相似三角形经典讲义

合集下载

《相似三角形》最全讲义(完整版)

《相似三角形》最全讲义(完整版)

相似三角形基本知识知识点一:放缩与相似形1. 图形的放大或缩小,称为图形的放缩运动。

2. 把形状相同的两个图形说成是相似的图形,或者就说是相似性注意:⑴相似图形强调图形形状相同,与它们的位置、颜色、大小无关。

⑵相似图形不仅仅指平面图形,也包括立体图形相似的情况。

⑶我们可以这样理解相似两个图形相似,其中一个图形可以看作是由另一个图形放大或缩到的.⑷若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形.3. 相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。

注意:当两个相似的多边形是全等形时,他们的对应边的长度的比值是 1.知识点二:比例线段有关概念及性质(1)有关概念1、比:选用同一长度单位量得两条线段。

a、 b 的长度分别是m、n,那么就说这两条线段am 的比是a:b=m:n(或 b n )2、比的前项,比的后项:两条线段的比a:b中。

a叫做比的前项,b叫做比的后项。

说明:求两条线段的比时,对这两条线段要用同一单位长度。

ac3、比例:两个比相等的式子叫做比例,如 b dac4、比例外项:在比例 b d(或a:b=c:d)中a、d叫做比例外项。

ac5、比例内项:在比例 b d(或a:b=c:d)中b、c 叫做比例内项。

ac6、第四比例项:在比例 b d(或a:b=c:d)中, d 叫a、b、 c 的第四比例项。

ab7、比例中项:如果比例中两个比例内项相等,即比例为 b a(或a:b =b:c 时,我们把b叫做 a 和 d 的比例中项。

8. 比例线段:对于四条线段a、b、c、d,如果其中两条线段的长度的比与另两条线段的长度的比相等,即 a c(或a:b=c:d),那么,这四条线段叫做成比例线段,简称比例线bd 段。

(注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位)2)比例性质acad bc1. 基本性质 :bd(两外项的积等于两内项积)a cb d2. 反比性b d a c ( 把比的前项、后项交换 )3.更比性质 (交换比例的内项或外项 ) :a b,(交换内项 ) cdcd c,(交换外项 ) db a d b.(同时交换内外项 ) ca4.合比性质 :a c abc d(分子加(减)分母 ,分母不变) b d b d注意 :实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间注意:(1) 此性质的证明运用了“设 k 法” ,这种方法是有关比例计算,变形中一种常用方法. (2) 应用等比性质时,要考虑到分母是否为零.(3) 可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成 立.AC1)定义:在线段 AB 上,点 C 把线段 AB 分成两条线段 AC 和BC (AC>BC ),如果AB2)黄金分割的几何作图 :已知:线段 AB.求作:点 C 使 C 是线段 AB 的黄金分割点发生同样和差变化比例仍成立.如:acbd5. 等比性质: 如果badc a ab c cd abcd分子分母分别相加,比值不变.)e m(b d f fnn 0) ,那么知识点三: 黄金分割BC ,AC,AB 被点 C 黄金分割,点 C 叫做线段 AB 的黄金分割2即 AC 2=AB ×BC ,那么称线段点,AC 与 AB 的比叫做黄金比。

相似三角形的性质与判定讲义)

相似三角形的性质与判定讲义)

相似三角形的性质与判定讲义)-CAL-FENGHAI.-(YICAI)-Company One1相似三角形的性质与判定讲义【知识点拨】一、相似三角形性质(1)相似三角形对应角相等,对应边成比例.(2)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比. (3)相似三角形周长的比等于相似比.(4)相似三角形面积的比等于相似比的平方.(5)相似三角形性质可用来证明线段成比例、角相等,也可用来计算周长、边长等二、 相似三角形的等价关系(1)反身性:对于任一ABC ∆有ABC ∆∽ABC ∆.(2)对称性:若ABC ∆∽'''C B A ∆,则'''C B A ∆∽ABC ∆.(3)传递性:若ABC ∆∽C B A '∆'',且C B A '∆''∽C B A ''''''∆,则ABC ∆∽C B A ''''''∆. 三、三角形相似的判定方法1、定义法:对应角相等,对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似.6、判定直角三角形相似的方法: (1)以上各种判定均适用.(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。

相似三角形知识点讲义

相似三角形知识点讲义

相似三角形知识点讲义知识点1 相似图形形状相同的图形叫相似图形,或者说是相似形,在相似多边形中,最简单的是相似三角形.如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。

