第九章第三代厌氧生物处理技术课时
污水处理三代厌氧生物反应器
污水处理三代厌氧生物反应器一、引言随着社会经济的发展和城市化进程的加快,污水处理成为环境保护和可持续发展的重要环节。
厌氧生物反应器作为污水处理的重要技术之一,经历了第一代、第二代和第三代的发展,其中第三代厌氧生物反应器在处理复杂有机废水方面表现出卓越的性能。
本文将详细介绍第三代厌氧生物反应器的技术原理、特点及实际应用案例,为相关领域的研究和应用提供参考。
二、三代厌氧生物反应器的技术发展第一代厌氧生物反应器第一代厌氧生物反应器主要采用传统升流式厌氧消化池,具有结构简单、易维护等优点。
但存在处理效率低、占地面积大等缺点,已逐渐被淘汰。
第二代厌氧生物反应器第二代厌氧生物反应器是在第一代基础上发展而来的高效厌氧反应器,通过改变反应器的结构或运行方式,提高反应器的容积负荷和产气率。
代表技术包括:升流式厌氧污泥床(UASB)、厌氧膨胀颗粒污泥床(EGSB)和内循环厌氧反应器(IC)等。
第三代厌氧生物反应器第三代厌氧生物反应器是在第二代基础上进一步优化升级的新型反应器,具有更高的处理效率、更低的能耗和更好的抗负荷冲击能力。
代表技术包括:膜分离厌氧反应器(MABR)、升流式固体厌氧反应器(USR)和超级厌氧反应器(SUFR)等。
三、第三代厌氧生物反应器的技术特点1.高处理效率:第三代厌氧生物反应器采用新型的微生物种群结构和运行模式,具有更高的有机物去除率和产气率。
2.适应性强:第三代厌氧生物反应器能够适应不同种类和浓度的有机废水,具有较强的抗负荷冲击能力。
3.能耗低:第三代厌氧生物反应器采用新型的能量回收和利用技术,降低了能耗。
4.自动化程度高:第三代厌氧生物反应器采用先进的自动化控制技术,减少了人工操作和维护工作量。
5.占地面积小:第三代厌氧生物反应器采用紧凑型设计,占地面积小,适合城市污水处理等空间有限的场所。
四、第三代厌氧生物反应器的实际应用案例1.城市污水处理厂:某城市污水处理厂采用第三代厌氧生物反应器技术进行改造,实现了高效去除有机物、降低能耗和减少占地面积的目标。
厌氧处理原理培训课件
厌氧菌群的特点及分类
特点 分类
酸耐性强、对有机物分解有较高的能力 包括酸性厌氧菌、甲烷厌氧菌等不同类型
厌氧反应器的结构与类型
结构
包括进料口、反应池、气体收集系统和出水口等组 成部分。
类型
有截流式、全流式、连续搅拌式等不同类型的厌氧 反应器。
氧处理的工艺流程
1
厌氧处理
厌氧处理原理概述
有机物分解
厌氧菌群分解有机废物产生 沼气和沉积物。
沼气产生
厌氧发酵过程中产生的气体, 可用于发电和取暖。
沉积物处理
形成的污泥可以进一步处理 和回收。
厌氧处理的应用范围
工业废水处理
适用于各种工业废水的处理,如化工、制药、食品 等。
城市污水处理
可用于城市污水管网入口处的预处理。
农业废水处理
2
将预处理的污水引入厌氧反应器,进行
有机废物分解。
3
进水污水处理预处理污水ຫໍສະໝຸດ 去除悬浮物和固体颗粒。常规处理
将厌氧处理的污水经过进一步的好氧处 理,净化水质。
厌氧处理的参数控制
1 温度
通过控制反应器温度,调节菌群活性。
2 pH值
保持适宜的pH范围,维持菌群的稳定和反应效果。
3 进水COD浓度
控制COD浓度,避免过高浓度的废水冲击反应器。
进出口水质监测与控制
进口水质
定期监测进水COD、BOD等参数,避免过高浓度的 废水冲击反应器。
出口水质
对出水COD、BOD等指标进行监测和控制,确保排 放达到环保要求。
厌氧处理的优缺点
优点
能量回收,产生的沼气可用于发电和取暖。
缺点
对污水负荷波动敏感,适用范围相对较窄。
厌氧生物处理
作者:张欣
一、厌氧生物处理法的定义
厌氧生物处理又称为厌氧消化、厌氧 发酵,是指在没有游离氧的条件下由多种 厌氧或兼性厌氧微生物的共同作用,使有 机物分解并产生CH4和CO2的过程。
二、厌氧生物处理的特点
• ①不需要另加氧元源,运行费用低; • ②剩余污泥少; • ③可回收能源—甲烷; • ④反应速度较慢,反应时间长; • ⑤处理构筑物容积大。一般可用于对有
(2)升流式厌氧污泥床(UASB)
• 该工艺由于具有厌氧过滤及厌氧活性污 泥法的双重特点,作为能够将污水中的 污染物转化成再生清洁能源——沼气的 一项技术。对于不同含固量污水的适应 性也强,且其结构、运行操作维护管理 相对简单,造价也相对较低,技术已经 成熟,正日益受到污水处理业界的重视 ,得到广泛的欢迎和应用。
4.3第三代厌氧反应器
厌氧颗粒污泥膨胀床(EGSB) 厌氧内循环(IC) 上流污泥床过滤器( UBF) 厌氧序批反应器(ASBR) 折流式厌氧反应器(ABR) 厌氧迁移式污泥床反应器(AMBR) 上流式分段污泥床(USSB)
