地震勘探原理名词解释

合集下载

地震勘探名词解释(随身携带版)

地震勘探名词解释(随身携带版)

振动图:从某一确定距离观察该处指点位移随时间变化的图形。

波剖面:某一确定时刻观察质点位移与波传播距离关系的图形。

隐伏层:指初至折射波法中不能探测到的地层。

(两类:一类是层状介质 中的低速夹层,由于V 上>V 下,因而在低速夹层的上界面不能产 生折射波而形成隐伏层。

另一类;虽然波速逐层递增,但其中某 层厚度很小,所形成的折射波不能出现在初至区,而是隐藏在续 至区中难以识别)波前扩散:地震波由震源向周围介质传播,波前面越来越大,就是说越来 越远地离开震源,其振幅也越来越少。

吸收系数:吸收作用使地震波的振幅随传播距离成指数减小,而减小的快慢又与岩石的物理性质和波的振动频率有关,常用吸收系数表示波损失:反射波在离开反射点的振动方向相对于入射波到达入射点的振动 相差半个周期。

转换波:当一入射波入射到反射界面时,会产生与其类型相同的反射波或透射波,也会产生类型不同的,与其类型不同的称为转换波.瑞雷面波:分布在自由界面附近并沿自由界面传播的面波。

勒夫面波:当存在一速度低于下层介质的表面时,在低速带顶、底界面之间产生一种平行于 界面的波动。

散射波:相对于波长较小或可比时则发生散射。

斯奈尔定理:是描述反射波和透射波射线几何关系的一个定律,所以又称为反射透射定律。

其主要内容有以下三个方面:①入射线、反射线、透射线在同一平面内(即射线平面)②入射角=反射角③透射角取决于入射角和界面上、下介质的波速比值PV V V =='=211sin sin sin βαα 式中v1、v2分别为界面上、下介质的波速,p 为射线参量纵向分辨率:地震记录沿垂直方向可分辨的最小地层厚度 横向分辨率:地震记录沿水平方向可分辨最窄的地质体的宽度第一菲涅尔带:地表点震源发出的球面波到达界面时的波前面,与前面相距1/4波长先期到达的另一波前面在界面上形成的圆杨氏模量:当弹性体在弹性限度内单向拉伸时,应力与应变的比值。

泊松比:介质的横向应变与纵向应变的比值。

地震勘探原理

地震勘探原理

地震勘探原理地震勘探是一种利用地震波在地下传播的物理现象,通过地震波在地下不同介质中的传播速度和反射、折射等特性来获取地下结构信息的方法。

地震勘探原理是基于地震波在地下传播的特性,利用地震波在不同介质中传播速度不同的特点,来推断地下介质的性质和结构。

地震勘探原理的研究对于地下资源勘探、地质灾害预测、地下水资源调查等具有重要的意义。

地震波是一种机械波,它在地下的传播受到地下介质的影响,不同介质对地震波的传播速度和传播路径都有不同的影响。

当地震波遇到地下介质的边界时,会发生反射和折射现象,这些现象可以被记录下来,并通过地震勘探仪器进行分析,从而推断地下的结构信息。

地震勘探原理主要包括地震波的产生、传播和接收三个基本过程。

首先,地震波的产生通常是通过地震仪器或爆炸物等方式产生的,产生的地震波会向地下传播。

其次,地震波在地下的传播受到地下介质的影响,不同介质对地震波的传播速度和传播路径都有不同的影响。

最后,地震波会被地震勘探仪器接收到,并记录下地震波在地下传播的路径和特性,通过对这些数据的分析,可以推断地下的结构信息。

地震勘探原理的研究对于地下资源勘探具有重要的意义。

例如,在石油勘探中,地震勘探可以通过分析地下介质的反射特性,来推断地下是否存在油气藏;在矿产资源勘探中,地震勘探可以通过分析地下介质的反射特性,来推断地下是否存在矿产资源。

此外,地震勘探原理还可以应用于地质灾害预测、地下水资源调查等领域,对于科学研究和工程应用都有重要的意义。

总之,地震勘探原理是一种利用地震波在地下传播的物理现象,通过地震波在地下不同介质中的传播速度和反射、折射等特性来获取地下结构信息的方法。

地震勘探原理的研究对于地下资源勘探、地质灾害预测、地下水资源调查等具有重要的意义,是地球物理勘探领域的重要组成部分。

希望通过对地震勘探原理的深入研究,可以更好地利用地震波这一物理现象,为人类社会的发展和资源利用做出更大的贡献。

地震勘探原理总复习

地震勘探原理总复习

《地震勘探原理》考试题型一、名词解释1、振动:物体围绕一个中心做往复运动波动:各振动在空间上的传播射线平面(三线所决定平面):由入射线、反射线和过反射点界面法线所组成的平面称为射线平面。

振动图:固定空间位置,观察r处质点位移随时间变化规律的图形。

波剖面:固定某时刻,观察质点位移随距离变化规律的图形。

时距曲线:表示某一波阻抗差界面反射波传播时间与炮检距关系的曲线,称为时距曲线。

2、平均速度:地震波垂直穿过地层的总厚度与总传播时间之比。

均方根速度:把水平层状介质情况下的反射波时距曲线近似当作双曲线,所求出的地震波速度称为均方根速度,这种近似在一定程度上考虑了射线的偏折。

叠加速度:由共中心点道集速度谱求出的速度。

对一组共中心点道集上的某个同相轴,利用双曲线公式选用一系列不同速度来计算各道的动校正量,病进行动校正;当某个速度能把同相轴校成水平直线时,则这个速度就是这条同相轴对应的反射波叠加速度。