知识点2 比例线段的相关概念两条线段长度的比叫做这两条线段的比。

如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是nm ba =,或写成n m b a ::=.注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位.在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段. 注意:(1)当两个比例式的每一项都对应相同,两个比例式才是同一比例式.(2)比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:ad cb =.例题⒈若AB =1m ,CD =25cm ,则AB ∶CD = ;若线段AB=m, CD=n ,则AB ∶CD= . ⒉若MN ∶PQ =4∶7,则PQ ∶MN= , MN= PQ , PQ= MN 。

知识点3 比例的性质 基本性质:(1)bc ad d c b a =⇔=::; (2)b a c b c c a ⋅=⇔=2::. 注意:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=.更比性质(交换比例的内项或外项):()()()a bc d a c d c b d b ad bc a ⎧=⎪⎪⎪=⇒=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项反比性质(把比的前项、后项交换):cd a b d c b a =⇒=. 合比性质:ddc b b ad c b a ±=±⇒=. 注意:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=dc dc b a b a c cd a a b d c b a 等等. 等比性质:如果)0(≠++++====n f d b n m f e d c b a ,那么b a n f d b m e c a =++++++++ .注意:(1)此性质的证明运用了“设k 法” ,这种方法是有关比例计算,变形中一种常用方法. (2)应用等比性质时,要考虑到分母是否为零.(3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立. 例1若线段a ,b ,c ,d 成比例,其中a =5㎝,b =7㎝,c =4㎝,则,d = . 例2若a·b=c·d 则有a ∶d= ;若m ∶x=n ∶y, 则x ∶y= . 例3已知4x -5y =0,则(x +y )∶(x -y )的值为 .例4若x ∶y ∶z =2∶7∶5,且x -2y +3z=6,则x= ,y= ,z= ; 例5设x 3 =y 5 =z 7 ,则x+y y =__ _,y+3z 3y-2z =__ __.;其中032≠+-f d b .例6若kba c ca b cb a =+=+=+,求k 的值。

学生 第1讲 相似三角形培优课件讲义1!.doc

学生  第1讲   相似三角形培优课件讲义1!.doc

第1讲相似三角形讲义学习目标解三角形相似的判定方法学习重点:能够运用三角形相似判定方法解决数学问题及实际问题.学习难点:运用三角形相似判定方法解决数学问题的思路学习过程一、证明三角形相似例1:已知,如图,D为△ABC内一点连结ED、AD,以BC为边在△ABC外作∠CBE=∠ABD,∠BCE=∠BAD 求证:△DBE∽△ABC例2、矩形ABCD中,BC=3AB,E、F,是BC边的三等分点,连结AE、AF、AC,问图中是否存在非全等的相似三角形?请证明你的结论。

下面我们来看一看相似三角形的几种基本图形:(1)如图:称为“平行线型”的相似三角形EC(2)如图:其中∠1=∠2,则△ADE∽△ABC称为“相交线型”的相似三角形。

ABCDE12AABB C CDDEE12412(3)如图:∠1=∠2,∠B=∠D,则△ADE∽△ABC,称为“旋转型”的相似三角形。

观察本题的图形,如果存在相似三角形只可能是“相交线型”的相似三角形,及△EAF与△ECA二、相似三角形证明比例式和乘积式例3、△ABC中,在AC上截取AD,在CB延长线上截取BE,使AD=BE,求证:DF∙AC=BC∙FEAB CDE FAB CDEFK例4:已知:如图,在△ABC 中,∠BAC=900,M 是BC 的中点,DM ⊥BC 于点E ,交BA 的延长线于点D 。

