑶过三点的圆:若这三点A B C 、、共线时,过三点的圆不存在;若A B C 、、三点不共线时,圆心是线段AB 与BC 的中垂线的交点,而这个交点O 是唯一存在的,这样的圆有唯一一个. ⑷过n ()4n ≥个点的圆:只可以作0个或1个,当只可作一个时,其圆心是其中不共线三点确定的圆的圆心.3.定理:不在同一直线上的三点确定一个圆. —注意:⑴“不在同一直线上”这个条件不可忽视,换句话说,在同一直线上的三点不能作圆;⑵“确定”一词的含义是“有且只有”,即“唯一存在”.4.三角形的外接圆⑴经过三角形三个顶点的圆叫做三角形的外接圆,外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,这个三角形叫做这个圆的内接三角形. ⑵三角形外心的性质:①三角形的外心是指外接圆的圆心,它是三角形三边垂直平分线的交点,它到三角形各顶点的距离相等;②三角形的外接圆有且只有一个,即对于给定的三角形,其外心是唯一的,但一个圆的内接三角形却有无数个,这些三角形的外心重合.|⑶锐角三角形外接圆的圆心在它的内部(如图1);直角三角形外接圆的圆心在斜边中点处(即直角三角形外接圆半径等于斜边的一半,如图2);钝角三角形外接圆的圆心在它的外部(如图3).图3图2图1CBCC五.直线和圆的位置关系的定义、性质及判定从另一个角度,直线和圆的位置关系还可以如下表示:四.切线的性质及判定1. 切线的性质:定理:圆的切线垂直于过切点的半径.推论1:经过圆心且垂直于切线的直线必经过切点.推论2:经过切点且垂直于切线的直线必经过圆心.、2. 切线的判定定义法:和圆只有一个公共点的直线是圆的切线;距离法:和圆心距离等于半径的直线是圆的切线;定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.3. 切线长和切线长定理:⑴在经过圆外一点的圆的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长.⑵从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.:五.三角形内切圆1. 定义:和三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形.2. 多边形内切圆:和多边形的各边都相切的圆叫做多边形的内切圆,该多边形叫做圆的外切多边形.六.圆和圆的位置关系的定义、性质及判定设O O、⊙⊙的半径分别为(其中),两圆圆心距为,则两圆位置关系如下表:|位置关系图形定义性质及判定外离两个圆没有公共点,并且每个圆上的点都在另一个圆的外部.—d R r>+⇔两圆外离外切两个圆有唯一公共点,并且除了这个公共点之外,每个圆上的点都在另一个圆的外部.d R r=+⇔两圆外切相交#两个圆有两个公共点.R r d R r-<<+⇔两圆相交内切两个圆有唯一公共点,并且除了这个公共点之外,一个圆上的点都在另一个圆的内部.d R r=-⇔两圆内切内含>两个圆没有公共点,并且一个圆上的点都在另一个圆的内部,两圆同心是两圆内含的一种特例.0d R r≤<-⇔两圆内含说明:圆和圆的位置关系,又可分为三大类:相离、相切、相交,其中相离两圆没有公共点,它包括外离与内含两种情况;相切两圆只有一个公共点,它包括内切与外切两种情况.七.正多边形与圆,1. 正多边形的定义:各条边相等,并且各个内角也都相等的多边形叫做正多边形.2. 正多边形的相关概念:⑴正多边形的中心:正多边形的外接圆的圆心叫做这个正多边形的中心.⑵正多边形的半径:正多边形外接圆的半径叫做正多边形的半径.⑶正多边形的中心角:正多边形每一边所对的圆心角叫做正多边形的中心角.⑷正多边形的边心距:中心到正多边形的一边的距离叫做正多边形的边心距.~3. 正多边形的性质:⑴正n边形的半径和边心距把正n边形分成2n个全等的直角三角形;⑵正多边形都是轴对称图形,正n边形共有n条通过正n边形中心的对称轴;⑶偶数条边的正多边形既是轴对称图形,也是中心对称图形,其中心就是对称中心.八、圆中计算的相关公式设O ⊙的半径为R ,n ︒圆心角所对弧长为l ,、1. 弧长公式:π180n Rl =2. 扇形面积公式:21π3602n S R lR ==扇形 3. 圆柱体表面积公式:22π2πS R Rh =+4. 圆锥体表面积公式:2ππS R Rl =+(l 为母线) 常见组合图形的周长、面积的几种常见方法:① 公式法;② 割补法;③ 拼凑法;④ 等积变换法。