层速度:在水平层状介质中,某一层的速度。

等效速度:在均匀介质条件下,理论双曲线与实际反射波时距曲线最佳拟合的介质速度。

视速度:不沿射线方向测得的传播速度。

视周期:从振动图中可得到的相邻两峰或两谷间的时间称为视周期。

视频率:视周期的倒数称为视频率。

视波长:从波剖面中可得到的相邻两峰或两谷间的距离称为视波长。

视波数:视波长的倒数称为视波数。

地震地质条件:在一个地区能否有成效的应用地震勘探,来研究地下地质构造的条件。

具体可分为表层地震地质条件和深地震地质条件。

激发条件:是指震源种类、能量、周围介质的情况等与激发地震波密切有关的各种条件。

对陆上炸药震源来说,激发条件包括炸药量大小、药包形状、个数、分布方式,埋置岩性和深度等。

对非炸药震源,激发条件则包括装置的种类、能量、参数选择及安置情况等。

激发条件的选择是否适当对地震原始资料质量的影响很大。

接收条件:是指接收地震波的仪器的工作状态和条件。

具体包括地震检波器的安置情况,组合个数和方式,以及地震仪的各种因素等。

地震勘探原理

地震勘探原理

地震勘探原理地震勘探是一种利用地震波在地下传播的特性来获取地下结构信息的方法。

它是一种非破坏性的地质勘探方法,广泛应用于石油、天然气、地质灾害等领域。

地震勘探原理是基于地震波在地下介质中传播的特性,通过记录地震波的传播时间和反射、折射等现象,来推断地下介质的性质和结构。

地震勘探原理的核心是地震波的传播。

当地震波传播到地下介质时,会发生折射、反射和透射等现象。

这些现象会受到地下介质的性质和结构的影响,因此可以通过记录地震波的传播路径和传播时间,来推断地下介质的性质和结构。

地震波在地下介质中传播的速度、方向和路径都会受到地下介质的性质和结构的影响,因此可以通过地震波的传播特性来获取地下结构信息。

地震勘探原理的实施需要利用地震仪器来记录地震波的传播情况。

地震仪器通常包括地震震源和地震接收器。

地震震源可以是人工震源,也可以是自然地震。

地震接收器用于记录地震波的传播情况。

通过分析地震波的传播时间和路径,可以推断地下介质的性质和结构。

地震勘探原理在实际应用中有着广泛的应用。

在石油勘探中,地震勘探可以帮助勘探人员确定油气藏的位置、形状和规模,从而指导钻探工作。

在地质灾害预测中,地震勘探可以帮助科研人员了解地下岩层的情况,从而预测地震、滑坡等地质灾害的发生概率。

在地质调查中,地震勘探可以帮助地质学家了解地下地质构造和构造特征,为地质勘探和工程建设提供重要信息。

总之,地震勘探原理是一种通过记录地震波的传播情况来推断地下结构信息的地质勘探方法。

它在石油、天然气、地质灾害等领域有着广泛的应用,为相关领域的工作提供了重要的技术支持。

随着科学技术的不断发展,地震勘探原理也在不断完善和发展,将为地质勘探和工程建设提供更加精准的地下结构信息。

地震勘探原理

地震勘探原理

地震勘探原理
地震勘探是一种常用的地质勘探方法,通过地震波在地下介质
中的传播特性,可以获取地下结构和地层信息。

地震勘探原理主要
包括地震波的产生、传播和接收三个过程。

首先,地震波的产生是地震勘探的第一步。

一般采用地震震源
来产生地震波,地震震源可以是人工产生的爆炸或者地震仪器产生
的振动,也可以是自然地震。

地震波产生后,会在地下介质中传播,根据地震波在不同介质中的传播速度和衰减规律,可以获取地下介
质的结构和性质信息。

其次,地震波在地下介质中的传播是地震勘探的核心过程。


震波在地下介质中传播时会受到地层的反射、折射和透射等现象的
影响,这些现象会改变地震波的传播路径和传播速度。

通过分析地
震波在地下介质中的传播规律,可以获取地下介质的结构信息,比
如地层的界面位置、地层的厚度和速度等。

最后,地震波的接收是地震勘探的最后一步。

地震波在地下介
质中传播后,会被地震接收器接收到。

地震接收器可以是地震仪器
或者地面上的传感器,通过接收地震波的到达时间和振幅等信息,
可以获取地下介质的性质信息,比如地下介质的密度、泊松比和剪
切模量等。

总的来说,地震勘探原理是通过地震波的产生、传播和接收三
个过程,来获取地下介质的结构和性质信息。

地震勘探在石油勘探、地质灾害预测和地下水资源勘探等领域有着广泛的应用,是一种非
常重要的地质勘探方法。

通过对地震勘探原理的深入理解,可以更
好地应用地震勘探技术,为地质勘探和地质灾害预测提供更加准确
的地下信息。

地震勘探原理和方法

地震勘探原理和方法

地震勘探原理和方法地震勘探是一种通过地震波的传播和反射来探测地下结构的方法。

通过地震勘探,可以获取地下地质信息,如油气资源、地下水等。

其原理是通过地震波在地下的传播和反射,来获取地下结构的信息,从而进行地质勘探。

地震勘探的原理主要包括地震波的产生和传播,以及地震波在不同媒介中的传播速度和反射、折射等现象。

地震波可以通过不同的方法产生,例如在地面上布设震源装置,如地震仪或爆炸物等,通过地面振动产生地震波。

地震波的传播是通过地下介质的传导来实现的。

地震波的传播速度取决于介质的密度、弹性模量等特性。

当地震波遇到介质边界时,会发生反射、折射和透射等现象。

反射是地震波遇到界面时一部分能量反射回来的现象;折射是地震波遇到介质边界发生方向改变的现象;透射是地震波穿过介质边界后继续传播的现象。

地震勘探的方法主要包括地震勘探测井、地震勘探剖面和地震勘探阵列等。

地震勘探测井是通过在地下钻探井口并向井内注入震源来产生地震波,然后通过井中的测震仪记录地震波。

这种方法可以获取井内和井周围的地下结构信息,用于勘探油气资源等。

地震勘探剖面是通过在地表上布设震源和接收器,在不同位置上记录地震波的传播情况。

这些记录的数据可以通过地震处理和解释来获取地下结构的信息。

这种方法可以获取地质信息和油气资源等。

地震勘探阵列是将多个地面震源和接收器布设在一定区域内,同时记录地震波的传播信息。

通过对地震波的分析和解释,可以获取地下结构的信息。

这种方法可以用于地震监测和地震研究等。

地震勘探还可以通过数据处理和解释来获取更详细的地下结构信息。

数据处理包括地震波形记录的处理、去除噪声等。

数据解释包括地震波传播路径的解释、地震反射地震震相的解释等。

总之,地震勘探是通过地震波的传播和反射来获取地下结构信息的一种方法。

通过不同的方法和技术,可以获取地质信息和油气资源等。

地震勘探具有广泛的应用领域和重要的地质意义。

地震勘探原理名词解释(1)

地震勘探原理名词解释(1)

