【市级联考】四川省绵阳市2021届高三一诊数学(文科)试题
2023—2024学年四川省绵阳市高三上学期第一次诊断性考试数学(文科)模拟试题(含答案)

D.若 c 0 ,则 ac bc
5.已知 5a
10b
,则
b a
(
)
A.
1 2
B.2
C. log510
D.1 lg2
6.已知 tan 2 ,则 sin2 ( )
A.- 3 5
B. 4 5
C. 3 10
D. 7 10
7.若等比数列an首项 a1 2, a4 8 2 ,则数列an的前 n 项和为( )
件的 的积属于区间( )
A. 1, 4
B.4, 7
C. 7,13
D.13,
二、填空题:本大题共 4 小题,每小题 5 分,共 20 分.
13.程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框
图,若输入的 a,b 分别为 21,14,则输出的 a=
.
14.已知点
M
1,1, N
2,
m
,若向量
MN
与
a
m, 2 的方向相反,则
r a
.
15.已知函数
f
x
ex ex 2, x
x2 2x, x
0
0 ,则
f
x
的值域为
.
16.已知函数 f x, g x 的定义域为 R ,且 f x f x 6, f 2 x g x 4 ,若 g x 1 为奇
3.已知平面向量
a
与
b
的夹角为
45
,
a
b
2
,且
a
2 ,则
a
b
·
a
b
(
)
A. 2 2
B.-2
C.2
D. 2 2
2021届四川省绵阳第一中学高三一诊适应性考试数学(文)试题解析

2021届四川省绵阳第一中学高三一诊适应性考试数学(文)试题一、单选题1.已知集合{}2A x x =->,{}1B x x =≥,则A B ⋃= A .{}2x x -> B .{}21x x -≤< C .{}2x x ≤- D .{}1x x ≥答案:A直接利用集合并集的定义求解即可. 解:因为{}2A x x =->,{}1B x x =≥,所以,根据集合并集的定义可得{}2A B x x >⋃=-,故选A.【点睛】研究集合问题,一定要抓住元素,看元素应满足的属性.研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质求满足属于集合A 或属于集合B 的元素的集合. 2.在下列四个说法中,与“不经冬寒,不知春暖”意义相同的是( ) A .若经冬寒,必知春暖 B .不经冬寒,但知春暖 C .若知春暖,必经冬寒 D .不经春暖,必历冬寒 答案:C根据原命题和其逆否命题同真假即可解.解:“不经冬寒,不知春暖”的逆否命题为“若知春暖,必经冬寒”. 故选:C.3.已知a >0>b ,则下列不等式一定成立的是( ) A .a 2<-abB .|a |<|b |C .11a b>D .1122a b⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭答案:C由特殊值法可以排除选项A,B,D ,由指数函数的单调性可知选项C 正确.解:法一:当a =1,b =-1时,满足a >0>b ,此时a 2=-ab ,|a|=|b|,1122a b⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭,所以A ,B ,D 不一定成立.因为a >0>b ,所以b -a<0,ab <0,所以110b aa b ab --=>,所以11a b>一定成立,故选C.法二:因为a >0>b ,所以110a b >>,所以11a b>一定成立, 故选:C.【点睛】对于不等式的判定,我们常取特殊值排除法和不等式的性质进行判断,另外对于指数式,对数式,等式子的大小比较,我们也常用函数的单调性.4.溶液酸碱度是通过pH 计算的,pH 的计算公式为pH lg H +⎡⎤=-⎣⎦,其中H +⎡⎤⎣⎦表示溶液中氢离子的浓度,单位是摩尔/升,若人体胃酸中氢离子的浓度为22.510-⨯摩尔/升,则胃酸的pH 是(参考数据:20.3010lg ≈) A .1.398 B .1.204 C .1.602 D .2.602答案:C根据对数运算以及pH 的定义求得此时胃酸的pH 值.解:依题意()22.5100lg 2.510lglg lg 40100 2.5pH -=-⨯=-== ()lg 410lg4lg102lg2120.30101 1.602=⨯=+=+≈⨯+=.故选:C【点睛】本小题主要考查对数运算,属于基础题.5.已知函数2()22f x x x =+-的图像在点M 处的切线与x 轴平行,则点M 的坐标是 A .(1,3)- B .(1,3)-- C .(2,3)-- D .(2,3)-答案:B先设()()00,M x f x ,再对函数求导得()22,f x x =+'由已知得00()220f x x '=+=,即可求出切点坐标. 解:设()()00,M x f x ,由题得()22,f x x =+' 所以000()220,1,(1)3f x x x f '=+=∴=--=-, ∴()1,3M --. 故选:B.【点睛】本题主要考查对函数求导和导数的几何意义,意在考查学生对该知识的掌握水平和分析推理能力.函数()y f x =在点0x 处的导数0()f x '是曲线()y f x =在00(,())P x f x 处的切线的斜率,相应的切线方程是000()()y y f x x x '-=-.6.已知各项为正的等比数列{}n a 中,4a 与14a 的等比中项为7112a a +的最小值为 A .16 B .8C .22D .4答案:B【解析】解:试题分析:根据已知可得()2414.228a a ==,因为各项为正,所以711711222.a a a a +≥,而711414..8a a a a ==,所以711711222.248a a a a +≥=⨯=,但且仅当“711a a =”等号成立,故选择B 【解析】等比数列性质以及基本不等式7.“0a >”是“函数()3f x x ax =+在区间()0,∞+上是增函数”的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件答案:B求出导数,由题意求出a 的范围,利用充要条件的判断方法,判断即可.解:解:函数3()f x x ax =+在区间(0,)+∞上是增函数,所以2()30f x x a '=+在(0,)+∞上恒成立,所以0a ,显然,0a >则有函数3()f x x ax =+在区间(0,)+∞上是增函数,函数3()f x x ax =+在区间(0,)+∞上是增函数,a 可以为0,所以“0a >”是“函数3()f x x ax =+在区间(0,)+∞上是增函数”的充分而不必要条件.故选:B .【点睛】本题主要考查必要条件、充分条件和充要条件的定义,导数的应用,属于中档题. 8.如图,在ABC ∆中, 13AN AC =,P 是BN 上的一点,若23mAC AP AB =-,则实数m 的值为( )A .13B .19C .1D .2答案:B【解析】23mAC AP AB =-变形为23AP mAC AB =+,由13AN AC =得3AC AN =,转化在ABN 中,利用B P N 、、三点共线可得. 解:解:依题: 22333AP mAC AB mAN AB =+=+, 又B P N ,,三点共线,2313m ∴+=,解得19m =.故选:B .【点睛】本题考查平面向量基本定理及用向量共线定理求参数. 思路是(1)先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.利用向量共线定理及向量相等的条件列方程(组)求参数的值. (2)直线的向量式参数方程:A P B 、、 三点共线⇔(1)OP t OA tOB =-+ (O 为平面内任一点,t R ∈)9.已知函数()sin()(0,0,0)f x A x A ωφωφπ=+>><<的部分图象如图所示,则()2f π=A .322 B .322-C .32-D .32答案:C根据已知中函数()()sin (0,0,0)f x A x A ωφωφπ=+>><<的图象,可分析出函数的最值,确定A 的值,分析出函数的周期,确定ω的值,将(3π,-3)代入解析式,可求出ϕ值,进而求出2f π⎛⎫ ⎪⎝⎭. 解:由图可得:函数()()sin f x A x ωφ=+的最大值3,∴3A =, 又∵74123T ππ=-,ω>0, ∴T =π,ω=2,将(3π,-3)代入()()sin f x A x ωφ=+,得sin (23π+ϕ)=1-, ∴23π+ϕ=2k Z 2k ,ππ-+∈,即ϕ=72k Z 6k ππ-+∈,,又0φπ<< ∴ϕ=56π,∴()53sin 26f x x π⎛⎫=+⎪⎝⎭∴53 3sin 262f πππ⎛⎫⎛⎫=+=- ⎪ ⎪⎝⎭⎝⎭ 故选C【点睛】本题主要考查的知识点是由函数的部分图象求三角函数解析式的方法,其中关键是要根据图象分析出函数的最值,周期等,进而求出A ,ω和φ值,考查了数形结合思想,属于中档题. 10.定义在R 上的偶函数()x mf x e -=,记()ln3a f =-,()2log 5b f =,()2mc f =,则( )A .a b c <<B .c a b <<C .a c b <<D .c b a <<答案:B先根据()f x 为偶函数求得m ,然后判断()f x 的单调性,由此比较出,,a b c 的大小关系. 解:由于()f x 为偶函数,所以()()f x f x -=,即x m x m e e ---=,即x m x m +=-,所以0m =.故()xf x e =.当0x >时,()xf x e =为单调递增函数.()()()()()0ln3ln3,221m a f f c f f f =-====,而2221ln ln 3ln 2log 4log 5e e =<<==<,所以c a b <<. 故选:B【点睛】本小题主要考查函数的奇偶性和单调性,考查对数运算以及对数函数的单调性,属于中档题.11.已知数列{}n a 为等差数列,其前n 项和为n S ,若13 *(n n S S n N -=∈且13)n <,有以下结论: ①130S =;②70a =;③{}n a 为递增数列;④130a =. 则正确的结论的个数为( ) A .1 B .2 C .3 D .4答案:B【解析】对①②,根据等差数列的求和性质求解即可.对③④,举出反例判断即可. 解:对①,由题, 13 n n S S -=令7n =有767670 0S S S S a ⇒-=⇒==,故①正确. 对②,()113137131302a a S a +===.故②正确.对③, 当0n a =时满足13 0n n S S -==,故{}n a 为递增数列不一定正确.故③错误. 对④, 由①②,可设当7n a n =-时满足13 n n S S -=,但136a =-.故④错误. 故①②正确. 故选:B【点睛】本题主要考查了等差数列的求和性质运用,需要根据题意利用赋值法或性质推导,属于中档题.12.对于函数()sin(cos )f x x =,下列结论错误的是( ) A .()f x 为偶函数B .()f x 的最小正周期为2πC .()f x 的值域为[sin1,sin1]-D .()f x 在[0,]π上单调递增 答案:D运用函数的奇偶性的定义,结合诱导公式,可判断A ; 由周期函数的定义可判断B ;由正弦函数、余弦函数的值域、单调性可判断C ; 由正弦函数、余弦函数的单调性可判断D .解:函数()sin(cos )f x x =,其定义域R 关于原点对称,又由()sin(cos())sin(cos )f x x x -=-=,可得()f x 为偶函数,故A 正确;由cos x 最小正周期为2π,知()f x 的最小正周期也为2π,故B 正确;由1cos 1x -,且[1-,1][2π⊆-,]2π,∵f (x )在[2π-,]2π上单调递增,∴()f x 的值域为[sin(1)-,sin1],即[sin1-,sin1],故C 正确;由cos y x =在[0,]π递减,且cos [1x ∈-,0],而[1-,0]是sin y x =的增区间,可得(sin c s )o y x =在[0,]π递减,故D 错误. 故选:D . 二、填空题13.若实数,x y 满足43600x y x y y +≥⎧⎪+-≤⎨⎪≥⎩,则2z x y =+的最小值是_________.答案:7【解析】画出可行域和目标函数,根据目标函数的几何意义得到最值.解:如图所示:画出可行域和目标函数,由2z x y =+,知2y x z =-+,z 表示直线的纵截距,根据图象知:当直线过点4360x y x y +=⎧⎨+-=⎩即点()3,1时z 有最小值,即3x =,1y =2z x y =+最小为7.故答案为:7.【点睛】本题考查了线性规划问题,画出图象是解题的关键.14.函数27x y a -=+(0a >,且1a ≠)的图象恒过定点P ,P 在幂函数()f x x α=的图象上,则(3)f =_______;答案:27先求出定点P 的坐标,然后代入幂函数()f x x α=中,即可求出幂函数的方程,进而可以求出()3f .解:解:因为函数27x y a -=+(0a >,且1a ≠)的图象恒过定点P , 所以由指数型函数性质得()2,8P , 因为P 在幂函数()f x x α=的图象上 所以28α=,解得3α=,所以()3f x x =,()327f =.故答案为:2715.已知向量a ,b 满足||2a =,2b =,且()2a a b ⊥+,则b 在a 方向上的投影为_______. 答案:-1利用向量的垂直关系,推出a b ⋅,然后求解b 在a 方向上的投影。
四川省绵阳市2021届新高考第一次大联考数学试卷含解析

四川省绵阳市2021届新高考第一次大联考数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.某三棱锥的三视图如图所示,网格纸上小正方形的边长为1,则该三棱锥外接球的表面积为( )A .27πB .28πC .29πD .30π【答案】C【解析】【分析】 作出三棱锥的实物图P ACD -,然后补成直四棱锥P ABCD -,且底面为矩形,可得知三棱锥P ACD -的外接球和直四棱锥P ABCD -的外接球为同一个球,然后计算出矩形ABCD 的外接圆直径AC ,利用公式222R PB AC =+可计算出外接球的直径2R ,再利用球体的表面积公式即可得出该三棱锥的外接球的表面积.【详解】三棱锥P ACD -的实物图如下图所示:将其补成直四棱锥P ABCD -,PB ⊥底面ABCD ,可知四边形ABCD 为矩形,且3AB =,4BC =.矩形ABCD 的外接圆直径225AC =AB +BC ,且2PB =.所以,三棱锥P ACD -外接球的直径为22229R PB AC =+因此,该三棱锥的外接球的表面积为()224229R R πππ=⨯=.故选:C.【点睛】本题考查三棱锥外接球的表面积,解题时要结合三视图作出三棱锥的实物图,并分析三棱锥的结构,选择合适的模型进行计算,考查推理能力与计算能力,属于中等题.2.△ABC 中,AB =3,BC =AC =4,则△ABC 的面积是( )A .B .2C .3D .32【答案】A【解析】【分析】由余弦定理求出角A ,再由三角形面积公式计算即可.【详解】 由余弦定理得:2221cos 22AB AC BC A AB AC +-==⋅⋅, 又()0,A π∈,所以得3A π=,故△ABC 的面积1sin 2S AB AC A =⋅⋅⋅=故选:A【点睛】本题主要考查了余弦定理的应用,三角形的面积公式,考查了学生的运算求解能力.3.已知三棱锥D ABC -的体积为2,ABC V 是边长为2的等边三角形,且三棱锥D ABC -的外接球的球心O 恰好是CD 中点,则球O 的表面积为( )A .523πB .403πC .253πD .24π【答案】A【解析】【分析】根据O 是CD 中点这一条件,将棱锥的高转化为球心到平面的距离,即可用勾股定理求解.【详解】解:设D 点到平面ABC 的距离为h ,因为O 是CD 中点,所以O 到平面ABC 的距离为2h ,三棱锥D ABC -的体积11122sin602332ABC V S h h ︒==⋅⨯⨯⋅⨯⋅=V ,解得2h =,作OO '⊥平面ABC ,垂足O '为ABC V 的外心,所以CO '=,且2h OO '==,所以在Rt CO O 'V 中,OC ==,此为球的半径,213524433S R πππ∴==⋅=. 故选:A.【点睛】本题考查球的表面积,考查点到平面的距离,属于中档题.4.已知双曲线2222:1(0,0)x y a b a bΓ-=>>的右焦点为F ,过原点的直线l 与双曲线Γ的左、右两支分别交于,A B 两点,延长BF 交右支于C 点,若,||3||AF FB CF FB ⊥=,则双曲线Γ的离心率是( )A 17B .32C .53D .102【答案】D【解析】【分析】设双曲线的左焦点为'F ,连接'BF ,'AF ,'CF ,设BF x =,则3CF x =,'2BF a x =+,'32CF x a =+,'Rt CBF ∆和'Rt FBF ∆中,利用勾股定理计算得到答案.【详解】设双曲线的左焦点为'F ,连接'BF ,'AF ,'CF ,设BF x =,则3CF x =,'2BF a x =+,'32CF x a =+,AF FB ⊥,根据对称性知四边形'AFBF 为矩形,'Rt CBF ∆中:222''CF CB BF =+,即()()()2223242x a x a x +=++,解得x a =;'Rt FBF ∆中:222''FF BF BF =+,即()()22223c a a =+,故2252c a =,故10e =. 故选:D .【点睛】本题考查了双曲线离心率,意在考查学生的计算能力和综合应用能力.5.函数()()()22214f x x x x =--的图象可能是( )A .B .C .D .【答案】A【解析】【分析】先判断函数()y f x =的奇偶性,以及该函数在区间()0,1上的函数值符号,结合排除法可得出正确选项.【详解】函数()y f x =的定义域为R ,()()()()()()()2222221414f x x x x x x x f x ⎡⎤⎡⎤-=-⋅--⋅--=--=⎣⎦⎣⎦,该函数为偶函数,排除B 、D 选项;当01x <<时,()()()222140f x xx x =-->,排除C 选项. 故选:A.【点睛】本题考查根据函数的解析式辨别函数的图象,一般分析函数的定义域、奇偶性、单调性、零点以及函数值符号,结合排除法得出结果,考查分析问题和解决问题的能力,属于中等题.6.已知l 为抛物线24x y =的准线,抛物线上的点M 到l 的距离为d ,点P 的坐标为()4,1,则MP d +的最小值是( ) A .17 B .4 C .2 D .117+【答案】B【解析】【分析】设抛物线焦点为F ,由题意利用抛物线的定义可得,当,,P M F 共线时,MP d +取得最小值,由此求得答案.【详解】解:抛物线焦点()0,1F ,准线1y =-,过M 作MN l ⊥交l 于点N ,连接FM由抛物线定义MN MF d ==,244MP d MP MF PF ∴+=+≥==,当且仅当,,P M F 三点共线时,取“=”号,∴MP d +的最小值为4.故选:B.【点睛】本题主要考查抛物线的定义、标准方程,以及简单性质的应用,体现了数形结合的数学思想,属于中档题.7.已知函数e 1()e 1x x f x -=+,()0.32a f =,()0.30.2b f =,()0.3log 2c f =,则a ,b ,c 的大小关系为( )A .b a c <<B .c b a <<C .b c a <<D .c a b <<【答案】B【解析】【分析】可判断函数()f x 在R 上单调递增,且0.30.30.3210.20log 2>>>>,所以c b a <<.【详解】12()111e e x x xf x e -==-++Q 在R 上单调递增,且0.30.30.3210.20log 2>>>>, 所以c b a <<.故选:B【点睛】本题主要考查了函数单调性的判定,指数函数与对数函数的性质,利用单调性比大小等知识,考查了学生的运算求解能力.8.已知函数()f x 是定义在R 上的偶函数,当0x ≥时,()e x f x x =+,则32(2)a f =-,2(log 9)b f =,c f =的大小关系为( )A .a b c >>B .a c b >>C .b a c >>D .b c a >>【答案】C【解析】【分析】 根据函数的奇偶性得3322(2)(2)a f f =-=3222,log 9的大小,根据函数的单调性可得选项. 【详解】 依题意得3322(2)(2)a f f =-=,322223log 8log 9<==<=<Q , 当0x ≥时,()e x f x x =+,因为1e >,所以x y e =在R 上单调递增,又y x =在R 上单调递增,所以()f x 在[0,)+∞上单调递增,322(log 9)(2)f f f ∴>>,即b a c >>,故选:C.【点睛】本题考查函数的奇偶性的应用、幂、指、对的大小比较,以及根据函数的单调性比较大小,属于中档题. 9.函数()3sin 3x f x x π=+的图象的大致形状是( )A .B .C .D .【答案】B【解析】【分析】根据函数奇偶性,可排除D ;求得()f x '及()f x '',由导函数符号可判断()f x 在R 上单调递增,即可排除AC 选项.【详解】函数()3sin 3x f x x π=+ 易知()f x 为奇函数,故排除D.又()2cos x f x x π'=+,易知当0,2x π⎡⎤∈⎢⎥⎣⎦时,()0f x '>; 又当,2x π⎛⎫∈+∞ ⎪⎝⎭时,()2sin 1sin 0x f x x x π''=->-≥, 故()f x '在,2π⎛⎫+∞⎪⎝⎭上单调递增,所以()24f x f ππ⎛⎫''>= ⎪⎝⎭, 综上,[)0,x ∈+∞时,()0f x '>,即()f x 单调递增.又()f x 为奇函数,所以()f x 在R 上单调递增,故排除A ,C.故选:B【点睛】本题考查了根据函数解析式判断函数图象,导函数性质与函数图象关系,属于中档题.10.已知a b r r ,满足23a =r 3b =r ,6a b ⋅=-r r ,则a r 在b r 上的投影为( )A .2-B .1-C .3-D .2【答案】A【解析】【分析】 根据向量投影的定义,即可求解.【详解】a r 在b r 上的投影为6cos23a b a bθ⋅-===-r r r r . 故选:A【点睛】本题考查向量的投影,属于基础题.11.下图是我国第24~30届奥运奖牌数的回眸和中国代表团奖牌总数统计图,根据表和统计图,以下描述正确的是( ).金牌(块)银牌 (块) 铜牌 (块) 奖牌总数 245 11 12 28 2516 22 12 54 2616 22 12 50 2728 16 15 59 2832 17 14 63 2951 21 28 100 30 38 27 23 88A .中国代表团的奥运奖牌总数一直保持上升趋势B .折线统计图中的六条线段只是为了便于观察图象所反映的变化,不具有实际意义C .第30届与第29届北京奥运会相比,奥运金牌数、银牌数、铜牌数都有所下降D .统计图中前六届奥运会中国代表团的奥运奖牌总数的中位数是54.5【答案】B【解析】【分析】根据表格和折线统计图逐一判断即可.【详解】A.中国代表团的奥运奖牌总数不是一直保持上升趋势,29届最多,错误;B.折线统计图中的六条线段只是为了便于观察图象所反映的变化,不表示某种意思,正确;C.30届与第29届北京奥运会相比,奥运金牌数、铜牌数有所下降,银牌数有所上升,错误;D. 统计图中前六届奥运会中国代表团的奥运奖牌总数按照顺序排列的中位数为545956.52+=,不正确; 故选:B【点睛】 此题考查统计图,关键点读懂折线图,属于简单题目.12.函数()2cos2cos221x x f x x =+-的图象大致是( ) A . B .C .D .【答案】C【解析】【分析】根据函数奇偶性可排除AB 选项;结合特殊值,即可排除D 选项.【详解】∵()2cos221cos2cos22121x x x x f x x x +=+=⨯--, ()()()2121cos 2cos22121x x x x f x x x f x --++-=⨯-=-⨯=---, ∴函数()f x 为奇函数,∴排除选项A ,B ;又∵当04x π⎛⎫∈ ⎪⎝⎭,时,()0f x >, 故选:C.【点睛】本题考查了依据函数解析式选择函数图象,注意奇偶性及特殊值的用法,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。
《精编》四川省绵阳市高三数学第一次诊断性考试试题 文(含解析)新人教A版.doc