圆基础知识练习

圆基础知识练习

初四周末圆部分练习巩固1.下列说法:①弧分为优弧和劣弧;②半径相等的圆是等圆;③过圆心的线段是直径;④长度相等的弧是等弧;⑤半径是弦,其中错误的个数为()A.2 B.3 C.4 D.52.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=87°,则∠E等于()A.42°B.29°C.21°D.20°3.如图,DC是⊙O直径,弦AB⊥CD于点F,连接BC、BD,则下列结论错误的是()A.AF=BF B.OF=CF C.=D.∠DBC=90°4.如图,CD为⊙O的直径,弦AB⊥CD于E,CE=2,AE=3,则△ACB的面积为()A.3 B.5 C.6 D.85.如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,已知点A的坐标是(﹣2,3),点C的坐标是(1,2),那么这条圆弧所在圆的圆心坐标是()A.(0,0)B.(﹣1,1)C.(﹣1,0)D.(﹣1,﹣1)6.在截面为半圆形的水槽内装有一些水,如图.水面宽AB为6分米,如果再注入一些水后,水面AB上升1分米,水面宽变为8分米,则该水槽截面直径为()A.5分米B.6分米C.8分米D.10分米7.如图,⊙O的直径AB=10,C是AB上一点,矩形ACND交⊙O于M,N两点,若DN=8,则AD的值为()A.4 B.6 C.2D.38.如图,在⊙O中,弦CD垂直于直径AB,垂足为H,CD=2,BD=,则AB的长为()A.2 B.3 C.4 D.59.如图,AB是半圆O的直径,AC为弦,OD⊥AC于D,过点O作OE∥AC交半圆O于点E,若AC=12,则OF的长为()A.8 B.7 C.6 D.410.如图,P为⊙O内的一个定点,A为⊙O上的一个动点,射线AP、AO分别与⊙O交于B、C两点.若⊙O的半径长为3,OP=,则弦BC的最大值为()A.2 B.3 C.D.311.若圆的一条弦把圆分成度数比例为2:7的两条弧,则弦所对的圆心角等于.12.如图,AB是⊙O的直径,点C在⊙O上,CD⊥AB,垂足为D,已知CD=4,OD=3,求AB的长是.13.半圆形纸片的半径为1cm,用如图所示的方法将纸片对折,使对折后半圆弧的中点M与圆心O重合,则折痕CD的长为cm.14.如图所示,⊙O内有折线OABC,其中OA=2,AB=4,∠A=∠B=60°,则BC的长为.15.如图是“明清影视城”的圆弧形门,这个圆弧形门所在的圆与水平地面是相切的,AB=CD=20cm,BD=200cm,且AB,CD与水平地面都是垂直的.则这个圆弧形门的最高点离地面的高度是cm.16.如图,已知AB是半圆O的直径,CD⊥AB于D点,AD=4cm,DB=9cm,则弦CB的长为.17.如图,在正方形纸片ABCD中,EF∥AD,M,N是线段EF的六等分点,若把该正方形纸片卷成一个圆柱,使点A与点D重合,此时,底面圆的直径为10cm,则圆柱上M,N两点间的距离是cm.18.如图,MN是⊙O的直径,MN=8,∠AMN=20°,点B为弧的中点,点P是直径MN上的一个动点,则PA+PB的最小值为.19.如图,半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD.已知BC=6,∠BAC+∠EAD=180°,则圆心A到DE的距离等于.20.在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P截得的弦AB的长为,则a的值是.21.如图,AE是⊙O的直径,半径OD垂直于弦AB,垂足为C,AB=8cm,CD=2cm,求BE 的长.22.如图,已知AD是⊙O的直径,AB、BC是⊙O的弦,AD⊥BC,垂足是点E,BC=8,DE=2,求⊙O的半径长和sin∠BAD的值.23.如图,点A、B、C、D、E都在⊙O上,AC平分∠BAD,且AB∥CE,求证:AD=CE.24.如图,圆柱形水管内原有积水的水平面宽CD=10cm,水深GF=1cm,若水面上升1cm (EG=1cm),则此时水面宽AB为多少?25.如图,∠AOB=90°,CD是的三等分点,连接AB分别交OC,OD于点E,F.求证:AE=BF=CD.。