地震勘探术语2-D Two Dimensional 二维。

3-C Three Component 三分量。

3C3D 三分量三维。

3-D Three Dimensional三维。

9-C Nine Component 九分量。

3分量震源╳3分量检波器=九分量。

9C3D 九分量三维。

A/D Analog to Digital模数转换。

AGC Automatic Gain Control 自动增益控制。

AVA Amplitude Variation With Angle 振幅随采集平面的方位角的变化。

AVO Amplitude Variation With Offset 振幅随偏移距的变化。

AVOA 振幅随炮检距和方位角的变化。

CDP Common Depth Point 共深度点。

CDPS Common Depth Point Stack共深度点迭加。

CMP Common Mid Point 共反射面元。

共中心点。

CPU Central Processing Unit 中央控制单元。

CRP Common Reflection Point 共反射点。

D/A Digital to Analog 数模转换。

d B/octa d B/octve 分贝/倍频程。

DMO Dip Moveout Processing 倾角时差校正。

G波 G-wave 一种长周期(40—300秒)的拉夫波。

通常只限于海上传播。

H波 H-wave 水力波。

IFP Instantaneous Floating Point 仪器上的瞬时沸点放大器。

K波 K-wave 地核中传播的一种P波。

LVL Low Velocity Layer 低速层。

L波 L-wave 天然地震产生的长波长面波。

NMO Normal Moveout Correction 正常时差校正,动校正。

OBS Ocean Bottom Seismometer 海底检波器。

P波 P-wave 即纵波。

地震勘探原理思政元素挖掘

地震勘探原理思政元素挖掘

地震勘探原理思政元素挖掘地震勘探是一种利用地震波在地下传播的特性来探测地下结构和物质性质的方法。

它是一种非常重要的地质勘探方法,广泛应用于石油、天然气、矿产资源勘探、地质灾害预测等领域。

在地震勘探的过程中,不仅需要掌握地震波的传播规律和物理特性,还需要具备一定的思政素养,才能够更好地完成勘探任务。

一、地震勘探原理地震勘探的原理是利用地震波在地下传播的特性来探测地下结构和物质性质。

地震波是一种机械波,它在地下传播时会受到地下结构和物质性质的影响,从而发生反射、折射、衍射等现象。

通过对地震波的反射、折射、衍射等特性进行分析,可以推断出地下结构和物质性质的分布情况。

地震勘探的主要方法包括地震勘探、地震反演、地震成像等。

其中,地震勘探是指通过在地面上布置震源和接收器,记录地震波在地下传播的情况,从而推断出地下结构和物质性质的分布情况。

地震反演是指通过对地震波的反射、折射、衍射等特性进行分析,推断出地下结构和物质性质的分布情况。

地震成像是指通过对地震波的反射、折射、衍射等特性进行分析,绘制出地下结构和物质性质的图像。

二、思政元素挖掘地震勘探是一项需要高度责任感和使命感的工作。

在地震勘探的过程中,需要具备一定的思政素养,才能够更好地完成勘探任务。

1. 爱国主义地震勘探是一项为国家服务的工作。

在勘探过程中,需要始终牢记自己的使命,为国家的石油、天然气、矿产资源勘探、地质灾害预测等领域做出贡献。

同时,还需要积极参与国家的科技创新和发展,为国家的经济建设和社会发展做出贡献。

2. 社会责任感地震勘探是一项需要高度责任感的工作。

在勘探过程中,需要始终牢记自己的社会责任,保证勘探工作的安全、高效、准确。

同时,还需要积极参与社会公益事业,为社会的发展和进步做出贡献。

3. 创新精神地震勘探是一项需要创新精神的工作。

在勘探过程中,需要不断探索新的勘探方法和技术,提高勘探效率和准确度。

同时,还需要积极参与科技创新和发展,为勘探技术的进步和发展做出贡献。

[]地震勘探原理

[]地震勘探原理

名词解释:1、布格重力异常:是野外重力观测数据经过布格校正以后得到的重力异常,它是由地下矿体或构造等局部地质因素在测点处引起的引力的垂向分量。

2、磁异常:地下含有磁性的地质体在其周围空间引起的磁场变化。

3、地震勘探:通过人工方法激发地震波,研究地震波在地层中传播的情况,以查明地下的地质构造、地层岩性等,为寻找油气田或其它勘探目的服务的一种物探方法。

4、地震子波:当地震波传播一定距离后,其形状逐渐稳定,具有2-3个相位,有一定的延续时间的地震波,称为地震子波,它是地震记录的基本元素。

5、纵波(P波):质点的振动方向与波的传播方向一致的波,有时也称为压缩波或疏密波。

6、横波(S波):质点的振动方向与波的传播方向垂直的波,有时也称为切变波。

7、体波:当纵波和横波在介质的整个立体空间中传播时合称体波。

8、面波:在自由表面或不同弹性介质的分界面上传播的一类特殊波。

最常见的面波是沿地面传播的瑞利波。

其特点是低速(通常小于横波速度)、低频、强振,是一种干扰波。

9、多次波:在一个或几个界面中经过两次或两次以上重复反射或折射而到达地面的地震波。

多次波是一种干扰波。

10、波阻抗:地震波传播速度与介质密度的乘积(Z=ρ·V)。

它是研究界面上地震波反射强度的一个重要参数。

11、地震波运动学:研究地震波波前的空间位置与其传播时间关系的一门学科,也叫几何地震学,主要用于地震资料的构造解释。

12、时距曲线:波从震源出发,传播到测线上各观测点的传播时间t与观测点相对于激发点(坐标原点)距离x之间的关系曲线。

t=f(x)=f(x,v,h)13、自激自收:激发点和接收点在同一位置上的野外工作方式。

14、炮检距:观测点相对于激发点(坐标原点)距离x15、地震波动力学:研究地震波在运动状态中的能量、波形、频谱等特征及其变化规律的一门学科,它是地震资料地层、岩性解释的基础。

16、频谱:组成一个复杂振动的各个谐振动分量的特性与其频率关系的总和称为该振动的频谱,包括振幅谱和相位谱。

地震勘探原理pdf

地震勘探原理pdf

地震勘探原理pdf摘要:一、地震勘探原理简介1.地震勘探的定义2.地震勘探的基本原理二、地震勘探技术的发展历程1.传统地震勘探技术2.现代地震勘探技术三、地震勘探的应用领域1.石油天然气勘探2.固体矿产资源勘探3.地壳结构研究4.地震灾害评估四、地震勘探技术的未来发展趋势1.高分辨率地震勘探技术2.环保型地震勘探技术3.智能化地震勘探技术正文:地震勘探是一种利用地震波在地下传播的特性,研究地下结构和物质组成的地球物理勘探方法。