四川省绵阳市高考数学一模试卷〔文科〕参考答案与试题解析一、选择题:本大题共12小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.〔5分〕〔2021•绵阳一模〕设集合A={2,3,4},B={0,1,2},那么A∩B等于〔〕A.{0} B.{0,1,2,3,4} C.{2} D.∅考点:交集及其运算.专题:阅读型.分析:集合A与集合B都是含有三个元素的集合,且有一个公共元素2,所以A∩B可求.解答:解:因为集合A={2,3,4},B={0,1,2},所以A∩B={2}.应选C.点评:此题考查了交集及其运算,两个集合的交集是有两个集合的公共元素组成的集合,是根底题.2.〔5分〕〔2021•绵阳一模〕命题P:“∀x∈R,cosx≥1”,那么¬p是〔〕A.∃x∈R,cos≥1B.∀x∈R,cos<1 C.∃x∈R,cosx<1 D.∀x∈R,cosx>1 考点:特称命题;命题的否认.专题:计算题.分析:利用全称命题:∀x∈M,p〔x〕;的否认是特称命题∃x∈M,p〔x〕直接得到结果.解答:解:因为全称命题:∀x∈M,p〔x〕;的否认是特称命题∃x∈M,p〔x〕.所以命题P:“∀x∈R,cosx≥1”,那么¬p是∃x∈R,cosx<1.应选C.点评:此题考查命题的否认,全称命题:∀x∈M,p〔x〕;与特称命题∃x∈M,p〔x〕互为命题的否认.3.〔5分〕〔2021•绵阳一模〕数列{a n}为等差数列,且a6+a8=,那么tan〔a5+a9〕的值为〔〕A.B.﹣C.±D.﹣考点:等差数列的性质.专题:计算题;等差数列与等比数列.分析:由等差数列的性质可得,a5+a9=a6+a8=,然后求解正切函数值即可解答:解:由等差数列的性质可得,a5+a9=a6+a8=,∴tan〔a5+a9〕=tan=应选B点评:此题主要考查了等差数列的性质及特殊角的正切函数值的求解,属于根底试题4.〔5分〕〔2021•湖南〕如图,D,E,F分别是△ABC的边AB,BC,CA的中点,那么〔〕A.++=0 B.﹣+=0 C.+﹣=0 D.﹣﹣=0考点:向量加减混合运算及其几何意义.分析:模相等、方向相同的向量为相等向量,得出图中的相等向量,再由向量加法法那么得选项.解答:解:由图可知=,==在△DBE中,++=0,即++=0.应选项为A.点评:考查向量相等的定义及向量加法的三角形法那么.5.〔5分〕〔2021•绵阳一模〕己知f〔x〕=xsinx,那么f′〔π〕=〔〕A.O B.﹣1 C.πD.﹣π考点:导数的乘法与除法法那么.专题:导数的概念及应用.分析:先对函数f〔x〕求导,进而可求出f′〔π〕的值.解答:解:∵f′〔x〕=sinx+xcosx,∴f′〔π〕=sinπ+πcosπ=﹣π.应选D.点评:此题考查导数的值,正确求导是解决问题的关键.6.〔5分〕〔2021•绵阳一模〕函数f〔x〕=e x﹣x﹣2的零点所在的区间为〔〕A.〔﹣1,0〕B.〔1,2〕C.〔0,1〕D.〔2,3〕考点:函数零点的判定定理.专题:计算题.分析:将选项中各区间两端点值代入f〔x〕,满足f〔a〕•f〔b〕<0〔a,b为区间两端点〕的为答案.解答:解:因为f〔1〕=e﹣3<0,f〔2〕=e2﹣e﹣2>0,所以零点在区间〔1,2〕上,应选:B.点评:此题考查了函数零点的概念与零点定理的应用,属于容易题.函数零点附近函数值的符号相反,这类选择题通常采用代入排除的方法求解.7.〔5分〕〔2021•绵阳一模〕设,那么〔〕A.c<b<a B.c<a<b C.a<b<c D.b<a<c考点:根式与分数指数幂的互化及其化简运算.专题:计算题.分析:利用幂函数的性质比较两个正数a,b的大小,然后推出a,b,c的大小即可.解答:解:因为y=是增函数,所以所以c<a<b应选B点评:此题考查根式与分数指数幂的互化及其化简运算,考查计算推理能力,是根底题.8.〔5分〕〔2021•绵阳一模〕函数f〔x〕=Asin〔ωx+φ〕〔A>0,w>0,|φ|<〕,其导数f′〔x〕的局部图象如以以下列图所示,那么函数f〔x〕的解析式为:〔〕A .f 〔x 〕=sin 〔2x+〕 B .f 〔x 〕=2in 〔2x+〕 C .f 〔x 〕=sin 〔2x ﹣〕 D .f 〔x 〕=2in 〔2x ﹣〕考点: 由y=Asin 〔ωx+φ〕的局部图象确定其解析式. 专题: 计算题. 分析: 通过导函数的图象求出Aω=2,T ,利用周期公式求出ω,通过函数图象经过的特殊点,求出φ,得到函数的解析式. 解答:解:由函数的图象可得Aω=2,T=4×=π,所以ω=2,A=1, 由导函数的图象,可知函数的图象经过〔﹣〕,所以0=sin 〔﹣φ〕,所以φ=, 所以函数的解析式为:f 〔x 〕=sin 〔2x+〕.应选A . 点评: 此题是中档题,考查三角函数以及导函数的图象的应用,考查学生的视图能力、分析问题解决问题的能力,计算能力. 9.〔5分〕〔2021•绵阳一模〕定义在R 上的奇函数f 〔x 〕是〔﹣∞,0]上的增函数,且f 〔1〕=2,f 〔﹣2〕=﹣4,设P={x|f 〔x+t 〕﹣4<0},Q={x|f 〔x 〕<﹣2}.假设“x∈P 〞是“x∈Q 〞的充分不必要条件,那么实数t 的取值范围是〔 〕〔 〕 A . t ≤﹣1 B . t >﹣1 C . t ≥3 D . t >3 考点: 必要条件、充分条件与充要条件的判断. 专题: 计算题. 分析: 根据定义在R 上的奇函数f 〔x 〕是〔﹣∞,0]上的增函数,且f 〔1〕=2,f 〔﹣2〕=﹣4,可以画出f 〔x 〕的图象,然后再求出P 和Q 集合,根据“x∈P 〞是“x∈Q 〞的充分不必要条件可得P ⊆Q ,从而求出t 的范围;解答:解:∵定义在R上的奇函数f〔x〕是〔﹣∞,0]上的增函数,且f〔1〕=2,f〔﹣2〕=﹣4,可得f〔﹣1〕=﹣2,f〔2〕=4,画出f〔x〕的图象:∵P={x|f〔x+t〕﹣4<0},Q={x|f〔x〕<﹣2},解得P={x|x<2﹣t},Q={x|x<﹣1},∵“x∈P〞是“x∈Q〞的充分不必要条件,∴P⊆Q,∴2﹣t<﹣1,解得t>3,当t=3,可得P=Q,不满足“x∈P〞是“x∈Q〞的充分不必要条件,∴t>3,应选D;点评:此题主要考查奇函数的定义及其应用,考查的知识点比较全面,利用了数形结合的方法,是一道中档题;10.〔5分〕〔2021•四川〕某企业生产甲、乙两种产品.生产每吨甲产品要用A原料3吨、B 原料2吨;生产每吨乙产品要用A原料1吨、B原料3吨.销售每吨甲产品可获得利润5万元、每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A原料不超过13吨、B 原料不超过18吨,那么该企业可获得最大利润是〔〕A.12万元B.20万元C.25万元D.27万元考点:简单线性规划的应用.专题:应用题;压轴题.分析:先设该企业生产甲产品为x吨,乙产品为y吨,列出约束条件,再根据约束条件画出可行域,设z=5x+3y,再利用z的几何意义求最值,只需求出直线z=5x+3y过可行域内的点时,从而得到z值即可.解答:解:设该企业生产甲产品为x吨,乙产品为y吨,那么该企业可获得利润为z=5x+3y,且联立解得由图可知,最优解为P〔3,4〕,∴z的最大值为z=5×3+3×4=27〔万元〕.应选D.点评:在解决线性规划的应用题时,其步骤为:①分析题目中相关量的关系,列出不等式组,即约束条件⇒②由约束条件画出可行域⇒③分析目标函数Z与直线截距之间的关系⇒④使用平移直线法求出最优解⇒⑤复原到现实问题中.11.〔5分〕〔2021•绵阳一模〕偶函数f〔x〕在区间[0,+∞〕上满足f′〔x〕>0,那么满足f〔x2﹣2x〕<f〔x〕的X的取值范围是〔〕A.〔1,3〕B.〔﹣∞,﹣3〕∪〔3,+∞〕C.〔﹣3,3〕D.〔﹣3,1〕考点:利用导数研究函数的单调性;奇偶性与单调性的综合.专题:函数的性质及应用;导数的概念及应用.分析:根据导数符号可判断函数的单调性,再利用条件偶函数可把f〔x2﹣2x〕<f〔x〕转化为x2﹣2x与x间不等式,从而得到x的取值范围.解答:解:因为函数f〔x〕为偶函数,所以f〔x2﹣2x〕<f〔x〕等价于f〔|x2﹣2x|〕<f 〔|x|〕.又函数f〔x〕在区间[0,+∞〕上满足f′〔x〕>0,所以函数f〔x〕在区间[0,+∞〕上单调递增.所以|x2﹣2x|<|x|,两边平方并化简得x2〔x﹣1〕〔x﹣3〕<0,解得1<x<3.应选A.点评:此题为函数奇偶性、单调性及导数的综合题,考查了相关的根底知识及分析问题、解决问题的能力.解决此题的关键是去掉符号“f〞,转化为自变量间的不等关系.12.〔5分〕〔2021•绵阳一模〕定义在R上的函数f〔x〕满足f〔1〕=1,f〔1﹣x〕=1﹣f〔x〕,2f〔x〕=f〔4x〕,且当0≤x1<x2≤1时,f〔x1〕≤f〔x2〕,那么f〔〕等于〔〕A.B.C.D.考点:函数的值.专题:计算题.分析:先求出f〔〕,然后根据条件求出f,,最后根据函数的单调性,以及两边夹的性质可求出所求.解答:解:∵f〔1〕=1,f〔1﹣x〕=1﹣f〔x〕令x=得f〔〕+f〔〕=1即f〔〕=∵2f〔x〕=f〔4x〕∴f〔x〕=f〔4x〕在f〔x〕=f〔4x〕中,令x=可得f〔〕==在f〔1﹣x〕+f〔x〕=1中,令x=可得f〔〕+f〔〕=1即f〔〕=同理可求f〔〕=,f〔〕=1﹣f〔〕==,f〔〕=1﹣f〔〕==,f〔〕=1﹣f〔〕===,f〔〕=1﹣=∵当0≤x1≤x2≤1时,f〔x1〕≤f〔x2〕,∴==∴f=应选B点评:此题主要考查了抽象函数及其应用,考查分析问题和解决问题的能力,属于中档题二、填空题:本大题共4小题,每题4分,共16分.13.〔4分〕〔2021•绵阳一模〕∥,那么x= ﹣4 .考点:平行向量与共线向量.分析:用两向量共线坐标形式的充要条件公式:坐标交叉相乘相等.解答:解:∵,∴2×〔﹣6〕=3x∴x=﹣4故答案为﹣4点评:考查两向量共线坐标形式的充要条件公式.14.〔4分〕〔2021•绵阳一模〕偶函数f〔x〕=〔n∈Z〕在〔0,+∞〕上是增函数,那么n= 2 .考点:奇偶性与单调性的综合.专题:函数的性质及应用.分析:结合幂函数在〔0,+∞〕上的单调性与指数的关系,我们可以求出n的取值范围为1,2,3,结合幂函数的奇偶性讨论后,可得答案.解答:解:假设幂函数f〔x〕=〔n∈Z〕在〔0,+∞〕上是增函数,那么>0,即4n﹣n2>0,又∵n∈Z∴n∈{1,2,3}又∵n=1,或n=3时=,此时幂函数f〔x〕为非奇非偶函数n=2时=2,幂函数f〔x〕=x2为偶函数满足要求故答案为:2点评:此题考查的知识点是幂函数的奇偶性和单调性及幂函数解析式的求法,幂函数是新课标的新增内容,此题是求幂函数解析式的经典例题,从单调性入手进行解答是解答此题的关键.15.〔4分〕〔2021•绵阳一模〕{a n}是递增数列,且对于任意的n∈N*,a n=n2+λn恒成立,那么实数λ的取值范围是〔﹣3,+∞〕.考点:数列与函数的综合.专计算题.题:分析:由对于任意的n∈N*,a n=n2+λn恒成立,知a n+1﹣a n=〔n+1〕2+λ〔n+1〕﹣n2﹣λn=2n+1+λ,由{a n}是递增数列,知a n+1﹣a n>a2﹣a1=3+λ>0,由此能求出实数λ的取值范围.解答:解:∵对于任意的n∈N*,a n=n2+λn恒成立,a n+1﹣a n=〔n+1〕2+λ〔n+1〕﹣n2﹣λn=2n+1+λ,∵{a n}是递增数列,∴a n+1﹣a n>0,又a n+1﹣a n=〔n+1〕2+λ〔n+1〕﹣n2﹣λn=2n+1+λ∴当n=1时,a n+1﹣a n最小,∴a n+1﹣a n>a2﹣a1=3+λ>0,∴λ>﹣3.故答案为:〔﹣3,+∞〕.点评:此题考查实数的取值范围的求法,具体涉及到数列的性质,解题时要认真审题,注意函数思想的灵活运用,是根底题.16.〔4分〕〔2021•绵阳一模〕设所有可表示为两整数的平方差的整数组成集合M.给出以下命题:①所有奇数都属于M.②假设偶数2k属于M,那么k∈M.③假设a∈M,b∈M,那么ab∈M.④把所有不属于M的正整数从小到大依次排成一个数列,那么它的前n项和S n∈M.其中正确命题的序号是①③.〔写出所有正确命题的序号〕考点:命题的真假判断与应用.分析:根据中集合M的定义,根据集合元素与集合关系的判断,我们分别推证①③正确,举反例推翻②④可得答案.解答:解:∵所有可表示为两整数的平方差的整数组成集合M.设奇数2k+1 〔k∈Z〕那么:2k+1=〔k+1〕2﹣k2,故①所有奇数都属于M正确;由12=42﹣22得,12∈M,但6∉M,故②假设偶数2k属于M,那么k∈M错误;∵a∈M,b∈M,设a=m2﹣n2,b=p2﹣q2,那么ab=〔m2﹣n2〕〔p2﹣q2〕=〔mp〕2+〔nq〕2﹣〔mq〕2﹣〔pn〕2=〔mp+nq〕2﹣〔mq+np〕2∈M,故③正确;当n=1时,S n即为第一个不属于M的正整数,此时S n∉M,故④错误;故答案为:①③点评:此题考查的知识点是命题的真假判断与应用,其中熟练掌握集合M的元素的特征是解答的关键.三、解答题:本大题共6小题,共74分.解容许写出文说明、证明过程或演算步骤. 17.〔12分〕〔2021•绵阳一模〕设向量=〔cos2x,1〕,=〔1,sin2x〕,x∈R,函数f 〔x〕=•.〔I 〕求函数f〔x〕的最小正周期及对称轴方程;〔II〕当x∈[0,]时,求函数f〔x〕的值域.考点:三角函数中的恒等变换应用;数量积的坐标表达式;复合三角函数的单调性.专题:计算题;三角函数的求值.分析:〔Ⅰ〕通过向量的数量积,利用两角和的正弦函数,化简函数为一个角的一个三角函数的形式,即可求出函数f〔x〕的最小正周期及对称轴方程.〔Ⅱ〕通过x的范围求出2x+的范围,利用正弦函数的值域,求解函数的值域即可.解答:解:〔Ⅰ〕f 〔x〕=•=〔cos2x,1〕•〔1,sin2x〕=sin2x+cos2x=2 sin〔2x+〕,…〔6分〕∴最小正周期T=,令2x+=k,k∈Z,解得x=,k∈Z,即f 〔x〕的对称轴方程为x=,k∈Z.…〔8分〕〔Ⅱ〕当x∈[0,]时,即0≤x≤,可得≤2x+≤,∴当2x+=,即x=时,f 〔x〕取得最大值f 〔〕=2;当2x+=,即x=时,f 〔x〕取得最小值f 〔〕=﹣1.即f 〔x〕的值域为[﹣1,2].…〔12分〕点评:此题以向量为依托,考查三角函数的两角和的正弦函数的应用,函数的周期,值域的求法,考查计算能力.18.〔12分〕〔2021•绵阳一模〕数列{a n}是等比数列且a3=,a6=2.〔I〕求数列{a n}的通项公式;〔II〕假设数列{a n}满足b n=3log2a n,且数列{b n}的前“项和为T n,问当n为何值时,T n取最小值,并求出该最小值.考点:数列的求和;等比数列的通项公式.专题:等差数列与等比数列.分析:〔I〕由中数列{a n}是等比数列且a3=,a6=2.求出数列的公比,易得数列的通项〔II〕根据〔I〕及b n=3log2a n,可得数列{b n}的通项公式,进而结合二次函数的性质,及n∈N+,可求出当n为何值时,T n取最小值.解答:解:〔Ⅰ〕设公比为q,由a6=2,a3=,得a1q5=2,a1q2=,两式相除得q3=8,解得q=2,a1=,∴a n=×2n﹣1=2n﹣5〔Ⅱ〕b n=3log2a n=3log2〔2n﹣5〕=3n﹣15,∴T n=,又∵n∈N+当n=4或5时,T n取得最小值,最小值为﹣30点评:此题考查的知识点是数列求和,等比数列的通项公式,其中分别求出数列{a n}和{b n}的通项公式是解答的关键.19.〔12分〕〔2021•绵阳一模〕在△ABC中,角A,B,C的对边分别是a,b,c假设asinA=〔a﹣b〕sinB+csinC.〔I 〕求角C的值;〔II〕假设△ABC的面积为,求a,b的值.考点:解三角形.专题:计算题;解三角形.分析:〔Ⅰ〕把结合正弦定理整理可得a2+b2﹣c2=ab,然后利用余弦定理CosC=可求cosC,结合C 的范围可求C〔Ⅱ〕由三角形的面积公式可得,结合c=2,及由〔Ⅰ〕a2+b2﹣4=ab,可求a+b,联立方程可求a,b解答:解:〔Ⅰ〕∵asinA=〔a﹣b〕sinB+csinC,由正弦定理,得a2=〔a﹣b〕b+c2,即a2+b2﹣c2=ab.①由余弦定理得CosC==,结合0<C<π,得C=.…〔6分〕〔Ⅱ〕∵△ABC的面积为,即,化简得ab=4,①又c=2,由〔Ⅰ〕知,a2+b2﹣4=ab,∴〔a+b〕2=3ab+4=16,得a+b=4,②由①②得a=b=2.…〔12分〕点评:此题主要考查了三角形的正弦定理、余弦定理及三角形的面积公式的综合应用,属于知识的综合应用20.〔12分〕〔2021•绵阳一模〕己知二次函数y=f〔x〕的图象过点〔1,﹣4〕,且不等式f 〔x〕<0的解集是〔O,5〕.〔I 〕求函数f〔x〕的解析式;〔II〕设g〔x〕=x3﹣〔4k﹣10〕x+5,假设函数h〔x〕=2f〔x〕+g〔x〕在[﹣4,﹣2]上单调递增,在[﹣2,0]上单调递减,求y=h〔x〕在[﹣3,1]上的最大值和最小值..考点:二次函数的性质;二次函数在闭区间上的最值.专题:函数的性质及应用.分析:〔1〕根据函数零点,方程根与不等式解集端点之间的关系,结合二次函数y=f〔x〕的图象过点〔1,﹣4〕,可求出函数f〔x〕的解析式;〔II〕由〔I〕可求出函数h〔x〕的解析式〔含参数k〕,进而由函数极大值点为﹣2,求出k值,结合导数法求最值的步骤,可得答案.解答:解:〔Ⅰ〕由y=f 〔x〕是二次函数,且f 〔x〕<0的解集是〔0,5〕,可得f 〔x〕=0的两根为0,5,于是设二次函数f 〔x〕=ax〔x﹣5〕,代入点〔1,﹣4〕,得﹣4=a×1×〔1﹣5〕,解得a=1,∴f 〔x〕=x〔x﹣5〕.…〔4分〕〔Ⅱ〕h〔x〕=2f 〔x〕+g〔x〕=2x〔x﹣5〕+x3﹣〔4k﹣10〕x+5=x3+2x2﹣4kx+5,于是h′〔x〕=3x2+4x﹣4k,∵h〔x〕在[﹣4,﹣2]上单调递增,在[﹣2,0]上单调递减,∴x=﹣2是h〔x〕的极大值点,∴h′〔2〕=3×〔﹣2〕2+4×〔﹣2〕﹣4k=0,解得k=1.…〔6分〕∴h〔x〕=x3+2x2﹣4x+5,进而得h′〔x〕=3x2+4x﹣4.令h′〔x〕=3x2+4x﹣4=0,得x=﹣2,或x=.由下表:x 〔﹣3,﹣2〕﹣2〔﹣2,〕〔,1〕h′〔x〕 + 0 ﹣0 +h〔x〕↗极大↘极小↗可知:h〔﹣2〕=〔﹣2〕3+2×〔﹣2〕2﹣4×〔﹣2〕+5=13,h〔1〕=13+2×12﹣4×1+5=4,h〔﹣3〕=〔﹣3〕3+2×〔﹣3〕2﹣4×〔﹣3〕+5=8,h〔〕=〔〕3+2×〔〕2﹣4×+5=,∴h〔x〕的最大值为13,最小值为.…〔12分〕点评:此题考查的知识点是二次函数的性质,函数零点,方程根与不等式解集端点的关系,导数法求函数的极值与最值,其中求出函数h〔x〕的解析式是解答的关键.21.〔12分〕〔2021•绵阳一模〕设数列{a n}的前n项和为S n,且〔t﹣1〕S n=2ta n﹣t﹣1〔其中t为常数,t>0,且t≠1〕.〔I〕求证:数列{a n}为等比数列;〔II〕假设数列{a n}的公比q=f〔t〕,数列{b n}满足b1=a1,bn+1=f〔b n〕,求数列{}的通项公式;〔III〕设t=,对〔II〕中的数列{a n},在数列{a n}的任意相邻两项a k与a k+1之间插入k个〔k∈N*〕后,得到一个新的数列:a1,,a2,,,a3,,,,a4…,记此数列为{c n}.求数列{c n}的前50项之和.考点:数列递推式;等比关系确实定;数列的求和.专题:综合题;等差数列与等比数列.分析:〔Ⅰ〕利用数列递推式,再写一式,两式相减,即可证得数列{a n}是以1为首项,为公比的等比数列;〔Ⅱ〕确定数列{}是以1为首项,1为公差的等差数列,可求数列{}的通项公式;〔III〕确定数列{c n}为:1,﹣1,,2,2,,﹣3,﹣3,﹣3,,…,再分组求和,即可求得数列{c n}的前50项之和.解答:〔Ⅰ〕证明:由题设知〔t﹣1〕S1=2ta1﹣t﹣1,解得a1=1,由〔t﹣1〕S n=2ta n﹣t﹣1,得〔t﹣1〕S n+1=2ta n+1﹣t﹣1,两式相减得〔t﹣1〕a n+1=2ta n+1﹣2ta n,∴〔常数〕.∴数列{a n}是以1为首项,为公比的等比数列.…〔4分〕〔Ⅱ〕解:∵q=f 〔t〕=,b1=a1=1,b n+1= f 〔b n〕=,∴=+1,∴数列{}是以1为首项,1为公差的等差数列,∴.…〔8分〕〔III〕解:当t=时,由〔I〕知a n=,于是数列{c n}为:1,﹣1,,2,2,,﹣3,﹣3,﹣3,,…设数列{a n}的第k项是数列{c n}的第m k项,即a k=,当k≥2时,m k=k+[1+2+3+…+〔k﹣1〕]=,∴m9=﹣45.设S n表示数列{c n}的前n项和,那么S45=[1+++…+]+[﹣1+〔﹣1〕2×2×2+〔﹣1〕3×3×3+…+〔﹣1〕8×8×8].∵1+++…+==2﹣,﹣1+〔﹣1〕2×2×2+〔﹣1〕3×3×3+…+〔﹣1〕8×8×8=﹣1+22﹣32+42﹣52+62﹣72+82 =〔2+1〕〔2﹣1〕+〔4+3〕〔4﹣3〕+〔6+5〕〔6﹣5〕+〔8+7〕〔8﹣7〕=3+7+11+15=36.∴S45=2﹣+36=38﹣.∴S50=S45+〔c46+c47+c48+c49+c50〕=38﹣+5×〔﹣1〕9×9=﹣7.即数列{c n}的前50项之和为﹣7.…〔12分〕点评:此题考查等比数列与等差数列的证明,考查数列的通项与求和,考查学生的计算能力,属于中档题.22.〔14分〕〔2021•绵阳一模〕函数f〔x〕=lnx﹣ax+1在x=2处的切线斜率为﹣.〔I〕求实数a的值及函数f〔x〕的单调区间;〔II〕设g〔x〕=kx+1,对∀x∈〔0,+∞〕,f〔x〕≤g〔x〕恒成立,求实数k的取值范围;〔III〕设b n=,证明:b1+b2+…+b n<1+ln2〔n∈N*,n≥2〕.考点:导数在最大值、最小值问题中的应用;利用导数研究函数的单调性;利用导数研究曲线上某点切线方程.专题:综合题;导数的综合应用.分析:〔Ⅰ〕求导数,利用函数f〔x〕=lnx﹣ax+1在x=2处的切线斜率为﹣,可确定a的值,利用导数的正负,可得函数f〔x〕的单调区间;〔Ⅱ〕∀x∈〔0,+∞〕,f 〔x〕≤g〔x〕,即lnx﹣〔k+1〕x≤0恒成立,构造函数h〔x〕=lnx﹣〔k+1〕x,利用h〔x〕max≤0,即可求得k的取值范围;〔Ⅲ〕先证明当n≥2时,有ln〔n+1〕<n,再利用放缩法,裂项法,即可证得结论.解答:〔Ⅰ〕解:由:〔x>0〕,∵函数f〔x〕=lnx﹣ax+1在x=2处的切线斜率为﹣.∴,∴a=1.∴,当x∈〔0,1〕时,f′〔x〕>0,f 〔x〕为增函数,当x∈〔1,+∞〕时,f′〔x〕<0,f 〔x〕为减函数,∴f 〔x〕的单调递增区间为〔0,1〕,单调递减区间为〔1,+∞〕.…〔5分〕〔Ⅱ〕解:∀x∈〔0,+∞〕,f 〔x〕≤g〔x〕,即lnx﹣〔k+1〕x≤0恒成立,设h〔x〕=lnx﹣〔k+1〕x,有.①当k+1≤0,即k≤﹣1时,h′〔x〕>0,此时h〔1〕=ln1﹣〔k+1〕≥0与h〔x〕≤0矛盾.②当k+1>0,即k>﹣1时,令h′〔x〕=0,解得,∴,h′〔x〕>0,h〔x〕为增函数,,h′〔x〕<0,h〔x〕为减函数,∴h〔x〕max=h〔〕=ln﹣1≤0,即ln〔k+1〕≥﹣1,解得k≥.综合k>﹣1,知k≥.∴综上所述,k的取值范围为[,+∞〕.…〔10分〕〔Ⅲ〕证明:由〔Ⅰ〕知f 〔x〕在〔0,1〕上是增函数,在〔1,+∞〕上是减函数,∴f 〔x〕≤f 〔1〕=0,∴lnx≤x﹣1.当n=1时,b1=ln〔1+1〕=ln2,当n≥2时,有ln〔n+1〕<n,∵b n=<=<=,∴b1+b2+…+b n<b1+〔〕+…+〔〕=ln2+〔1﹣〕<1+ln2.…〔14分〕点评:此题考查导数知识的运用,考查函数的单调性,考查恒成立问题,考查不等式的证明,考查学生分析解决问题的能力,属于中档题.。
2021届四川省绵阳市高中高三第一次诊断性模拟考试数学(文)试题Word版含答案

