常用概率分布

合集下载

常用概率分布

常用概率分布

Cx n

n!
X!nX!
则摸出黑球次数的可能结果及其概率如下表所示
P(X

0)

C
0 5
0.2
5

0.0003
P(X
1)

C
1 5
0
.8
0.2
4

0.0064
P( X 2) C52 0.82 0.23 0.0512
P(X 3) C53 0.83 0.22 0.2048
1
至少有20名感染钩虫的概率为
PX

20
150
P(X)
150

150!
0.13 X (1 0.13)150X
X 20
X 20 X !(150 X )!
19
1 P(X) X 0
19
1
150!
0.13 X (1 0.13)150X
X 0 X !(150 X )!
摸球试验中摸到黑球的概率分布
X的可能取值
0
1
2
3
4
5
概率P(x) 0.0003 0.0064 0.0512 0.2048 0.4096 0.3277
一是每次试验结果,只能是两种对立的结果之一。即每次摸 球只有两种可能结果,或黑球或白球。
二是每次试验的条件不变,发生某种结果的概率是固定不变 的。即每次试验摸到黑球的概率是固定的。
P( X 4) C54 0.84 0.2 0.4096
P( X 5) C55 (0.8)5 0.3277
上例中离散型随机变量X的概率函数
X的可能取值
0
1
2

16种常见概率分布概率密度函数、意义及其应用

16种常见概率分布概率密度函数、意义及其应用

目录1. 均匀分布 (1)2. 正态分布(高斯分布) (2)3. 指数分布 (2)4. Beta分布(:分布) (2)5. Gamm 分布 (3)6. 倒Gamm分布 (4)7. 威布尔分布(Weibull分布、韦伯分布、韦布尔分布) (5)8. Pareto 分布 (6)9. Cauchy分布(柯西分布、柯西-洛伦兹分布) (7)210. 分布(卡方分布) (7)8 11. t分布................................................9 12. F分布 ...............................................10 13. 二项分布............................................10 14. 泊松分布(Poisson 分布).............................11 15. 对数正态分布........................................1. 均匀分布均匀分布X ~U(a,b)是无信息的,可作为无信息变量的先验分布。

2. 正态分布(高斯分布)当影响一个变量的因素众多,且影响微弱、都不占据主导地位时,这个变量 很可能服从正态分布,记作X~N (」f 2)。

正态分布为方差已知的正态分布N (*2)的参数」的共轭先验分布。

1 空f (x ): —— e 2-J2 兀 o'E(X), Var(X) _ c 23. 指数分布指数分布X ~Exp ( )是指要等到一个随机事件发生,需要经历多久时间。

其 中,.0为尺度参数。

指数分布的无记忆性:Plx s t|X = P{X t}。

f (X )二 y oiE(X) 一4. Beta 分布(一:分布)f (X )二 E(X)Var(X)=(b-a)2 12Var(X)二1~2Beta 分布记为X 〜Be(a,b),其中Beta(1,1)等于均匀分布,其概率密度函数 可凸也可凹。

理解概率分布函数常见分布公式详解

理解概率分布函数常见分布公式详解

理解概率分布函数常见分布公式详解概率分布函数(Probability Distribution Function,简称PDF)是描述随机变量取值概率分布的函数,常用于统计学和概率论中。

在统计学中,常见的概率分布函数有众多的公式。

本文将详细解释几种常见的概率分布函数公式,包括均匀分布、正态分布、指数分布和泊松分布。

一、均匀分布均匀分布是最简单的概率分布函数之一,它在一个有限区间内的取值是均匀分布的。

均匀分布的概率密度函数公式为:f(x) = 1 / (b - a),a ≤ x ≤ b其中,a和b分别是区间的上下界。

均匀分布的期望值(均值)为(a + b)/ 2,方差为(b - a)^2 / 12。

二、正态分布正态分布是自然界和社会现象中常见的概率分布函数。

它在统计学中有着重要的地位。

正态分布的概率密度函数(Probability Density Function,简称PDF)公式为:f(x) = (1 / (σ * √(2π))) * exp(-((x - μ)^2/(2σ^2)))其中,μ是期望值(均值),σ是标准差。