它在我国石油天然气勘探、固体矿产资源勘探、地壳结构研究以及地震灾害评估等领域具有广泛的应用。

地震勘探的基本原理是利用人工激发的地震波在地下传播,当遇到不同介质界面时,地震波会发生反射、折射和散射等现象。

通过观测和分析这些现象,可以推断出地下岩层的形态、结构和性质。

传统地震勘探技术主要采用地震仪和地震图来记录和分析地震波,而现代地震勘探技术则在此基础上,引入了数字技术、信息技术和计算机技术等,大大提高了勘探的效率和精度。

在石油天然气勘探领域,地震勘探技术为寻找油气藏提供了重要依据。

通过地震勘探,可以清晰地揭示地下岩层的形态、构造和分布,从而帮助石油工程师确定钻井的位置、方向和深度。

在固体矿产资源勘探领域,地震勘探技术也有助于查明矿藏的分布和规模。

此外,地震勘探技术还在地壳结构研究、地震灾害评估等方面发挥着重要作用。

未来,地震勘探技术将继续向高分辨率、环保和智能化方向发展。

高分辨率地震勘探技术可以获得地下岩层的更精细结构,为资源勘探和地壳研究提供更为准确的信息。

环保型地震勘探技术将减少对环境的影响,降低勘探成本。

智能化地震勘探技术将通过大数据、人工智能等技术,实现地震勘探的自动化和智能化,提高勘探效率和精度。

地震原理名词解释

地震原理名词解释

名词解释动校正:NMO---normal moveout correction 在界面水平的情况下,从观测到的反射波旅行时中减去正常时差△t,得到x/2处的时间t0时间。

这一过程称为正常时差校正或动校正00、02、06、07、09、11静校正:statics 消除由地形起伏不平或低速带厚度不均匀对各叠加道记录带来的反射波传播时间差称为静校正。

00、07、09剩余静校正:residual static correction 消除基准面校正之后由于低速带速度、厚度的横向变化引起的剩余静校正量。

03、06、11纵波:P wave 形变使质点振动的方向与波的传播方向一致。

02、03、04、06、08横波:S wave 形变使质点振动的方向与波的传播方向垂直。

速度约为纵波0.7倍,又称为剪切波、旋转波、分为SV和SH两种形式。

08、12体波:纵波和横波可以在介质的整个立体空间中传播,所以把它们合称为体波。

05面波:在地表或界面附近的介质中传播的波。

07球面波:地震波的所有波都是球面波。

(由点震源产生的波向四周扩散,波面均是球面)。

10 频谱:一个复杂的振动信号,可以看成由许多简谐分量叠加而成,那许多简谐分量及其各自的振幅、频率、初相,就叫做复杂振动的频谱。

02、04、06、07、09DMO:即dip-moveout(倾角时差)由激发点两侧对称位置观测到的来自同一倾斜界面的反射波旅行时差。

02、03、04、12正常时差:NOM---normal moveout 在界面水平的情况下,各观测点相对于爆炸点纯粹是由于炮检距不同而引起的反射波旅行时差。

05、08、09吉卜斯现象:Gibbs phenomenon 数字频率滤波的有限性造成的频率特性曲线的倾斜波动。

00、04、10、12观测系统:layout 地震波的激发点与接收点的相互位置关系03、04、05、11垂向分辨率:vertical resolution 指地震记录或地震剖面上,能分辨的最小厚度。

地震勘探原理与解释私人整理版

地震勘探原理与解释私人整理版

绪论部分地震勘探①它是通过人工方法激发地震波,研究地震波在地层中传播的情况,以查明地下的地质构造和有用矿藏的一种勘探方法②包括三种方法:反射波法地震勘探方法、折射波法~、透射波法~③原理是利用地震波从地下地层界面反射至地面时带回来的旅行时间和波形变化的信息推断地下的地层构造和岩性地震勘探的生产过程及其任务①野外采集工作(在初步确定的有含油气希望的地区布置测线,人工激发地震波,并记录下来)②室内资料处理(利用数字电子计算机对原始数据进行加工处理,以及计算地震波的传播速度)③地震资料的解释(综合其他资料进行深入研究分析,对地下构造特点说明并绘制主要层位完整的起伏形态图件,最后查明含油气构造或者地层圈闭,提供钻探井位)油气勘探的方法特点方法有:地质法,物探法,钻探法①地质法是通过观察,研究出露在地面的地层,对地质资料进行分析综合,了解一个地区有无生成石油和储存石油的条件,最后提出对该地区的含油气远景评价,指出有利地区②物探法是根据地质学和物理学原理。

它是利用各种物理仪器在地面观测地壳上的各种物理现象,从而推断地质构造特点,寻找可能的储油构造。

是一种间接找油的方法③钻探法就是利用物探提供的井位进行钻探,直接取得地下最可靠的地质资料来确定地下的构造特点及含油气的情况。

第一章地震波运动学子波具有确定的起始时间和有限能量的信号称为子波在地震勘探领域中子波通常指的是1—2个周期组成的地震脉冲。

地震子波由于大地滤波器的作用,尖脉冲变成了频率较低、具有一定延续时间的波形,成为地震子波。

震源产生的信号传播一段时间后,波形趋于稳定,这时的地震波也为地震子波。

地震波运动学研究地震波波前的空间位置与其传播时间的关系,研究波的传播规律,与几何光学相似,也是运用波前、射线等几何图形描述波的运动过程和规律,也称为几何地震学正常时差界面水平情况下,对界面上某点以炮检距x进行观测得到的反射波旅行时同以零炮检距(自激自收)进行观测得到的反射波旅行时之差,这纯粹是因为炮检距不为零引起的时差。

地震勘探原理pdf

地震勘探原理pdf

地震勘探原理地震勘探是一种利用地表的地震波在地下的传播规律,推断地下岩层的性质和形态的地球物理勘探方法。

地震勘探的主要特点是:利用专门仪器并按特定方式观测岩层间的波阻抗差异,进而研究地下地质问题;通过人工方法激发地震波,研究地震波在地层中传播的规律与特点,以查明地下的地质构造,为寻找油气田或其他勘探目标提供依据。