• ①厌氧颗粒污泥膨胀床( EGSB)
EGSB 与UASB 反应器的不同之处仅仅在 于运行方式。上流速度高达2. 5~6. 0 m/ h ,远 远大于UASB 反应器中采用的约0. 5~2. 5 m/ h 的上流速度。因此,在EGSB 反应器内颗粒污泥 床处于“膨胀状态”,而且在高的上流速度和产 气的搅拌作用下,废水与颗粒污泥间的接触更充 分,水力停留时间更短,从而可大大提高反应器的 有机负荷和处理效率。
UASB的工作原理 :
• UASB由污泥反应区、气液固三相分离器 (包括沉淀区)和气室三部分组成。在 底部反应区内存留大量厌氧污泥,具有 良好的沉淀性能和凝聚性能的污泥在下 部形成污泥层。要处理的污水从厌氧污 泥床底部流入与污泥层中与污泥进行混 合接触,污泥中的微生物分解污水中的 有机物,把它转化为沼气。
厌氧生物处理
(2)升流式厌氧污泥床(UASB) • 该工艺由于具有厌氧过滤及厌氧活性污 泥法的双重特点,作为能够将污水中的 污染物转化成再生清洁能源——沼气的 一项技术。对于不同含固量污水的适应 性也强,且其结构、运行操作维护管理 相对简单,造价也相对较低,技术已经 成熟,正日益受到污水处理业界的重视 ,得到广泛的欢迎和应用。
ABR反应器示意图
⑥厌氧迁移式污泥床反应器(AMBR)
• AMBR工艺类似ABR工艺,在每个隔室里增加了机 械搅拌,通过周期性改变进出水的方向来保持大 量的污泥,使每个上流式污泥床保持一致。有实 验证明,AMBR处理工艺在15℃和20℃时处理脱 脂牛奶,水力停留时间4~12h,有机负荷为 1·0~3·0kgCOD/m3·d,在更高COD负荷,在15℃时 COD的去除率为59%;在20℃时,COD负荷为1·0~2·0 kg COD/m3·d COD的去除率为80~95%。
注:(a)EGSB; (b)IC; ©UFB 第三代反应器结构示意图
④ASBR反应器
• ASBR法的主要特征是以序批式间歇的方 式运行,通常由一个或几个ASBR反应器组 成.运行时,废水分批进入反应器,与其中的 厌氧颗粒污泥发生生化反应,直到净化后 的上清液排出,完成一个运行期。ASBR法 一个完整的运行操作周期按次序应分为四 个阶段:进水期、反应期、沉降期和排水 期,如下图所示:
五、现代厌氧反应器技术的发展方向
5.1 两相或多级厌氧处理技术
第三代厌氧反应器特点比较
• 厌氧反应器的处理效率主要决定于反应器所能保有的 微生物浓度及其生化反应速率,而传质条件对生化反应 速率起着重要的作用。针对这些因素,新一代的反应 器具有一些共同的特性: • 1)微生物均以颗粒污泥固定化的方式存在于反应器中, 单位容积达微生物持有量更高; • 2)能承受更高的水力负荷,具有较高的有机污染物净化 效能; • 3)具有较大的高径比,占地面积小,动力消耗小; • 4)颗粒污泥与有机物之间具有更好的传质,使反应器的 处理能力大大提高. • 他们也具有各自的特点,也有各自的不足,具体见下 表:
污水处理-厌氧生物处理方法
2、气化阶段: 有机酸、醇、醛等中间产物在甲烷菌的作用下转化为生物气,也可称消化气,主体是CH4,因此气化阶段常称甲烷化阶段。该阶段除产生CH4外,还产生CO2和微量H2S。
1)厌氧生物处理的早期目的和过程
液化阶段: 兼性厌氧菌作用,大量氢产生,也称氢发酵阶段,有机酸大量积累,pH迅速下降,污泥带有粘性,呈灰黄色,并发出恶臭,污泥称为酸性发酵污泥。 气化阶段: 专性厌氧菌作用,需隔绝光和空气,最佳pH值7.2-7.5,有机酸浓度不超过2000mg/L,最佳50-500mg/L, 碱度不应超过5000mg/L,最佳2000-3000mg/L 污泥呈黑色,稳定不易腐化,无甚恶臭,易于脱水,这种污泥成为熟污泥或消化污泥。
早期的厌氧处理研究主要针对污泥消化,即将污泥中的固态有机物降解为液态和气态的物质。 污泥的消化过程明显分为两个阶段:固态有机物先液化,称液化阶段;接着降解产物气化,称气化阶段;整个过程历时半年以上。
1)厌氧生物处理的早期目的和过程
1、液化阶段 最显著的特征是液态污泥的PH值迅速下降,不到10天,降到最低值(例如在室温下,露在空气中的食物几天内就变馊发酸),所以又称酸化阶段。 污泥中的固态有机物如淀粉、纤维素、油脂、蛋白质等,在无氧环境中降解时,转化为有机酸、醇、醛、水分子等液态产物和C02、H2、NH3、H2S等气体分子。由于转化产物中有机酸是主体,所以导致PH值下降。 又由于产生的NH3溶解于水后产生的NH4OH具有碱性,产生中和反应并经过长时间的过程后使PH值回升,并进入气化阶段。
2、酸碱度、pH值
三、厌氧消化的影响因素与控制要求