正态分布的期望值和方差分别为μ和σ^2。

三、指数分布指数分布是描述事件发生的时间间隔的概率分布函数,常用于可靠性工程和排队论中。

指数分布的概率密度函数公式为:f(x) = λ * exp(-λx),x ≥ 0其中,λ是事件发生率。

指数分布的期望值为1 / λ,方差为1 / λ^2。

四、泊松分布泊松分布是描述单位时间或空间内事件发生次数的概率分布函数,常用于描述稀有事件的发生情况。

泊松分布的概率质量函数(Probability Mass Function,简称PMF)公式为:P(X = k) = (λ^k * exp(-λ)) / k!其中,λ是单位时间或空间内事件的平均发生率。

泊松分布的期望值和方差均为λ。

以上是几种常见的概率分布函数公式的详细解释。

这些概率分布函数在不同领域的应用非常广泛,能够描述和解释各种随机现象的概率分布情况。

常用概率分布-医学统计学

常用概率分布-医学统计学

标准正态分布的µ=0,σ=1,则 µ±σ相当于区间(-1,1), µ±1.96σ相当于区间(-1.96,1.96), µ±2.58σ的区间相当于区间(-2.58,2.58)。
区间(-1,1)的面积:1-2Φ(-1)=1-2×0.1587=0.6826=68.26% 区间(-1.96,1.96)的面积:1-2Φ(-1.96)=1-2×0.0250=0.9500=95% 区间(-2.58,2.58)的面积:1-2Φ(-2.58)=1-2×0.0049=0.9902=99.02%
在单位空间中某种昆虫或野生动物数的分布,粉尘在
观察容积内的分布,放射性物质在单位时间内放射出
质点数的分布等。Poisson分布一般记作

Poisson分布作为二项分布的一种极限情况
Poisson分布可以看作是发生的概率π 很小,而观
察例数很大时的二项分布。除要符合二项分布的三个
基本条件外,Poisson分布还要求π或1-π接近于0和1。 有些情况π和n都难以确定,只能以观察单位(时间、
例 3 某年某市调查了 200例正常成人血铅含量 (μg/100g)如下,试估计该市成人血铅含量的95%医 学参考值范围。
分析:血铅的分布为偏态分布,且血铅含量只以 过高为异常,要用百分位数法制定单侧上限。
二、质量控制 为了控制实验中的检测误差,常用 ±2S作上
下但的警影随响机戒某因线一素,指很以标多, ±3S作为上下控制线。这里的2S和 3如S可果该视指为标1的.96随S 和2.58S的约数。其依据是正常情况下 检机误测波差动,误属则差于往是随往服机符从正态分布的。
概率 密度
正态分布的密度函数,即正态曲线的方程为 -∞<X<+∞
均数为0,标准差为1的正态分布,这种正态分布 称为标准正态分布。

常见概率分布

常见概率分布

常见概率分布概率分布是概率论的一个重要概念,用于描述一个随机变量可能取得的所有值及其对应的概率分布情况。

常见的概率分布包括均匀分布、二项分布、泊松分布、正态分布等。

本文将对这些常见的概率分布进行介绍和讨论。

一、均匀分布均匀分布是最简单且最常见的概率分布之一。

在一个有限区间内,每个取值的概率都是相等的。

均匀分布的概率密度函数可以表示为:f(x) = 1 / (b - a),其中a ≤ x ≤ b其中 a 和 b 分别表示区间的起始值和终止值。

均匀分布通常用于在一个确定的范围内随机选择一个值的情况,例如随机抽奖或随机选取一个数。

二、二项分布二项分布是描述多次独立重复试验中成功次数的分布。

每次试验只有两个可能结果,通常分别表示为成功(记为 S)和失败(记为 F)两种情况。

二项分布的概率函数可以表示为:P(x) = C(n, x) * p^x * (1-p)^(n-x)其中 n 表示试验次数,x 表示成功的次数,p 表示每次试验成功的概率。

三、泊松分布泊松分布适用于描述单位时间或单位面积内某事件发生的次数的概率分布。

泊松分布的概率函数可以表示为:P(x) = (e^(-λ) * λ^x) / x!其中λ 表示单位时间或单位面积内事件的平均发生率,x 表示事件发生的次数。

泊松分布常用于描述稀有事件的发生情况,例如单位时间内交通事故的发生次数、单位面积内电子元件的故障数等。

四、正态分布正态分布,又称高斯分布,是自然界中最常见的分布之一。

正态分布具有钟形曲线,均值和标准差决定了分布的位置和形态。

正态分布的概率密度函数可以表示为:f(x) = (1 / (σ * √(2π))) * e^(-((x - μ)^2 / (2σ^2)))其中μ 表示分布的均值,σ 表示分布的标准差。

