遥感估产技术
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
遥感在农业估产中的应用与发展
1 引言
遥感( Remote Sensing) 即遥远的感知, 指在一定距离上, 应用探测仪器不直接接触目标物体,从远处把目标的电磁波特性记录下来, 通过分析揭示出物体的特征性质及其变化的综合性探测技术[1]。摄影照相便是一种最常见的遥感,照相机并不接触被摄目标,而是相隔一定的距离,通过镜头把被摄目标的影像记录在底片上,经过化学处理,相片便重现被摄目标的图像。从拍摄目标到再现目标所用的手段,便是一种遥感技术。遥感与其他技术结合, 在农业应用中具有科学、快速、及时的特点。这对于充分利用农业资源、指导农业生产、农产品供需平衡等方面有着重要的意义。
2 遥感估产的原理及农作物估产方法
2.1 遥感估产的基本原理[2]
任何物体都具有吸收和反射不同波长电磁波的特性, 这是物体的基本特性。人眼正是利用这一特性, 在可见光范围内识别各种物体的。遥感技术也是基于同样的原理, 利用搭载在各种遥感平台(地面、气球、飞机、卫星等)上的传感器(照相机、扫描仪等)接收电磁波, 根据地面上物体的波谱反射和辐射特性, 识别地物的类型和状态。农作物估产则是指根据生物学原理, 在收集分析各种农作物不同生育期不同光谱特征的基础上, 通过平台上的传感器记录的地表信息, 辨别作物类型, 监测作物长势, 并在作物收获前, 预测作物的产量的一系列方法。它包括作物识别和播种面积提取、长势监测和产量预报两项重要内容。
2.2 农作物估产的方法
农作物估产在方法上可分为传统的作物估产和遥感估产两类。传统的作物估产基本上是农学模式和气象模式, 采用人工区域调查方法。它们把作物生长与主要制约和影响产量的农学因子或气候因子之间用统计分析的方式建立起关系。这类模式计算繁杂、速度慢、工作量大、成本高, 某些因子种类往往难以定量化, 不易推广应用。遥感估产则是建立作物光谱与产量之间联系的一种技术,它是通过光谱来获取作物的生长信息。在实际工作中,常常用绿度或植被指数( 由多光谱数据, 经线性或非线性组合构成的对植被有一定指示意义的各种数值) 作为评价作物生长状况的标准。植被指数中包括了作物长势和面积两方面的信息, 各种估产模式, 尤其是光谱模式中植被指数是一个极为重要的参数。根据传感器从地物中获得的光谱特征进行估产具有宏观、快速、准确、动态的优点[3, 4]。农作物估产中所应用的遥感资料大致可分为3类: 一是气象卫星资料, 主要为美国第三代业务射仪( AVHRR) 资料, 其资料特点是周期短、覆盖面积大、资料易获取、实时性强、价格低廉,空间分辨率低但时间分辨率较高; 二是陆地卫星(Landsat) 资料, 应用较多功能是专题制图仪(TM)资料, 它重复周期长、价格高, 但其空间分辨率高[5]; 三是航空遥感和地面遥感资料, 主要用于光谱特征及估产农学机理的研究中, 其中高光谱数据可提供连续光谱, 可消除一些外部条件的影响而成为遥感数据处理、地面测量、光谱模型和应用的强有力的工具[6]。摘要本文从遥感估产为出发点, 绍了遥感的概念、原理、方法特点及国内外遥感估产方面的研究进展。
关键词遥感; 农作物估产; 遥感资料; 遥感方法
17
2007年第3 期
在遥感估产中农作物面积提取是最重要的内
容。用遥感方法测算一种农作物的种植面积主要
有以下几种方法[5]。
1) 航天遥感方法。包括卫星影像磁带数字图象
处理方法(一般精度较高)和绿度---面积模式。
2) 航空遥感方法。可进行总面积的测量、作
物分类及测算分类面积。
3) 遥感与统计相结合的方法。此方法是由美
国农业部统计局在原面积抽样统计估产的基础上发展起来的,其原理是利用遥感影像分层, 再实行统计学方法抽样。
4) 地理信息系统(GIS) 与遥感相结合方法。
此方法是在地理信息系统的支持下, 利用遥感信息, 对不同农作物的种植面积进行获取。
3 国内外遥感估产的研究进展状况
3.1 国外遥感估产研究的进展状况
美国首先开了农作物遥感估产之先河, 美国
农业部、国家海洋大气管理局、宇航局和商业部合作制定了"大面积农作物估产实验(1974~1978) 计划", 组织实施了小麦估产计划, 应用先后发射
入轨的陆地卫星1~3 接收处理出的MSS 图像, 首先对美国大平原9 个小麦生产州的面积、单产和产量做出估算;尔后对包括美国本土、加拿大和前苏联部分地区小麦面积、单产和产量做出估算;接着是对世界其它地区小麦面积、总产量进行估算。调查分析美国、原苏联、加拿大等主要产粮国的小麦播种面积、出苗状况和长势, 并利用气象卫
星获得的气象要素信息, 结合历年统计数据进行
综合分析, 建立的小麦估产模型精度高达90%以上。1980~1986 年, 美国又制定了"农业和资源的空间遥感调查"计划,其核心内容仍是主要作物的
种植面积与单产模型的研究。进行国内、世界多种粮食作物长势评估和产量预报。中国科学院自然资源综合考查委员会的陈沈斌于1992 年8 月在美国农业部外国农业局(负责美国以外国家的农作物估产,并建成运行系统) 曾见到当月估计的中国小麦、玉米、水稻总产量与后来1993 年国家统计局公布的数字差- 3.53%、+0.65%和- 0.66%。该项工作, 为美国在世界农产品贸易中获得巨大的经
济利益[2, 4, 7, 8, 9, 10, 11]。
此后, 欧共体、俄罗斯、法国、日本和印度
等国也都应用卫星遥感技术进行农作物长势监测和产量测算, 均取得了一定的成果。例如, 欧共
体用10 年的时间(从1983 年开始), 建成用于农
业的遥感应用系统, 1995 年在欧共体15 个国家用180 景SPOT 影像, 结合NOAA 影像在60 个试验点进行了作物估产, 可精确到地块和作物种类。2002 年美国航空航天局与美国农业部合作在贝兹