厌氧装置适宜在中性或稍偏碱性的状态下运行。最适pH值为7.0~7.2,pH6.6~7.4较为适宜。 pH值和温度是影响甲烷细菌生长的两个重要环境因素。 影响微生物对营养物的吸收; pH强烈地影响酶的活性,进而影响微生物细胞内的生物化学过程。
厌氧生物处理ppt基本介绍-PPT文档资料
超高
三相分离区
反应区
布水区
UASB布置结果示意图
厌氧生物处理——主要构筑物及工艺
六、厌氧流化床反应器 厌氧流化床反应器的内部充填着粒径很小 (d=0.5mm左右)的挂膜介质,当其表面长满微生 物时,称为生物颗粒。 在上升水流速度很小时,生物颗粒相互接触,形成固定 床。借助循环管增大(即图9-6中回流用水泵及流量计 控制)反应器内的上升流速,可使生物颗粒开始脱离 接触,并呈悬浮状态。当继续增大流速至污泥床的膨 胀率达10~20%时,生物颗粒便呈流化态。
厌氧生物处理——主要构筑物及工艺
一、早期用于处理废水的厌氧消化构筑物是化粪池和双层 沉淀池。 化粪池是一个矩形密闭的池子,用隔墙分为两室或三室, 各室之间用水下连接管接通。废水由一端进入,通过 各室后由另一端排出。悬浮物沉于池底后进行缓慢的 厌氧发酵。各室的顶盖上设有人孔,可定期(数月) 将消化后的污泥挖出,供作农肥。这种处理构筑物通 常设于独立的居住或公共建筑物的下水管道上,用于 初步处理粪便废水。
菌
群 甲烷发酵
发酵细菌
甲烷细菌
发酵工艺 酸发酵 ——
厌氧生物处理——原理
二、发酵的控制条件 (以下重点讨论甲烷发酵的控制条件。) (一)营养与环境条件 废水、污泥及废料中的有机物种类繁多,只要未达到抑 制浓度,都可连续进行厌氧生物处理。对生物可降解 性有机物的浓度并无严格限制,但若浓度太低,比耗 热量高,经济上不合算;水力停留时间短,生物污泥 易流失,难以实现稳定的运行。一般要求COD大于 1000mg/L。 COD∶N∶P=200∶5∶1
当有机物负荷率很高时,由于供给产酸菌的食物相当充分, 致使作为其代谢产物的有机物酸产量很大,超过了甲烷 细菌的吸收利用能力,导致有机酸在消化液中的积累和 pH值(以下均指大气压条件下的实测值)下降,其结 果是使消化液显酸性(pH<7)。这种在酸性条件下进 行的厌氧消化过程称为酸性发酵状态,它是一种低效而 又不稳定的发酵状态,应尽量避免。
厌氧生物处理过程教学课件(共7张PPT)
2
成 CO 。 厌氧生物处理过程
分项目3:生物处理生活污水
2
职业教育环境监测与治理技术专业教学资源库
《水 污 染 控 制》
厌氧生物处理过程
第三阶段为产甲烷阶段。产甲烷细菌将乙酸、乙酸盐、
CO2 和 H2 等转化为甲烷。
此过程由两组生理上不同的产甲烷完成,一组把氢和二氧化 碳转化成甲烷,另一组从乙酸或乙酸盐脱羧产生甲烷。
分产项甲目 烷3细:菌生将物乙处酸理、生乙活渗酸污盐水入、C细O2胞和 H体2 等内转化,为甲分烷解。 产生挥发性有机酸、醇、醛类等。这个阶
第三阶段为产甲烷阶段。
产甲烷细菌将乙酸、乙段酸盐主、C要O2产和 H生2 等较转化高为甲级烷脂。 肪酸。
受氢体为化合态的氧、碳、硫、氢等
职业教育环境监测与治理技术专业教学资源库
❉ 中、低浓度有机废水
❉
受氢体为化合态ห้องสมุดไป่ตู้ 氧、碳、硫、氢等
职业教育环境监测与治理技术专业教学资源库
《水 污 染 控 制》
厌氧生物处理过程
厌氧微生物降解有机物的过程示意图
职业教育环境监测与治理技术专业教学资源库
《水 污 染 控 制》
厌氧生物处理过程
第三阶段为产甲烷阶段。 厌氧生物处理过程 厌氧微生物降解有机物的过程示意图 厌氧生物处理过程 第一阶段为水解酸化阶段。
酸细菌的作用下,第一阶段产生的各种有机酸 第二阶段为产氢产乙酸阶段。
产甲烷细菌将乙酸、乙酸盐、CO2 和 H2 等转化为甲烷。
第一阶段为水解酸化阶段。
被分解转化成乙酸和 H ,在降解有机酸时还形 产甲烷细菌将乙酸、乙酸盐、CO2 和 H2 等转化为甲烷。
受氢体为化合态的氧、碳、硫、氢等 厌氧微生物降解有机物的过程示意图
厌氧生物处理ppt
微生物种群的影响
厌氧生物处理中的微生物种群是影响 处理效果的重要因素之一。厌氧生物 处理中的微生物种群包括产酸菌、产 甲烷菌等,这些微生物在适宜的环境 条件下协同作用,完成有机物的分解 和沼气的生成。
VS
微生物种群的影响因素包括温度、 pH值、有机负荷率、营养物质等。 在实际操作中,需要控制这些因素, 以保证微生物种群的适宜生长和代谢, 从而提高厌氧生物处理的效果。同时, 还需要注意防止有毒物质的进入,以 避免对微生物种群产生不利影响。
厌氧消化阶段
酸化反应
在厌氧条件下,废水中的复杂有机物被厌氧微生物转化为挥发性 脂肪酸等易降解物质。
产氢产乙酸反应
部分有机物被转化为氢气和乙酸,为甲烷菌提供营养物质。
甲烷化反应
甲烷菌将氢气和乙酸转化为甲烷气体,释放能量并合成细胞物质。