求证:(1)MA 2=MD ∙ME ;(2)MD MEADAE =22三、相似三角形证明两角相等、两线平行和线段相等。

例5:已知:如图E 、F 分别是正方形ABCD 的边AB 和AD 上的点,且31==AD AF AB EB 。

求证:∠AEF=∠FBD例6、直角三角形ABC 中,∠ACB=90°,BCDE 是正方形,AE 交BC 于F ,FG ∥AC 交AB 于G ,求证:FC=FG例7、Rt △ABC 锐角C 的平分线交AB 于E ,交斜边上的高AD 于O ,过O 引BC 的平行线交AB 于F ,求证:AE=BFABCDEM12A B CD E F GA B C D F G E AB C DE F O123E 图2目标训练 一、填空题1、 两个相似三角形的面积比S 1:S 2与它们对应高之比h 1:h 2之间的关系为 .2、 如图2,平行四边形ABCD 中,E 是边BC 上的点,AE 交BD 于点F ,如果23BE BC =,那么BF FD= .233、如图,点1234A A A A ,,,在射线OA 上,点123B B B ,,在射线OB 上,且112233A B A B A B ∥∥,213243A B A B A B ∥∥.若212A B B △,323A B B △的面积分别为1,4,则图中三个阴影三角形面积之和为 .4. △ABC 中,DE ∥FG ∥BC ,且AD :1,则S △ADE :S 四边形DFGE :S 四边形FBCG =二、选择题1.已知△ABC∽△DEF,且AB :DE=1:2,则△ABC 的面积与△DEF 的面积之比为( )(A)1:2 (B)1:4 (C)2:1 (D)4:12.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3和4及x ,那么x 的值( )A .只有1个B .可以有2个C .有2个以上但有限D .有无数个3.美是一种感觉,当人体下半身长与身高的比值越接近0.618时,越给人一种美感.如图,某女士身高165cm ,下半身长x与身高l 的比值是0.60,为尽可能达到好的效果,她应穿的高跟鞋的高度大约为( ) A .4cm B .6cm C .8cm D .10cm4、如图,△ABC 是等边三角形,被一平行于BC 的矩形所截,AB 被截成三等分,则图中阴影部分的面积是△ABC的面积的 ( ) A.91 B.92 C.31D.94(第3题图)1 2 345、 如图,直角梯形ABCD 中,∠BCD =90°,AD ∥BC ,BC =CD ,E 为梯形内一点,且∠BEC =90°,将△BEC 绕C 点旋转90°使BC 与DC 重合,得到△DCF ,连EF 交CD 于M .已知BC =5,CF =3,则DM:MC 的值为 ( ) A.5:3 B.3:5 C.4:3 D.3:46、 如图,在Rt △ABC 内有边长分别为,,a b c 的三个正方形,则,,a b c 满足的关系式是( ) A 、b a c =+ B 、b ac = C 、222b ac =+ D 、22b a c ==7、如图,Rt △ABAC 中,AB ⊥AC ,AB =3,AC =4,P 是BC 边上一点,作PE ⊥AB 于E,PD ⊥AC 于 D ,设BP =x ,则PD+PE =( ) A.35x + B.45x -C.72D.21212525x x -三、解答题1、如图5,在△ABC 中,BC>AC , 点D 在BC 上,且DC =AC,∠ACB 的平分线CF 交AD 于F ,点E 是AB 的中点,连结EF.(1)求证:EF ∥BC.(2)若四边形BDFE 的面积为6,求△ABD 的面积.2、 (本小题满分10分)如图:在等腰△ABC 中,CH 是底边上的高线,点P 是线段CH 上不与端点重合的任意一点,连接AP 交BC 于点E,连接BP 交AC 于点F. (1) 证明:∠CAE=∠CBF; (2) 证明:AE=BF;(3) 以线段AE ,BF 和AB 为边构成一个新的三角形ABG (点E 与点F 重合于点G ),记△ABC 和△ABG 的面积分别ABCDE P为S △ABC 和S △ABG ,如果存在点P,能使得S △ABC =S △ABG ,求∠C 的取之范围。

相似三角形模型(全)课件

相似三角形模型(全)课件

在解题过程中,可以根据题目的条件 选择适当的方法来证明或推导结论。
全等三角形可以用来证明两个三角形 完全重合,而相似三角形则可以用来 研究两个三角形的形状和大小关系。
05
相似三角形的证明方法
利用角角相似的证明方法
01
02
03
总结词
通过比较两个三角形的对 应角,如果两个三角形有 两组对应的角相等,则这 两个三角形相似。
相似三角形的对应角相等
总结词
如果两个三角形相似,则它们的 对应角相等。
详细描述
根据相似三角形的定义,如果两 个三角形对应的角都相等,则这 两个三角形是相似的。因此,相 似三角形的对应角必然相等。
相似三角形的对应边成比例
总结词
如果两个三角形相似,则它们的对应边之间存在一定的比例关系。
详细描述
由于两个三角形相似,它们的对应角相等,根据三角形的性质,对应的边之间 必然存在一定的比例关系,这个比例关系是固定的,与三角形的形状和大小无 关。
相似三角形的面积比等于边长比的平方
总结词
如果两个三角形相似,则它们的面积之比等于对应边长之比 的平方。
详细描述
根据相似三角形的性质,两个相似三角形的对应边长之比是 固定的,设为k。那么它们的面积之比就是k的平方,即k^2 。这意味着相似三角形的面积比等于边长比的平方。
相似三角形的周长比等于边长比
相似三角形模型(全)课件
目 录
• 相似三角形的基本概念 • 相似三角形的性质和定理 • 相似三角形的应用 • 相似三角形与全等三角形的关系 • 相似三角形的证明方法
01
相似三角形的基本概念
相似三角形的定义
相似三角形的定义
相似三角形的性质
如果两个三角形对应的角相等,则这 两个三角形相似。