具体来说,地震勘探通过人工方式在地面产生震动,形成一个人工震源向地下发射地震波,这些地震波在地下不同的岩石界面上形成反射最终回到地面来。

然后,利用地震波接收仪器将人工震源产生的地震波记录下来,这些地震波携带了地下构造的信息。

通过对地震波的波形和传播时间进行研究,可以了解地下构造形态,进而推断出地下的地质特征。

地震勘探对环境有一定的影响。

首先,地震勘探过程中可能会产生噪音和振动,对周围环境产生一定的影响。

其次,地震勘探过程中可能会产生一些固体废弃物,如测量使用的木桩、小旗等标志,建筑材料、设备维修废弃的零部件以及炉渣,废记录纸和包装材料,剩余的食品等。

这些废弃物如果处理不当,可能会对环境造成污染。

此外,地震勘探过程中还可能会产生水污染和大气污染。

例如,工区施工人员生活污水、洗车污水的排放,爆炸对地表水、地下水的污染,汽车、发电机尾气污染,爆炸气体污染等。

因此,在进行地震勘探时,需要采取相应的环境保护措施,减少对环境的影响。

为了减少地震勘探对环境的影响,可以采取以下环境保护措施:1.保护自然环境:地震勘探需要在自然环境中进行,因此需要尽力保护这些环境,以免人为活动对其造成污染、破坏。

例如,在田野上进行地震勘探时,侵入土地的车辆和步行者可能会对土地、植被和野生动物的移动造成破坏。

因此,必须尽可能减少这些干扰,采取适当的管控和安排。

2.采取设备安装规划和土地利用管理:地震观测设备需要极为精准和稳定的基础设施。

为了确保稳定和安全的设施,可以实行针对性的设备安装规划和土地利用管理。

3.减少噪音和振动:地震勘探过程中可能会产生噪音和振动,对周围环境产生一定的影响。

地震勘探原理,名词解释

地震勘探原理,名词解释

《地震勘探原理与资料处理》名词解释(共计202个)2015年10月26日于北京东燕郊中隧基地编者:张君秋(防灾科技学院2011级地球物理勘探(油气勘探)专业)一、地震勘探原理名词解释1、地震子波:具有多个相位、延续60~100毫秒、相对稳定的地震波形。

2、波面:在介质中任取一点P,再找出介质中和P点同时开始振动的那些点,将这些点连成一个曲面,就是通过P点的波面。

3、射线:在几何地震学中,通常认为波及其能量是沿着一条“路径”从波源传到所考虑的一点P,然后又沿着那条“路径”从P点传向别处。

这样的假想路径就叫做通过P点的波线或射线。

4、振动图:在地震勘探中,每个检波器所记录的,便是那个检波器所在位置的地面振动,它的振动曲线习惯上叫做该点的振动图。

5、波剖面:把在同一时刻t1各点的位移画在同一个图上,这条曲线就叫做波在时刻t1沿x方向的波形曲线。

在地震勘探中,通常把沿着测线画出的波形曲线叫做“波剖面”。

6、视速度:沿观测方向看到的波的传播速度。

7、视波长:沿观测方向测得的一个周期内波的传播距离。

8、全反射:入射角大于临界角的反射称之为“全反射”。

9、时距曲线:时距曲线就是表示地震波从震源出发传播到测线上各观测点的旅行时间t与观测点相对于激发点的水平距离x之间的关系。

10、时距曲面:若观测面是平面,在直角坐标系中,此面上每一点的位置可用它的坐标(x,y)的二元函数表示,这样,波的到达时间t就是观测点坐标(x,y)的二元函数,即t=f(x,y),其图形是一个曲面,称为时距曲面。

11、时间场:在波传播的介质范围内,若已知t=g(x,y,z)的函数关系,那么,只要知道介质内任一点的坐标(x,y,z)就可以确定波前到达这一点的时间t,因而也就确定了一个标量场t(x,y,z),在地震勘探中把这个标量场叫做时间场。

12、自激自收:在同一点激发和接收地震波。

13、共激发点:多道检波器组成的排列具有相同的激发点。

14、炮检距:激发点到检波点的水平距离。

地震勘探行业名词解释

地震勘探行业名词解释

地震勘探行业名词解释地震勘探行业名词解释基于子波相位谱扫描法的子波求取方法实现地震道零相位化的子波相位谱消去法测井约束地震绝对波阻抗反演地震子波频率浅析波阻抗反演技术中空变子波的求取地震道:(1)指由检波器到记录仪所组成的一道地震抗接收仪器。

(2)指由一道地震接收仪记录到的地震记录。

地震记录按次序排列的地震记录道。

有五种显示方法:光点记录;变面积记录;变密度记录;波形加变面积记录和波形加变密度记录。

地震解释把地震测量数据变成地质成果的过程。

[同相轴]lineups;地震记录上各道振动相位相同的极值(俗称波峰成波谷)的连线称为同相轴。

在解释地震勘探资料时,常常根据地震记录上有规律地出现的形状相似的振动画出不同的同相轴,它们表示不同层次的地震波。

[转换波] converted wave; 无论纵波还是横波倾斜入射到弹性分界面时,都将产生反射横波、反射纵波、透射横波、透射纵波。

与入射波型相同的波如P11、P12称为同类波,波型改变的如P1S1、P1S2则称为转换波。

转换波的反射和透射遵循斯奈尔定律:即入射波的速度与反射波或透射波速度之比等于入射角的正弦与反射角或透射角的正弦之比。

转换波的产生,是由于入射波作用在分界面上可分解为垂直界面的力和切向力两部分,结果产生体变和切变及其相应的纵波和横波。

因此,转换波的能量与入射角有关,垂直入射时不能形成转换波;只有入射角相当大时。

才有足够能量的转换波可被记录下来。

故在地震勘探中主要利用同类波,在一些特殊问题中才用转换波,例如研究薄层时,利用转换波的横波,分辨力较高。

[折射波法] refraction survey;是利用地震折射波进行地质勘探的方法。

由于折射波首先到达地面,所以容易观测和识别。

但必须在盲区以外接收它。

通过折射波法可以求得界面速度,从而了解折射界面的岩石成分,进行地层对比等。

折射波法对激发条件的要求不如反射波法严格,干扰背景较小,不必使用自动振幅控制和混波等措施,故可充分利用波的动力学特点,对于确定断层,煤田边界效果较好。

(整理)地震勘探原理名词解释.