后处理阶段
沉淀
去除经过厌氧处理后废水中的悬浮物和生物污泥。
过滤
通过砂滤池、活性炭过滤等手段进一步去除废水 中的微量有机物、重金属等有害物质。
它通过厌氧微生物的代谢作用,将有 机物转化为甲烷、二氧化碳等无机物。
厌氧生物处理和醇类物质。
产氢产乙酸阶段
02
小分子有机物进一步转化为乙酸和氢气。
甲烷化阶段
03
乙酸和氢气被转化为甲烷。
厌氧生物处理的应用领域
01
废水处理
厌氧生物处理广泛应用于城市污 水、工业废水、高浓度有机废水 等处理领域。
厌氧活性污泥法
厌氧活性污泥法是一种利用活性污泥去除废水中的有机物 和氮、磷等营养物质的技术。
厌氧活性污泥法的原理是利用活性污泥中的微生物将废水 中的有机物转化为沼气和二氧化碳,同时将氮、磷等营养 物质转化为细胞物质或沉淀物。
厌氧生物处理
2. 搅拌与不搅拌:产气量增加30% 3. 方法:泵+水射器 消化气 循环混合搅拌法 4. 接触的作用:提高传质速率,厌氧污泥与介质间的 液膜厚度,布水系统。
生物固体停留时间(污泥龄)与负荷
1. 停留时间 θc=Mr/Фe
其中:Mr-- 消化池内总生物量 Фe=Me/t --消化池每日排出的生物量; Me---排出的生物总量, t---排泥时间
3.产甲烷阶段:最后两组生理不同的产甲烷菌,有共同的产
物4H2+CO2→CH4+2H2O (1/3)CO2还原
2CH3COOH→2CH4+2CO2
(2/3)乙酸脱羧
4%
复杂有机物
76%
水解与发酵
24%
较高级有机酸 52%
20%
生成乙酸与脱氢
H2 乙酸
28%
CH4
72% 生成甲烷
最新观点--四阶段厌氧生物代谢过程
过程。
厌氧生物处理后面常常要连接好氧生物处理
最早的厌氧生物处理
13.1.1 厌氧生物处理的发展
处理法最早用于处理城市污水处理厂的沉淀污泥,后来 用于处理高浓度有机废水。普通厌氧生物处理法的主要缺 点是水力停留时间长,一般需要20~30d。
发展的厌氧生物处理
进入上世纪50、60年代,特别是70年代的中后期,随着世 界范围的能源危机的加剧,人们对利用厌氧消化过程处理有 机废水的研究得以强化,相继出现了一批被称为现代高速厌 氧消化反应器的处理工艺,从此厌氧消化工艺开始大规模地 应用于废水处理,真正成为一种可以与好氧
13.2.6 其他厌氧生物处理过程
硫酸盐还原过程: 又叫硫酸盐呼吸或反硫化作用
1.定义:在厌氧条件下,化能异养型硫酸菌还原细菌利 用废水中的有机物作为电子供体,将氧化态硫化物还原为 硫化物的过程 2.硫酸盐在处理中的危害: (1)与产甲烷菌竞争底物,一直产甲烷菌的生成。 (2) H2S对产甲烷菌和其他厌氧细菌抑制。影响沼气产 量和利用。
厌氧生物处理过程教学课件优秀文档
这个阶段主要产生较高级脂肪酸。 受氢体为化合态的氧、碳、硫、氢等
的氧、碳、硫、
氢等
职业教育环境监测与治理技术专业教学资源库
《水 污 染 控 制》
厌氧生物处理过程
厌氧微生物降解有机物的过程示意图
感谢观看
职业教育环境监测与治理技术专业教学资源库
《水 污 染 控 制》
厌氧生物处理过程
第一阶段为水解酸化阶段。复杂的大分子、不 溶性有机物先在细胞外酶的作用下水解为小分子、 溶解性有机物,然后渗入细胞体内,分解产生挥发 性有机酸、醇、醛类等。这个阶段主要产生较高级 脂肪酸。
职业教育环境监测与治理技术专业教学资源库
职业教育环境监测与治理技术专业教学资源库
《水 污 染 控 制》
水污染控制
职业教育环境监测与治理技术专业教学资源库
《水 污 Hale Waihona Puke 控 制》项目一:生活污水处理
分项目3:生物处理生活污水 厌氧生物处理过程
职业教育环境监测与治理技术专业教学资源库
《水 污 染 控 制》
厌氧生物处理 产甲烷细菌将乙酸、乙酸盐、CO2 和 H2 等转化为甲烷。
《水 污 染 控 制》
厌氧生物处理过程
第二阶段为产氢产乙酸阶段。在产氢产 乙酸细菌的作用下,第一阶段产生的各种有 机酸被分解转化成乙酸和 H2 ,在降解有机 酸时还形成 CO2 。
职业教育环境监测与治理技术专业教学资源库
《水 污 染 控 制》
厌氧生物处理过程
第三阶段为产甲烷阶段。产甲烷细菌将乙酸、 乙酸盐、CO2 和 H2 等转化为甲烷。 此过程由两组生理上不同的产甲烷完成,一组把氢和 二氧化碳转化成甲烷,另一组从乙酸或乙酸盐脱羧产 生甲烷。
第三代厌氧反应器
环境工程12-02 石来昊 类: 1.上流式污泥床-过滤器(Upflow Blanket Filter, UBF) 2.膨胀颗粒污泥床(Expanded Granular Sludge Blanket Reactor,EGSB) 3.内循环厌氧反应器(Internal Circulation,IC)