2021届四川省绵阳市高中高三第一次诊断性模拟考试数学(文)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{1,0,1,2}A =-,集合{|2}x B y y ==,则A B =( )A . {0,1}B .{1,2}C . {0,1,2}D .(0,)+∞2.已知向量(1,2)a =,(,1)b x =,若a b ⊥,则x =( )A .2B . -2C .1D .-13.若点(3,4)P -是角α的终边上一点,则sin 2α=( )A . 2425-B .725-C .1625D . 854.若,a b R ∈,且||a b >,则( )A .a b <-B .a b > C. 22a b < D .11a b> 5.已知命题0:p x R ∃∈,使得0lg cos 0x >;命题:0q x ∀<,30x >,则下列命题为真命题的是( )A .p q ∧B .()p q ∨⌝ C. ()()p q ⌝∧⌝ D .p q ∨6. 古代数学著作《九章算术》中有如下问题:“今有女子善织,日益功,疾,初日织五尺,今一月织九匹三丈,问日益几何?”其意为:有一女子擅长织布,每天比前一天更加用功,织布的速度也越来越快,从第二天起,每天比前一天多织相同量的布,第一天织五尺,一月织了九匹三丈,问每天比前一天多织多少吃布?已知1匹=40尺,1丈=10尺,若一月按30天算,则每天织布的增加量为( )A .12尺B .815尺 C. 1629尺 D . 1631尺 7.若函数1,0()lg ,0x x f x x x -≤⎧=⎨>⎩,则不等式()10f x +<的解集是( )A.1(,)10-∞ B.1(,0)(0,)10-∞ C.1(0,)10D.1(1,0)(,)10-+∞8.已知1x>,1y>,且1lg,,lg4x y成等比数列,则xy有()A.最小值10 B.最小值10 C. 最大值10 D.最大值109.已知点,,A B C在函数()3sin()(0)3f x xπωω=+>的图像上,如图,若AB BC⊥,则ω=()A.1 B.π C.12D.2π10.若函数1()lnf x x ax bx=---在定义域上是增函数,则实数a的取值范围是()A.(,0]-∞ B.1(,]4-∞ C. [0)+∞ D.[1)+∞11.“a b e>>”是“ln lna b b a>”的()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要12.设函数2()2xf x x x e=+-的极大值是x,则()A.1(,1)2x∈ B.3(1,)2x∈ C.1()(,2)4f x∈ D.()(2,3)f x∈第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.已知变量,x y满足约束条件1040xx yx y-≥⎧⎪-≤⎨⎪+-≤⎩,则2z x y=+的最大值是.14.若函数3()(1)1f x x t x=+--的图像在点(1,(1))f--处的切线平行于x轴,则t=.15. 已知函数()34sin1f x x x=+-,若()5f a-=,则()f a=.16.已知矩形ABCD 的边长2AB =,4AD =,点,P Q 分别在边,BC CD 上,且3PAQ π∠=,则AP AQ的最小值为 . 三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 已知等差数列{}n a 的公差大于0,且47a =,26114,2,a a a a -分别是等比数列{}n b 的前三项.(1)求数列{}n a 的通项公式;(2)记数列{}n b 的前n 项和n S ,若39n S >,求n 的取值范围.18. 已知函数2())4cos 3f x x x π=-+,将函数()f x 的图像向右平移6π个单位,再向下平移2个单位,得到函数()g x 的图像.(1)求()g x 的解析式;(2)求()g x 在2[,]63ππ上的单调递减区间及值域.19. 在ABC ∆中,,,a b c 分别是角,,A B C 所对的边,且2sin 3tan c B a A =.(1)求222b c a +的值; (2)若2a =,当角A 最大时,求ABC ∆的面积.20. 已知函数32()f x x ax bx c =+++,曲线()y f x =在0x =处的切线是450x y +-=,且23x =是函数()f x 的一个极值点.(1)求实数,,a b c 的值;(2)若函数()f x 在区间(6,)m m -上存在最大值,求实数m 的取值范围.21.已知函数()xf x e ax a =-+()a R ∈.(1)讨论函数()f x 的单调性;(2)若关于x 的方程()ln f x x =有唯一解0x ,且0(,1)x n n ∈+,*n N ∈,求n 的值. 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在平面直角坐标系xOy 中,直线l的参数方程为312x y t ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),以坐标原点O 为极点,以x 轴正半轴为极轴的极坐标系中,曲线C 的极坐标方程为4cos ρθ=.(1)求直线l 的普通方程及曲线C 的直角坐标方程;(2)若直线l 与曲线C 交于,A B 两点,求线段AB 的中点P 到坐标原点O 的距离.23.选修4-5:不等式选讲已知函数()|21|||()f x x x m m R =+--∈.(1)当1m =时,解不等式()2f x ≥;(2)若关于x 的不等式()|3|f x x ≥-的解集包含[3,4],求m 的取值范围.2021届四川省绵阳市高中高三第一次诊断性模拟考试数学(文)试题参考答案一、选择题1-5:BABCD 6-10:CBBAD 11、12:AC二、填空题13.7 14.-2 15.-7 16.32-三、解答题17.解:(I )设等差数列{}n a 的公差为d (0d >),由47=a ,得137+=a d ,○1又∵2a ,612-a a ,14a 是等比数列{}n b 的前三项,∴261214(2)-=a a a a ,即2111(5)()(13)-=++d a a d a d ,化简得12=d a ,○2联立○1○2解得11=a ,2=d .∴12(1)21=+-=-n a n n .(II )∵123==b a ,26129=-=b a a ,31427==b a 是等比数列{}n b 的前三项, ∴等比数列{}n b 的公比为3,首项为3.∴等比数列{}n b 的前n 项和3(13)3(31)132--==-n n n S . 由39>n S ,得3(31)392->n ,化简得327>n , 解得3>n ,*∈n N .18.解:(I )2())4cos 3π=-+f x x xcoscos 2sin )2(1cos 2)33ππ=-++x x x32cos 22cos 2222=-++x x x12cos 222=++x x sin(2)26π=++x , 由题意得()sin 2()2266ππ⎡⎤=-++-⎢⎥⎣⎦g x x , 化简得()sin(2)6π=-g x x . (II )由263ππ≤≤x ,可得72666πππ≤-≤x .当72266πππ≤-≤x 即233ππ≤≤x 时,函数()g x 单调递减. ∴()g x 在2,63ππ⎡⎤⎢⎥⎣⎦上单调递减区间为2,33ππ⎡⎤⎢⎥⎣⎦. ∵()g x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递增,在2,33ππ⎡⎤⎢⎥⎣⎦上单调递减, ∴max ()()sin 132ππ===g x g . 又2711()sin sin()sin ()sin 36662662πππππππ==+=-=-<==g g , ∴1()12-≤≤g x , 即()g x 在2,63ππ⎡⎤⎢⎥⎣⎦上的值域为1,12⎡⎤-⎢⎥⎣⎦. 19.解:(I )∵2sin 3tan =c B a A ,∴2sin cos 3sin =c B A a A ,由正弦定理得22cos 3=cb A a , 由余弦定理得2222232+-=b c a cb a bc,化简得2224+=b c a , ∴2224+=b c a. (II )因为2=a ,由(I )知222416+==b c a ,且由余弦定理得2226cos 2+-==b c a A bc bc, 即6cos bc A =,且(0,)2A π∈. 根据重要不对等式有222b c bc +≥,即8bc ≥,当且仅当b c =时,“=”成立,∴63cos 84A ≥=. ∴当角A 取最大值时,3cos 4A =,8bc =.∴ABC ∆的面积11sin 22S bc A ==⨯=20.(I )2'()32f x x ax b =++.∵曲线()y f x =在点0x =处的切线为450x y +-=,∴切点为(0,5),'(0)4f =-即4b =.①由(0)5f =,得5c =. ∵23x =是函数()f x 的一个极值点, ∴24244'()32+039333a f a b b =⨯+⨯+=+=.② 联立①②得2a =,4b =-.∴2a =,4b =-,5c =.(II )由(I )得32()245f x x x x =+-+,则2'()344(32)(2)f x x x x x =+-=-+当'()0f x >时,2x <-或23x >; 当'()0f x <时,223x -<<. ∴()f x 在2x =-处取得极大值即(2)13f -=.由3224513x x x +-+=得322480x x x +--=,∴2(2)(2)0x x +-=即2x =-或2x =.要使函数()f x 在区间(6,)m m -上存在最大值,则622m m -<-<≤,即22m -<≤.21.解:(I )'()x f x e a =-.当0a ≤时,'()0f x >,()f x 在R 上单调递增;当0a >时,由'()0f x >解得ln x a >;由'()0f x <解得ln x a <, 综上所述:当0a ≤时,函数()f x 在R 上单调递增;当0a >时,函数()f x 在(ln ,)a +∞上单调递增,函数()f x 在(,ln )a -∞上单调递减.(II )由已知可得方程ln 0x x e ax a -+-=有唯一解0x ,且0(,1)x n n ∈+,*n N ∈. 设()ln xh x x e ax a =-+-(0x >),即()0h x =由唯一解0x ,0(,1)x n n ∈+,*n N ∈. 由1'()x h x e a x =-+,令1()'()x g x h x e a x==-+, 则21'()0x g x e x =--<, 所以()g x 在(0,)+∞上单调递减,即'()h x 在(0,)+∞上单调递减. 又0x →时,'()h x →+∞;x →+∞时,'()h x →-∞, 故存在0(0,)x ∈+∞使得0001'()0x h x e a x =-+=. 当0(0,)x x ∈时,'()0h x >,()h x 在0(0,)x 上单调递增, 0(,)x x ∈+∞时,'()0h x <,()h x ()h x 在0(0,)x 上单调递减. 又()0h x =有唯一解,则必有0000()ln 0xh x x e ax a =-+-= 由0000010,ln 0,x x e a x x e ax a ⎧-+=⎪⎨⎪-+-=⎩消去a 得000001ln (1)()0x x x e x e x -+--=. 令11()ln (1)()ln 21x x x x x x e x e x e xe xxϕ=-+--=-++-, 则211'()2x x x x e e xe x xϕ=-++- 2211(1)(1)()x x x x e x e x x -=+-=-+. 故当(0,1)x ∈时,'()0x ϕ<,()h x 在(0,1)上单调递减, 当(1,)x ∈+∞时,'()0x ϕ>,()h x 在(1,)+∞上单调递增. 由(1)0e ϕ=-<,1(2)ln 202ϕ=-+>, 即存在0(1,2)x ∈,使得0()0x ϕ=即0()0h x =.又关于x 的方程()ln f x x =有唯一解0x ,且0(,1)x n n ∈+,*n N ∈, ∴0(1,2)x ∈.故1n =.22.解:(I )将2t y =代入32x t =+,整理得30x -=, 所以直线l的普通方程为30x -=.由4cos ρθ=得24cos ρρθ=,将222x y ρ=+,cos x ρθ=代入24cos ρρθ=,得2240x y x +-=,即曲线C 的直角坐标方程为22(2)4x y -+=.(II )设A ,B 的参数分别为1t ,2t .将直线l 的参数方程代入曲线C的直角坐标方程得221(32)()422t t +-+=,化简得230t +-=,由韦达定理得12t t +=于是1222p t t t +==-. 设00(,)P x y,则0093(,2241(2x y ⎧=+-=⎪⎪⎨⎪=⨯=⎪⎩则9(,44P -. 所以点P 到原点O2. 23. 解:(I )当12x ≤-时,()21(1)2f x x x x =--+-=--,由()2f x ≥解得4x ≤-,综合得4x ≤-; 当112x -<<时,()(21)(1)3f x x x x =++-=, 由()2f x ≥解得23x ≥,综合得213x ≤<; 当1x ≥时,()(21)(1)2f x x x x =+--=+,由()2f x ≥解得0x ≥,综合得1x ≥.所以()2f x ≥的解集是2(,4][,)3-∞-+∞.(II )∵()|21||||3|f x x x m x =+--≥-的解集包含[3,4], ∴当[3,4]x ∈时,|21||||3|x x m x +--≥-恒成立原式可变为21||3x x m x +--≥-,即||4x m x -≤+,∴44x x m x --≤-≤+即424m x -≤≤+在[3,4]x ∈上恒成立, 显然当3x =时,24x +取得最小值10,即m 的取值范围是[4,10]-.。
2021届四川省绵阳市高中高三第一次诊断性考试(文)数学试题Word版含解析

2021届四川省绵阳市高中高三第一次诊断性考试(文)数学试题一、单选题1.设集合,集合,则()A. B. C. D.【答案】B【解析】由题意,求得集合,再根据集合的交集的运算,即可求解.【详解】由题意,集合,集合,则,故选B.【点睛】本题主要考查了集合的运算,其中解答中根据指数函数的性质,正确求解集合B,再根据集合的交集的运算求解是解答的关键,着重考查了推理与运算能力,属于基础题.2.已知向量,,若,则()A. 2 B. -2 C. 1 D. -1【答案】B【解析】由题意,根据,则,列出方程,即可求解.【详解】由题意,向量,,因为,则,解得,故选B.【点睛】本题主要考查了向量的垂直关系的应用,其中解答中根据,得到,列出方程是解答的关键,着重考查了推理与运算能力,属于基础题.3.若点是角的终边上一点,则()A. B. C. D.【答案】A【解析】根据三角函数的定义,求得,再由正弦的倍角公式,即可求解.【详解】由题意,点是角的终边上一点,根据三角函数的定义,可得,则,故选A.【点睛】本题主要考查了三角函数的定义和正弦的倍角公式的化简、求值,其中解答中根据三角函数的定义和正弦的倍角公式,准确化简、计算是解答的关键,着重考查了推理与运算能力,属于基础题.4.若,且,则()A. B. C. D.【答案】B【解析】由题意,由,当时,,当时,,即可求解,得到答案.【详解】由题意,由,当时,,当时,,综上可知,当时,则成立,故选B.【点睛】本题主要考查了利用不等式的性质比较大小问题,其中解答中分类讨论,合理去掉绝对值号是解答本题的关键,着重考查了推理与运算能力,属于基础题.5.已知命题,使得;命题,,则下列命题为真命题的是()A. B. C. D.【答案】D【解析】根据题意,先判定命题为假命题,为真命题,再由复合命题的真值表,即可得到答案. 【详解】由题意,因为,所以,所以命题,使得为假命题;又由指数函数的性质,可知命题命题,为真命题,所以是假命题,是假命题,为假命题,为真命题,故选D.【点睛】本题主要考查了复合命题的真假判定及应用,其中解答中根据题意,正确判定命题为假命题,为真命题,再利用复合命题的真值表判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女子善织,日益功,疾,初日织五尺,今一月织九匹三丈(1匹=40尺,一丈=10尺),问日益几何?”其意思为:“有一女子擅长织布,每天比前一天更加用功,织布的速度也越来越快,从第二天起,每天比前一天多织相同量的布,第一天织5尺,一月织了九匹三丈,问每天增加多少尺布?”若一个月按30天算,则每天增加量为A . 12尺B . 815尺C . 1629尺D . 1631尺 【答案】C 【解析】试题分析:将此问题转化为等差数列的问题,首项为51=a ,39030=S ,求公差,()39043553021303030130=+⨯=-+=d d a S ,解得:2916=d 尺,故选C. 【考点】等差数列7.若函数,则不等式的解集是( )A .B .C .D .【答案】B【解析】 根据函数的解析式,分类讨论,根据对数函数的性质,即可求解不等式的解集,得到答案.【详解】由函数, 可知,当时,令,解得;当时,令,即,解得,所以不等式的解集.【点睛】本题主要考查了分段函数的应用问题,其中解答中根据函数的解析式,分类讨论和利用对数函数的图象与性质求解是解答的关键,着重考查了分类讨论思想的应用,以及推理与运算能力,属于基础题.8.已知,,且成等比数列,则有()A.最小值10 B.最小值 C.最大值10 D.最大值【答案】B【解析】本题可以先通过成等比数列得出,再利用基本不等式得出,最后利用对数运算法则得出结果。
四川省绵阳市2021届新高考第一次适应性考试数学试题含解析