(整理)地震勘探原理名词解释.

地震勘探原理名词解释一、名词解释:地震勘探:通过人工方法激发地震波,研究地震波在地层中传播的情况,以查明地下的地质构造,力寻找油气田或其他勘探目的服务的一种物探方法.水平叠加:将不同接收点收到的来自地下同一反射点的不同激发点的信号,经动校正后叠加起来,这种方法可以提高信噪比,改善地震记录的质量,特别是压制一种规则干扰波效果最好波形曲线:选定一个时刻t1,我们用纵坐标表示各质点离开平衡位置的距离,就得到一条曲线,这条曲线就叫做波在t1时刻沿x方向的波形曲线.动校正:在水平界面情况下,从观测到的波的旅行时中减去正常时差Δt1得到x/2处的t0时间,这一过程叫动校正或正常时差校正.多次覆盖:对被追踪的界面进行多次观测.剖面闭合:是检查对比质量,连接层位,保证解工作正确进行的有效办法,他包括测线交点闭合,测线网的闭合,时间闭合等.几何地震学:地震波的运动学是研究地震波,波前的空间位置与传播时间的关系,他与几何光学相似,也是引用波前,射线等几何图形来描述波的运动过程和规律,因此又叫几何地震学.水平分辨率:指沿水平方向能分辨多大的地质体,其值为根号下0.5λh.时距曲线:从地震源出发,传播主观测点的时间t与观测中点相对于激发点的距离x之间的关系剩余时差:把某个波按水平界面一次反射波作动校正后的反射波时间与共中心点处的时间tom之差.绕射波:地震波在传播过程中,如遇到一些岩性的突变点,这些突变点就会成为新震源,再次发出球面波,想四周传播,这就叫绕射波.三维地震:就是在一个观测面上进行观测,对所得资料进行三维偏移叠加处理,以获得地下地质体构造在三维空间的特征.同相轴:一串套合很好的波峰或波谷.相位:一个完整波形的第i个波峰或波谷.纵波:传播方向与质点振动方向一致的波.转换波:当一入射波入射到反射界面时,会产生与其类型相同的反射波或透射波,也会产生类型不同的,与其类型不同的称为转换波.反射定律:入射波与反射波分居法线两侧,反射角等于入射角,条件为:上下界面波阻抗存在差异,入射波与反射波类型相同.地震子波:震源产生的信号传播一段时间后,波形趋于稳定,我们称这时的地震波为地震子波。

(整理)地震勘探原理名词解释.

(整理)地震勘探原理名词解释.

地震勘探原理名词解释一、名词解释:地震勘探:通过人工方法激发地震波,研究地震波在地层中传播的情况,以查明地下的地质构造,力寻找油气田或其他勘探目的服务的一种物探方法.水平叠加:将不同接收点收到的来自地下同一反射点的不同激发点的信号,经动校正后叠加起来,这种方法可以提高信噪比,改善地震记录的质量,特别是压制一种规则干扰波效果最好波形曲线:选定一个时刻t1,我们用纵坐标表示各质点离开平衡位置的距离,就得到一条曲线,这条曲线就叫做波在t1时刻沿x方向的波形曲线.动校正:在水平界面情况下,从观测到的波的旅行时中减去正常时差Δt1得到x/2处的t0时间,这一过程叫动校正或正常时差校正.多次覆盖:对被追踪的界面进行多次观测.剖面闭合:是检查对比质量,连接层位,保证解工作正确进行的有效办法,他包括测线交点闭合,测线网的闭合,时间闭合等.几何地震学:地震波的运动学是研究地震波,波前的空间位置与传播时间的关系,他与几何光学相似,也是引用波前,射线等几何图形来描述波的运动过程和规律,因此又叫几何地震学.水平分辨率:指沿水平方向能分辨多大的地质体,其值为根号下0.5λh.时距曲线:从地震源出发,传播主观测点的时间t与观测中点相对于激发点的距离x之间的关系剩余时差:把某个波按水平界面一次反射波作动校正后的反射波时间与共中心点处的时间tom之差.绕射波:地震波在传播过程中,如遇到一些岩性的突变点,这些突变点就会成为新震源,再次发出球面波,想四周传播,这就叫绕射波.三维地震:就是在一个观测面上进行观测,对所得资料进行三维偏移叠加处理,以获得地下地质体构造在三维空间的特征.同相轴:一串套合很好的波峰或波谷.相位:一个完整波形的第i个波峰或波谷.纵波:传播方向与质点振动方向一致的波.转换波:当一入射波入射到反射界面时,会产生与其类型相同的反射波或透射波,也会产生类型不同的,与其类型不同的称为转换波.反射定律:入射波与反射波分居法线两侧,反射角等于入射角,条件为:上下界面波阻抗存在差异,入射波与反射波类型相同.地震子波:震源产生的信号传播一段时间后,波形趋于稳定,我们称这时的地震波为地震子波。

地震勘探原理概论

地震勘探原理概论

地震勘探原理概论地震勘探原理是指利用地震波在地下传播的特点,研究地球内部结构和性质的一种方法。

地震勘探原理基于地震波在地下传播过程中的各种特性,包括传播速度、折射和折射、散射和反射等现象,通过对地震波的接收、记录和分析,可以获取地下各种信息,如地层的厚度、形状、岩性、缝隙、孔隙度、地下水的分布等,从而为油气勘探、矿产资源评估、地质灾害防治等提供科学依据。

地震勘探原理的基本思想是通过在地面上或井下激发地震波,让地震波沿不同路径在地下传播,并在地下各个位置记录地震波,进而利用记录到的地震波信息进行数据处理和解释。

地震波主要包括压力波(P波)和剪切波(S波),通过对这两种地震波的研究,可以获取地下结构和性质的具体信息。

地震波的传播速度是地震勘探原理中的重要参数。

根据地震波在地下传播过程中的速度差异,可以分析地下岩石体的速度结构,从而推断其性质。

P波的速度比S波的速度大,所以通常利用P波速度和S波速度的比值(VP/VS)来判断地下岩石的岩性特征。

例如,VP/VS值在1.8以下表示砂岩或砾岩,而在1.8以上表示页岩或碳酸盐岩。

地震波在不同介质中传播时会发生折射和反射现象。

折射是指地震波从一种介质(如岩石)传播到另一种介质(如地层),会因为介质的不同而改变传播方向和速度;反射是指地震波在传播过程中遇到介质界面时,一部分能量会被反射回来。