Thanks for Watching
5.具有缓冲pH值的能力:内循环流量相当于第1 厌氧区的出水回流,可利用 COD转化的碱度,对pH值起缓冲作用,使反应器内pH值保持最佳状态,同 时还可减少进水的投碱量。 6.内部自动循环,不必外加动力:普通厌氧反应器的回流是通过外部加压实 现的,而IC 反应器以自身产生的沼气作为提升的动力来实现混合液内循环, 不必设泵强制循环,节省了动力消耗。 7.出水稳定性好:利用二级UASB串联分级厌氧处理,可以补偿厌氧过程中K s高产生的不利影响。Van Lier在1994年证明,反应器分级会降低出水VFA 浓度,延长生物停留时间,使反应进行稳定。
1.上流式污泥床-过滤器(Upflow Blanket Filter)
上流式污泥床-过滤器(UBF)是加拿大人在厌氧过滤器 (Anaerobic Filter,AF)和上流式厌氧污泥床(Upflow Anaerobic Sludge Blanket,UASB)的基础上开发的新型 复合式厌氧流化床反应器。UBF主要由布水器、污泥层和填 料层构成,下方是高浓度颗粒污泥组成的污泥床,上部是填 料。
3.内循环厌氧反应器(Internal Circulation)
结构: 反应器由下而上共分为5个区: 混合区、第1厌氧区、第2厌氧 区、沉淀区和气液分离区。
3.内循环厌氧反应器(Internal Circulation)
《厌氧生物处理技术》PPT课件
较强的缓冲适应能力,具有良好的处理效果和稳定运 行能力 不利的是第一个反应室承受的局部负荷较大
编辑ppt
25
ABR的特点
反应器启动期短。试验表明,接种一个月后, 就有颗粒污泥形成,两个月就可以投入稳定运 行
厌氧生物处理工艺的发展及其应用
厌氧消化技术的早期发展过程
编辑ppt
1
1955年,Schroepter参考活性污泥法流 程开发了厌氧接触法。它采用了二次沉淀 池和污泥回流系统,使厌氧消化池中生物 量浓度得以提高,污泥龄得以延长,因此 停留时间大大缩短,处理能力大大提高。
70年代以来,厌氧滤池、上流式厌氧污 泥床反应器、厌氧附着膜膨胀床、下行式 固定膜反应器、厌氧流化床等“第二代废 水厌氧处理反应器”迅速发展。
借助水流和气体上升的作用,污泥上下运动,而水平 方向流速缓慢,使大量污泥截留在反应室中
具有完全混合和推流的复合型流态
编辑ppt
24
ABR的特点
良好的水利条件强化了容积利用率、运行稳定性和处 理效果
具有强大的生物固体截留能力(SS),不会造成堵塞 不同隔室形成良好的微生态系统,前段以水解和产酸
3.三相分离器
三相分离器由沉淀区、回流缝和气封组成,其功 能是把沼气、污泥和液体分开。污泥经沉淀区沉淀后 由回流缝回流到反应区,沼气分离后进入气室。三相 分离器的分离效果将直接影响反应器的处理效果。
编辑ppt
20
4.出水系统 其作用是把沉淀区水面处理过的水均匀地加以收
集,排出反应器。 5.气室
气室也称集气罩,其作用是收集沼气。 6.浮渣清除系统
22编辑pptuasbuasb具有高浓度的颗粒污泥具有高浓度的颗粒污泥具有集泥水气分离与一体的三相分离器具有集泥水气分离与一体的三相分离器无需安装搅拌装置无需安装搅拌装置颗粒污泥的形成是颗粒污泥的形成是uasbuasb工艺的关键工艺的关键三相分离器的好坏是影响三相分离器的好坏是影响uasbuasb工艺的重点工艺的重点23编辑ppt第一阶段第一阶段启动与污泥活性提高阶段启动与污泥活性提高阶段有机负荷有机负荷20kgcod20kgcodmm33dd以下运行时间以下运行时间111515月月污泥逐渐适应活性不断提高污泥逐渐适应活性不断提高第二阶段第二阶段颗粒污泥形成阶段颗粒污泥形成阶段有机负荷有机负荷202050kgcod50kgcodmm33dd以下重质污泥留在器以下重质污泥留在器内在其上富集絮凝最终形成内在其上富集絮凝最终形成050550mm50mm颗粒污泥运行时颗粒污泥运行时间间111515月月第三阶段第三阶段污泥床形成阶段污泥床形成阶段有机负荷有机负荷50kgcod50kgcodmm33dd以上污泥浓度提高污泥以上污泥浓度提高污泥床高度提高需要时间床高度提高需要时间3344月月24编辑ppt在反应器内设置竖向导流板将反应器分隔成串联的在反应器内设置竖向导流板将反应器分隔成串联的几个反应室几个反应室每个反应室都是一个相对独立的上流式污泥床系统每个反应室都是一个相对独立的上流式污泥床系统其中的污泥以颗粒化形式或以絮状形式存在其中的污泥以颗粒化形式或以絮状形式存在水流由导流板引导上下折流前进逐个通过反应室内水流由导流板引导上下折流前进逐个通过反应室内的污泥床层进水中的底物与微生物充分接触而得以的污泥床层进水中的底物与微生物充分