相似三角形知识讲义终极版

相似三角形知识讲义终极版

相似三角形知识讲义(第一课时)一: 相似图形形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形.二:相似变换 由一个图形到另一个图形,在改变的过程中保持形状不变(大小方向和位置可变),这样的图形改变叫做图形的相似变换。

图形相似变换的性质 1.图形的相似变换不改变图形中每一个角的大小;2.图形相似变换后对应线段都扩大(或缩小)相同的倍数,这个数叫相似比。

三:相似三角形成比例线段一: 比例线段的相关概念如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是nm b a =,或写成n m b a ::=. 注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位. 在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注意:(1)当两个比例式的每一项都对应相同,两个比例式才是同一比例式.(2)比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:ad c b =. (3) 比例内项、比例外项、比例中项相关概念练习.下列线段能成比例线段的是( )(A)1cm,2cm,3cm,4cm (B)1cm,2cm,22cm,2cm (C)2cm,5cm,3cm,1cm (D)2cm,5cm,3cm,4cm二: 比例的性质基本性质:(1)bc ad d c b a =⇔=::;(2)b a c b c c a ⋅=⇔=2::.注意:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=.更比性质(交换比例的内项或外项):()()()a b c d a c d c b d b a d b c a ⎧=⎪⎪⎪=⇒=⎨⎪⎪=⎪⎩,交换内项,交换外项.同时交换内外项 合比性质:dd c b b a d c b a ±=±⇒=. 发生同样和差变化比例仍成立.如:⎪⎪⎩⎪⎪⎨⎧+-=+--=-⇒=dc d c b a b a c c d a a b d c b a 等等.等比性质: 如果)0(≠++++====n f d b n m f e d c b a ,那么ba n f db m ec a =++++++++ . 注意:(1)此性质的证明运用了“设k 法” ,这种方法是有关比例计算,变形中一种常用方法.(2)应用等比性质时,要考虑到分母是否为零.(3)可利用分式性质将连等式的每一个比的前项与后项同时乘以一个数,再利用等比性质也成立.如:ba f db ec a f ed c b a fe d c b a =+-+-⇒=--=⇒==32323322;其中032≠+-f d b .《比例的性质》练习题一、填空题1.如果线段a=3,b=12,那么线段a 、b 的比例中项x=___________。

相似三角形的性质与判定专题讲义

相似三角形的性质与判定专题讲义

相似三角形的性质与判定专题讲义一、知识梳理(一)、相似三角形的性质:1、相似三角形的对应角,对应边。

2、相似三角形的对应高,对应中线,对应角平分线的比都等于。

3、相似三角形对应周长的比等于。

4、相似三角形对应面积的比等于。

注意:在运用相似三角形的性质解题时,一定要确定好对应边、对应角;若果不能确定,则应当进行分类讨论。

(二)、相似三角形的判定:1、判定两个三角形相似的条件:(1)平行截割: _____(2)两角对应相等:(3)两边夹:(4)三边比:_____________________________________2、判定两个三角形相似的一般步骤:(1)先通过已知或平行、对顶角、公共边、寻找是否存在两对相等的角(2)若只能找到一对对应角相等,则再找到一对对应角相等,或找夹这个角的两边是否对应成比例。