通过观测和分析地震波在地下的折射和反射现象,可以获得地下岩层的分布、厚度和形状等信息。

地震波在地下传播过程中还会发生散射现象。

散射是指地震波在与介质不均匀性相互作用时,会沿着各个方向扩散和衰减。

通过观测和分析地震波的散射现象,可以揭示地下介质中的缝隙、孔隙度和岩石的物理参数等信息。

地震勘探原理还可以通过根据地震波的时间和空间反演,恢复地下介质的速度结构和物性参数。

地震波的时间反演是通过分析地震记录的到达时间,推断地震波的传播路径和速度分布;空间反演是利用地震波信号的振幅和相位信息,恢复地下介质的速度结构和物性参数。

地震勘探原理

地震勘探原理

地震勘探原理一、名词解释1. 波前、波后、波射线的概念:波前:某一时刻介质中刚开始振动的质点。

波后:某一时刻介质中刚停止振动的质点。

波振面:振动状态完全相同的点组成的面。

波射线:在适当的条件下,认为波及其能量沿着某一条“路线”传播,这条路线称为射线。

地震勘探的流程:资料采集、资料处理、资料解释地震勘探包括的内容:产生地震波、接受地震波、重建地震波路径2. 惠更斯(Huggens)-菲涅尔原理:在已知时间t 时刻同一波前面上的各点,把这些点视为该时刻产生子波的新的点震源,经△t 后,这些子波的包络面就是t+△t 时刻新的波前面。

3. 费马(Fermat)原理:波沿射线的旅行时与沿其它任何路径的旅行时相比为最小,即沿旅行时最小的路径传播。

4. 互换原理:震源与观测系统可以互换,射线路径保持不变。

适用于任何介质物体。

5. 叠加原理:若几个波源产生的波在同一介质中传播,在空间某点相遇,该处质点的振动是各个波分振动的合成,质点的位移是各个波在该点的位移矢量之和。

6. 振动图形:波在传播过程中, 某一质点的位移大小是随时间而变化的,描述质点位移与时间关系的图形,叫做振动图形.7. 波剖面:波在传播过程中的某一时刻,介质中各个质点的位移是不同的,描述质点位移与空间位置关系的图形,叫做波剖面.8. 视速度:沿测线传播的速度。

关系:9. 反射定律:反射波线位于入射波平面内,反射角等于入射角。

即 (证明过程详见书本P92页)10. 透射定律:透射线也位于入射面内,入射角的正弦与透射角的正弦之比等于第一、二两种介质中的波速比。

即11. 反射波、透射波、折射波、滑行波、绕射波反射波:地震波在地层中传播,遇到两种地层的分界面时,便会产生波的反射,在原来地层中形成一种新波,这种波称为反射波.透射波:地震波在地层中传播,遇到两种地层的分界面时,一部分能量返回原地层形成反射波,另一部分能量透过分界面在第二种地层中传播,形成透射波,又叫做透过波.折射波:当滑行波沿地层分界面滑行时,由于上下两种地层之间是紧密互相接触的, 这样就会在上部地层中产生一种新波,这种波叫做折射波.滑行波: 当下部地层的速度大于上部地层的速度时,如果入射波的射线与界面法线之间的夹角等于某一个角度i 时,透射波的射线与界面法线间的夹角就等90°,透射波将沿地层分界面滑行,我们称沿界面滑行的透射为的滑行波.绕射波:通过弹性不连续间断点,地质体大小同地震波的波长大致相当,间断点可看成一个新震源。

地震勘探原理名词解释

地震勘探原理名词解释

地震勘探原理名词解释地震勘探:通过人工方法激发地震波,研究地震波在地层中传播的情况,以查明地下的地质构造,力寻找油气田或其他勘探目的服务的一种物探方法.水平叠加:将不同接收点收到的来自地下同一反射点的不同激发点的信号,经动校正后叠加起来,这种方法可以提高信噪比,改善地震记录的质量,特别是压制一种规则干扰波效果最好波形曲线:选定一个时刻t1,我们用纵坐标表示各质点离开平衡位置的距离,就得到一条曲线,这条曲线就叫做波在t1时刻沿x方向的波形曲线.动校正:在水平界面情况下,从观测到的波的旅行时中减去正常时差Δt1得到x/2处的t0时间,这一过程叫动校正或正常时差校正.多次覆盖:对被追踪的界面进行多次观测.剖面闭合:是检查对比质量,连接层位,保证解工作正确进行的有效办法,他包括测线交点闭合,测线网的闭合,时间闭合几何地震学:地震波的运动学是研究地震波,波前的空间位置与传播时间的关系,他与几何光学相似,也是引用波前,射线等几何图形来描述波的运动过程和规律,因此又叫几何地震学.水平分辨率:指沿水平方向能分辨多大的地质体,其值为根号下0.5λh.时距曲线:从地震源出发,传播主观测点的时间t与观测中点相对于激发点的距离x之间的关系剩余时差:把某个波按水平界面一次反射波作动校正后的反射波时间与共中心点处的时间tom之差.绕射波:地震波在传播过程中,如遇到一些岩性的突变点,这些突变点就会成为新震源,再次发出球面波,想四周传播,这就叫绕射波.三维地震:就是在一个观测面上进行观测对所得资料进行三维偏移叠加处理以获得地下地质体构造在三维空间的特征.水平切片:就是用一个水平面去切三维数据体得出某一时刻tk各道的信息,更便于了解地下构造形态个查明某些特殊地质现象.同相轴:一串套合很好的波峰或波谷.相位:一个完整波形的第i个波峰或波谷.纵波:传播方向与质点振动方向一致的波.转换波:当一入射波入射到反射界面时,会产生与其类型相同的反射波或透射波,也会产生类型不同的,与其类型不同的称为转换波.反射定律:入射波与反射波分居法线两侧,反射角等于入射角,条件为:上下界面波阻抗存在差异,入射波与反射波类型相同.地震子波:震源产生的信号传播一段时间后,波形趋于稳定,我们称这时的地震波为地震子波。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