专题11:圆基础知识习题

专题11:圆基础知识习题

专题十二:圆的基础知识一、选择题1.已知,在△ABC 中,∠C=90°,斜边长为217,两直角边的长分别是关于x 的方程x 2—3(m +21)x +9m =0的两个根,则△ABC 的内切圆面积是【 】.A .4πB .23π C .47π D .49π2.如图,⊙O 中弦AB 、CD 相交于点F ,AB=10,AF=2.若CF :DF=1:4,则CF 的长等于【 】A ..2 C .3 D .3.如图,△ABC 是等腰直角三角形,AC =BC =a ,以斜边AB 上的点O 为圆心的圆分别与AC 、BC 相切于点E 、F ,与AB 分别相交于点G 、H ,且EH 的延长线与CB 的延长线交于点D ,则CD 的长为【 】A 、1a 2B 、1a 2+ C D 、1a 4⎫⎪⎭第2题图 第3题图 第4题图 第5题图 4.如图,在半径为5cm 的⊙O 中,圆心O 到弦AB 的距离为3cm ,则弦AB 的长是【 】 A 、4cm B 、6cm C 、8cm D 、10cm 5.如图,在⊙O 中,P 是弦AB 的中点,CD 是过点P 的直径,则下列结论中不正确的是【 】A 、AB⊥CD B、∠AOB=4∠ACD C、 AD=BD D 、PO =PD 6.已知⊙O 1与⊙O 2的半径分别为3㎝和7㎝,两圆的圆心距O 1O 2=10㎝,则两圆的位置关系是【 】A .外切B .内切C .相交D .相离7.如图,AB 与⊙O 相切于点B ,AO =6㎝ ,AB =4㎝,则⊙O 的半径为【 】 A .45㎝ B .25㎝ C .213㎝ D .13㎝ 8.⊙O 的半径为4,圆心O 到直线l 的距离为3,则直线l 与⊙O 的位置关系是【 】 A.相交 B.相切 C.相离 D. 无法确定9.如图,⊙O 的直径CD 过弦EF 的中点G ,∠EOD=40°,则∠DCF 等于【 】 A.80° B. 50° C. 40° D. 20°10. 已知1O 的半径r 为3cm ,2O 的半径R 为4cm ,两圆的圆心距12O O 为1cm ,则这两圆的位置关系是【】A.相交B.内含C.内切D.外切第7题图第9题图第11题图第12题图11.如图,AB是⊙O的直径,点C在⊙O上,则∠ACB的度数为【】A、30°B、45°C、60°D、90°12.如图,O⊙是A B C△的外接圆,AB是直径.若B O C80∠=°,则A∠等于【】A.60°B.50°C.40°D.30°13.如图,△ABC是⊙O的内接三角形,若∠ABC=70°,则∠AO C的度数等于【】A.140° B.130° C.120° D.110°14.如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的度数等于【】A、60°B、50°C、40°D、30°第13题图第14题图第15题图15.已知:如图,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠ACB的度数为【】A.45°B.35°C.25°D.20°二、填空题1.如图,⊙O1与半径为4的⊙O2内切于点A,⊙O1经过圆心O2,作⊙O2的直径BC交⊙O1于点D,EF为过点A的公切线,若O2D=22,那么∠BAF=▲ 度.2.已知:如图,PT切⊙O于点T,PA交⊙O于A、B两点且与直径CT交于点D,CD=2,AD =3,BD=6,则PB ▲ .第1题图第2题图第3题图3.如图,AB是⊙O的直径,四边形ABCD内接于⊙O,弧BC,弧CD,弧AD的度数比为3:2:4,MN是⊙O的切线,C是切点,则∠BCM的度数为▲ 。