四川省绵阳市2021届新高考第一次适应性考试数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设m ,n 是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是( ) A .若αβ⊥,m α⊂,n β⊂,则m n ⊥ B .若//αβ,m α⊂,n β⊂,则//m n C .若m n ⊥,m α⊂,n β⊂,则αβ⊥ D .若m α⊥,//m n ,//n β,则αβ⊥ 【答案】D 【解析】 试题分析:m α⊥,,n βαβ∴⊥,故选D.考点:点线面的位置关系.2.偶函数()f x 关于点()1,0对称,当10x -≤≤时,()21f x x =-+,求()2020f =( )A .2B .0C .1-D .1【答案】D 【解析】 【分析】推导出函数()y f x =是以4为周期的周期函数,由此可得出()()20200f f =,代值计算即可. 【详解】由于偶函数()y f x =的图象关于点()1,0对称,则()()f x f x -=,()()20f x f x ++-=,()()()2f x f x f x ∴+=--=-,则()()()42f x f x f x +=-+=,所以,函数()y f x =是以4为周期的周期函数,由于当10x -≤≤时,()21f x x =-+,则()()()2020450501f f f =⨯==.故选:D. 【点睛】本题考查利用函数的对称性和奇偶性求函数值,推导出函数的周期性是解答的关键,考查推理能力与计算能力,属于中等题.3.若实数x ,y 满足条件25024001x y x y x y +-≤⎧⎪+-≤⎪⎨≥⎪⎪≥⎩,目标函数2z x y =-,则z 的最大值为( )A .52B .1C .2D .0【答案】C 【解析】 【分析】画出可行域和目标函数,根据平移得到最大值. 【详解】若实数x ,y 满足条件25024001x y x y x y +-≤⎧⎪+-≤⎪⎨≥⎪⎪≥⎩,目标函数2z x y =-如图:当3,12x y ==时函数取最大值为2 故答案选C 【点睛】求线性目标函数(0)z ax by ab =+≠的最值:当0b >时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小; 当0b <时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大. 4.在正方体1111ABCD A B C D -中,E ,F 分别为1CC ,1DD 的中点,则异面直线AF ,DE 所成角的余弦值为( ) A .14B .154C .65D .15【答案】D 【解析】【分析】连接BE ,BD ,因为//BE AF ,所以BED ∠为异面直线AF 与DE 所成的角(或补角), 不妨设正方体的棱长为2,取BD 的中点为G ,连接EG ,在等腰BED ∆中,求出3cos 5EG BEG BE ∠==,在利用二倍角公式,求出cos BED ∠,即可得出答案. 【详解】连接BE ,BD ,因为//BE AF ,所以BED ∠为异面直线AF 与DE 所成的角(或补角), 不妨设正方体的棱长为2,则5BE DE ==,22BD =,在等腰BED ∆中,取BD 的中点为G ,连接EG , 则523EG =-=,3cos 5EG BEG BE ∠==, 所以2cos cos 22cos 1BED BEG BEG ∠=∠=∠-, 即:31cos 2155BED ∠=⨯-=, 所以异面直线AF ,DE 所成角的余弦值为15. 故选:D.【点睛】本题考查空间异面直线的夹角余弦值,利用了正方体的性质和二倍角公式,还考查空间思维和计算能力. 5.在正方体1111ABCD A B C D -中,点P 、Q 分别为AB 、AD 的中点,过点D 作平面α使1//B P 平面α,1//A Q 平面α若直线11B D ⋂平面M α=,则11MD MB 的值为( ) A .14B .13C .12D .23【答案】B 【解析】 【分析】作出图形,设平面α分别交11A D 、11C D 于点E 、F ,连接DE 、DF 、EF ,取CD 的中点G ,连接PG 、1C G ,连接11A C 交11B D 于点N ,推导出11//B P C G ,由线面平行的性质定理可得出1//C G DF ,可得出点F 为11C D 的中点,同理可得出点E 为11A D 的中点,结合中位线的性质可求得11MD MB 的值. 【详解】 如下图所示:设平面α分别交11A D 、11C D 于点E 、F ,连接DE 、DF 、EF ,取CD 的中点G ,连接PG 、1C G ,连接11A C 交11B D 于点N ,四边形ABCD 为正方形,P 、G 分别为AB 、CD 的中点,则//BP CG 且BP CG =,∴四边形BCGP 为平行四边形,//PG BC ∴且PG BC =,11//B C BC 且11B C BC =,11//PG B C ∴且11PG B C =,则四边形11B C GP 为平行四边形, 11//B P C G ∴,1//B P 平面α,则存在直线a ⊂平面α,使得1//B P a ,若1C G ⊂平面α,则G ∈平面α,又D ∈平面α,则CD ⊂平面α, 此时,平面α为平面11CDD C ,直线1A Q 不可能与平面α平行, 所以,1C G ⊄平面α,1//C G a ∴,1//C G ∴平面α,1C G ⊂平面11CDD C ,平面11CDD C 平面DF α=,1//DF C G ∴,1//C F DG ,所以,四边形1C GDF 为平行四边形,可得1111122C E DG CD C D ===,F ∴为11C D 的中点,同理可证E 为11A D 的中点,11B D EF M =,11111124MD D N B D ∴==,因此,1113MD MB =. 故选:B.【点睛】本题考查线段长度比值的计算,涉及线面平行性质的应用,解答的关键就是找出平面α与正方体各棱的交点位置,考查推理能力与计算能力,属于中等题.6.设O 为坐标原点,P 是以F 为焦点的抛物线24y x =上任意一点,M 是线段PF 上的点,且PM MF =,则直线OM 的斜率的最大值为( )A .1B .12C.2D【答案】A 【解析】 【分析】设200(,),(,)2y P y M x y p ,因为PM MF =,得到20,442y y p x y p =+=,利用直线的斜率公式,得到020002244OM y k y p y p y pp==++,结合基本不等式,即可求解. 【详解】由题意,抛物线24y x =的焦点坐标为(,0)2pF , 设200(,),(,)2y P y M x y p, 因为PM MF =,即M 线段PF 的中点,所以220001(),222442y y y p p x y p p =+=+=, 所以直线OM的斜率020022144OM y k y p y p y pp==≤=++,当且仅当00y p y p=,即0y p =时等号成立, 所以直线OM 的斜率的最大值为1. 故选:A. 【点睛】本题主要考查了抛物线的方程及其应用,直线的斜率公式,以及利用基本不等式求最值的应用,着重考查了推理与运算能力,属于中档试题.7.已知函数32,0()ln ,0x x x f x x x ⎧-≤=⎨>⎩,则1(())f f e =( )A .32B .1C .-1D .0【答案】A 【解析】 【分析】由函数32,0()ln ,0x x x f x x x ⎧-≤=⎨>⎩,求得11()ln 1f e e ==-,进而求得1(())f f e 的值,得到答案.【详解】由题意函数32,0()ln ,0x x x f x x x ⎧-≤=⎨>⎩,则11()ln 1f e e ==-,所以1313(())(1)2(1)2f f f e -=-=--=,故选A. 【点睛】本题主要考查了分段函数的求值问题,其中解答中根据分段函数的解析式,代入求解是解答的关键,着重考查了推理与运算能力,属于基础题.8.羽毛球混合双打比赛每队由一男一女两名运动员组成. 某班级从3名男生1A ,2A ,3A 和3名女生1B ,2B ,3B 中各随机选出两名,把选出的4人随机分成两队进行羽毛球混合双打比赛,则1A 和1B 两人组成一队参加比赛的概率为( ) A .19B .29C .13D .49【答案】B 【解析】 【分析】根据组合知识,计算出选出的4人分成两队混合双打的总数为2211332222C C C C A ,然后计算1A 和1B 分在一组的数目为1122C C ,最后简单计算,可得结果. 【详解】 由题可知:分别从3名男生、3名女生中选2人 :2233C C将选中2名女生平均分为两组:112122C CA将选中2名男生平均分为两组:112122C CA则选出的4人分成两队混合双打的总数为:221111112223322212133222222218C C C C C C C C C C A A A A == 1A 和1B 分在一组的数目为11224C C =所以所求的概率为42189= 故选:B 【点睛】本题考查排列组合的综合应用,对平均分组的问题要掌握公式,比如:平均分成m 组,则要除以mm A ,即!m ,审清题意,细心计算,考验分析能力,属中档题.9.函数()sin()(0)4f x A x πωω=+>的图象与x 轴交点的横坐标构成一个公差为3π的等差数列,要得到函数()cos g x A x ω=的图象,只需将()f x 的图象( )A .向左平移12π个单位 B .向右平移4π个单位 C .向左平移4π个单位 D .向右平移34π个单位 【答案】A 【解析】依题意有()f x 的周期为()22ππ,3,sin 334T f x A x πωω⎛⎫====+ ⎪⎝⎭.而()πππππsin 3sin 3sin 3244124g x A x A x A x ⎡⎤⎛⎫⎛⎫⎛⎫=+=++=++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,故应左移π12.10.若直线240x y m ++=经过抛物线22y x =的焦点,则m =( ) A .12B .12-C .2D .2-【答案】B 【解析】 【分析】计算抛物线的交点为10,8⎛⎫⎪⎝⎭,代入计算得到答案.【详解】22y x =可化为212x y =,焦点坐标为10,8⎛⎫⎪⎝⎭,故12m =-.故选:B . 【点睛】本题考查了抛物线的焦点,属于简单题.11.盒子中有编号为1,2,3,4,5,6,7的7个相同的球,从中任取3个编号不同的球,则取的3个球的编号的中位数恰好为5的概率是( ) A .235B .835C .635D .37【答案】B 【解析】 【分析】由题意,取的3个球的编号的中位数恰好为5的情况有1142C C ,所有的情况有37C 种,由古典概型的概率公式即得解. 【详解】由题意,取的3个球的编号的中位数恰好为5的情况有1142C C ,所有的情况有37C 种 由古典概型,取的3个球的编号的中位数恰好为5的概率为:114237835C C P C ==故选:B 【点睛】本题考查了排列组合在古典概型中的应用,考查了学生综合分析,概念理解,数学运算的能力,属于中档题. 12.设实数满足条件则的最大值为( )A .1B .2C .3D .4【答案】C 【解析】 【分析】画出可行域和目标函数,根据目标函数的几何意义平移得到答案. 【详解】如图所示:画出可行域和目标函数,,即,表示直线在轴的截距加上1,根据图像知,当时,且时,有最大值为.故选:.【点睛】本题考查了线性规划问题,画出图像是解题的关键. 二、填空题:本题共4小题,每小题5分,共20分。
四川省绵阳市2021届高三数学第一次诊断性考试试题 文(含解析)(1)

四川省绵阳市2021届高三第一次诊断性考试数学(文)试题(解析版)第I 卷(选择题,共50分)【试卷综析】本套试卷能从学科结构上设计试题,已全面覆盖了中学数学教材中的知识模块,同时,试卷突出了学科的骨干内容,集合与函数、不等式、数列、概率统计、解析几何、导数的应用等重点内容在试卷中占有较高的比例,也达到了必要的考查深度.本套试卷没有刻意追求覆盖面,还有调整和扩大的空间,注重了能力的考查,专门是运算能力,逻辑思维能力和空间想象能力的强调比较突出,实践能力和创新意识方面也在尽力表现. 一、选择题:本大题共10小题,每题5分,共50分.在每题给出的4个选项中,只有一个符合题目要求的. 【题文】一、已知集合{}{},02,0122=--=≤-∈=x x x B x Z x A 则=⋂B A ( ) A.Φ B.{}1- C.{}0 D.{}2 【知识点】集合运算. A1【答案解析】B 解析:因为A={-1,0,1}, B={-1,2},因此=⋂B A {}1-,应选B. 【思路点拨】化简集合A 、B,从而求得A B ⋂. 【题文】二、命题"12),,0(">+∞∈∀xx 的否定是( )A."12),,0("00≤+∞∉∃x x B."12),,0("00≤+∞∈∃x xC."12),,0("≤+∞∉∀xx D."12),,0("<+∞∈∀xx 【知识点】含量词的命题的否定. A3【答案解析】B 解析:命题"12),,0(">+∞∈∀xx 的否定是"12),,0("00≤+∞∈∃x x ,应选B.【思路点拨】依照含一个量词的全称命题的否定方式写出结论.【题文】3、设各项均不为0的数列{}n a 知足)1(21≥=+n a a n n ,假设5422a a a =,那么=3a ( ) A.2 B.2 C.22 D.4 【知识点】等比数列. D3【答案解析】D 解析:由)1(21≥=+n a a n n 知数列{}n a 是以2为公比的等比数列,因为5422a a a =,因此34111122a q a q a q a ⋅=⇒=,因此=3a 4,应选D.【思路点拨】由已知条件确信数列{}n a 是等比数列,再依照5422a a a =求得1a ,进而求3a . 【题文】4、如图,正六边形ABCDEF 的边长为1,那么=⋅DB AD ( )A.3B.3-C.3D.-3 【知识点】向量的数量积. F3【答案解析】D 解析:因为,AD AB BD AB BD =+⊥,因此=⋅DB AD ()203AB BD DB AB DB BD DB BD +⋅=⋅+⋅=-=-,应选 D.【思路点拨】利用向量加法的三角形法那么,将数量积中的向量表示为夹角、模都易求的向量的数量积.【题文】五、已知53)4cos(=-x π,那么=x 2sin ( )A.2518B.2524±C.257-D.257 【知识点】二倍角公式;诱导公式. C6 C2 【答案解析】C 解析:因为53)4cos(=-x π,因此 27cos 22cos 14425x x ππ⎛⎫⎛⎫-=--=- ⎪ ⎪⎝⎭⎝⎭,即7cos 2sin 2225x x π⎛⎫-==- ⎪⎝⎭,应选C.【思路点拨】利用二倍角公式求得cos 2x π⎛⎫-⎪⎝⎭值,再用诱导公式求得sin2x 值. 【题文】六、已知y x 、知足⎪⎩⎪⎨⎧≤--≥-+≥+-0330101y x y x y x ,那么y x -2的最大值为( )A.1B.2C.3D.4 【知识点】简单的线性计划. E5【答案解析】B 解析:画出可行域如图:平移直线z=2x-y 得 ,当此直线过可行域中的点A (1,0)时 2x-y 有最大值2,应选B.【思路点拨】设目标函数z=2x-y ,画出可行域平移目标函数得点A (1,0)是使目标函数取得最大值的最优解. 【题文】7、在()π2,0内,使sin cosx x ≥成立的x 取值范围是( )A.⎥⎦⎤⎢⎣⎡47,4ππ B.⎥⎦⎤⎢⎣⎡45,4ππ C.⎥⎦⎤⎢⎣⎡45,0π D.⎥⎦⎤⎢⎣⎡⋃⎥⎦⎤⎢⎣⎡πππ2,474,0【知识点】三角函数不等式的解法. C1【答案解析】A 解析:当(]0,x π∈时,不等式为sinx ≥cosx ,解得,4x ππ⎡⎤∈⎢⎥⎣⎦; 当(),2x ππ∈时,不等式为-sinx ≥cosx 即sinx+cosx ≤0,解得7,4x ππ⎛⎤∈ ⎥⎝⎦, 综上得7,44x ππ⎡⎤∈⎢⎥⎣⎦,应选A. 【思路点拨】依照含绝对值的不等式的解法,通过讨论x 的取值范围,去掉绝对值,然后利用单位圆及三角函数线,确信结论.【题文】八、已知)(x f 的概念在()+∞,0的函数,对任意两个不相等的正数21,x x ,都有0)()(212112<--x x x f x x f x ,记5log )5(log ,2.0)2.0(,2)2(22222.02.0f c f b f a ===,那么( ) A.c b a << B.c a b << C.b a c << D.a b c << 【知识点】函数的单调性. B3【答案解析】C 解析:因为对任意两个不相等的正数21,x x ,都有0)()(212112<--x x x f x x f x ,即对任意两个不相等的正数21,x x ,都有21121212121212()()()()0x f x x f x f x f x x x x x x x x x --=<--,因此函数()()f x h x x =是()+∞,0上的减函数,因为20.220.22log 5<<,因此b>a>c,应选C.【思路点拨】构造函数()()f x h x x=,依照条件能够判定它是()+∞,0上的减函数,由此能够判定a,b,c 的大小关系.【题文】九、记函数212131)(23+-=x x x f 在()+∞,0的值域a x x g M ++=2)1()(,在()+∞∞-,的值域为N ,假设M N ⊆,那么实数a 的取值范围是( ) A.21≥a B.21≤a C.31≥a D.31≤a【知识点】函数的值域;集合关系. A1 B1【答案解析】C 解析:因为2()f x x x '=-,由()()()0,01,;f x x '>⇒∈-∞+∞由()()00,1f x x '<⇒∈,因此函数f(x)在(0,1)上单调递减,在()1,+∞上单调递增, 因此M=1,3⎡⎫+∞⎪⎢⎣⎭,又N=[),a +∞,因此假设M N ⊆,那么实数a 的取值范围是31≥a ,应选C. 【思路点拨】利用导数求出函数f(x)在()+∞,0的值域M ,再求出函数g(x)的值域N,进而利用M N ⊆求得a 范围.【题文】10、已知函数⎪⎩⎪⎨⎧>≠><-=0)1,0(log 0,1)2sin()(x a a x x x x f a ,且π的图象上关于y 轴对称的点至少有3对,那么实数a 的取值范围是A.⎪⎪⎭⎫⎝⎛55,0 B.⎪⎪⎭⎫ ⎝⎛1,55 C.⎪⎪⎭⎫ ⎝⎛1,33 D.⎪⎪⎭⎫ ⎝⎛33,0 【知识点】函数的图像. B8【答案解析】A 解析:只需函数log ()(01),0a y x a x =-<<<与函数sin 1,02y x x π⎛⎫=-<⎪⎝⎭至少有3个交点,因此2log 52log a a a ->-=,因此2555a a ->⇒-<<,从而0,5a ⎛⎫∈ ⎪ ⎪⎝⎭,应选A. 【思路点拨】问题转化为函数log ()(01),0a y x a x =-<<<与函数sin 1,02y x x π⎛⎫=-<⎪⎝⎭至少有3个交点,由图像可知只需2log 52log a a a ->-=,解得a ⎛∈ ⎝⎭.第II 卷(非选择题,共100分)二、填空题:本大题5小题,每题5分,共25分. 【题文】1一、假设1tan ,3α=-则ααααcos sin 2cos 2sin 3-+= . 【知识点】已知三角函数值求三角函数式的值. C7【答案解析】35- 解析:因为1tan ,3α=-因此ααααcos sin 2cos 2sin 3-+3sin 2cos 3tan 2123cos 2sin cos 22tan 151cos 3αααααααα++-+====-----.【思路点拨】把所求化成关于正切的式子求解.【题文】1二、已知向量)0,2(),2,1(==b a ,假设b a +λ与向量)2,1(-=c 共线,那么实数=λ . 【知识点】向量共线的意义. F1【答案解析】-1 解析:因为)0,2(),2,1(==b a ,因此b a +λ=()2,2λλ+,又b a +λ与)2,1(-=共线,因此()2221λλλ-+=⇒=-.【思路点拨】依照向量的坐标运算求得b a +λ的坐标,再由b a +λ与向量)2,1(-=c 共线得关于λ的方程,解此方程即可.【题文】13、已知函数)('x f 是函数)(x f 的导函数,)0('2sin )(xf x x f +=,那么=)2('πf .【知识点】导数及其运算. B11【答案解析】-2 解析:因为)0('2sin )(xf x x f +=,因此()cos 2(0)(0)cos02(0)(0)1f x x f f f f '''''=+⇒=+⇒=-,因此()cos 2f x x '=-因此=)2('πf -2.【思路点拨】先对函数)0('2sin )(xf x x f +=求导,取得(0)f '的值,进而求出()2f π'.【题文】14、已知函数1223)(--=x x x f ,那么=+⋯+++)1110()113()112()111(f f f f . 【知识点】函数性质求函数值. B1 【答案解析】15 解析:因为1223)(--=x x x f ,因此()()()31231121121x x f x x x ----==---, 因此()(1)3f x f x +-=,因此所求=310152⨯= 【思路点拨】能够发觉()(1)3f x f x +-=,因此采纳倒序相加法求解.【题文】1五、概念:若是函数)(x f y =在概念域内给定区间[]b a ,上存在)(00b x a x <<,知足ab a f b f x f --=)()()(0,那么称函数)(x f y =是[]b a ,上的“平均值函数”,0x 是它的一个均值点.例如x y =是[]2,2-上的平均值函数,0确实是它的均值点,假设函数1)(2--=mx x x f 是[]1,1-上的“平均值函数”,那么实数m 的取值范围是 .【知识点】函数中的新概念问题. B1【答案解析】(0,2) 解析:因为函数1)(2--=mx x x f 是[]1,1-上的“平均值函数”,因此存在0x )11(,-∈使21020m m mx x --=--得,1)1(10020+=⇒-=-x m m x x , 又0x )11(,-∈因此实数m 的取值范围是)20(,∈m .【思路点拨】依照平均值函数”的概念写出m 关于0x 的函数,求此函数在(-1,1)上的值域即可. 三、解答题:本大题共6小时,共75分,解许诺写出文字说明,证明进程和演算步骤.【题文】1六、(本小题总分值12分)已知向量)cos ,(cos ),cos ,(sin wx wx n wx wx m ==,其中0>w 函数12)(-⋅=n m x f 的最小正周期为π.(1)求w 的值. (2)求函数)(x f 在⎥⎦⎤⎢⎣⎡4,6ππ上的最大值. 【知识点】向量的坐标运算;三角函数的化简求值. F2 C7 【答案解析】(1) 1=ω(2)213+ 解析:(1)=)(x f 2m·n -11cos 2cos sin 22-+⋅=x x x ωωω =)42sin(22cos 2sin πωωω+=+x x x . ………………6分由题意知:π=T ,即πωπ=22,解得1=ω.……………………7分 (2) 由(Ⅰ)知)42sin(2)(π+=x x f ,∵6π≤x ≤4π,得127π≤42π+x ≤43π,又函数y =sin x 在[127π,43π]上是减函数,∴ )34sin(2127sin2)(max πππ+==x f …………………………10分 =213+.…………………………………………………12分 【思路点拨】由向量的坐标运算能够列出关系式,求出ϖ的值,再依照解析式在概念域内求出函数的最大值. 【题文】17、(本小题总分值12分)已知函数1)2(log )(2-+-=t t t f 的概念域为D(1)求D ;(2)假设函数222)(m mx x x g -+=在D 上存在最小值2,求实数m 的值. 【知识点】函数的概念域;二次函数的最值. B1 B5【答案解析】(1) )21[,=D (2) 1=m 解析:(1) 由题知⎩⎨⎧≥->-,,0102t t 解得21<≤t ,即)21[,=D .……………3分(2) g (x )=x 2+2mx -m 2=222)(m m x -+,此二次函数对称轴为m x -=.……4分 ① 假设m -≥2,即m ≤-2时, g (x )在)21[,上单调递减,不存在最小值;②若21<-<m ,即12-<<-m 时, g (x )在)1[m -,上单调递减,]2(,m -上递增, 现在22)()(2min ≠-=-=m m g x g ,现在m 值不存在; ③m -≤1即m ≥-1时, g (x )在)21[,上单调递增,现在221)1()(2min =-+==m m g x g ,解得m =1. ………………11分 综上:1=m . ………………………………………………12分【思路点拨】由解析式成立的条件能够取得函数的概念域,再依照二次函数的性质求出m.【题文】1八、(本小题总分值12分)在ABC ∆中,c b a ,,别离是内角C B A ,,的对边,AB=5,51=∠ABC COS . (1)假设BC=4,求ABC ∆的面积ABC S ∆; (2)假设D 是边AC 的中点,且27=BD ,求边BC 的长. 【知识点】同角三角函数关系;三角形面积公式;余弦定理. C2 C8 【答案解析】(I) 46ABC S ∆= (II) 4=CB . 解析:(1) 51cos 5=∠=ABC AB ,,4BC =,又(0,)ABC π∠∈, 因此562cos 1sin 2=∠-=∠ABC ABC , ∴645624521sin 21=⨯⨯⨯=∠⋅⋅=∆ABC BC BA S ABC .…………6分 (2) 以BC BA ,为邻边作如下图的平行四边形ABCE , 如图,则51cos cos -=∠-=∠ABC BCE ,BE =2BD =7,CE =AB =5,BCDE在△BCE 中,由余弦定理:BCE CE CB CE CB BE ∠⋅⋅-+=cos 2222. 即)51(5225492-⨯⨯⨯-+=CB CB ,解得:4=CB . ……………………………………10分【思路点拨】(1)利用同角三角函数关系求ABC ∠正弦值,再用三角形面积公式求得结论;(2)构造以BC BA ,为邻边作如下图的平行四边形ABCE ,在三角形BCE 中利用余弦定理求出边BC 长.【题文】1九、(本小题总分值12分)记公差不为0的等差数列{}n a 的前n 项和为8533,,,9,a a a S S n =成等比数列.(1)求数列{}n a 的通项公式n a 和n S ;(2)假设,⋯=+=3,2,1,2n a n c n n λ问是不是存在实数λ,使得数列{}n c 为单调递增数列?假设存在,请求出λ的取值范围,假设不存在,请说明理由.【知识点】等差数列及其前n 项和;等比数列;单调递增数列的条件. D1 D2 D3【答案解析】(1)1+=n a n ,2322n n S n =+;(2)存在实数λ,且3->λ. 解析:(1) 由832539a a a S ⋅==,,得:⎪⎩⎪⎨⎧+⋅+=+=⨯+,,)7()2()4(9223311211d a d a d a d a 解得:121==d a ,.∴ 1+=n a n ,n n n n S n 2322)12(2+=++=. …………………………………5分(2) 由题知=n c )1(2++n n λ. ………………………………………………6分 假设使}{n c 为单调递增数列,则=-+n n c c 1-+++)2()1(2n n λ)]1([2++n n λ =012>++λn 对一切n ∈N *恒成立, 即: 12-->n λ对一切n ∈N *恒成立, ………………………………… 10分 又12)(--=n n ϕ是单调递减的, ∴ 当1=n 时,max )(n ϕ=-3,∴ 3->λ. …………………………………………………………………12分【思路点拨】(1)依照已知条件可求出等差数列的首项与公差,从而求得n a 和n S ;(2)假设数列{}n c 为单调递增数列,那么=-+n n c c 1012>++λn 对一切n ∈N *恒成立,即: 12-->n λ对一切n ∈N *恒成立,由此得λ的取值范围.【题文】20、(本小题总分值13分)已知函数e ax e x f x (1)(--=为自然对数的底数),0>a (1)假设函数)(x f 恰有一个零点,证明:1-=a aea(2)假设0)(≥x f 对任意R x ∈恒成立,求实数a 的取值集合. 【知识点】导数的应用. B12【答案解析】(1)观点析;(2)a 的取值集合为{1}.解析:(1)证明: 由1)(--=ax e x f x ,得a e x f x -=')(.…………………………1分 由)(x f '>0,即a e x ->0,解得x >ln a ,同理由)(x f '<0解得x <ln a , ∴ )(x f 在(-∞,ln a )上是减函数,在(ln a ,+∞)上是增函数, 于是)(x f 在a x ln =取得最小值.又∵ 函数)(x f 恰有一个零点,那么0)(ln )(min ==a f x f , ………………… 4分 即01ln ln =--a a e a .………………………………………………………… 5分化简得:1ln 1ln 01ln -=-==--a a a a a a a a a 于是,即,, ∴ 1-=a a e a . ………………………………………………………………… 6分 (2)解:由(Ⅰ)知,)(x f 在a x ln =取得最小值)(ln a f ,由题意得)(ln a f ≥0,即1ln --a a a ≥0,……………………………………8分 令1ln )(--=a a a a h ,那么a a h ln )(-=', 由0)(>'a h 可得0<a <1,由0)(<'a h 可得a >1.∴ )(a h 在(0,1)上单调递增,在(1,+∞)上单调递减,即0)1()(max ==h a h , ∴ 当0<a <1或a >1时,h (a )<0,∴ 要使得)(x f ≥0对任意x ∈R 恒成立,.1=a ∴a 的取值集合为{1}………13分【思路点拨】依照函数的导数可判定函数的单调性,由此得函数f(x)只有一个最小值,因为函数)(x f 恰有一个零点,因此此最小值是0,从而证得结论;(1)0)(≥x f 对任意R x ∈恒成立,即函数f(x)的最小值大于或等于0,由此得关于a 的不等式,再利用导数求得结论. 【题文】2一、(本小题总分值14分)已知函数),(ln 2)(2R b a x bx x a x f ∈+-=. (1)假设1==b a ,求)(x f 点())1(,1f 处的切线方程;(2)设0≤a ,求)(x f 的单调区间;(3)设0<a ,且对任意的)2()(,0f x f x ≤>,试比较)ln(a -与b 2-的大小 【知识点】导数的几何意义;导数的应用;数值大小的比较. B11 B12 E1【答案解析】(1) 2230x y --=;(2)当a =0,b ≤0时,函数)(x f 的单调递增区间是)0(∞+,;当a =0,b >0时,函数)(x f 的单调递增区间是(0,b 1),单调递减区间是(b 1,+∞);当0<a 时,函数)(x f 的单增区间是(0,a a b b 242--),单减区间是(aab b 242--,+∞).(3)ln()2a b -<-.解析:(1) 1==b a 时,x x x x f ln 21)(2+-=,xx x f 11)(+-=', ∴21)1(-=f ,1)1(='=f k ,…………………………………………2分 故)(x f 点()1(1f ,)处的切线方程是2230x y --=.……………3分(2)由()()∞+∈+-=,,0ln 22x x bx x a x f ,得x bx ax x f 1)(2+-='. (1)当0=a 时,xbxx f -='1)(. ①假设b ≤0,由0>x 知0)(>'x f 恒成立,即函数)(x f 的单调递增区间是)0(∞+,.………5分 ②假设0>b , 当bx 10<<时,0)(>'x f ;当b x 1>时,0)(<'x f .即函数)(x f 的单调递增区间是(0,b 1),单调递减区间是(b1,+∞).…………7分 (2) 当0<a 时,0)(='x f ,得012=+-bx ax ,由042>-=∆a b 得aa b b x a a b b x 24242221--=-+=,.显然,0021><x x ,,当20x x <<时,0)(>'x f ,函数)(x f 的单调递增, 当2x x >时,0)(<'x f ,函数)(x f 的单调递减,因此函数)(x f 的单调递增区间是(0,aab b 242--),单调递减区间是(aa b b 242--,+∞).……9分 综上所述:当a =0,b ≤0时,函数)(x f 的单调递增区间是)0(∞+,;当a =0,b >0时,函数)(x f 的单调递增区间是(0,b 1),单调递减区间是(b1,+∞); 当0<a 时,函数)(x f 的单增区间是(0,a a b b 242--),单减区间是(aa b b 242--,+∞). 10分 (3)由题意知函数)(x f 在2=x 处取得最大值.由(2)知,aa b b 242--是)(x f 的唯一的极大值点, 故aa b b 242--=2,整理得a b 412--=-. 于是ln()(2)ln()(14)ln()14a b a a a a ---=----=-++令()ln 14(0)g x x x x =+->,那么1()4g x x '=-. 令0)(='x g ,得14x =,当1(0)4x ∈,时,0)(>'x g ,)(x g 单调递增; 当1()4x ∈+∞,时,0)(<'x g ,)(x g 单调递减. 因此对任意0x >,)(x g ≤11()ln 044g =<,又0a ->, 故()0g a -<,即041)ln(<++-a a ,即ln()142a a b -<--=-,∴ ln()2a b -<-.……………………………………………………………14分【思路点拨】(1)利用导数的几何意义)(x f 点())1(,1f 处的切线方程;(2)通过讨论a,b 的取值条件,得概念域上函数f(x)的导函数大于0或小于0的x 范围,确实是函数f(x)的增区间或减区间;(3)因为对任意的)2()(,0f x f x ≤>,因此函数)(x f 在2=x 处取得最大值.由(2)知,0<a 时,a a b b 242--是)(x f 的唯一的极大值点,故aa b b 242--=2,整理得a b 412--=-.因此ln()(2)a b ---=ln()41a a -++,利用导数判定那个式子的符号即可.。
四川省绵阳市2021届新高考数学一模试卷含解析