正态分布广泛应用于统计学和自然科学中,通常用于描述一群数值型数据的分布情况,例如身高、体重、考试分数等。

除了上述四种常见的概率分布外,还存在许多其他常见的概率分布,如指数分布、伽玛分布、贝塔分布等。

常用概率分布

常用概率分布
关于 左右对称,正态高峰位于中央 在 处取得该概率密度函数的最大值,在 x处
有拐点,表现为钟形 靠近 x 处曲线下面积较为集中,两边减少,意味
着正态分布变量取值靠近 x处 的概率较大,两 边逐渐减少 正态分布的总体偏度系数和峰度系数均为0
8
正态分布曲线下面积
正态分布变量X的取值为(-∞,∞)
23
四、二项分布的图形
24
图形特点:两个轴意义,对称、偏态、与 正态分布的关系
决定图形的两个参数:n,
25
五、样本率的均数和标准差
样本率的总体均数p:
p
1 n
x
1 n
(n )
样本率的总体标准差p:
p
1 n
x
(1 )
n
样本率的标准差(标准误)Sp:
Sp
p(1 p) n
26
根据中心极限定理,在n较大,n(1- )均大于5时,二项分 布接近于正态分布。当n → ∞ , 二项分布B(n,)的极限分布 是总体均数为X = n、总体方差 X2 = n(1-)的正态分布 N(n, n(1-))。这个时候可以用正态分布N(n, n(1-)) 作近似计算。
16
确定医学参考值范围
例 估计某地健康成年女子的血红蛋白的95% 医学参考值范围
具体步骤如下: 1. 根据研究背景确定研究对象的入选标准和排
除标准。这类研究一般要求参加体检并且要 求除研究指标血红蛋白指标外,其他指标均 正常的对象。 2. 根据研究背景,确定血红蛋白过高或过低均 属于不正常(双侧范围)。
6. 如果受检指标血红蛋白呈偏态分布,则可 以用百分位数P2.5~P97.5确定95%参考值 范围,但样本量要充分大。
7. 样本量充分大是相对与指标的变异程度, 指标变异大,要求样本量大;指标变异程 度小,要求样本量可以相对小一些。

16种常见概率分布概率密度函数、意义及其应用

16种常见概率分布概率密度函数、意义及其应用

目录1. 均匀分布 ...................................................................................................... 1 2. 正态分布(高斯分布) ........................................................................... 2 3. 指数分布 ...................................................................................................... 2 4. Beta 分布(β分布) ............................................................................. 2 5. Gamma 分布 .................................................................................................. 3 6. 倒Gamma 分布 ............................................................................................. 4 7. 威布尔分布(Weibull 分布、韦伯分布、韦布尔分布) ................. 5 8. Pareto 分布 ................................................................................................ 6 9. Cauchy 分布(柯西分布、柯西-洛伦兹分布) . (7)10. 2χ分布(卡方分布) (7)11. t 分布 ........................................................................................................ 8 12. F 分布 ........................................................................................................ 9 13. 二项分布 ................................................................................................ 10 14. 泊松分布(Poisson 分布) ............................................................. 10 15.对数正态分布 .......................................................................................111. 均匀分布均匀分布~(,)X U a b 是无信息的,可作为无信息变量的先验分布。

概率分布计算公式

概率分布计算公式

概率分布计算公式概率分布是概率论中重要的概念之一,它描述了随机变量在各个取值上的取值概率。

在实际问题中,我们常常需要计算概率分布以解决相关的概率统计问题。

本文将介绍几种常见的概率分布以及它们的计算公式。

一、二项分布(Binomial Distribution)二项分布是概率论中常用的离散型概率分布,它描述了在一定次数的独立重复试验中,成功事件发生的次数的概率分布。

其计算公式为:P(X=k) = C(n, k) * p^k * (1-p)^(n-k)其中,P(X=k)表示成功事件发生k次的概率,n表示试验次数,p表示每次试验成功的概率,C(n, k)表示组合数,可以使用n个数任取k个的方式计算。

二项分布的期望为E(X)=np,方差为Var(X)=np(1-p)。

二、泊松分布(Poisson Distribution)泊松分布是一种离散型概率分布,适用于描述单位时间(或单位空间)内随机事件发生的次数。

其计算公式为:P(X=k) = (λ^k * e^(-λ))/k!其中,P(X=k)表示事件发生k次的概率,λ表示单位时间(或单位空间)内事件发生的平均次数,e为自然对数的底。