接触而得以降解去除降解去除借助水流和气体上升的作用污泥上下运动而水平借助水流和气体上升的作用污泥上下运动而水平方向流速缓慢使大量污泥截留在反应室中方向流速缓慢使大量污泥截留在反应室中abrabr具有完全混合和推流的复合型流态具有完全混合和推流的复合型流态25编辑ppt良好的水利条件强化了容积利用率运行稳定性和处良好的水利条件强化了容积利用率运行稳定性和处理效果理效果具有强大的生物固体截留能力具有强大的生物固体截留能力ssss不会造成堵塞不会造成堵塞不同隔室形成良好的微生态系统前段以水解和产酸不同隔室形成良好的微生态系统前段以水解和产酸菌为主后端以产甲烷菌为主行使不同功能菌为主后端以产甲烷菌为主行使
厌氧生物处理
1、进水分配系统
位置:反应器底部
功能:均匀配水、搅拌 需要满足如下原则: (1)进水装置的设计使分配到各点的流量相同,确 保单位面积的进水量基本相同,防止发生短路等现象。 (2)很容易观察进水管的堵塞,当堵塞发现后,必 须很容易被清除。 (3)应尽可能地满足污泥床水力搅拌的需要,保证
进水有机物与污泥迅速混合,防止局部产生酸化现象。
(1)树枝管状 (2)穿孔管式 (3)多管多点式 用高于反应器的水箱式(或渠道式)进 水分配系统。
树技管式:
为了配水均匀一般采用对称
布置,各支管出水口向着池 底,出水口距池底约20cm,
位于所服务面积的中心点。 管口对准的池底设反射锥, 使射流向四周均匀散布于池 底,出水口支管直径约 20mm。
UASB反应器
effluent
influent
UASB反应器基本结构示意图
UASB反应器的结构组成
1)进水配水系统。即将废水尽可能均匀地分配到整个反应器, 并具有一定的水力搅拌功能。 2)反应区。包括污泥床区和污泥悬浮层区,有机物主要在这里被厌氧菌 所分解,是反应器的主要部位。污泥床主要由沉降性能良好的厌氧污泥组 成,SS质量浓度可达50~100 g/L或更高。污泥悬浮层主要靠反应过程中产 生的气体的上升搅拌作用形成,污泥质量浓度较低,SS一般在5~40 g/L。 3)三相分离器。由沉淀区、回流缝和气封组成,其功能是把沼气、污泥 和液体分开。污泥经沉淀区沉淀后由回流缝回流到反应区,沼气分离后进 人气室。三相分离器的分离效果将直接影响反应器的处理效果。 4)出水系统。是把沉淀区表层处理过的水均匀地加以收集,排出反应器。 5)气室。也称集气罩,其作用是收集沼气。 6)浮渣清除系统。是清除沉淀区液面和气室表面的浮渣,如浮渣不多可 省略。 7)排泥系统。是均匀地排除反应区的剩余污泥。
第三章 厌氧生物处理技术
2、产氢产乙酸细菌 研究所发现的产氢产乙酸细菌包括互营 单胞菌属、互营杆菌属、梭菌属和暗杆菌属 等。 这类细菌能把各种挥发性脂肪酸降解为 乙酸和H2。 只有在乙酸浓度低、液体中氢分压也很 低时才能完成。
3、产甲烷细菌 产甲烷菌大致可分为两类: 一类主要利 用乙酸产生甲烷,另一类数量较少,利用氢 和CO2的合成生成甲烷。也有极少量细菌, 既能利用乙酸,也能利用氢。 以下是两个典型的产甲烷反应:
三、厌氧处理的影响因子
pH6.8~7.2 温度(中温35℃、高温55 ℃ ) 营养盐 毒物—高浓度的离子以及其他有机毒物 氧浓度(厌氧菌的生活环境) 氧化还原电位 食料微生物比
温度因素
温度与有机物负荷、产气量关系见图1
消化温度与消化时间的关系见图2 厌氧消化中的微生物对温度的变化非常敏感,
对厌氧消化具有抑制作用的物质
对厌氧消化具有抑制作用的物质
抑制物质
挥发性脂肪酸
浓度/(mg/L)
>2000
抑制物质
Na
浓度/(mg/L)
3500~5500
氨氮
溶解性硫化物 Ca Mg
1500~3000
>200 2500~4500 1000~1500
Fe
Cr6+ Cr3+ Cd
1710
3 500 150
有毒物质
挥发性脂肪酸(VFA)是消化原料酸性消化的产物,同 时也是甲烷菌的生长代谢的基质。一定的挥发性脂肪酸浓度 是保证系统正常运行的必要条件,但过高的VFA会抑制甲烷 菌的生长,从而破坏消化过程。 有许多化学物质能抑制厌氧消化过程中微生物的生命活 动,这类物质被称为抑制剂。抑制剂的种类也很多,包括部 分气态物质、重金属离子、酸类、醇类、苯、氰化物及去垢 剂等。
第九章第三代厌氧生物处理技术2课时0812
于20世纪90年代初由荷兰 Wageingen农业大学的 Lettinga等人率先开发的。 其构造与UASB反应器有 相似之处,可以分为进水 配水系统、反应区、三相 分离区和出水渠系统。与 UASB反应器不同之处是, EGSB反应器设有专门的 出水回流系统。
2、工作原理
EGSB反应器中装有一定量的颗粒污泥,当有机废 水及其所产生的沼气自下而上地流过颗粒污泥床 层时,污泥床层与液体间会出现相对运动,导致 床层不同高度呈现出不同的工作状态。