四川省绵阳市2021届新高考数学一模试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设函数1,2()21,2,1a x f x log x x a =⎧=⎨-+≠>⎩,若函数2()()()g x f x bf x c =++有三个零点123,,x x x ,则122313x x x x x x ++=( )A .12B .11C .6D .3【答案】B 【解析】 【分析】画出函数()f x 的图象,利用函数的图象判断函数的零点个数,然后转化求解,即可得出结果. 【详解】作出函数1,2()21,2,1ax f x log x x a =⎧=⎨-+≠>⎩的图象如图所示,令()f x t =,由图可得关于x 的方程()f x t =的解有两个或三个(1t =时有三个,1t ≠时有两个),所以关于t 的方程20t bt c ++=只能有一个根1t =(若有两个根,则关于x 的方程2()()0f x bf x c ++=有四个或五个根),由()1f x =,可得123,,x x x 的值分别为1,2,3, 则12231312231311x x x x x x ++=⨯+⨯+⨯=故选B . 【点睛】本题考查数形结合以及函数与方程的应用,考查转化思想以及计算能力,属于常考题型.2.向量1,tan 3a α⎛⎫= ⎪⎝⎭r ,()cos ,1b α=r,且//a b r r ,则cos 2πα⎛⎫+= ⎪⎝⎭( )A .13B.3-C.3-D .13-【答案】D 【解析】 【分析】根据向量平行的坐标运算以及诱导公式,即可得出答案. 【详解】//a b∴r r 1cos tan sin 3ααα∴=⋅= 1cos sin 23παα⎛⎫∴+=-=- ⎪⎝⎭故选:D 【点睛】本题主要考查了由向量平行求参数以及诱导公式的应用,属于中档题.3.已知函数()()614,7,7x a x x f x a x -⎧-+≤=⎨>⎩是R 上的减函数,当a 最小时,若函数()4y f x kx =--恰有两个零点,则实数k 的取值范围是( ) A .1(,0)2-B .1(2,)2- C .(1,1)- D .1(,1)2【答案】A 【解析】 【分析】首先根据()f x 为R 上的减函数,列出不等式组,求得112a ≤<,所以当a 最小时,12a =,之后将函数零点个数转化为函数图象与直线交点的个数问题,画出图形,数形结合得到结果. 【详解】由于()f x 为R 上的减函数,则有()1001714a a a a ⎧-<⎪<<⎨⎪≤-+⎩,可得112a ≤<, 所以当a 最小时,12a =,函数()4y f x kx =--恰有两个零点等价于方程()4f x kx =+有两个实根, 等价于函数()y f x =与4y kx =+的图像有两个交点.画出函数()f x 的简图如下,而函数4y kx =+恒过定点()0,4,数形结合可得k 的取值范围为102k -<<.故选:A. 【点睛】该题考查的是有关函数的问题,涉及到的知识点有分段函数在定义域上单调减求参数的取值范围,根据函数零点个数求参数的取值范围,数形结合思想的应用,属于中档题目.4.给出50个数 1,2,4,7,11,L ,其规律是:第1个数是1,第2个数比第1个数大 1,第3个数比第2个数大2,第4个数比第3个数大3,以此类推,要计算这50个数的和.现已给出了该问题算法的程序框图如图,请在图中判断框中的①处和执行框中的②处填上合适的语句,使之能完成该题算法功能( )A .i 50≤;p p i =+B .i 50<;p p i =+C .i 50≤;p p 1=+D .i 50<;p p 1=+【答案】A【解析】 【分析】要计算这50个数的和,这就需要循环50次,这样可以确定判断语句①,根据累加最的变化规律可以确定语句②. 【详解】因为计算这50个数的和,循环变量i 的初值为1,所以步长应该为1,故判断语句①应为1i i =+,第1个数是1,第2个数比第1个数大 1,第3个数比第2个数大2,第4个数比第3个数大3,这样可以确定语句②为p p i =+,故本题选A. 【点睛】本题考查了补充循环结构,正确读懂题意是解本题的关键.5.已知双曲线2221x y a -=的一条渐近线方程是3y x =,则双曲线的离心率为( )A B .C D 【答案】D 【解析】双曲线的渐近线方程是1y x a=±,所以1a =1a b == ,2224c a b =+= ,即2c = ,c e a == D. 6.已知命题p :x ∀∈R ,210x x -+<;命题 q :x ∃∈R ,22x x >,则下列命题中为真命题的是( )A .p q ∧B .p q ⌝∧C .p q ∧⌝D .p q ⌝∧⌝【答案】B 【解析】 【分析】根据∆<0,可知命题p 的真假,然后对x 取值,可得命题 q 的真假,最后根据真值表,可得结果.【详解】 对命题p :可知()2140∆=--<, 所以x ∀∈R ,210x x -+> 故命题p 为假命题 命题q :取3x =,可知2332>所以x ∃∈R ,22x x > 故命题q 为真命题 所以p q ⌝∧为真命题 故选:B 【点睛】本题主要考查对命题真假的判断以及真值表的应用,识记真值表,属基础题. 7.已知{}1A x x =<,{}21xB x =<,则A B =U ( ) A .()1,0- B .()0,1C .()1,-+∞D .(),1-∞【答案】D 【解析】 【分析】分别解出集合,A B 、然后求并集. 【详解】解:{}{}111A x x x x =<=-<<,{}{}210xB x x x =<=<A B =U (),1-∞故选:D 【点睛】考查集合的并集运算,基础题.8.已知函数()32,0log ,0x x f x x x ⎧≤=⎨>⎩,则=f f ⎛⎫ ⎪ ⎪⎝⎭⎝⎭( ) AB .12C .3log 2-D .3log 2【答案】A 【解析】 【分析】根据分段函数解析式,先求得f ⎝⎭的值,再求得3f f ⎛⎫⎛ ⎪ ⎪⎝⎭⎝⎭的值. 【详解】依题意12331log log 32f -===-⎝⎭,121222f f f -⎛⎫⎛⎫=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:A 【点睛】本小题主要考查根据分段函数解析式求函数值,属于基础题.9.已知ba b c a 0.2121()2,log 0.2,===,则,,a b c 的大小关系是( )A .a b c <<B .c a b <<C .a c b <<D .b c a <<【答案】B 【解析】 【分析】利用函数12xy ⎛⎫= ⎪⎝⎭与函数12log y x =互为反函数,可得01a b <<<,再利用对数运算性质比较a,c 进而可得结论. 【详解】依题意,函数12x y ⎛⎫= ⎪⎝⎭与函数12log y x =关于直线y x =对称,则0.21210log 0.22⎛⎫<< ⎪⎝⎭,即01a b <<<,又0.211220.2log 0.2log 0.20.20.20.211110.22252b c a a ⨯⎛⎫⎛⎫⎛⎫⎛⎫=====<= ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以,c a b <<. 故选:B. 【点睛】本题主要考查对数、指数的大小比较,属于基础题.10.在ABC V 中,已知9AB AC ⋅=uu u r uuu r,sin cos sin B A C =,6ABC S =V ,P 为线段AB 上的一点,且CA CB CP x y CACB=⋅+⋅u u u ru u u r u u u r u u u r u u u r ,则11x y +的最小值为( )A.7123+B .12C .43D.5124+【答案】A 【解析】 【分析】在ABC V 中,设AB c =,BC a =,AC b =,结合三角形的内角和及和角的正弦公式化简可求cos 0C =,可得2C π=,再由已知条件求得4a =,3b =,5c =,考虑建立以AC 所在的直线为x 轴,以BC 所在的直线为y 轴建立直角坐标系,根据已知条件结合向量的坐标运算求得4312x y +=,然后利用基本不等式可求得11x y+的最小值.在ABC V 中,设AB c =,BC a =,AC b =,sin cos sin B A C =Q ,即()sin cos sin A C A C +=,即sin cos cos sin cos sin A C A C A C +=,sin cos 0A C ∴=,0A π<<Q ,sin 0A ∴>,cos 0C ∴=,0C π<<Q ,2C π∴=,9ABAC ⋅=u u u r u u u r Q ,即cos 9cb A =,又1sin 62ABCS bc A ==V ,sin 4tan cos 3bc A a A bc A b∴===, 162ABCS ab ==V Q ,则12ab =,所以,4312a b ab ⎧=⎪⎨⎪=⎩,解得43a b =⎧⎨=⎩,225c a b ∴=+=. 以AC 所在的直线为x 轴,以BC 所在的直线为y 轴建立如下图所示的平面直角坐标系,则()0,0C 、()3,0A 、()0,4B ,P 为线段AB 上的一点,则存在实数λ使得()()()3,43,401AP AB λλλλλ==-=-≤≤u u u r u u u r,()33,4CP CA CB λλ∴=+=-u u u r u u u r u u u r,设1CA e CA =u u u r u r u u u r ,1C e B CB=u u u r u r u u u r ,则121e e ==u r u u r ,()11,0e ∴=u r ,()20,1e =u r ,()12,CA CB CP x y xe ye x y CA CB =⋅+⋅=+=u u u r u u u ru u u r u r u u r Q u u u r u u u r ,334x y λλ=-⎧∴⎨=⎩,消去λ得4312x y +=,134x y ∴+=,所以,1177372343412341231211x y x y x y x x y y x y y x ⎛⎫⎛⎫+=++=++≥⋅=+ ⎪⎪⎝⎭⎝⎭, 当且仅当3x y =时,等号成立, 因此,11x y +3712+. 故选:A.本题是一道构思非常巧妙的试题,综合考查了三角形的内角和定理、两角和的正弦公式及基本不等式求解最值问题,解题的关键是理解CA CAu u u r u u u r 是一个单位向量,从而可用x 、y 表示CP u u u r ,建立x 、y 与参数的关系,解决本题的第二个关键点在于由33x λ=-,4y λ=发现4312x y +=为定值,从而考虑利用基本不等式求解最小值,考查计算能力,属于难题.11.已知3ln 3,log ,log a b e c e π===,则下列关系正确的是( ) A .c b a << B .a b c <<C .b a c <<D .b c a <<【答案】A 【解析】 【分析】首先判断,,a b c 和1的大小关系,再由换底公式和对数函数ln y x =的单调性判断,b c 的大小即可. 【详解】因为ln3ln 1a e =>>,311log ,log ln 3ln b e c e ππ====,1ln3ln π<<,所以1c b <<,综上可得c b a <<.故选:A 【点睛】本题考查了换底公式和对数函数的单调性,考查了推理能力与计算能力,属于基础题. 12.集合*12|x N Z x ⎧⎫∈∈⎨⎬⎩⎭中含有的元素个数为( ) A .4 B .6C .8D .12【答案】B 【解析】 解:因为*12|x N Z x ⎧⎫∈∈⎨⎬⎩⎭集合中的元素表示的是被12整除的正整数,那么可得为1,2,3,4,6,,12故选B二、填空题:本题共4小题,每小题5分,共20分。
四川省绵阳市2020-2021学年高三上学期第一次诊断性考试数学(文)试题