泊松分布的期望为E(X)=λ,方差为Var(X)=λ。

三、正态分布(Normal Distribution)正态分布是概率论中最重要的连续型概率分布,也称为高斯分布。

它的形状呈钟型曲线,对称于均值。

正态分布在实际问题中得到广泛应用。

其概率密度函数的计算公式为:f(x) = (1 / (σ * √(2π))) * e^((-1/2)*((x-μ)/σ)^2)其中,f(x)表示随机变量X的概率密度函数,μ为均值,σ为标准差,π为数学常数3.14159。

正态分布的期望为E(X)=μ,方差为Var(X)=σ^2。

四、指数分布(Exponential Distribution)指数分布是一种连续型概率分布,其概率密度函数具有常数倍衰减的特点。

常用概率分布间简介

常用概率分布间简介

其中 c 为常数,解方程(1)得
f ( ) c f ( )
f
(
)
k
e
1 2
c
2

k
为常数.
为使 f ( ) 为概率密度函数,
f
( )d
1,

k
e
1 2
c
2
dy
1
故必须 c 0 ,不妨令 c 1 ( 0 ),代入(2)解得 2
k 1 , 2 Biblioteka 于是f ( ) 1
2
e2 2 , R ,
2
这是均值为 0,方差为 2 的正态分布的概率密度函数.
.
X
~
N(0, 2)
,
则Y
X2
~
Ga(
1 2
,
1 2
2
)
.
(1) (2)
Ga( n , 1) 2(n) . 22
m
Xi ~ N(0,1) , i 1,2,,n 且相互独立 , 则 X
X
2 i
~
2(n) .
i 1
⒊ 相当误差(比率)的概率分布
m

Xi
~
N(0, 2 ) ,i
1,2,, m,m 1,,m n且相互独立,则
i 1
二、随机误差的概率分布
⒈ 高斯随机误差模型 随机变量的高斯分解
可观测的指标
X
不可观测的随机干扰
指标的标准值(生产控制参数,理论均值)
原始测量误差的概率分布
由棣莫弗提出,高斯推证,拉普拉斯再证,原始测量误差的概率分布为:
~ N (0 , 2 )
高斯的推证要点如下:
设测量误差 X 的密度函数为 f ( ) ,由“最大后验概率”的原则得

常用概率分布

常用概率分布

常用概率分布常用概率分布是数学中一个非常重要的概念,它描述了每种特定事件发生的可能性,并帮助我们更好地理解随机事件的性质。

在统计学、工程学、物理学、生物学和金融学等领域,常用概率分布被广泛应用于数据分析和模拟等方面。

接下来,我将介绍一些最常见的概率分布。

1. 二项分布二项分布是一种离散的概率分布,它描述了两种可能结果中每一种结果的概率。

比如说,抛硬币的结果只有正面和反面两种可能性。

当每次实验仅有两种可能结果,并且这两种结果的概率相等时,可以使用二项分布来计算任意试验中某个结果被观察到的概率。

一般地,二项分布可以用来计算n次独立实验中恰好有k次成功的概率。

2. 正态分布正态分布是一种连续概率分布,也称为高斯分布。

它是自然界中最常见的概率分布之一,用于描述一些连续型变量(例如长度、质量和时间等)的分布情况。

具有正态分布的数据通常呈现出钟形曲线的形状,且均值、中位数和众数相等。

正态分布是许多模型和算法的基础,例如线性回归和神经网络等。

3. 泊松分布泊松分布是一种离散概率分布,它描述了在一定时间内某个事件发生的次数。

该分布适用于低概率事件的发生频率较高的情况,例如在一定时间内接收到的电子邮件数量以及某种疾病的发病率等。

此外,泊松分布还可以用于描述自然生态系统中的物种数量变化、军事战斗中的伤亡人数等。

4. 指数分布指数分布是一种连续概率分布,用于描述一些事件所需的时间间隔。

比如说,等车的时间、电话呼叫之间的间隔时间等都可以用指数分布来描述。

该分布的特点是概率随着时间间隔的增加而逐渐减小,且具有单峰趋势。

5. Gamma分布Gamma分布是一种连续概率分布,广泛应用于工程和自然科学领域。

它可以用来描述诸如距离、强度、能量和粒子次数等连续型随机变量之和的概率分布。

由于Gamma 分布具有特定的形状和参数,因此它可以与其他分布结合使用,用于模拟各种实际场景的数据。

6. 卡方分布卡方分布是一种连续概率分布,用于描述统计独立性检验的结果。

常用的概率分布:伯努利分布、二项式分布、多项式分布、先验概率,后验概率

常用的概率分布:伯努利分布、二项式分布、多项式分布、先验概率,后验概率

常⽤的概率分布:伯努利分布、⼆项式分布、多项式分布、先验概率,后验概率⼀,伯努利分布(bernouli distribution)⼜叫做0-1分布,指⼀次随机试验,结果只有两种。