(3)若找不到相等的角,就分析三边是否3、等积式的证明思路遇等积,化等比;横找、竖找定相似;不相似,莫生气,等线等比来代替;平行线转比例,两端各自拉关系。

二、基础练习1.(2013•重庆)已知△ABC∽△DEF,若△ABC与△DEF的相似比为3:4,则△ABC与△DEF的面积比为()A.4:3 B.3:4 C.16:9 D.9:162.两相似三角形的最短边分别是5cm和3cm,它们的面积之差为32cm2,那么小三角形的面积为()A.10cm2B.14cm2C.16cm2D.18cm23.如图,已知△ABC,AB=6,AC=4,D为AB边上一点,且AD=2,E为AC边上一点(不与A、C重合),若△ADE与△ABC相似,则AE=()A.2 B.34C.3或43D.3或344.(2008•毕节地区)已知△ABC的三条长分别为2cm,5cm,6cm,现将要利用长度为30cm和60cm的细木条各一根,做一个三角形木架与△ABC相似,要求以其中一根作为这个三角形木架的一边,将另一根截成两段(允许有余料,接头及损耗忽略不计)作为这个三角形木架的另外两边,那么这个三角形木架的三边长度分别为()A.10cm,25cm,30cmB .10cm ,30cm ,36cm 或10cm ,12cm ,30cmC .10cm ,30cm ,36cmD .10cm ,25cm ,30cm 或12cm ,30cm ,36cm 5.(2010•淄博)在一块长为8、宽为32的矩形中,恰好截出三块形状相同、大小不等的直角三角形,且三角形的顶点都在矩形的边上.其中面积最小的直角三角形的较短直角边的长是.6.如图,D 、E 分别是AC ,AB 上的点,∠ADE =∠B ,AG ⊥BC 于点G ,AF ⊥DE 于点F.若AD =3,AB=5,求: (1)AGAF;(2)△ADE 与△ABC 的周长之比;三、 重难点高效突破专题一:计算线段的长度或线段之间的比在几何中线段长度计算常用的方法是:1、运用勾股定理计算;2、运用相似三角形对应边成比例计算;3、综合运用进行计算。

讲义 相似三角形good - 副本

讲义 相似三角形good - 副本

相似三角形一、基础知识(一).比例1.第四比例项、比例中项、比例线段;2.比例性质:(1)基本性质:bc ad d c b a =⇔= ac b cb b a =⇔=2 (2)合比定理:dd c b b a d c b a ±=±⇒= (3)等比定理:)0.(≠+++=++++++⇒==n d b b a n d b m c a n m d c b a 3.黄金分割:如图,若AB PB PA ⋅=2,则点P 为线段AB 的黄金分割点.4.平行线分线段成比例定理(二)相似1.定义:我们把具有相同形状的图形称为相似形.2.相似多边形的特性:相似多边的对应边成比例,对应角相等3.相似三角形的判定● (1)平行于三角形一边的直线与其它两边相交,所构成的三角形与原三角形相似。

● (2)如果两个三角形的三组对应边的比相等,那么这两个三角形相似。

● (3)如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似。

● (4)如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。

4. 相似三角形的性质 ● (1)对应边的比相等,对应角相等.● (2)相似三角形的周长比等于相似比.● (3)相似三角形的面积比等于相似比的平方.● (4)相似三角形的对应边上的高、中线、角平分线的比等于相似比.5.三角形中位线定义: 连接三角形两边中点的线段 叫做三角形的中位线.三角形中位线性质: 三角形的中位线平行于第三边,并且等于它的一半。

6.梯形的中位线定义:梯形两腰中点连线叫做梯形的中位线.梯形的中位线性质: 梯形的中位线平行于两底并且等于两底和的一半.7.相似三角形的应用:1、利用三角形相似,可证明角相等;线段成比例(或等积式);2、利用三角形相似,求线段的长等3、利用三角形相似,可以解决一些不能直接测量的物体的长度。

如求河的宽度、求建筑物的高度等。

(三)位似:B位似:如果两个图形不仅是相似图形,而且是每组对应点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形。

《相似三角形》 讲义

《相似三角形》 讲义

《相似三角形》讲义一、相似三角形的定义如果两个三角形的对应角相等,对应边成比例,那么这两个三角形就叫做相似三角形。

例如,三角形 ABC 和三角形 A'B'C',如果角 A 等于角 A',角 B 等于角 B',角 C 等于角 C',并且 AB/A'B' = BC/B'C' = AC/A'C',那么三角形ABC 相似于三角形A'B'C',记作“三角形ABC ∽三角形A'B'C'”。