四川省绵阳市2020-2021学年高三上学期第一次诊断性考试数学(文)试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知{*|3}A x x =∈≤N ,{}2|40B x x x =-≤,则A B =( )A .{1,2,3}B .{1,2}C .(0,3]D .(3,4]2.若0b a <<,则下列结论不正确的是( ) A .11a b< B .2ab a >C .|a|+|b|>|a+b|D>3.下列函数中定义域为R ,且在R 上单调递增的是( ) A .2()f x x =B.()f x =C .()ln ||f x x =D .2()e x f x =4.等差数列{}n a 的前n 项和为n S ,若32a =,33S =,则6a =( ) A .4B .5C .10D .155.已知函数2()21xx f x =-,若()2f m -=,则()f m =( )A .-2B .-1C .0D .126.已知命题:p 函数2sin sin y x x=+,(0,)x π∈的最小值为命题:q 若向量a ,b ,c ,满足a b b c ⋅=⋅,则a c =.下列命题中为真命题的是( )A .()p q ⌝∧B .p q ∨C .()p q ∧⌝D .()()p q ⌝∧⌝7.若0.613a ⎛⎫= ⎪⎝⎭,0.83b -=,ln3c =,则a ,b ,c 的大小关系为( ) A .b c a >>B .c a b >>C .c b a >>D .a c b >>8.已知x ,y 满足约束条件20,10,10,x y x y x y -≤⎧⎪-+≥⎨⎪+-≥⎩,则2z x y =+的最小值为( )A .4B .2C .1D .139.设函数()ln x f x ae x =-(其中常数0a ≠)的图象在点(1, (1))f 处的切线为l ,则l 在y 轴上的截距为( )A .1B .2C .1ae -D .12ae -10.某数学小组到进行社会实践调查,了解鑫鑫桶装水经营部在为如何定价发愁.进一步调研了解到如下信息:该经营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元,销售单价与日均销售量的关系如下表:根据以上信息,你认为该经营部定价为多少才能获得最大利润?( ) A .每桶8.5元B .每桶9.5元C .每桶10.5元D .每桶11.5元11.函数()sin (0)6f x x πωω⎛⎫=+> ⎪⎝⎭在,22ππ⎛⎫- ⎪⎝⎭上单调递增,且图象关于x π=-对称,则ω的值为( ) A .23B .53C .2D .8312.在ABC ∆中,60A ︒∠=,A ∠的平分线AD 交边BC 于点D ,已知AD =1()3AB AD AC R λλ=-∈,则AB 在AD 方向上的投影为( )A .1B .32C .3 D二、填空题13.已知函数()f x 的定义域为R ,且满足()(2)f x f x =+,当[0,2)x ∈时,()xf x e =,则(7)f =________.14.已知向量(2,2)a =-,向量b 的模为1,且22a b -=,则a 与b 的夹角为________. 15.2021年10月1日,在庆祝新中国成立70周年阅兵中,由我国自主研制的军用飞机和军用无人机等参阅航空装备分秒不差飞越天安门,壮军威,振民心,令世人瞩目.飞行员高超的飞行技术离不开艰苦的训练和科学的数据分析.一次飞行训练中,地面观测站观测到一架参阅直升飞机以/小时的速度在同一高度向正东飞行,如图,第一次观测到该飞机在北偏西60︒的方向上,1分钟后第二次观测到该飞机在北偏东75︒的方向上,仰角为30,则直升机飞行的高度为________千米.(结果保留根号)16.若函数2()1xf x x x ae =++-有且仅有1个零点,则实数a 的取值范围为________.三、解答题17.已知函数22()(cos sin )2sin f x x x x =--. (1)求函数()f x 的最小正周期与单调递减区间;(2)若()01f x =-,且0,2x ππ⎛⎫∈-- ⎪⎝⎭,求0x 的值.18.在各项均不相等的等差数列{}n a 中,11a =,且1a ,2a ,5a 成等比数列,数列{}n b 的前n 项和122n n S +=-.(1)求数列{}n a 、{}n b 的通项公式; (2)设22log na n n cb =+,求数列{}nc 的前n 项和n T .19.已知ABC ∆中三个内角A ,B ,Csin()1B A C =++. (1)求sin B ; (2)若2C A π-=,b 是角B的对边,b =ABC ∆的面积.20.已知函数3211()(1)2()32f x x a x ax a R =+--+∈. (1)当1a =时,求函数()f x 的极值;(2)是否存在实数a ,使得函数()f x 在区间[]1,2上的最大值是2,若存在,求出a 的值;不存在,请说明理由.21.已知函数2()e x f x ax =-,a R ∈,(0,)x ∈+∞. (1)若()f x 存在极小值,求实数a 的取值范围; (2)若()f x 的极大值为M ,求证:e12M <<. 22.在直角坐标系xOy 中,曲线C的参数方程为cos ,sin x y αααα⎧=⎪⎨=-⎪⎩(α为参数).坐标原点O 为极点,x 轴的正半轴为极轴,取相同长度单位建立极坐标系,直线l的极坐标方程为cos 36πρθ⎛⎫-= ⎪⎝⎭. (1)求曲线C 的普通方程和极坐标方程; (2)设射线:3OM πθ=与曲线C 交于点A ,与直线l 交于点B ,求线段AB 的长.23.设函数()|||1|5()f x x m x m R =-++-∈. (1)当2m =时,求不等式()0f x ≥的解集; (2)若()2f x ≥-,求实数m 的取值范围.参考答案1.A 【解析】 【分析】先求解集合,A B ,然后求解A B .【详解】因为{}{*|3}1,2,3A x x ==∈≤N ,{}{}2|40|04B x x x =x x =-≤≤≤,所以{}1,2,3AB =.故选:A.【点睛】本题主要考查集合的交集运算,先化简集合是求解此类问题的关键,题目属于简单题,侧重考查数学运算的核心素养. 2.C 【分析】结合不等式的性质或特殊值,逐个选项验证. 【详解】因为0b a <<,所以11a b<,选项A 正确; 因为0b a <<,所以2ab a >,选项B 正确; 因为0b a <<,所以|a|+|b|=|a+b|,选项C 不正确;因为13y x =>D 正确.故选:C. 【点睛】本题主要考查不等式的性质,这类问题的求解方法是利用常见的不等式的性质或者利用特殊值进行求解,侧重考查逻辑推理的核心素养. 3.D 【分析】先求解选项中各函数的定义域,再判定各函数的单调性,可得选项. 【详解】因为()f x =[0,)+∞,()ln ||f x x =的定义域为{}0x x ≠,所以排除选项B,C.因为2()f x x =在(,0]-∞是减函数,所以排除选项A ,故选D. 【点睛】本题主要考查函数的性质,求解函数定义域时,熟记常见的类型:分式,偶次根式,对数式等,单调性一般结合初等函数的单调性进行判定,侧重考查数学抽象的核心素养. 4.B 【分析】先由3S 求2a ,再求公差d ,最后可得6a . 【详解】因为3233S a ==,所以21a =,可得32211d a a =-=-=,所以6335a a d =+=, 故选:B. 【点睛】本题主要考查等差数列的基本运算,熟练记忆等差数列的求和公式及通项公式是求解的关键,侧重考查数学运算的核心素养. 5.B 【分析】先由()f x 写出()f x -,再由二者关系可得()f m 与()f m -的关系,易得()f m . 【详解】因为()()22212112212x x x x x x x f x ----⋅-===---⋅,所以()()2112112x x x f x f x +-=+=--, 所以()()1f m f m +-=,易得()1f m =-.故选B. 【点睛】本题主要考查函数的表示方法,结合函数解析式的特征可求,侧重考查数学运算和逻辑推理的核心素养. 6.D 【解析】 【分析】先判断命题p ,命题q 的真假,利用基本不等式和三角函数的性质可判断命题p 为假,再用零向量判断命题q 为假,进而判断命题p ⌝和命题q ⌝为真,易得()()p q ⌝∧⌝为真. 【详解】由题意命题:p 函数2sin sin y x x =+≥当且仅当2sin sin x x=时,等号成立,由()sin f x x =性质可得2sin 2x ≠,所以函数2sin sin y x x=+,(0,)x π∈取不到最小值p 为假,则命题p ⌝为真;命题:q 若向量b 为零向量,满足a b b c ⋅=⋅,但不一定有a c =,所以命题q 为假,则命题q ⌝为真,所以()()p q ⌝∧⌝为真.故选: D. 【点睛】本题主要考查命题真假的判定,涉及基本不等式的最值问题要注意条件的检验,平面向量的运算要熟记运算规则,侧重考查逻辑推理的核心素养. 7.B 【分析】先将a 化成与b 同底,再利用指数函数单调性比较,a b 大小,然后利用中间值1比较,c a 的大小,最后易得三者关系. 【详解】因为00.6.6133a -⎛⎫= ⎪=⎝⎭,由指数函数3xy =单调递增,且0.60.8->-可得0.60.833a b --=>=,且1b a <<,又因为ln3ln 1c e =>=,所以c a b >>.故选B.【点睛】本题主要考查指数式,对数式比较大小,指数式的大小比较一般是化为同底数来进行,不同类的数值比较一般采用介值法进行,侧重考查数学抽象的核心素养. 8.C 【分析】先作出可行域,平移目标函数,确定取到最小值的点,然后求出点代入目标函数可得. 【详解】作出可行域,如图,易得目标函数2z x y =+在点A 处取到最小值,由10,10,x y x y -+=⎧⎨+-=⎩得(0,1)A ,所以2z x y =+的最小值为1,故选C. 【点睛】本题主要考查线性规划求解最值问题,主要求解方法是作出可行域,平移目标函数,得到最值点,联立方程组,求出最值点可得最值. 9.A 【分析】先求得()f x 的导数,可得切线的斜率,根据切点写出切线的点斜式方程,令0x =可得l 在y 轴上的截距. 【详解】因为函数()ln xf x ae x =-的导数为1()xf x ae x'=-,可得图象在点(1, (1))f 处的切线斜率为1ae -,且()1f ae =,则切线方程为()()11y ae ae x -=--,令0x =可得1y =, 故选A. 【点睛】本题主要考查导数的几何意义,利用导数求解在某点处的切线方程的策略是:先求导数,代入切点横坐标可得切线斜率,然后结合点斜式可求切线方程,侧重考查数学运算的核心素养. 10.D 【分析】通过表格可知销售单价每增加1元、日均销售量减少40桶,进而列出表达式,利用二次函数的简单性质即得结论.【详解】通过表格可知销售单价每增加1元、日均销售量减少40桶,设每桶水的价格为(6+x )元(0<x <13),公司日利润y 元,则y =(6+x ﹣5)(480﹣40x )﹣200=﹣40x 2+440x +280(0<x <13), ∵﹣40<0,∴当x =440240⨯=5.5时函数y 有最大值, 因此,每桶水的价格为6+5.5=11.5元,公司日利润最大, 故选D 【点睛】本题主要考查了二次函数模型的应用以及二次函数求最值,属于基础题. 11.A 【分析】先求周期的范围,再进一步得到ω的范围,排除选项B,C,D. 【详解】因为函数()f x 在,22ππ⎛⎫- ⎪⎝⎭上单调递增,所以222T πππ⎛⎫≥--= ⎪⎝⎭,所以2T π≥.又因为2T πω=,所以22ππω≥,所以1ω≤.只有选项A 符合,经检验可知图象关于x π=-对称;故选 A. 【点睛】本题主要考查三角函数的图象及性质,利用单调性和对称性确定参数,特值进行排除也是常用方法,侧重考查逻辑推理和数学运算的核心素养. 12.D 【分析】先根据1()3AB AD AC R λλ=-∈得出四边形AFDE 为菱形,从而可得3AB =,进而可求AB 在AD 方向上的投影.【详解】 因为1()3AB AD AC R λλ=-∈,如图设13AE AC =,//DF AC ,所以四边形AFDE 为菱形;因为AD =60A ︒∠=,所以2AE =,即有6AC =;结合比例性质可得1BF =,所以3AB =;AB 在AD 方向上的投影为cos30AB ︒=故选:D.【点睛】本题主要考查平面向量的应用,明确向量的运算规则是求解的关键,数形结合能简化运算过程,侧重考查直观想象和数学运算的核心素养. 13.e 【分析】先根据()(2)f x f x =+可得周期为2,利用周期可求(7)(1)f f =,从而可得结果. 【详解】因为()(2)f x f x =+,所以函数()f x 的周期为2,所以(7)(1)f f =;又因为当[0,2)x ∈时,()xf x e =,所以(7)(1)e f f ==.故答案为:e .【点睛】本题主要考查利用函数的周期求值,主要求解思路是:先根据题设条件得出函数的周期,再结合周期把目标函数值转化到已知区间上,然后可求,侧重考查数学抽象的核心素养. 14.4π 【分析】先根据|2|2a b -=求得a b ⋅,然后利用向量的夹角公式可求. 【详解】因为(2,2)a =-,所以22a =,因为|2|2a b -=,所以22444a a b b -⋅+=,即有2a b ⋅=,,所以2cos ,a b a b a b⋅==,故a 与b 的夹角为4π.故答案为:4π. 【点睛】本题主要考查平面向量的运算,向量夹角的求解主要利用公式cos ,a b a b a b⋅=来求,侧重考查数学运算的核心素养.15 【分析】根据飞行时间和速度可求飞行距离,结合两次观察的方位角及三角形知识可得. 【详解】如图,根据已知可得60,75,30,ABF CBF CBD ∠=︒∠=︒∠=︒设飞行高度为x 千米,即CD x =,则BC =;在直角三角形CFB 中,75,CBF BC ∠=︒=,所以sin 75CF =︒,cos 75BF =︒;在直角三角形ABF 中,同理可求3cos75AF x =︒;因为飞行速度为/小时,飞行时间是1分钟,所以ED AC ===,所以sin 753cos 755AF CF x +=︒+︒=,解得5x =,故答案为5. 【点睛】本题主要考查以现实问题为背景的解三角形问题,准确理解方位角是求解本题的关键,融合了简单的物理知识,侧重考查了直观想象和逻辑推理的核心素养. 16.01a <<或3ea > 【分析】令f (x )=0,参变分离得a =21x x x e ++,令h (x )=21xx x e++,对h (x )求导得函数h (x )的单调递增区间为(0,1),单调递减区间为(﹣∞,0),(1,+∞),h (x )极小值=h (0)=1,h (x )极大值=h (1)=3e,由题意得函数h (x )与直线y =a 有且仅有一个交点,即可得出a 的取值范围. 【详解】令f (x )=0,可得:a =21x x x e ++,令h (x )=21xx x e++, h '(x )=()()22(21)11x xxxx e x x e x x e e +-++--=,令h '(x )=0,解得x =0或1,由表格可得:h (x )极小值=h (0)=1,h (x )极大值=h (1)=3e,且(),x h x →-∞→+∞,(),0x h x →+∞→.由f (x )有且仅有一个零点,转化为函数h (x )与直线y =a 有且仅有一个交点.∴当01a <<或3ea >时,函数h (x )与直线y =a 有且仅有一个交点. 故答案为01a <<或3ea >【点睛】本题考查了利用导数研究函数的单调性和极值,函数的零点转化为图象的交点问题,也考查了分析推理转化解决问题与计算的能力,属于中档题.17.(1)π 3,88k k ππππ⎡⎤-+⎢⎥⎣⎦,k ∈Z(2)34π-【分析】(1)先结合三角恒等变换的公式把目标函数化简为标准型,结合周期求解公式和单调区间求解方法可求;(2)结合所给角的范围,确定024x π+的范围,结合函数值可得所求角.【详解】解:(1)22()(cos sin )2sin f x x x x =--212sin cos 2sin x x x =--cos2sin2x x =-24x π⎛⎫=+ ⎪⎝⎭∴22T ππ==, 即()f x 的最小正周期为π.∵cos y x =的单调递减区间为[2,2]k k ππ+π,k ∈Z , ∴由2224k x k ππππ≤+≤+,k ∈Z ,解得388k x k ππππ-≤≤+,k ∈Z , ∴()f x 的单调递减区间为3,88k k ππππ⎡⎤-+⎢⎥⎣⎦,k ∈Z .(2)由已知()01f x =-0214x π⎛⎫+=- ⎪⎝⎭,即0cos 242x π⎛⎫+= ⎪⎝⎭, 再由0,2x ππ⎛⎫∈-- ⎪⎝⎭,可得0732,444x πππ⎛⎫+∈-- ⎪⎝⎭, ∴05244x ππ+=-, 解得034x π=-.【点睛】本题主要考查三角函数的恒等变换及性质,一般求解思路是:先利用公式把目标函数化简为标准型,然后利用相应性质的求解方法求解,侧重考查逻辑推理和数学抽象的核心素养.18.(1)21n a n =-,2nn b =;(2)2122232n n n n T +-+=+【分析】(1)设数列{}n a 的公差为d ,由1a ,2a ,5a 成等比数列,列式解得0d =(舍去)或2d =,进而得21n a n =-;再由数列{}n b 的前n 项和122n n S +=-,得1n n n b S S -=-=2n ()2n ≥,且12b =,进而得2nn b =;(2)由(1)得212n n c n -=+,利用分组求数列{}n c 的前n 项和n T 即可. 【详解】(1)设数列{}n a 的公差为d ,则21a a d =+,514a a d =+,∵1a ,2a ,5a 成等比数列,2215a a a ∴=,即()()21114a d a a d +=+,整理得212d a d =,解得0d =(舍去)或122d a ==,()1121n a a n d n ∴=+-=-.当1n =时,12b =, 当2n ≥时,()112222n n n n n b S S +-=-=---1222222n n n n n +=-=⨯-=.验:当1n =时,12b =满足上式,∴数列{}n b 的通项公式为2nn b =. (2)由(1)得,2122log 2n an n n c b n -==++, ()()()3521(21)22232n n T n -=++++++++()35212222(123)n n -=+++++++++()214(1)142n n n -+=+-2122232n n n+-+=+. 【点睛】本题考查了等差数列与等比数列的通项公式与求和公式,也考查了数列的分组求和的方法,考查化简整理的运算能力,属于中档题.19.(1)13(2)2【分析】(1sin()1B A C =++及平方关系,可以求得sin B ;(2)根据三角形的性质及正弦定理可求a A =,c C =,然后利用面积公式可得. 【详解】解:(1)在ABC ∆中,A B C π++=,即()B A C π=-+, ∴sin sin()B A C =+,sin 1B B =+.两边平方可得222cos sin 2sin 1B B B =++, 根据22sin cos 1B B +=,可整理为23sin 2sin 10B B +-=, 解得1sin 3B =或sin 1B =-(舍去). ∴1sin 3B =. (2)由2C A π-=,且A B C π++=,可得22A B π=-,C 为钝角,∴sin2cos A B =,又b =由正弦定理得sin sin sin a b cA B C===∴a A =,c C =.又C 为钝角,由(1)得cos 3B =.∴ABC ∆的面积为111sin 223S ac B A C ==⨯⨯⨯ 99sin sin sin cos 222A A A A π⎛⎫=+= ⎪⎝⎭999sin 2cos 44432A B ===⨯=综上所述,ABC ∆的面积为2. 【点睛】本题主要考查利用正弦定理和面积公式求解三角形问题,解三角形时需要注意三角形性质的使用及面积公式的选择,边角的相互转化是求解的常用策略,侧重考查数学运算和逻辑推理的核心素养.20.(1)极小值为()413f =,极大值为()813f -=;(2)存在76a =,理由见解析【分析】(1)当1a =时,31()23f x x x =-+,则2()1(1)(1)f x x x x '=-=-+,得()f x 的单调性,进而得()f x 的极值;(2)求导得()()()'1f x x a x =-+,按1a ≤,12a <<,2a ≥进行分别讨论得()f x 的单调性,进而求出最大值,判断最大值是2能否成立即可. 【详解】(1)当1a =时,31()23f x x x =-+,则2()1(1)(1)f x x x x '=-=-+, 由()'0fx >,得1x <-或1x >;由()'0f x <,得11x -<<,()f x ∴在(–1)∞-,上单调递增,(11)-,上单调递减,(1)+∞,上单调递增. ()f x ∴的极小值为()413f =,极大值为()813f -=. (2)()()()'1fx x a x =-+,当1a ≤时,()f x 在[1]2,单调递增,()f x ∴最大值为()202423f a =-=,解得76a =(舍);当12a <<时,()f x 在[1)a ,上单调递减,在(2]a ,上单调递增,()f x ∴最大值为()1f 或()2f ,由173(1)262a f =-=,解得59a =(舍),由()22f =,解得76a =.当2a ≥时,()f x 在[1]2,单调递减,()f x ∴最大值为173(1)262a f =-=,解得59a =(舍).综上所述:76a =.【点睛】本题考查了导数的应用:函数的单调性、极值、最值求参数等问题,也考查了分类讨论思想和转化思想,属于中档题. 21.(1)2ea >;(2)见解析 【分析】(1)求导()2x e f x x a x '⎛⎫=- ⎪⎝⎭,令()x e h x x =,则2(1)()x e x h x x '-=,得()h x 在()0,1上单调递减,在()1,+∞上单调递增,min ()(1)h x h e ==,由题意得按2e a ≤,2ea >分类讨论,计算实数a 的取值范围即可;(2)由(1)知,()f x 的极大值为()()000e 1012xx M f x f ⎛⎫=->= ⎪=⎝⎭,0)1(0x ∈,,令()12x x g x e ⎛⎫=- ⎪⎝⎭,求导得()g x 在(0)1,上单调递增,即可证得.【详解】(1)由题意得()22x xe f x e ax x a x '⎛⎫=-=- ⎪⎝⎭,令()x e h x x =,则2(1)()x e x h x x '-=. ∴当01x <<时,得'()0h x <,当1x >时,得'()0h x >,∴()h x 在()0,1上单调递减,在()1,+∞上单调递增,且x →+∞,()h x →+∞,0x →,()h x →+∞,∴min ()(1)h x h e ==.①当2a e ≤,即2e a ≤时,'()0f x ≥,于是()f x 在(0,)+∞上是增函数, 从而()f x 在(0,)+∞上无极值.②当2a e >,即2e a >时,存在1201x x <<<,使得()()''120f x f x ==, 且当()10,x x ∈时,'()0f x >,()f x 在()10,x 上是单调递增; 当()12,x x x ∈时,'()0f x <,()f x 在()12,x x 上是单调递减; 当()2,x x ∈+∞时,'()0f x <,()f x 在()2,x +∞上是单调递增,故2x 是()f x 在(0,)+∞上的极小值. 综上,2e a >. (2)由(1)知,()f x 的极大值为()()001M f x f =>=.又()0002200000e e e e 122x x x x x M f x ax x x ⎛⎫==-=-⨯=- ⎪⎝⎭,0)1(0x ∈,, 令()12xx g x e ⎛⎫=-⎪⎝⎭,)1(0x ∈,,则1()(1)e 02x g x x '=->, ()g x ∴在区间(0)1,上单调递增,()(1)2e g x g ∴<=,12eM ∴<<. 【点睛】本题考查了导数在研究函数单调性、极值和最值中的综合应用,利用导数证明不等式成立以及分类讨论思想,变换过程复杂,需要很强的逻辑推理能力,属于中档题.22.(1)224x y += 2ρ=(2)2 【分析】(1)结合三角函数的基本关系消去参数可得普通方程,结合公式cos x ρθ=,sin y ρθ=可得极坐标方程;(2)分别联立极坐标方程,求得交点的极径,从而可得线段AB 的长. 【详解】解:(1)由题意得2222(cos )(sin )4x y αααα+=++=, ∴曲线C 的普通方程为224x y +=. ∵cos x ρθ=,sin y ρθ=,∴代入可得曲线C 的极坐标方程为2ρ=. (2)把3πθ=代入cos 36πρθ⎛⎫-= ⎪⎝⎭中, 可得cos 336ππρ⎛⎫-=⎪⎝⎭,解得ρ=即B 点的极径B ρ=, 由(1)易得2A ρ=,∴||2A B AB ρρ=-=.【点睛】本题主要考查参数方程与极坐标方程,参数方程化为普通方程一般是消去参数,普通方程化为极坐标方程主要利用cos x ρθ=,sin y ρθ=来实现,侧重考查数学运算的核心素养. 23.(1)(,2][3,)-∞-⋃+∞ (2)(,4][2,)-∞-+∞ 【分析】(1)利用零点分段讨论法,把绝对值符号去掉可得解集; (2)先求()f x 的最小值,然后求解绝对值不等式即可. 【详解】(1)当2m =时,()|2||1|5f x x x =-++-.当1x ≤-时,()(2)(1)50f x x x =---+-≥,解得2x -≤; 当12x -<<时,()(2)150f x x x =--++-≥, 无解.当2x ≥时,()2150f x x x =-++-≥, 解得3x ≥;综上,原不等式的解集为(,2][3,)-∞-⋃+∞.(2)∵()|||1|5|()(1)|5f x x m x x m x =-++-≥--+- |1|52m =+-≥- 当且仅当()(1)0x m x -+≤等号成立 ∴|1|3m +≥,∴13m +≥或13m +≤-, 即2m ≥或4m ≤-,∴实数m 的取值范围是(,4][2,)-∞-+∞. 【点睛】本题主要考查绝对值不等式的解法,绝对值不等式的求解一般转化为分段函数求解,不等式有关的最值常用a b a b a b +≥±≥-来实现,侧重考查数学运算的核心素养.。
2021年四川省绵阳市高考数学一诊试卷(文科)