也就是⼀个随机变量的取值只有0和1。

记为: 0-1分布或B(1,p),其中 p 表⽰⼀次伯努利实验中结果为正或为1的概率。

概率计算:期望计算:最简单的例⼦就是,抛⼀次硬币,预测结果为正还是反。

⼆,⼆项式分布(binomial distrubution)表⽰n次伯努利实验的结果。

记为:X~B(n,p),其中n表⽰实验次数,p表⽰每次伯努利实验的结果为1的概率,X表⽰n次实验中成功的次数。

概率计算:期望计算:例⼦就是,求多次抛硬币,预测结果为正⾯的次数。

三,多项式分布(multinomial distribution)多项式分布是⼆项式分布的扩展,不同的是多项式分布中,每次实验有n种结果。

概率计算:期望计算:最简单的例⼦就是多次抛筛⼦,统计各个⾯被掷中的次数。

四,先验概率,后验概率,共轭分布先验概率和后验概率: 先验概率和后验概率的概念是相对的,后验的概率通常是在先验概率的基础上加⼊新的信息后得到的概率,所以也通常称为条件概率。

⽐如抽奖活动,5个球中有2个球有奖,现在有五个⼈去抽,⼩名排在第三个,问题⼩明抽到奖的概率是多少?初始时什么都不知道,当然⼩明抽到奖的概率P( X = 1 ) = 2/5。

但当知道第⼀个⼈抽到奖后,⼩明抽到奖的概率就要发⽣变化,P(X = 1| Y1 = 1) = 1/4。

再⽐如⾃然语⾔处理中的语⾔模型,需要计算⼀个单词被语⾔模型产⽣的概率P(w)。

没有看到任何语料库的时候,我们只能猜测或者平经验,或者根据⼀个⽂档中单词w的占⽐,来决定单词的先验概率P(w) = 1/1000。

之后根据获得的⽂档越多,我们可以不断的更新。

也可以写成。

再⽐如,你去抓娃娃机,没抓之前,你也可以估计抓到的概率,⼤致在1/5到1/50之间,它不可能是1/1000或1/2。

16种常见概率分布概率密度函数意义及其应用

16种常见概率分布概率密度函数意义及其应用

16种常见概率分布概率密度函数意义及其应用1. 常数分布(Constant distribution):概率密度函数(Probability Density Function,PDF)为常数,表示特定区间内的概率相等。

这种分布常用于模拟实验或作为基线分布进行比较。

2. 均匀分布(Uniform distribution):概率密度函数为一个常数,表示在特定区间内的各个取值的概率相等。

均匀分布经常用于随机抽样,以确保样本的代表性。

3. 二项分布(Binomial distribution):概率密度函数描述了进行n次独立二类试验中成功次数的概率分布。

二项分布在实验设计、质量控制和市场研究中广泛应用。

4. 泊松分布(Poisson distribution):5. 正态分布(Normal distribution):概率密度函数为指数函数形式,常用来描述自然界中众多连续变量的分布,例如身高、体重等。

正态分布在统计学和金融学中广泛应用。

6. χ2分布(Chi-square distribution):概率密度函数描述了n个独立标准正态分布随机变量的平方和的分布,是假设检验和方差分析中常用的分布。