圆基础知识练习试题

圆基础知识练习试题

圆基础知识练习一、基本定义及概念1.下列语句中正确的有()①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③长度相等的两条弧是等弧;④经过圆心的每一条直线都是圆的对称轴8,求∠DAC的度数。

2、AB是⊙O的直径,AC、AD是⊙O的两弦,已知AB=16,AC=8,AD=23、下列语句中不正确的有()①相等的圆心角所对的弧相等;②平分弦的直径垂直于弦;③圆是轴对称图形,任何一条直径都是它的对称轴;④半圆是弧。

4、已知⊙O的半径是5cm,弦AB∥CD,AB=6cm,CD=8cm,则AB与CD的距离是5、在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定() A.与x轴相离、与y 轴相切 B.与x轴、y轴都相离 C.与x轴相切、与y轴相离 D.与x轴、y轴都相切6、三角形内切圆的圆心是() A.三内角平分线的交点, B.三边中垂线的交点,C.三中线的交点, D.三高线的交点,7、下列直线中一定是圆的切线的是()A.与圆有公共点的直线; B.到圆心的距离等于半径的直线; C.垂直于圆的半径的直线; D.过圆的直径端点的直线。

8、一点到圆的最大距离是14cm,到圆的最小距离是6cm,则圆的半径是9、在平面直角坐标系内,以原点O为圆心,5为半径作⊙O,已知A、B、C三点的坐标分别为A(3,4),)。

试判断A、B、C三点与⊙O的位置关系。

B(-3,-3),C(4,1010、△ABC中,内切圆I和边BC、CA、AB分别相切于点D、E、F,则点I是△DEF()A.三条高的交点 B.三个内角平分线的交点 C. 三条角平分线的交点 D.三边垂直平分线的交点11、下列说法正确的是( )A.垂直于半径的直线是圆的切线B.经过三点一定可以作圆C.圆的切线垂直于圆的半径D.每个三角形都有一个内切圆12、四边形中,有内切圆的是()A 平行四边形 B 菱形 C 矩形 D 以上都不对13、下面命题中是真命题的有()A 1个 B 2个 C 3个 D 4个①平分弦的直径垂直于弦;②如果两个三角形的周长之比为3∶2,则其面积之比为3∶4;③圆的半径垂直于这个圆的切线;④在同一圆中,等弧所对的圆心角相等;⑤过三点有且只有一个圆。

小学数学圆的知识基础练习题

小学数学圆的知识基础练习题

圆的知识一、我会填1.一个圆可以分成()个圆心角是60°的扇形。

每个扇形的面积占这个圆面积的()。

2.在一张边长是6 dm的正方形纸上画一个最大的圆,这个圆的面积是()dm2。

3.一个圆的周长是25.12米,这个圆的面积是()平方米。

4.大圆直径是小圆直径的3倍,大圆的周长与小圆的周长的比是(),大圆的面积与小圆的面积的比是()。

5.一个钟表的分针长10 cm,从2时走到4时,分针的尖端走过了()cm。

二、我会选1.求车轮滚动一周所行的路程是求车轮的()。

A.周长B.半径C.直径D.面积2.一个半圆形,半径是r,它的周长是()。

A.2πr B.πrC.πr+2r D.πr+r三、我会算1.完成下表。

2.求下面图形的周长。

(单位:厘米)3.计算下面图形中阴影部分的面积。

(单位:dm)(1)(2)四、解决问题1.一个圆形水池的直径是48米。

(1)要多长的铁丝才能把这个水池围上5圈?(2)如果在水池的周围每隔3米栽一棵小树,大约需要栽多少棵小树?(3)这个水池的占地面积是多少平方米?2.在一个边长是8 cm的正方形里剪去一个最大的圆,剩下部分的面积是多少平方厘米?3.学校准备在一个直径是16米的半圆形花坛周围围一圈铁栅栏,至少应准备多长的铁栅栏?4.校园里的圆形喷水池的直径是8米,在水池的周围修一条1米宽的水泥路,水泥路的面积是多少平方米?答案一、1.6162.28.263.50.244.3∶19∶15.125.6二、1.A 2.C三、1.2.30×2+3.14×20÷2+20=111.4(厘米)3.(1)[3.14×(8÷2+4)2-3.14×(8÷2)2]÷2=75.36 (dm2)(2)40×40-3.14×(40÷2)2=344 (dm2)四、1.(1)3.14×48×5=753.6(米)答:要753.6米长的铁丝才能把这个水池围上5圈。