(5)沉淀区:第2厌氧区的泥水混合物在沉淀区进 行固液分离,上清液由出水管排走,沉淀的颗粒 污泥返回第2厌氧区污泥床。
3、IC工艺的技术特点
IC反应器的构造及其工作原理决定了其在控制厌氧 处理影响因素方面比其它反应器更具有优势。
(1)容积负荷高:IC反应器内污泥浓度高,微生物 量大,且存在内循环,传质效果好,进水有机负 荷可超过普通厌氧反应器的3倍以上。
5、EGSB反应器的工程应用
20世纪90年代荷兰Biothane System公司推出了一 系列工业规模的EGSB反应器,应用领域已经涉及 啤酒、食品、化工等行业。实际运行表明,EGSB 反应器的处理能力可达到UASB的2-5倍。下表是 几个典型的EGSB处理不同类型废水运行情况的例 子。
处理啤酒生产废水的EGSB反应器
1、IC厌氧工艺的工作原理
如图进水由反应底部进入第一厌 氧反应室,与颗粒污泥均匀混 合,产生的沼气被集气罩收集, 大量沼气携带第一厌氧室的泥 水混合液沿着提升管上升到反 应器顶的气液分离器,沼气由 导管排出,泥水混合液沿着回 流管反回到第一厌氧反应室的 底部,实现混合液的内部循环。 废水处理后自动进入第二厌氧 反应室,反应后的泥水经固液 分离后,上清液由出水管排走, 污泥自动返回第二厌氧反应室。
厌氧生物处理技术、
共享知识分享快乐废水的厌氧生物处理技术厌氧生物处理技术是利用厌氧微生物的代谢特性分解有机污染物,在不需要提供外界能源的条件下,以被还原有机物作为受氢体,同时产生有能源价值的甲烷气体的水处理技术。
1厌氧生物处理的基本原理1.1两阶段理论在20世纪30-60年代,人们普遍认为厌氧消化过程可以简单地分为两个阶段,即两阶段理论。
第一阶段称为发酵阶段或产酸阶段或酸性发酵阶段,废水中的有机物在发酵细菌的作用下,发生水解和酸化反应,而被降解为以脂肪酸、醇类、CO2和H2等为主的产物。
第二阶段则被称为产甲烷阶段或碱性发酵阶段,所发生的反应时是产甲烷菌利用前一阶段的产物脂肪酸、醇类、CO2和H2等为基质,并最终将其转为CH4和CO2。
1.2三阶段理论三阶段理论认为,整个厌氧消化过程可以分为三个阶段,即水解、发酵阶段,产氢产乙酸阶段和产甲烷阶段。
有机物首先通过发酵细菌的作用生成乙醇、丙酸、丁酸和乳酸等,接着通过产氢产乙酸菌的降解作用而被转化为CH4和CO2。
产氢产乙酸菌和产甲烷菌之间存在着互营共生的关系。
该理论将厌氧发酵微生物分为发酵细菌群、产氢产乙酸菌群和产甲烷菌群。
1.3四阶段理论几乎与三阶段理论的提出同时,Zeikus提出了四菌群学说即四类群理论。
与三阶段理论相比,该理论增加了同型(耗氢)产乙酸菌群(Homoacetogenic Bacteria), 该菌群的代谢特点是能将H2/CO2合成为乙酸。
但是研究结果表明,这一部分乙酸的量较少,一般可以忽略不计。
目前为止,三阶段理论和四类群理论是对厌氧生物处理过程较全面和较准确的描述。
2厌氧生物处理的优缺点卑微如蝼蚁、坚强似大象共享知识分享快乐厌氧生物处理技术与好氧生物处理技术比较,有如下优缺点。
(1)厌氧法的主要优点:①应用范围较广:适用于处理污泥及有机废水;可处理好氧法难降解的有机物,也可处理含有毒有害物质较高的有机废水。
②运行成本与能耗较低:厌氧处理的污泥产率低;厌氧法所需营养成分较少,一般可不必投加营养分;厌氧法不需要供氧设备,因而能耗较少。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3、IC工艺的技术特点
IC反应器的构造及其工作原理决定了其在控制厌氧 处理影响因素方面比其它反应器更具有优势。
(1)容积负荷高:IC反应器内污泥浓度高,微生物 量大,且存在内循环,传质效果好,进水有机负 荷可超过普通厌氧反应器的3倍以上。
第三代厌氧生物反应器的共 同特点如下:
1、微生物以颗粒污泥固定 化方式存在于反应器中, 反应器单位容积的生物量 更高;
2、能承受更高的水力负荷, 并具有较高的有机污染物 净化效能;
3、具有较大的较大径比, 一般在5-10以上;
4、占地面积小;
5、能力消耗小。
二、EGSB(厌氧膨胀颗粒 污泥床)反应器
(3)气液分离区:被提升的混合物中的沼气在此与 泥水分离并导出处理系统,泥水混合物则沿着回 流管返回到最下端的混合区,与反应器底部的污 泥和进水分混合,实现了混合液的内部循环。
(4)第2厌氧区:经第1厌氧区处理后的废水,除 一部分被沼气提升外,其余的都通过三相分离器 进入第2厌氧区。该区污泥浓度较低,且废水中大 部分有机物已在第1厌氧区被降解,因此沼气产生 量较少。沼气通过沼气管导入气液分离区,对第2 厌氧区的扰动很小,这为污泥的停留提供了有利 条件。