波的吸收:地震波在地下传播过程中会受到大地滤波作用,即吸收作用,并发生能量衰减
频散现象:波速随频率或波长而变化,这种现象叫频散
球面扩散:地震球面波在介质中传播时,其振幅随传播距离的增大成反比衰减现象称为球面扩散
波阻抗:地层密度与波在该层传播速度的乘积
规则干扰:有一定主频和一定视速度的干扰波
视速度:不是沿着波的传播方向而是沿着别的方向来确定的波速为视速度
动校正:在水平界面情况下,从观测到的反射波旅行时中减去正常时差,得到的相当于X/2处的t0时间,这一过程叫做正常时差校正或动校正。

均方根速度:把水平层状介质情况下的反射波视距曲线近似地看成双曲线,求出的速度就是这一水平层状介质的均方根速度
振动图:记录介质中某点不同时刻振动情况的图件
观测系统:地震波的激发点与接收点的相互位置关系
转换波:当一入射波入射到反射界面时,会产生与其类型相同的反射波或透射波,也会产生与其类型不同的称为转换波.
低速带:在地表附近一定深度的范围内,地震波的传播速度往往要比其下面地层的波速低得多,该深度范围的地层称为低速带
费马原理:波在各种介质中的传播路径满足所用时间为最短的条件。

直达波:在均匀地层中,由震源直接传播到观测点的地震波称为直达波。

倾角时差:当界面倾斜时,炮检距相同,但相邻反射点传播时间不同而产生的角度差由激发点两侧对称位置观测到的来自同一界面的反射波的时差。

这一时差是由于界面存在倾
角引起的。

纵测线:激发点和观测点在同一条直线上的测线
平均速度:地震波垂直穿过该界面以上各层的总厚度和总时间之比。

波剖面:把某一时刻各点震动的位移画在同一个图上所形成的的图件
水平叠加:将不同接收点收到的来自地下同一反射点的不同激发点的信号,经动校正后叠加起来,这种方法可以提高信噪比,改善地震记录的质量,特别是压制一种规则干扰波效
果最好
有效波:那些可用解决地质问题的波
非纵测线:激发点和接收点不在一条直线上的测线
水平分辨率:指沿水平方向能分辨多大的地质体,其值为根号下0.5λh.
地震构造图:以等直线(等深度线或等时间线)以及一些符号(断层超覆,尖灭),表示某一地震反射层面在地下的起伏形状,从而就表明了其对应的地质界面的构造形态。

地震勘探:通过人工方法激发地震波,研究地震波在地层中传播的情况,以查明地下的地质构造,力寻找油气田或其他勘探目的服务的一种物探方法.
异常波:人工地震波在遇到断层或界面挠曲等地下特殊地质体而产生的波
正常时差::界面水平情况下,对界面上某点以炮检距x进行观测得到的反射波旅行时同以零炮检距(自激自收)进行观测得到的反射波旅行时之差,这纯粹是因为炮检距不为零引
起的时差
偏移距:炮点离开最近接收点的距离
检波器组合:用多个检波器组成一个地震道的输入
共反射点叠加法:在野外采用多次复盖的观测方法,在室内处理中采用水平叠加技术,最终得到水平叠加剖面,这一整套工作称为共反射点叠加法。

剩余时差:某个波按水平界面一次反射波作动校正后的反射时间与共中心点处的tom之差称为
地震时距曲线:地震波从震源出发传播到测线上各观测点的旅行时间T与观测点相对于激发点的水平距离x之间的关系曲线。

地震折射波:当入射角等于临界角,且下层介质的波速大于上层介质时,透射波会变成以v2速度传播的滑行波,滑行波由于惠更斯原理在第一种介质中激发新的波叫折射波
相关半径:自相关函数第一个零点值所对应的Ldeltx的值。

组内距:两相邻检波器之间的距离
排列长度:
激发深度:指激发点距离地面的垂直距离
地震界面:指波阻抗存在差异的界面
地震子波:爆炸时产生的尖脉冲,在爆炸点附近的介质中以冲击波的形式传播,当传播到一的距离后,波形逐渐稳定,我们称这时的地震波为地震子波
地震排列:
水平多次叠加法:水平叠加是将不同接收点收到的来自地下同一反射点的不同激发点的信号,经动校正后叠加起来,这种方法能提高信噪比,改善地震记录质量,特别是
压制一种规则干扰波(多次波)效果最好。

惠更斯原理:介质中波传播到各点,都可以看成新的波源,叫做子波源,可以认为每个子波源都向各方向发出微弱的波叫子波,子波是以所在点处的波速传播的
临界角:开始出现“全反射”时的入射角叫做临界角
静校正:地形起伏校正,为了消除由于地层起伏所造成的影响
VSP:垂直地震剖面技术
纵波:传播方向与质点振动方向一致的波
横波:质点的运动方向与波的传播方向垂直的波
地震测线:按一定比例尺沿一条直线布置的成线状排列的检波器
波的对比:在地震剖面上辨认和追踪有效波和相关的各种地震波
频谱分析:
等灵敏度组合:是认为组内各检波器灵敏度一样,接收到的信号幅度一样,只存在到达时差。

不等灵敏度组合:就是采用某些办法使同一组内各检波器接收到的信号幅度不一致。

观测系统:地震波的激发点与接收点的相互位置关系
多次覆盖:对被追踪的界面进行多次观测
三维地震:就是在一个观测面上进行观测,对所得资料进行三维偏移叠加处理,以获得地下地质体构造在三
维空间的特征.
波前:某一时刻介质中各点刚好开始振动,这一曲面叫波前,也叫波阵面。

波后:某一时刻介质中各点的振动刚好停止,这一曲面叫波后,也叫波尾。

波面:把某一时刻介质中所有相同状态的点连成曲面,这个曲面就叫做这个时刻的波面,也叫等相面。

波线:在适当的时候,认为波及其能量沿着某一条路线传播,这条路线称为波线,或射线。

. 等效变换原理是基于平面波的假定:即假定波前面在组合检波器所分布的面积内近于平面
道间距:埋置在排列上的各道检波器之间的距离
断层在地震剖面上的识别标志主要有那些?
1同相轴错断2反射同相轴数目突增减或消失,波阻间隔突然变化3反射波同相轴形状突变,反射零乱或出现
空白带4标准反射波同相轴发生分叉,合并,扭曲,强相位转换等现象5异常波出现.。

相关文档
最新文档