2021年四川省绵阳市高考数学一诊试卷(文科)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知A={x|0<x<2},B={x|x(1﹣x)≥0}()A.∅B.(﹣∞,1]C.[1,2)D.(0,1]2.(5分)下列函数中,既是奇函数又是增函数的是()A.y=tan x B.y=lnx C.y=x3D.y=x23.(5分)若a<b<0,则下列不等式中成立的是()A.B.C.a+>b+D.(a﹣1)2>(b﹣1)24.(5分)函数f(x)=sin(x+)的图象的一条对称轴是()A.x=﹣3B.x=0C.x=D.x=﹣5.(5分)函数f(x)=xln|x|+的大致图象是()A.B.C.D.6.(5分)已知命题p:在△ABC中,若cos A=cos B,则A=B与向量相等的充要条件是||且∥.下列四个命题是真命题的是()A.p∧(¬q)B.(¬p)∧(¬q)C.(¬p)∧q D.p∧q7.(5分)若曲线y=﹣在点(1,﹣1)处的切线与曲线y=lnx在点P处的切线垂直()A.(e,1)B.(1,0)C.(2,ln2)D.(,﹣ln2)8.(5分)若log a<1(a>0,且a≠1),则实数a的取值范围是()A.(0,)B.(0,)∪(1,+∞)C.(1,+∞)D.(0,1)9.(5分)已知菱形ABCD的对角线相交于点O,点E为AO的中点,若AB=2,则•=()A.﹣2B.﹣C.﹣D.10.(5分)等比数列{a n}的前n项和为S n,若S n=t•2n﹣1﹣1,则t=()A.﹣2B.1C.2D.311.(5分)某城市要在广场中央的圆形地面设计一块浮雕,以彰显城市积极向上的活力.某公司设计方案如图,等腰△PMN的顶点P在半径为20m的大⊙O上,N在半径为10m的小⊙O上,点O(α<),当△PMN的面积最大时,对于其它区域中的某材料成本最省()A.B.C.D.12.(5分)若2a+1=3,2b=,则以下结论正确的有()①b﹣a<1;②+>2;③ab2>2a.A.1个B.2个C.3个D.4个二、填空题:本大题共4小题,每小题5分,共20分.13.(5分)设平面向量=(1,0),=(1,1),若+λ与垂直.14.(5分)若实数x,y满足,则z=2x+y的最大值为.15.(5分)已知sin x+cos y=,则sin x﹣sin2y的最大值为.16.(5分)若函数f(x)=(x2+ax+2a)e x在区间(﹣2,1)上恰有一个极值点,则实数a 的取值范围为.三、解答题:共70分。
2023年绵阳市第一次诊断考试文科数学答案

绵阳市高中2021级第一次诊断性考试文科数学参考答案及评分意见一、选择题:本大题共12小题,每小题5分,共60分.BBCAD BACBC BC二、填空题:本大题共4小题,每小题5分,共20分.13.714.15.[1),-+∞16.1三、解答题:本大题共6小题,共70分.17.解:(1)由S 1,2S 2,3S 3成等差数列,则4S 2=S 1+3S 3,得3a 3=a 2,················3分∴数列{a n }的公比q 31=,·····································································4分由271=a ,数列{a n }的通项公式n n n q a a --=⋅=4113;·································6分(2)令n n a b 3log =,则n b n n -==-43log 43,·········································8分∴当4≤n 时,0≥n b ,········································································9分∴当3=n 或4时,T n 取得最大值:612343=++==T T .···························12分18.解:(1)∵1)8tan()3(=+=ϕππf ,∴πππϕk +=+48,而2||πϕ<,····························································2分∴8πϕ=,即)883tan()(π+=x x f ,·························································3分∴()f x 的最小正周期为:83T ππω==;··················································4分(2)由题意,33()tan()888g x x πλ=++,····················································5分∵(0)tan tan()88f ππ-=-=-,∴)8tan()883323tan()0(4(ππλππ-=++-=,得由f g ,··································7分∴∈+-=+k k ,πππλ832783Z ,······························································9分∴0381211>∈+-=λππλ,又,Z k k ,·····················································10分∴λ的最小值为74π.··········································································12分19.解:(1)∵232()(2)(2)=22(2)(2)f x x m x m x m x mx m m =+-+--+--为奇函数,∴2(2)0(2)0m m m --=⎧⎨--=⎩,解得:m =2.···························································5分(2)当m >0时,2x 2+m >0,∴函数2()(2)(2)f x x m x m =+-+不可能有两个零点.································6分当m <0时,由()0f x =,解得:x =m -2,·································7分要使得f (x )仅有两个零点,则2m -=,··········································8分即22780m m -+=,此方程无解.故m =0,即32()24f x x x =+,·······························································9分令32()()3243h x f x x x =-=+-,则2()682(34)h x x x x x '=+=+,()0h x '>,解得:0x >或43x <-,()0h x '<解得:403x -<<,故()h x 在4()3,-∞-,(0),+∞上递增,在4(0)3,-上递减,···························10分又417()0327h -=-<,故函数()3y f x =-仅有一个零点.·························································12分20.解:(1)∵cos(C -B )sin A=cos(C -A )sin B∴(cos C cos B+sin C sin B )sin A=(cos C cos A+sin C sin A )sin B ·································2分∴cos C cos B sin A=cos C cos A sin B ·······························································3分又∵△ABC 为斜三角形,则cos C ≠0,∴cos B sin A =cos A sin B ,·········································································5分∴sin(A -B )=0,又A ,B 为△ABC 的内角,∴A=B ;···························································································6分(2)在△ABC 中,由(1)知,a=b ,由正弦定理sin sin b c B C =,则1sin sin C b c B=,···············································7分又1sin B c=,即sin 1c B =,∴11sin sin()sin 2C A B B a b===+=,∴2211ac -==sin 2B -sin 22B ,·································································9分∴2211a c -=sin 2B -sin 22B=sin 2B -4cos 2B sin 2B=sin 2B -4(1-sin 2B )sin 2B ,············10分令sin 2B=t ,令f (t )=t -4(1-t )t=4t 2-3t ,······················································11分又因为0<sin 2B<1,即0<t<1,∴当t=38时,f (t )取最小值,且f (t )min =916-,综上所述:2211a c -的最小值为916-.···················································12分21.解:(1)方法一:a ax x x f x -+-='-21e )(,············································1分因为()f x 在(1)+∞,上单调递增,∴()0≥f x '恒成立,故:当1x >时,21e 1≥x x a x ---恒成立.·····················································3分设21e ()(1)1x x g x x x --=>-,则max ()≥a g x ,则12(2)(e )()(1)x x x g x x ----'=-,易知1+≥x e x ,所以x e x ≥-1,故令0)(>'x g 得到:21<<x ;令0)(<'x g 得到:2>x .∴()g x 在(2),+∞上递减;在(12),上递增.·············································5分故:当1>x 时,max ()(2)4e g x g ==-.∴实数a 的取值范围:4e ≥a -.···························································6分方法二:12()e x f x x ax a -'=-+-,因为()f x 在(1)+∞,上单调递增,所以()0≥f x '恒成立,等价于:2110e ≤x x ax a --+-在[1)+∞,上恒成立,········································2分设21()1(1)e x x ax a g x x --+=->,则max ()0≤g x ,1()(2)()e x x a x g x ----'=,当2a =时,()0g x '<,∴()g x 在[1)+∞,上递减,max ()(1)0g x g ==,符合题意.····························3分当2a >时,易知()g x 在(12),上递减,在(2)a ,上递增,在)(+∞,2上递减,因为(1)0g =,故只需满足1()10a ag a e -=-≤(由1+≥x e x易得),符合题意.···················4分当21<<a 时,易知()g x 在(1,a )上递减,在(a ,2)上递增,在)(+∞,2上递减,因为(1)0g =,故只需满足4(2)10ea g -=-≤,即24<≤-a e ,当1≤a 时,易知()g x 在(1,2)上递增,在2+∞(,)上递减,························5分max 4()(2)10a g x g e-==->,不符合题意.综上:实数a 的取值范围:4e a -≥.·····················································6分(2)()f x 的极值点个数等价于()f x '的变号零点个数,令21()1e x x ax a g x --+=-,则等价于()g x 的变号零点个数,···························7分当x →-∞时,()g x →+∞;当+∞→x 时,1)(-→x g ,由(1)可知1()(2)()e x x a x g x ----'=,(1)0g =,当2=a 时,易知()g x 在),(∞+∞-上递减,故()g x 有唯一变号零点1;······8分当2a >时,易知()g x 在),(2∞-上递减,在),(a 2上递增,在)(+∞,2上递减,因为(2)(1)0g g <=,1()10e a ag a -=-≤,故()g x 有唯一变号零点1;当2<a 且1≠a 时,易知()g x 在()a -∞,上递减,在(a ,2)上递增,在2+∞(,)上递减,·············································································································9分01e )(1<-=-a aa g ,4(2)1ea g -=-,若(2)0g ≤,即4e 2a -<≤时,有唯一变号零点1;···································10分若(2)0g >,即4a e <-且1a ≠时,()g x 有三个变号零点1,2x ,3x ,且2312x x <<<。
四川省绵阳2023-2024学年高三一诊模拟考试文科数学试题含解析