小学六年级《圆》知识点专项练习题附答案(基础题)

小学六年级《圆》知识点专项练习题附答案(基础题)

小学六年级《圆》学问点专项练习题一.选择题(共 10 题,共 20 分)1.画圆的第一步是〔〕。

A.定圆心B.定半径C.两者都可2.圆上任意一点到圆心的距离都是〔〕的。

A.相等B.不相等C.不确定3.连接圆上任意两点的线段,它的长度肯定〔〕直径。

A.小于B.大于C.不大于4.在一张长 6 cm、宽 4 cm 的长方形纸上画一个最大的圆,这个圆的半径是〔〕cm。

A.6B.4C.3D.25.以下说法正确的选项是〔〕。

A.圆周率就是3.14B.圆心的位置打算圆的大小C.直径是圆内最长的线段D.直径是线段,半径是射线6.用一个长 5 厘米,宽 3 厘米的长方形纸片剪一个最大的圆,这个圆的周长是〔〕。

A.9.42 厘米B.15.7 厘米C.4.71 厘米D.9.42 平方厘米7.如以下图,以大圆的半径为直径画一小圆,大圆的周长是小圆周长的〔〕倍。

8.把下面的图形沿着虚线剪开,用可以拼成一个〔〕。

A.长方形B.正方形C.圆9.如图,正方形的面积是20 平方厘米,圆的面积是〔〕平方厘米。

A.31.4B.62.8C.125.610.下面图形中阴影局部的面积与左图相等的有〔〕个。

二.推断题(共 10 题,共 20 分)1.一个圆的直径和一个正方形的边长相等,那么正方形的面积肯定大于圆面积。

〔〕2.画圆时,圆规两脚间的距离是直径的长度。

〔〕3.圆的直径和周长的最简洁的整数比是〔π取3.14〕。

〔〕4.两个圆的周长相等,它们的面积也相等。

〔〕5.圆的周长总是半径的π倍。

〔〕6.每个圆都有很多条对称轴。

〔〕7.半径不相等的两个圆,周长肯定不相等。

〔〕8.圆的周长是和它半径一样的半圆的周长的2 倍。

〔〕9.小圆半径是大圆半径的,那么小圆周长也是大圆周长的。

〔〕10.直径就是两端都在圆上的线段。

〔〕三.填空题(共10 题,共26 分)1.画圆时,圆规两脚分开的距离是6 厘米,所画圆的半径是〔〕厘米,直径是〔〕厘米。

2.看图填空〔单位:厘米〕。

圆的基础知识、垂径定理(AB)

圆的基础知识、垂径定理(AB)

EO D C B A 圆的基础知识、垂径定理综合测试A一、选择题1. 有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有( )A .4个B .3个C . 2个D . 1个2. 已知P (x ,y )是以坐标原点为圆心,5为半径的圆周上的点,若x 、y 都是整数,则这样的点一共有( ) A .4个 B .8个 C .12个 D .16个3. 点P 到⊙O 的最近点的距离为4cm ,最远点的距离为9cm ,则⊙O 的半径是( )A .2.5cm 或6.5cmB .2.5cmC .6.5cmD .13cm 或5cm4. 如图⊙O 的半径为5,弦AB 长为8,点M 在线段AB (包括端点A 、B )上移动,则OM的取值范围是( ) A .3≤OM ≤5 B .3≤OM<5 C .4≤OM ≤5 D .4≤OM<55.过⊙O 内一点M 的最长的弦长为4cm ,最短的弦长为2cm ,则OM 的长为( ) A .3cm B .2cm C .1 D .3cm6. 已知⊙O 的直径CD=10cm ,AB 是⊙O 的弦,AB ⊥CD ,垂足为M ,且AB=8cm ,则AC 的长为( ) cm B cmcm 或cm cm 或cm A. 2cm B. 14cm C. 6cm 或8cm D. 2cm 或14cm8. 如图,两正方形彼此相邻且内接于半圆,若小正方形的面积为16cm 2,则该半圆的半径为( )A. (4+ cmB. 9 cmC. cm9. 如图所示,矩形ABCD 与⊙O 相交于M 、N 、F 、E ,若AM=2,DE=1,EF=•8,•则MN 的长为( )A .2B .4C .6D .8 10. 如图,半径为2的圆内两条互相垂直的弦AB 和CD ,交点E 到圆心O 的距离等于1,则22CD AB +=( ) A 、28 B 、26 C 、18 D 、358题图 9题图 10题图 11题图二、填空题10. 在直径为52cm 的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深度为16cm ,那么油面宽度AB 是________cm.D C A O第1题图 E D C BAO F C 11. 如图,将半径为2cm 的圆形纸片折叠后,圆弧恰好经过圆心O ,则折痕AB 的长为 cm .12、如图,点A 、D 、M 在半圆O 上,四边形ABOC 、DEOF 、HMNO 均为矩形,设BC =a ,EF =b ,NH =c ,则a 、b 、c 的大小关系 。