7. t分布(t-distribution):概率密度函数描述了标准正态分布随机变量与一个自由度为n的卡方分布随机变量的比值的分布。

t分布在小样本推断和回归分析中常用。

8. F分布(F-distribution):概率密度函数描述了两个自由度为m和n的卡方分布随机变量的比值的分布。

F分布在方差分析、回归分析和信号处理中常应用。

9. 负二项分布(Negative binomial distribution):概率密度函数描述了进行一系列独立二类试验中直到第r次取得第k 次成功的概率。

负二项分布在可靠性工程和传染病模型中常用。

10. 伽马分布(Gamma distribution):概率密度函数描述了多个指数分布随机变量的和的分布,常被用于描述连续事件的时间间隔。

几种常见的概率分布

几种常见的概率分布

几种常见的概率分布一、 离散型概率分布1. 二项分布n 次独立的贝努利实验,其实验结果的分布(一种结果出现x 次的概率是多少的分布)即为二项分布应用二项分布的重要条件是:每一种实验结果在每次实验中都有恒定的概率,各实验之间是重复独立的平均数: (Y)np X E μ==方差与标准差:2(1)X np P σ=-;X σ=特例:(0-1)分布若随机变量X 的分布律为1(x k)p (1p)k k p -==- k=0,1;0〈p 〈1,则称X 服从参数p 的(0—1)分布2. 泊松分布泊松分布是一种用来描述一定的空间和时间里稀有事件发生次数的概率分布泊松分布变量x 只取零和正整数:0、1、2…。

其概率函数为:(x)!xp e x μμ-=泊松分布的平均数:(x)E μμ==泊松分布的方差和标准差:2σμ=、σ=3. 超几何分布P(X=k )=k n k M N Mn NC C C -- 记X~(N ,M ,n) P=MN期望:E (X)=np方差:D (X)=np (1—p)1N n N -- 适用范围:多次完全相同并且相互独立的重复试验,如果在有限总体中不重复抽样,抽样成功的次数X 的概率分布服从超几何分布,如福利彩票二、 连续型概率分布1. 均匀分布若随机变量X 具有概率密度函数(x)f =则称X 在区间(a ,b )上服从均匀分布,记为X ~ U (a ,b )在区间(a ,b )上服从均匀分布的随机变量X 的分布函数为0F(x),1x a x a a x b b a b x ⎧<⎪-⎪=≤<⎨-⎪≤⎪⎩2指数分布若随机变量X 具有概率密度函数,0(x)0,0x e x f x λλ-⎧≥=⎨<⎩ 其中0λ> 是常数,则称X 服从以λ 为参数的指数分布,记作~()X E λ ,X 的分布函数为1,0(x)0,0x e x F x λ-⎧-≥=⎨<⎩3。

正态分布正态随机变量X 的概率密度函数的形式如下:22(x )2(x),f e x μδ--=-∞<<∞式中,μ 为随机变量X 的均值;2δ 为随机变量X 的方差。

概率论常见的几种分布

概率论常见的几种分布

概率论常见的几种分布常见的概率论分布有:均匀分布、正态分布、泊松分布和指数分布。

1. 均匀分布均匀分布是指在一段区间内,各个取值的概率是相等的。

比如在一个骰子的例子中,每个面出现的概率是相等的,为1/6。

均匀分布在实际应用中常用于随机数生成、样本抽取等场景。

2. 正态分布正态分布又被称为高斯分布,是最常见的概率分布之一。

正态分布的特点是呈钟形曲线,数据集中在均值周围,并且具有对称性。

正态分布在自然界中广泛存在,比如人的身高、体重等都近似服从正态分布。

在统计学和数据分析中,正态分布的应用非常广泛,例如在建模、假设检验和置信区间估计等方面。

3. 泊松分布泊松分布是一种离散概率分布,描述了在一段时间或空间内,某事件发生的次数的概率分布。

泊松分布的特点是事件之间是独立的,并且事件发生的平均速率是恒定的。

泊松分布在实际应用中常用于描述稀有事件的发生概率,比如电话呼叫中心的接听次数、交通事故的发生次数等。

4. 指数分布指数分布是描述连续随机变量的概率分布,用于描述时间间隔的概率分布。

指数分布的特点是事件之间是独立的,并且事件发生的速率是恒定的。

指数分布在实际应用中常用于描述如等待时间、寿命等连续性事件的概率分布。

这四种分布在概率论和统计学中都有广泛的应用。

它们分别适用于不同的场景和问题,能够帮助人们理解和分析数据。

在实际应用中,我们常常需要通过对数据进行建模和分析来确定数据的分布类型,从而更好地理解数据的特征和规律。

除了这四种常见的分布外,还有其他许多概率分布,例如二项分布、伽玛分布、贝塔分布等。

每种分布都有其独特的特点和应用领域。

在实际应用中,选择合适的分布模型对数据进行建模和分析是非常重要的,可以帮助我们更好地理解数据,做出准确的推断和预测。

概率论中常见的几种分布包括均匀分布、正态分布、泊松分布和指数分布。

每种分布都有其特点和应用场景,在实际问题中选择合适的分布模型对数据进行建模和分析是非常重要的。

通过对数据的分布进行研究,我们能够更好地理解数据的规律和特征,为决策提供科学依据。

常见的概率分布

常见的概率分布

常见的概率分布离散分布0-1分布(伯努利分布)它的分布律为:\[P\{X=k\}=p^k(1-p)^{1-k}, k=0,1, (0<p<1)\]0-1分布记作:\(X \sim b(1,p)\)期望:\(E(X)=p\)⽅差:\(D(X)=p(1-p)\)常⽤的场景:新⽣婴⼉性别的登记,招⽣考试的录取,产品的是否合格,硬币的正反⾯。