绵阳南山高2021级高三(上)一诊模拟考试文科数学(答案在最后)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上,写在本试卷上无效.3.考试结束后,本试卷收回.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合2{|20}P x x x =-<,{N |1}Q x x =∈≥,则P Q = ()A.{1,2}B.{1}C.{2,3}D.{1,2,3}【答案】B 【解析】【分析】化简集合A ,再根据交集的定义可求得结果.【详解】220x x -<,02x ∴<<,{}02A x x ∴=<<,又{}N 1B x x =∈≥,{}1A B ∴⋂=.故选:B.2.已知向量()()1,,,2a m b m == ,若4a b =,则实数m 等于()A. B.0C.1D.43【答案】D 【解析】【分析】根据平面向量数量积的计算规则求解.【详解】由题意:41234,3a b m m m m =⨯+⨯==∴= ;故选:D.3.下列函数中,既是奇函数,又在[0,1]上单调递减的是()A.sin y x =-B.3y x =C.1y x x=+D.||e x y =【答案】A 【解析】【分析】由正弦函数、幂函数、对勾函数性质判断各函数的奇偶性、区间单调性即可.【详解】由sin y x =-定义域为R 且sin()sin x x --=,易知sin y x =-为奇函数,又π[0,1][0,]2⊆,故sin y x =-在[0,1]上递减,A 符合.由3y x =在[0,1]上递增,B 不符合;由1y x x=+定义域为{|0}x x ≠,显然区间[0,1]不满足定义域,C 不符合;由||e x y =定义域为R 且||||e e x x -=,即||e x y =为偶函数,D 不符合;故选:A4.设n S 是等差数列{}n a 的前n 项和,若25815a a a ++=,则9S =()A.15B.30C.45D.60【答案】C 【解析】【分析】根据等差数列的性质求出5a ,再根据等差数列前n 项和公式即可得解.【详解】由题意得2585315a a a a ++==,所以55a =,所以()199599452a a S a +===.故选:C.5.“0a b <<”是“11a b>”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据充分、必要性定义,结合不等式的推出关系判断题设条件间的关系.【详解】由0a b <<,则11a b>成立,充分性成立;由11a b>,若1,1a b ==-,显然0a b <<不成立,必要性不成立;所以“0a b <<”是“11a b>”的充分不必要条件.故选:A6.已知β是第三象限角,则点()cos ,sin 2Q ββ位于()A .第一象限B.第二象限C.第三象限D.第四象限【答案】B 【解析】【分析】根据角所在象限结合二倍角正弦公式即可判断答案.【详解】因为β是第三象限角,故sin 0,cos 0ββ<<,则sin 22sin cos 0βββ=>,故()cos ,sin 2Q ββ在第二象限,故选:B7.执行如图所示的程序框图,若输出的a 的值为17,则输入的最小整数t 的值为()A.9B.12C.14D.16【答案】A 【解析】【分析】根据流程框图代数进行计算即可,当进行第四次循环时发现输出的a 值恰好满足题意,然后停止循环求出t 的值.【详解】第一次循环,2213a =⨯-=,3a t =>不成立;第二次循环,2315a =⨯-=,5a t =>不成立;第三次循环,2519a =⨯-=.9a t =>不成立;第四次循环,29117a =⨯-=,17a t =>,成立,所以917t <≤,输入的最小整数t 的值为9.故选:A8.已知命题p :在ABC 中,若sin sin A B >,则A B >;q :若0a >,则1(1)(1a a++4≥,则下列命题为真命题的是()A.p q ∧B.p q∧⌝ C.p q⌝∧ D.p q⌝∧⌝【答案】A 【解析】【分析】根据条件分别判断命题p ,命题q 的真假,然后结合复合命题的真假关系进行判断即可.【详解】命题p :在ABC 中,若sin sin A B >,由正弦定理得a b >,所以A B >,为真命题,当0a >,对于()111122a a a a ⎛⎫++=++≥+ ⎪⎝⎭,当且仅当1a =时等号成立,所以命题q :若0a >,则1(1)(1)a a++4≥,为真命题,所以p q ∧为真命题,p q ∧⌝假命题,p q ⌝∧假命题,p q ⌝∧⌝假命题,故选:A.9.函数y=2x x e(其中e 为自然对数的底数)的大致图像是()A. B.C. D.【答案】B 【解析】【分析】方法一:排除法,根据函数值的特点,排除即可;方法二:根据导数和函数的单调性即可判断.【详解】方法一:排除法:当0x =时,0y =,排除C ,当0x ≠时,0y >恒成立,排除A 、D ,故选B.方法二:222(2)'x x x xx e x e x x y e e⋅-⋅-==,由'0y > ,可得02x <<,令'0y <,可得0x <或2x >,所以函数在(,0),(2,)-∞+∞上单调递减,在(0,2)上单调递增,所以只有B 符合条件,故选B.【点睛】该题考查的是有关函数图象的识别问题,注意在识别函数图象的过程中,可以从函数的定义域,函数的单调性,函数图象的对称性,函数图象所过的特殊点以及函数值的符号等方面来确定.10.纯电动汽车是以车载电源为动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆,它使用存储在电池中的电来发动.因其对环境影响较小,逐渐成为当今世界的乘用车的发展方向.研究发现电池的容量随放电电流的大小而改变,1898年Peukert 提出铅酸电池的容量C 、放电时间t 和放电电流I 之间关系的经验公式:C I t λ=,其中λ为与蓄电池结构有关的常数(称为Peukert 常数),在电池容量不变的条件下,当放电电流为15A 时,放电时间为30h ;当放电电流为50A 时,放电时间为7.5h ,则该蓄电池的Peukert 常数λ约为()(参考数据:lg20.301≈,lg30.477≈)A.0.82B.1.15C.3.87D.5.5【答案】B 【解析】【分析】根据题意可得31104λ⎪⎝⎭=⎛⎫,再结合对数式与指数式的互化及对数运算即可求解.【详解】根据题意可得1530507.5C C λλ⎧=⨯⎨=⨯⎩,两式相除可得31104λ⎪⎝⎭=⎛⎫,所以31lg lg 104λ=,可得1lg2lg 220.3014 1.153lg 310.4771lg 10λ--⨯==≈=--⎛⎫ ⎪⎝⎭.故选:B.11.已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减,则ω的取值范围是()A.15[,24B.13[,]24C.1(0,]2D.(0,2]【答案】A 【解析】【详解】由题意可得,322,22442k k k Z ππππππωπωπ+≤+<+≤+∈,∴1542,24k k k Z ω+≤≤+∈,0ω> ,1524ω∴≤≤.故A 正确.考点:三角函数单调性.12.设函数()e x f x x -=-,直线y ax b =+是曲线()y f x =的切线,则2a b +的最小值为()A.12e- B.211e-C.212e -D.212e +【答案】C 【解析】【分析】先设切点写出切线方程,再求2a b +的解析式,最后通过求导判断单调性求出最小值.【详解】令()f x 的切点为()000,e xx x --,因为()1e x f x -'=+,所以过切点的切线方程为()()()0000e 1e x xy x x x ----=+-,即()()0001e e 1x xy x x --=+-+,所以()001e e 1xx a b x --⎧=+⎪⎨=-+⎪⎩,所以0002e e 2x x a b x --+=-++,令()e e 2x x g x x --=-++,则()()e e e e 2x x x xg x x x ----'=-+-=-,所以当(),2x ∈-∞时()0g x '<恒成立,此时()g x 单调递减,当()2,x ∈+∞时()0g x '>恒成立,此时()g x 单调递增,所以()()2min 22e g x g -==-,所以()22min 122e 2e a b -+=-=-,故选:C二、填空题:本大题共4小题,每小题5分,共20分.13.已知π4cos sin 65αα⎛⎫--= ⎪⎝⎭,则2πsin 3α⎛⎫+= ⎪⎝⎭__________.【答案】45##0.8【解析】【分析】对已知式子利用三角函数恒等变换公式化简变形可得答案.【详解】由π4cos sin 65αα⎛⎫--= ⎪⎝⎭,得ππ4cos cossin sin sin 665ααα+-=,14cos sin 225αα-=,所以2π2π4sincos cos 335αα+=,所以2π4sin 35α⎛⎫+= ⎪⎝⎭,故答案为:4514.等比数列{}n a 中,144a a +=,3612a a +=,则710a a +=___________.【答案】108【解析】【分析】根据等比数列的性质可得23614a a q a a +=+,求得2q ,继而根据471036()a a q a a +=+求得答案.【详解】由题意等比数列{}n a 中,144a a +=,3612a a +=,设等比数列{}n a 的公比为q ,则236141234a a q a a +===+,故471036()912108a a q a a +=+=⨯=,故答案为:10815.如图,在ABC 中,2AD DB =,P 为CD 上一点,且满足12AP mAC AB =+ ()m R ∈,则m 的值为___________.【答案】14【解析】【分析】12AP mAC AB =+改为向量的终点在同一直线上,再利用共线定理的推论即可得到参数m 的方程,解之即可.【详解】因为12AP mAC AB =+ ,2AD DB =即,32AB AD= 所以1324AP mAC AB mAC AD =+=+ ,又,,C P D 三点共线,所以314m +=,解得14m =.故答案为:14.16.已知函数()y f x =是R 上的奇函数,对任意x R ∈,都有(2)()f x f x -=成立,当12,,1[]0x x ∈,且12x x ≠时,都有1212()()0f x f x x x ->-,有下列命题:①(1)(2)(3)(2019)0f f f f ++++= ;②函数()y f x =图象关于直线5x =-对称;③函数()y f x =在[7,7]-上有5个零点;④函数()y f x =在[5,3]--上为减函数.则以上结论正确的是___________.【答案】①②【解析】【分析】由题意分析()f x 的对称性、单调性、周期性,对结论逐一判断.【详解】根据题意,函数()y f x =是R 上的奇函数,则(0)0f =;由(2)()f x f x -=得()()(11)(11)f x f x --=+-,即(1)(1)f x f x -=+所以1x =是函数()f x 的一条对称轴;又由()f x 为奇函数,则(2)()()f x f x f x -==--,变形可得(2)()f x f x +=-,则有(4)(2)()f x f x f x +=-+=,故函数()f x 是周期为4的周期函数,当[]12,0,1x x ∈,且22x x ≠时,都有1212()()0f x f x x x ->-,则函数()f x 在区间[]0,1上为增函数,又由()y f x =是R 上的奇函数,则()f x 在区间[1,1]-上单调递增;据此分析选项:对于①,(2)()f x f x +=-,则(1)(2)(3)(4)0f f f f +++=,()()()()12320195040(1)(2)(3)0f f f f f f f ++++=⨯+++= ,故①正确;对于②,1x =是函数()f x 的一条对称轴,且函数()f x 是周期为4的周期函数,则5x =是函数()f x 的一条对称轴,又由函数为奇函数,则直线5x =-是函数()y f x =图象的一条对称轴,故②正确;对于③,函数()y f x =在[]7,7-上有7个零点:分别为6-,4-,2-,0,2,4,6,故③错误;对于④,()f x 在区间[1,1]-上为增函数且其周期为4,函数()y f x =在[5,3]--上为增函数,故④错误;故答案为:①②.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.设{}n a 是公差不为0的等差数列,38a =,1311,,a a a 成等比数列.(1)求{}n a 的通项公式:(2)设13n n n b a a +=,求数列{}n b 的前n 项和n S .【答案】(1)31n a n =-(2)364n nS n =+【解析】【分析】(1)设{}n a 的公差为d ,然后根据已知条件列方程可求出1,a d ,从而可求出通项公式,(2)由(1)得13113132n n n b a a n n +==--+,再利用裂项相消法可求得结果.【小问1详解】设{}n a 的公差为d ,因为1311,,a a a 成等比数列,所以23111a a a =⋅又因为38a =,所以()()288288d d =-+,所以230d d -=.因为0d ≠,所以3d =,所以11268a d a +=+=,得12a =,故()23131n a n n =+-=-.【小问2详解】因为()()1331131323132n n n b a a n n n n +===--+-+,所以11111125573132n S n n ⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ -+⎝⎭⎝⎭⎝⎭ 11323264n n n =-=++.18.已知函数()sin()f x A x ωϕ=+π0,0,||2A ωϕ⎛⎫>><⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)将函数()f x 的图象向右平移π3个单位长度,得到()g x 的图象,求函数()y g x =在0,2x π⎡⎤∈⎢⎥⎣⎦上的单调递减区间.【答案】(1)π()23f x x ⎛⎫=+ ⎪⎝⎭(2)5ππ,122⎡⎤⎢⎥⎣⎦【解析】【分析】(1)根据函数图象求出A =πT =,进而得出ω.根据“五点法”,即可求出ϕ的值;(2)先求出π()23g x x ⎛⎫=- ⎪⎝⎭,根据已知得出22333x πππ-≤-≤.结合正弦函数的单调性,解ππ2π2233x ≤-≤,即可得出答案.【小问1详解】由图易知A =,5π262π3πT =-=,所以πT =,2π2π2πT ω===.易知π44T =,故函数()f x 的图象经过点π12M ⎛ ⎝,π212ϕ⎛⎫⨯+= ⎪⎝⎭.又π2ϕ<,∴π3ϕ=.∴π()23f x x ⎛⎫=+ ⎪⎝⎭.【小问2详解】由题意,易知πππ()22333g x x x ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,因为02x π≤≤时,所以22333x πππ-≤-≤.解ππ2π2233x ≤-≤可得,5ππ122x ≤≤,此时π()23g x x ⎛⎫=- ⎪⎝⎭单调递减,故函数()y g x =的单调递减区间为5ππ,122⎡⎤⎢⎥⎣⎦.19.记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin()sin2B C a A B c ++=.(1)求A ;(2)已知3c =,1b =,边BC 上有一点D 满足3ABD ADC S S = ,求AD .【答案】(1)π3A =(2)334AD =【分析】(1)根据三角形内角和定理、诱导公式,结合正弦定理、正弦的二倍角公式进行求解即可;(2)根据三角形面积公式,结合余弦定理进行求解即可.【小问1详解】∵sin()sin2B C a A B c ++=,即sin sin()sin sin 2B C A A B C ++=由正弦定理,有sin sin sin cos 2A A C C =又sin 0C ≠,即有sin cos 2A A =,2sin cos cos 222A A A =,π(0,22A ∈ ,cos 02A ≠,所以1sin 22A =,π26A =,故π3A =.【小问2详解】设BDA α∠=,πADC α∠=-,由(1)知π3A =,在△ABC 中,由余弦定理2222cos a b c bc A =+-,可知21912312BC =+-⨯⨯⨯,∴BC =又3ABD ADC S S = ,可知34BD DC ==,在△ABD 中,2222cos AB BD AD BD AD α=+-⋅⋅,即2639cos 16AD α=+-⋅,在△ACD 中,271cos()16AD πα=+-⋅-,即271cos 162AD AD α=+-⋅,联立解得334AD =.20.已知函数f (x )=x 3+ax 2+bx +c 在x =-23与x =1时都取得极值(1)求a 、b 的值与函数f (x )的单调区间(2)若对[]x 1,2∈-,不等式()2c f x <恒成立,求c 的取值范围.【答案】(1)1,22a b =-=-,单调递增区间为2,3⎛⎫-∞- ⎪⎝⎭和(1,)+∞,单调递减区间为2,13⎛⎫- ⎪⎝⎭;(2)1c <-或2>c【分析】(1)求出函数导数,由题可得203(1)0f f ⎧⎛⎫-=⎪ ⎪⎝⎭⎨⎪='⎩'即可求出,a b ;(2)求出()f x 在[1,2]x ∈-的最大值即可建立关系求解.【详解】(1)32()f x x ax bx c =+++ ,∴()232f x x ax b '=++,()f x 在23x =-与1x =时都取得极值,21240393(1)320f a b f a b ⎧⎛⎫-=-+=⎪ ⎪⎝⎭⎨⎪=++=''⎩∴,解得122a b ⎧=-⎪⎨⎪=-⎩,2()32(32)(1)f x x x x x '∴=--=+-,令()0f x '>可解得23x <-或x 1>;令()0f x '<可解得213x -<<,()f x ∴的单调递增区间为2,3⎛⎫-∞- ⎪⎝⎭和(1,)+∞,单调递减区间为2,13⎛⎫- ⎪⎝⎭;(2)[]321()2,1,22f x x x x c x =--+∈-,由(1)可得当23x =-时,22()27f x c =+为极大值,而(2)2f c =+,所以()()max 22f x f c ==+,要使2()f x c <对[1,2]x ∈-恒成立,则22c c >+,解得1c <-或2>c .21.已知函数()1ln f x x a x x=-+,R a ∈.(1)若()f x 在区间()3,+∞上单调递减,求实数a 的取值范围;(2)若0a >,()f x 存在两个极值点1x ,2x ,证明:()()12122f x f x a x x -<--.【答案】(1)10,3⎛⎤-∞ ⎥⎝⎦(2)证明见解析【解析】【分析】(1)由题意可得221()0x ax f x x-+'=-≤在()3,+∞上恒成立,转化为1a x x ≤+在()3,+∞上恒成立,构造函数()1h x x x=+,利用导数可求出其最小值,(2)由(1)知:1x ,2x 满足210x ax -+=,121=x x ,不妨设120x x <<,则21x >,则()()12212222ln 21f x f x x a x x x x --=-+--,所以只需证22212ln 0x x x -+<成立,构造函数()12ln g x x x x =-+,利用求出其出其最大值小于零即可.【小问1详解】∵()222111a x ax f x x x x-+'=--+=-,又()f x 在区间()3,+∞上单调递减,∴221()0x ax f x x-+'=-≤在()3,+∞上恒成立,即210x ax -+≥在()3,+∞上恒成立,∴1a x x ≤+在()3,+∞上恒成立;设()1h x x x =+,则()211h x x '=-,当3x >时,()0h x '>,∴()h x 单调递增,∴()()1033h x h >=,∴103a ≤,即实数a 的取值范围是10,3⎛⎤-∞ ⎥⎝⎦.【小问2详解】由(1)知:1x ,2x 满足210x ax -+=.∴121=x x ,不妨设120x x <<,则21x >.∴()()12121221212121222ln ln ln ln 2ln 11221f x f x x x x x x a a a x x x x x x x x x x ----=--+=--=-+----,则要证()()12122f x f x a x x -<--,即证2222ln 1x a a x x -<-,即证22212ln x x x <-,也即证22212ln 0x x x -+<成立.设函数()12ln g x x x x =-+,则()()22211210x g x x x x-'=--+=-<,∴()g x 在()0,∞+单调递减,又()10g =.∴当()1,x ∈+∞时,()0g x <,∴22212ln 0x x x -+<,即()()12122f x f x a x x -<--.【点睛】关键点点睛:此题考查导数的综合应用,考查利用导数求函数的单调性,考查利用导数证明不等式,解(2)问解题的关键是根据题意将问题转化为证22212ln 0x x x -+<成立,构造函数()12ln g x x x x=-+,利用导数求出其最值即可,考查数学转化思想,属于较难题.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题记分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,曲线1C的参数方程为sin x y αα⎧=⎪⎨=⎪⎩(α为参数),以坐标原点为极点,以x 轴正半轴为极轴,建立极坐标系,曲线2C的极坐标方程为sin()4ρθπ+=.(1)写出1C 的普通方程和2C 的直角坐标方程;(2)设点P 在1C 上,点Q 在2C 上,求PQ 的最小值以及此时P 的直角坐标.【答案】(1)1C :2213x y +=,2C :40x y +-=;(2)min PQ =,此时31(,)22P .【解析】【详解】试题分析:(1)1C 的普通方程为2213x y +=,2C 的直角坐标方程为40x y +-=;(2)由题意,可设点P 的直角坐标为,sin )αα⇒P 到2C 的距离π()sin()2|3d αα==+-⇒当且仅当π2π()6k k α=+∈Z 时,()d α,此时P 的直角坐标为31(,22.试题解析:(1)1C 的普通方程为2213x y +=,2C 的直角坐标方程为40x y +-=.(2)由题意,可设点P 的直角坐标为,sin )αα,因为2C 是直线,所以||PQ 的最小值即为P 到2C的距离()d α的最小值,π()sin()2|3d αα==+-.当且仅当π2π()6k k α=+∈Z 时,()d α,此时P 的直角坐标为31(,)22.考点:坐标系与参数方程.【方法点睛】参数方程与普通方程的互化:把参数方程化为普通方程,需要根据其结构特征,选取适当的消参方法,常见的消参方法有:代入消参法;加减消参法;平方和(差)消参法;乘法消参法;混合消参法等.把曲线C 的普通方程0(),F x y =化为参数方程的关键:一是适当选取参数;二是确保互化前后方程的等价性.注意方程中的参数的变化范围.[选修4-5:不等式选讲]23.已知函数()212f x x x =--+.(1)求不等式()3f x ≥的解集;(2)若关于x 的不等式()23f x t t ≥-在[]0,1上无解,求实数t 的取值范围.【答案】(1)[)4,6,3⎛⎤-∞-⋃+∞ ⎥⎝⎦;(2)3535,22⎛⎛⎫-+-∞⋃+∞ ⎪ ⎪⎝⎭⎝⎭.【解析】【详解】试题分析:(1)将()f x 的表达式以分段函数的形式写出,将原题转化为求不等式组的问题,最后对各个解集求并集得出原不等式的解集;(2)()23f x t t ≥-在[]0,1上无解相当于()2max 3f x t t <-,从而得到关于的一元二次不等式,解得t 的范围.试题解析:(1)由题意得()13,21{31,223,2x x f x x x x x -≥=---≤≤-<-.则原不等式转化为1{233x x ≥-≥或12{2313x x -≤<--≥或2{33x x <--≥.∴原不等式的解集为][4,6,3⎛⎫-∞-⋃+∞ ⎪⎝⎭.(2)由题得()2max 3f x t t <-,由(1)知,()f x 在[]0,1上的最大值为1-,即()2max 13f x t t =-<-,。
绵阳市南山中学2021届高三数学(文)上学期一诊考试卷附答案详析

20.解:(1) f (x) x ln x , f (x) 1 1 , x (0 , ) x
f (x) 在 (0 ,1) 上单调递减,在 (1, ) 上单调递增,有极小值 f (1) 1 ,无极大值……4 分 (2) f (x) x ln x ≥ (1 m)x m 即 ln x m(x 1) ≤ 0 . 记 h(x) ln x m(x 1) ,则 h(x) ≤ 0 对任意 x (0 , ) 恒成立,……………………….5 分 求导得 h(x) 1 m ( x 0 )
an
的公比为
q. 因为
2a2
,
5 2
a3
,
4a3
成等差数列,
所以
2
5 2
a3
=2a2
4a3.
所以 2a2 a3.
所以 q 2.
…………………………… 2 分
因为等比数列an 前 4 项和 S4
15 ,所以 4
所以 a1
1. 4
………………………4 分
所以
an
1 4
2n1
2n3.
…………………….……6 分
(1)求 a 的值; (2)若 f (x) f (x) | k | 存在实数解,求实数 k 的取值范围.
3
3
文科数学答案
一、选择题:
题号 1
2
3
4
5
6
7
8
9
10 11 12
答案 D
D
C
D
B
A
B
D
B
A
C
D
二、填空题
1
13.
14. - 1
2
2
15. 5 16. x | x 1或x 0 5
四川省绵阳南山中学2021届高三数学上学期一诊热身考试试题 文

四川省绵阳南山中学2021届高三数学上学期一诊热身考试试题 文第Ⅰ卷(选择题 满分60分)一.选择题(本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一个是符合题目要求的。
)1.设集合M ={x |x 2=x },N ={x |lg x ≤0},则M ∪N =A .[0,1]B .(0,1]C .[0,1)D .(-∞,1] 2.已知点A (0,1),B (3,2),向量AC →=(-4,-3),则向量BC →=A .(-7,-4)B .(7,4)C .(-1,4)D .(1,4) 3.已知),(23ππα∈,54cos -=α,则=-)4tan(απA .7 B.17 C .-17 D .-74.若a ,b ,c 为实数,则下列命题中正确的是 A .若a >b ,则ac 2>bc2B .若a <b ,则a +c <b +cC .若a <b ,则ac <bcD .若a <b ,则1a >1b5.设a ,b ,c 是非零向量.....已知命题p :若a ·b =0,b ·c =0,则a ·c =0;命题q :若a ∥b ,b ∥c ,则a ∥c .则下列命题中真命题是A .p ∨qB .p ∧qC .(⌝p )∧(⌝q )D .p ∨(⌝q )6. 《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女子善织,日益功,疾,初日织五尺,今一月织九匹三丈(1匹=40尺,一丈=10尺),问日益几何?”其意思为:“有一女子擅长织布,每天比前一天更加用功,织布的速度也越来越快,从第二天起,每天比前一天多织相同量的布,第一天织5尺,一月织了九匹三丈,问每天增加多少尺布?”若一个月按31天算,记该女子一个月中的第n 天所织布的尺数为n a ,则132931242830a a a a a a a a ++⋅⋅⋅++++⋅⋅⋅++的值为A.165 B. 1615 C. 1629 D. 16317.已知函数||()e cos x f x x =+,若(21)()f x f x -≥,则实数x 的取值范围为A .1(,][1,)3-∞+∞B .1,13⎡⎤⎢⎥⎣⎦C .1(,]2-∞D .1[,)2+∞8.已知正项等比数列{}n a 的公比为3,若229a a a n m =⋅,则nm 212+的最小值等于 A.1 B.21 C.43 D.23 9.已知f(x)=Asin(ωx+φ)在一个周期内的图象如图所示,则y=f(x)的图象可由函数y=cos x 的图象(纵坐标不变)如何变换得到A.先把各点的横坐标缩短到原来的21,再向左平移6π个单位 B.先把各点的横坐标缩短到原来的21,再向右平移12π个单位C.先把各点的横坐标伸长到原来的2倍,再向左平移6π个单位D.先把各点的横坐标伸长到原来的2倍,再向左平移12π个单位 10.已知函数f (x )=12x 3+ax +4,则“a >0”是“f (x )在R 上单调递增”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件11.定义在R 上的函数f (x )满足:)()(x f x f >'恒成立,若21x x <,则)(21x f e x ⋅与)(12x f e x⋅的大小关系为 A .e x1f (x 2) >()21e x f x B .e x1f (x 2) <()21e x f xC .e x 1f (x 2)=()21e x f xD .e x1f (x 2)与()21e x f x 的大小关系不确定12.已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是 A.(2,+∞) B.(1,+∞) C.(-∞,-2) D.(-∞,-1)第Ⅱ卷 (非选择题 满分90分)二.填空题(本大题共4个小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11.“ ”是“ ”的
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要
12.设函数 的极大值是 ,则
A. B. C. D.
二、填空题
13.已知变量x,y满足约束条件 ,则 的最大值是______.
14.若函数 的图象在点 处的切线平行于x轴,则 ______.
综上可知,当 时,则 成立,故选B.
【点睛】
本题主要考查了利用不等式的性质比较大小问题,其中解答中分类讨论,合理去掉绝对值号是解答本题的关键,着重考查了推理与运算能力,属于基础题.
5.D
【分析】
根据题意,先判定命题 为假命题, 为真命题,再由复合命题的真值表,即可得到答案.
【详解】
由题意,因为 ,所以 ,所以命题 ,使得 为假命题;又由指数函数的性质,可知命题命题 , 为真命题,所以 是假命题, 是假命题, 为假命题, 为真命题,故选D.
23.已知函数 .
(1)当 时,解不等式 ;
(2)若关于 的不等式 的解集包含 ,求 的取值范围.
参考答案
1.B
【分析】
先求得集合 中函数的值域,然后求两个集合的交集.
【详解】
解: 集合 0,1, ,集合 , .故选B.
【点睛】
本小题主要考查集合的交集的概念及运算,考查指数函数的值域的求法,属于基础题.
2.A
【分析】
根据 即可得出 ,进行数量积的坐标运算即可求出x的值.
【详解】
解:∵ ;
∴ ;
∴x=2.
故选A.
【点睛】
本题考查向量垂直的充要条件,以及向量数量积的坐标运算.
3.A
【解析】
【分析】
根据三角函数的定义,求得 ,再由正弦的倍角公式,即可求解.
【详解】
由题意,点 是角 的终边上一点,
根据三角函数的定义,可得 ,
则 ,故选A.
【点睛】
本题主要考查了三角函数的定义和正弦的倍角公式的化简、求值,其中解答中根据三角函数的定义和正弦的倍角公式,准确化简、计算是解答的关键,着重考查了推理与运算能力,属于基础题.
4.B
【解析】
【分析】
由题意,由 ,当 时, ,当 时, ,即可求解,得到答案.
【详解】
由题意,由 ,当 时, ,当 时, ,
求 的解析式;
求 在 上的单调递减区间及值域.
19.在 中,a,b,c分别是角A,B,C所对的边,且 .
求 的值;
若 ,当角A最大时,求 的面积.
20.已知函数 ,曲线 在 处的切线是 ,且 是函数 的一个极值点.
求实数a,b,c的值;
若函数 在区间 上存在最大值,求实数m的取值范围.
21.已知函数 .
【点睛】
本题主要考查了复合命题的真假判定及应用,其中解答中根据题意,正确判定命题 为假命题, 为真命题,再利用复合命题的真值表判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.
6.C
【解析】
试题分析:将此问题转化为等差数列的问题,首项为 , ,求公差, ,解得: 尺,故选C.
考点:等差数列
讨论函数 的单调性;
若关于x的方程 有唯一解 ,且 , ,求n的值.
22.在平面直角坐标系xOy中,直线l的参数方程为 为参数 ,以坐标原点O为极点,以x轴正半轴为极轴的极坐标系中,曲线C的极坐标方程为 .
求直线l的普通方程及曲线C的直角坐标方程;
若直线l与曲线C交于A,B两点,求线段AB的中点P到坐标原点O的距离.
A. 尺B. 尺C. 尺D. 尺
7.若函数 ,则不等式 的解集是( )
A. B. C. D.
8.已知 , ,且 x, , y成等比数列,则xy有
A.最小值10B.最小值 C.最大值10D.最大值
9.已知点A,B,C在函数 的图象上,如图,若 ,则
A.1B. C. D.
10.若函数 在定义域上是增函数,则实数a的取值范围是
【详解】
由题意点 在函数 的图像上,且 ,
设函数 的最小正周期为 ,则 ,
所以 ,
在直角 中,得 ,即 ,解得 ,
又由 ,即 ,故选D.
【点睛】
15.已知函数 ,若 ,则 ______.
16.已知矩形ABCD的边长 , ,点P,Q分别在边BC,CD上,且 ,则 的最小值为______.
三、解答题
17.已知等差数列 的公差大于0,且 , , , 分别是等比数列 的前三项.
求数列 的通项公式;
记数列 的前n项和 ,若 ,求n的取值范围.
18.已知函数 ,将函数 的图象向右平移 个单位,再向下平移2个单位,得到函数 的图象.
8.B
【分析】
本题可以先通过 成等比数列得出 ,再利用基本不等式得出 ,最后利用对数运算法则得出结果.
【详解】
因为 成等比数列,
所以 ,
因为 ,
所以
即 ,当且仅当 时取 号,故选B.
【点睛】
等比数列有等比中项:如果有 成等比数列,则有
9.D
【分析】
设函数 的最小正周期为 ,则 ,在直角 中,由 ,得 ,解得 ,即可求解.
A. B. C. D.
4.若 ,且 ,则( )
A. B. C. D.
5.已知命题 ,使得 ;命题 , ,则下列命题为真命题的是( )
A. B. C. D.
6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女子善织,日益功,疾,初日织五尺,今一月织九匹三丈(1匹=40尺,一丈=10尺),问日益几何?”其意思为:“有一女子擅长织布,每天比前一天更加用功,织布的速度也越来越快,从第二天起,每天比前一天多织相同量的布,第一天织5尺,一月织了九匹三丈,问每天增加多少尺布?”若一个月按30天算,则每天增加量为
【市级联考】四川省绵阳市2019届高三一诊数学(文科)试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.设集合 0,1, ,集合 ,则
A. B. C. 1, D.
2.向量 =( )
A.2B. C.1D.
3.若点 是角 的终边上一点,则 ( )
7.B
【分析】
根据函数的解析式,分类讨论,根据对数函数的性质,即可求解不等式的解集,得到答案.
【详解】
由函数 ,
可知,当 时,令 ,解得 ;
当 时,令 ,即 ,解得 ,
所以不等式 的解集 .
【点睛】
本题主要考查了分段函数的应用问题,其中解答中根据函数的解析式,分类讨论和利用对数函数的图象与性质求解是解答的关键,着重考查了分类讨论思想的应用,以及推理与运算能力,属于基础题.