圆的基础知识训练

圆的基础知识训练

圆的基础知识训练训练一、解答题1.在⊙O 中,直径AB ⊥CD 于点E ,连接CO 并延长交AD 于点F ,且CF ⊥A D .求∠D 的度数.2.如图,点A 、B 、C 、D 在⊙O 上,AB =AC ,AD 交BC 于点E ,AE =2,ED =4,求AB 的长。

3.如图所示,有一座拱桥是圆弧形,它的跨度为60米,拱高18米, 当洪水泛滥到跨度只有30米时,要采取紧急措施,若拱顶离水面只有4米,即PN =4米时是否要采取紧急措施?4.如图,在△ABC 中,∠BAC =30°,以AB 为直径的⊙O 经过点C .过点C 作⊙O 的切线交AB 的延长线于点P .点D 为圆上一点,且=,弦AD 的延长线交切线PC 于点E,连接B C .(1)判断OB 和BP 的数量关系,并说明理由;(2)若⊙O 的半径为2,求AE 的长.5.如图,四边形ABCD 内接于⊙O ,已知直径AD =6,∠ABC =120°,∠ACB =45°,连结OB 交AC 于点E .(1)(3分)求AC 的长.(2)(3分)求CE ∶EA 的值.(3)(4分)在CB 的延长线上取一点P ,使CB =12BP ,求证:直线P A 与⊙O 相切.6.如图,在△ABC 中,AB =AC =10,BC =16,M 为BC 的中点.⊙A 的半径为3,动点O 从点B 出发沿BC 方向以每秒1个单位的速度向点C 运动,设运动时间为t 秒.(1)当以OB 为半径的⊙O 与⊙A 相切时,求t 的值;(2)探究:在线段BC 上是否存在点O ,使得⊙O 与直线AM 相切,且与⊙A 相外切.若存在,求出此时t 的值及相应的⊙O 的半径;若不存在,请说明理由.7.如图,D 为O ⊙上一点,点C 在直径BA 的延长线上,CDA CBD ∠=∠.(1)求证:CD 是O ⊙的切线;(2)过点B 作O ⊙的切线交CD 的延长线于点E ,若26tan 3BC CDA =∠=,,求BE 的长.O (第27题图)9.已知⊙O 中,AC 为直径,MA ,MB 分别切⊙O 于点A ,B;(Ⅰ)如图①,若∠BAC =250,求∠AMB 的大小;(Ⅱ)如图②,过点B 作BD ⊥AC 于点E ,交⊙O 于点D ,若BD =MA ,求∠AMB 的大小.(第21题图)B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆基础知识练习 Document serial number【KK89K-LLS98YT-SS8CB-SSUT-
初四周末圆部分练习巩固
1.下列说法:①弧分为优弧和劣弧;②半径相等的圆是等圆;③过圆心的线段是直径;④长度相等的弧是等弧;⑤半径是弦,其中错误的个数为()
A.2 B.3 C.4 D.5
2.如图,⊙O的直径AB与弦CD的延长线交于点E,若DE=OB,∠AOC=87°,则∠E等于
()A.42°B.29°C.21°D.20°
3.如图,DC是⊙O直径,弦AB⊥CD于点F,连接BC、BD,则下列结论错误的是()A.AF=BF B.OF=CF C.=D.∠DBC=90°
4.如图,CD为⊙O的直径,弦AB⊥CD于E,CE=2,AE=3,则△ACB的面积为()
A.3 B.5 C.6 D.8