⼆项分布⼆项分布为\(n\)重伯努利实验的概率分布。

分布律为:\[P\{X=k\}=\begin{pmatrix}n\\k\end{pmatrix}p^k(1-p)^{n-k},k=0,1,2,...,n,(0<p<1)\]\[\sum\limits_{k=0}^{n}P\{X=k\}=\sum\limits_{k=0}^{n}\begin{pmatrix}n\\k\end{pmatrix}p^k(1-p)^{n-k}=(p+1-p)^n=1\]⼆项分布记作:\( X \sim b(n,p)\)期望:\(E(X)=np\)⽅差:\(D(X)=np(1-p)\)常⽤的场景:⽐如⼀个⼈射击\(n\)次,其中\(k\)次命中的概率,抽查50台设备,其中10台出故障的概率等等。

从下⾯的图中,我们可以看到命中次数先增加,到了3达到最⼤,之后⼜逐渐减少,⼀般来说,对于固定的\(n,p\),都具有这⼀性质。

(1)当\((n+1)p\)不为整数时,⼆项概率\(P\{X=k\}\)在\(k=[(n+1)p]\)时达到最⼤值;(2)当\((n+1)p\)为整数时,⼆项概率\(P\{X=k\}\)在\(k=(n+1)p,k=(n+1)p-1\)时达到最⼤值。

%每轮射击10次,命中概率0.3,射击10000轮,x中返回的是每轮中命中的次数x=binornd(10,0.3,10000,1);%bin的数⽬为10hist(x,10);N=100;p=0.4;k=0:N;%事件发⽣k次的概率pdf=binopdf(k,N,p);%事件发⽣不⼤于k次的概率cdf=binocdf(k,N,p);plotyy(k,pdf,k,cdf);grid on;多项分布多项式分布是⼆项式分布的扩展,在多项式分布所代表的实验中,⼀次实验会有多个互斥结果,⽽⼆项式分布所代表的实验中,⼀次实验只有两个互斥结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