1、反应器结构
于20世纪90年代初由荷兰 Wageingen农业大学的 Lettinga等人率先开发的。 其构造与UASB反应器有 相似之处,可以分为进水 配水系统、反应区、三相 分离区和出水渠系统。与 UASB反应器不同之处是, EGSB反应器设有专门的 出水回流系统。
2、工作原理
EGSB反应器中装有一定量的颗粒污泥,当有机废 水及其所产生的沼气自下而上地流过颗粒污泥床 层时,污泥床层与液体间会出现相对运动,导致 床层不同高度呈现出不同的工作状态。
胞吸附于基底上。 ④ 细胞的倍增和颗粒污泥的形成。
4、EGSB工艺的主要特点
EGSB工艺作为一种改进型的UASB,虽然在结构形 式、污泥形态等方面与UAS非常相似,但其工作 运行方式与UASB显然不同,液体表面上升速度高 使颗粒污泥床层处于膨胀状态不仅使进水能与污 泥充分接触,而且有利于基质和代谢产物在颗粒 污泥内外的扩散、传送,保证了反应器在较高的 容积负荷条件下正常运行。EGSB反应器的主要特 点如下表所列。
5、EGSB反应器的工程应用
20世纪90年代荷兰Biothane System公司推出了一 系列工业规模的EGSB反应器,应用领域已经涉及 啤酒、食品、化工等行业。实际运行表明,EGSB 反应器的处理能力可达到UASB的2-5倍。下表是 几个典型的EGSB处理不同类型废水运行情况的例 子。
处理啤酒生产废水的EGSB反应器
处理淀粉生产废水的EGSB反应器
三、内循环(IC)厌氧反应器
IC厌氧反应器是20世纪80年代中期由荷兰 PAQUES公司推出的。目前,该工艺已经 成功地应用于啤酒、造纸及食品加工等行 业的生产污水处理中,由于其处理容量高、 投资少、占地省和运行稳定等优点引起了 各国水处理人员的瞩目,被称为第三代厌 氧生化反应器的代表工艺之一。
2、IC反应器结构
IC反应器基本构造如图 所示,它相似由2层 UASB反应器串联而成。 按功能划分,反应器 由下而上共分为5个区: 混合区、第1厌氧区、 第2厌氧区、沉淀区和 气液分离区。
(1)混合区:反应器底部进水、颗粒污泥和气液分 离区回流的泥水混合物有效地在此区混合。
(2)第1厌氧区:混合区形成的泥水混合物进入该 区,在高浓度污泥作用下,大部分有机物转化为 沼气。混合液上升流和沼气的剧烈扰动使该反应 区内污泥呈膨胀和流化状态,加强了泥水表面接 触,污泥由此而保持着高的活性。随着沼气产量 的增多,一部分泥水混合物被沼气提升至顶部的 气液分离区。
1、IC厌氧工艺的工作原理
如图进水由反应底部进入第一厌 氧反应室,与颗粒污泥均匀混 合,产生的沼气被集气罩收集, 大量沼气携带第一厌氧室的泥 水混合液沿着提升管上升到反 应器顶的气液分离器,沼气由 导管排出,泥水混合液沿着回 流管反回到第一厌氧反应室的 底部,实现混合液的内部循环。 废水处理后自动进入第二厌氧 反应室,反应后的泥水经固液 分离后,上清液由出水管排走, 污泥自动返回第二厌氧反应室。
3、EGSB中颗粒污泥的特性
EGSB工艺中颗粒污泥的沉降性能好,有效地 减少了悬浮于消化液中的微生物个体数量, 避免了微生物随消化液大量流失的可能性, 保证了厌氧反应器中高浓度活性污泥的滞 留量,进而为反应器的高效、稳定运行奠 定了基础。
EGSB中颗粒污泥的形成过程可分为4个阶段: ① 将细胞运到惰性物质或其他细胞(基底)的表面。 ② 通过物理化学作用力可逆吸附于基底上。 ③ 通过微生物表面的鞭毛、纤毛或胞外多聚物将细
第三代厌氧生物处理技术
一、概述 在厌氧反应器中污泥和废水的混合是影响到去除效
果的重要因素。合理的布水系统和反应器中液体 表面上升流速、产生沼气的搅动等因素对污泥和 废水的混合起着极其重要的作用。在UASB等第二 代厌氧生物反应器中,在处理低浓度有机废水时, 由于不可能产生大量沼气的搅动,反应器中的混 合效果较差,如果提高反应器的水力负荷来改善 混合状况,则会出现污泥流失。所以,为了解决 这一问题,20世纪90年代在国际上提出了以 EGSB、IC、UBF、ABR为代表的第三代厌氧生物 反应器。
当废水上升流速较低时,颗粒污泥相对静止,床层 空隙率操持稳定;当流速达到一定数值时,床层 空隙便开始增加,床层也相应膨胀。当上升流速 超过临界流速后,污泥颗粒呈悬浮状态,颗粒床 被流态化,再进一步提高进水流速到最大流化速 度时,载体颗粒将产生大量的流失。
从颗粒污泥流态化的工作 状况可以看出EGSB反应 器的工作区为流态化的 初期,即膨胀阶段,进 水流速较低,一方面可 保证进水基质与泥泥颗 粒的充分接触和混合, 另一方面有利于减轻或 消除静态床( UASB) 中常见的底部负荷过重 的状况,从而增加了反 应器对有机负荷、毒性 物质的承受能力。