5.如图,在5×5正方形网格中,一条圆弧经过A,B,C三点,已知点A的坐标是(﹣2,3),点C的坐标是(1,2),那么这条圆弧所在圆的圆心坐标是()
A.(0,0)B.(﹣1,1)C.(﹣1,0)D.(﹣1,﹣1)
6.在截面为半圆形的水槽内装有一些水,如图.水面宽AB为6分米,如果再注入一些水后,水面AB上升1分米,水面宽变为8分米,则该水槽截面直径为()
A.5分米B.6分米C.8分米D.10分米
7.如图,⊙O的直径AB=10,C是AB上一点,矩形ACND交⊙O于M,N两点,若DN=8,则AD的值为()A.4 B.6 C.2 D.3
8.如图,在⊙O中,弦CD垂直于直径AB,垂足为H,CD=2,BD=,则AB的长为()A.2 B.3 C.4 D.5
9.如图,AB是半圆O的直径,AC为弦,OD⊥AC 于D,过点O作OE∥AC交半圆O于点E,若AC=12,则OF的长为()A.8 B.7 C.6 D.4
10.如图,P为⊙O内的一个定点,A为⊙O上的一个动点,射线AP、AO分别与⊙O交于B、C两点.若⊙O的半径长为3,OP=,则弦BC的最大值为()
A.2B.3 C. D.3
11.若圆的一条弦把圆分成度数比例为2:7的两条弧,则弦所对的圆心角等于.12.如图,AB是⊙O的直径,点C在⊙O上,CD⊥AB,垂足为D,已知CD=4,OD=3,求AB的长是.
13.半圆形纸片的半径为1cm,用如图所示的方法将纸片对折,使对折后半圆弧的中点M与圆心O重合,则折痕CD的长为 cm.
14.如图所示,⊙O内有折线OABC,其中OA=2,AB=4,∠A=∠B=60°,则BC的长为.15.如图是“明清影视城”的圆弧形门,这个圆弧形门所在的圆与水平地面是相切的,
AB=CD=20cm,BD=200cm,且AB,CD与水平地面都是垂直的.则这个圆弧形门的最高点离地面的高度是 cm.
16.如图,已知AB是半圆O的直径,CD⊥AB于D点,AD=4cm,DB=9cm,则弦CB的长
为.
17.如图,在正方形纸片ABCD中,EF∥AD,M,N是线段EF的六等分点,若把该正方形纸片卷成一个圆柱,使点A与点D重合,此时,底面圆的直径为10cm,则圆柱上M,N两点间的距离是cm.
18.如图,MN是⊙O的直径,MN=8,∠AMN=20°,点B为弧的中点,点P是直径MN上的一个
动点,则PA+PB的最小值为.
19.如图,半径为5的⊙A中,弦BC,ED所对的圆心角分别是∠BAC,∠EAD.已知BC=6,∠BAC+∠EAD=180°,则圆心A到DE的距离等于.
20.在平面直角坐标系中,⊙P的圆心是(2,a)(a>2),半径为2,函数y=x的图象被⊙P 截得的弦AB的长为,则a的值是.
21.如图,AE是⊙O的直径,半径OD垂直于弦AB,垂足为C,AB=8cm,CD=2cm,求BE的长.22.如图,已知AD是⊙O的直径,AB、BC是⊙O的弦,AD⊥BC,垂足是点E,BC=8,DE=2,求⊙O的半径长和sin∠BAD的值.
23.如图,点A、B、C、D、E都在⊙O上,AC平分∠BAD,且AB∥CE,求证:AD=CE.
24.如图,圆柱形水管内原有积水的水平面宽CD=10cm,水深GF=1cm,若水面上升1cm
(EG=1cm),则此时水面宽AB为多少?
25.如图,∠AOB=90°,CD是的三等分点,连接AB分别交OC,OD于点E,F.
求证:AE=BF=CD.。

相关文档
最新文档