X k
X kX !(n X )!
二项分布出现阳性的次数至多为k次的概率为
P X k kP (X ) k n ! X (1 )n X
X 0
X 0X !(n X )!
例4-6 例4-5中某地钩虫感染率为13%,随机 抽查当地150人,其中至多有2名感染钩虫的 概率有多大?至少有2名感染钩虫的概率有多 大?至少有20名感染钩虫的的概率有多大?
例如,掷一枚骰子,出现的结果可能是1点,2点,…,6点, 其结局为一个随机变量。
例如,用针灸治疗头痛患者3人,治疗结果可能是1人有效, 2人有效,3人有效,也可能是无效。治疗结果为一个随机变 量。
表4-1 掷一枚骰子结局的概率分布 可能的结局 1点 2点 3点 4点 5点 6点
概率 1/6 1/6 1/6 1/6 1/6 1/6
00 1 2 3 4 5 6 7 8 9 110 0 11
n=20, π=0.3
二项分布图的形态取决于π和n。
当π=1- π时,它呈对称分布。 当π≠1- π时,呈偏态分布。当π接近0.5时,图形接近对 称;当π离0.5愈远,对称性越差,但随着n的增大,分 布趋于对称。当n足够大,且π不太靠近0或1时,二项 分布逼近正态分布。
分析:治疗结果为有效和无效两类,每个患者是否 有效不受其他病例的影响,有效概率均为0.6,符合 二项分布的条件。因此可用二项分布的概率函数来 求得两例有效的概率。
C 3 20.6210.63 20.432
二、二项分布的特征
1。二项分布的图形特征
0 .3 8 0 .3 0
0 .2 5 0 .2 4 0 .2 3
一般来说,当nπ和n(1-π)都大于5时,二项分布近似
于正态分布 N n,n(1 ) 。
2 二项分布的均数和标准差
对于任何二项分布问题,如果每一次实验出现 阳性结果的概率均为π,进行n次独立重复实验, 出现X次阳性结果,则
X的均数 n X
X的方差2 n(1) X
X的标准差 n(1) X
三是每次 试验独立,即一次试验出现什么样的结果与前面已 出现的结果无关。即各次摸球是彼此独立的。
Bernoulli试验序列:满足以上三个条件的n次试验构成的序 列。
实际上,医学研究中很多试验都能满足上述三个条件, 例如用同种属、同性别且体重相近的大白鼠作某药物一定剂 量的毒性试验;某新疗法临床试验观察患者是否治愈;观察 某指标的化验结果是否呈阳性。
p
150
三、二项分布的应用
(一)概率估计
例4-5 如果某地钩虫感染率为13%,随机观 察当地150人,其中有10人感染钩虫的概率有 多大?
分析计算:
PX101!01155 !0010!0.13100.87140
0.0055
(二)单侧累计概率计算
二项分布出现阳性的次数至少为k次的概率为
P X k nP (X ) n n ! X (1 )n X
至多有2名感染钩虫的概率为
PX2 2 P(X) 2 n! X(1 )nX
X0
X0X!(nX)!
8.417-0101.90 1 082.1 11 07
P(X
5)
C
5 5
(0.8)5
0.3277
上例中离散型随机变量X的概率函数
X的可能取值
0
1
2
3
4
5
概率P(x) 0.0003 0.0064 0.0512 0.2048 0.4096 0.3277
例4-2 临床上用针灸治疗某型头痛,有效的概率为 60%,现以该法治疗3例,其中两例有效的概率为多 大?
0 .2 0
0 .2 0
0 .1 0
0 .1 0
n=3, π=0.5
n=10, π=0.5
π=0.5时,不同n值对应的二项分布
0 .0 0
0 .0 0 0
0 .4 6 0 .4 0
0 .3 0
0 .2 0
0 .1 0
01 23 n=3, π=0.3
0 .0 0 0
P 0.34 0.30
0.20
0.10
摸球试验中摸到黑球的概率分布
X的可能取值
0
1
2
3
4
5
概率P(x) 0.0003 0.0064 0.0512 0.2048 0.4096 0.3277
一是每次试验结果,只能是两种对立的结果之一。即每次摸 球只有两种可能结果,或黑球或白球。
二是每次试验的条件不变,发生某种结果的概率是固定不变 的。即每次试验摸到黑球的概率是固定的。
若以率表示,则
p
2 1
p
n
1
p
n
式中 p 是样本率的标准差,又称为样本率的
标准误,它反映率的抽样误差的大小。
例4-4 已知某地钩虫感染率为6.7%,如果随机抽查 该地150人,记样本钩虫感染率为p,求p的抽样误
差 。 p
本例n=150,π=0.067,
0 .06 10 7 .060 7 .02 2 .0%
0 0.00 1 2 3 4 5 0 n=6, π=0.3
P 0 .2 8
0 .2 0
0 .1 0 0 1 2 3 4 5 6 7 n=10, π=0.3
0 .0 0
0 .2 0 0 .1 8 0 .1 6 0 .1 4 0 .1 2 0 .1 0 0 .0 8 0 .0 6 0 .0 4 0 .0 2 0 .0 0
第一节 二项分布(binomial distribution)及其应用
一、二项分布的概念和特征
例:设有一口袋,内装形状、重量完全相同的黑球和白 球,各占80%和20%。搅匀后从该口袋中摸出一球,记 录颜色,放回搅匀,再摸一球,…,如此重复5次。 若把摸到黑球的次数作为一个随机变量X。求该随机变 量的概率分布。
如果每一次试验只有阳性或阴性两种可能结果;
每次试验阳性结果的发生概率均为π,阴性结果的 发生概率为1-π;每次试验的结果是相互独立的, 那么重复n次实验,发生阳性结果的次数X的概率分 布为二项分布,记为B(X;n,π)。恰好有X例阳性结 果的概率为
P (X )C n x x1 n x
Cx n
n!
X!n X!
则摸出黑球次数的可能结果及其概率如下表所示
P(X
0)
C
0 5
0.2
5
0 .0003
P(X
1)
C
1 5
0.8
0 .2
4
0.0064
P(X
2)
C
2 5
0 .8 2
0.2
3
0 .0512
P(X
3)
C
3 5
0.8
30.2Βιβλιοθήκη 20.2048P(X
4)
C
4 5
0 .8 4
0.2
0 .4096
相关文档
最新文档