二、相似三角形的判定1、两角分别相等的两个三角形相似。

假设在三角形 ABC 和三角形 A'B'C'中,角 A 等于角 A',角 B 等于角 B',那么可以得出三角形 ABC 相似于三角形 A'B'C'。

2、两边成比例且夹角相等的两个三角形相似。

比如在三角形 ABC 和三角形 A'B'C'中,如果 AB/A'B' = AC/A'C',且角 A 等于角 A',那么这两个三角形相似。

3、三边成比例的两个三角形相似。

如果 AB/A'B' = BC/B'C' = AC/A'C',那么三角形 ABC 与三角形A'B'C'相似。

三、相似三角形的性质1、相似三角形的对应角相等。

比如三角形 ABC 相似于三角形 A'B'C',那么角 A 等于角 A',角 B 等于角 B',角 C 等于角 C'。

2、相似三角形的对应边成比例。

若三角形 ABC 与三角形 A'B'C'相似,就有 AB/A'B' = BC/B'C' =AC/A'C'。

相似三角形的性质(精讲PPT课件)

相似三角形的性质(精讲PPT课件)

课练习
的地方,把手臂向前伸直且让小尺竖直,看到尺上大约有24个分划恰好 遮住旗杆。已知此同学的臂长约为60cm,求旗杆的大致高度。
解:由已知得:BC=24cm=0.24m,CM=60cm=0.6m,
EN=30m,BC//DE,CM//EN,

∴△ABC∽△ADE,△ACM∽△AEN BC AC ,CM AC ,
探 ∴ 100 CD 40 .
D
120 CD
究 答:点C到直线PQ的距离为240m.
1、要制作两个形状相同的三角形框架,其中一个三角形的三边长分别
练习 为5cm,6cm和9cm,另一个三角形的最短边长为2.5cm,则它的最长边
课 为( C ) A. 3cm B. 4cm C. 4.5cm
D. 5cm
DE AE EN AE
练 习
BC CM , DE EN
0.24 0.6, DE 30
∴DE=12m. 答:旗杆大致高12m.
动脑筋
课 堂 通过本节课的学习,你有什么收获与体会? 小 结
1、已知△ABC∽△DEF,AM,DN分别为△ABC,△DEF的一条中线,
练习 且AM=6cm,AB=8cm,DE=4cm,求DN的长. DN=3cm
作 证明:∵△ABC∽△A′B′C′, ∴∠B=∠B′,∠BAC=∠B′A′C′.

又∵AT,A′T′分别平分∠BAC=∠B′A′C′,
∴∠BAT= 1∠BAC,∠B′A′C′= 1 ∠B′A′T′
2
2
∴∠BAT=∠B′A′T′,
究 ∴△ABT∽△A′B′T′, ∴ AT AB . A' T' A' B'
归纳 类似三角形对应角平分线的比等于类似比.

相似三角形知识讲义

相似三角形知识讲义

ECDAF BABC E DABCE D 相似三角形知识讲义一.相似三角形的概念及特征 二.相似三角形的性质(功能) 三.常见的相似三角形1.如图,平行四边形ABCD 中,E 是边BC 上的点,AE 交BD 于点F ,如果23BE BC =,那么BFFD = .2、 如图,已知D 、E 分别是ABC ∆的AB 、 AC 边上的点,,DE BC // 且1ADE DBCE S S :=:8, 四边形 那么:AE AC 等于( ) A .1 : 9 B .1 : 3 C .1 : 8 D .1 : 23、如图,Rt △ABC 中,AB ⊥AC ,AB =3,AC =4,P 是BC 边上一点, 作PE ⊥AB 于E,PD ⊥AC 于D ,设BP =x ,则PD+PE =( )A.35x + B.45x -C.72D.21212525x x -4、如图,梯形ABCD 的对角线AC 、BD 相交于O ,G 是BD 的中点. 若AD = 3,BC = 9,则GO : BG =( ).A .1 : 2B .1 : 3C .2 : 3D .11 : 205、如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E , 连接DE ,F 为线段DE 上一点,且∠AFE =∠B. (1) 求证:△ADF ∽△DEC(2) 若AB =4,AD =33,AE =3,求AF 的长A E CB D DCBAA B C D OGABDCOD PAEF CB四.相似三角形的应用1、如图,四边形ABCD 中,AD =CD ,∠DAB =∠ACB =90°, 过点D 作DE ⊥AC ,垂足为F ,DE 与AB 相交于点E. (1)求证:AB ·AF =CB ·CD(2)已知AB =15cm ,BC =9cm ,P 是射线DE 上的动点.设DP =xcm (x >0),四边形BCDP 的面积为ycm 2. ①求y 关于x 的函数关系式;②当x 为何值时,△PBC 的周长最小,并求出此时y 的值.2、如图,在平面直角坐标系中,矩形OABC 的两边分别在x 轴和y 轴上,82OA = cm , OC=8cm ,现有两动点P 、Q 分别从O 、C 同时出发,P 在线段OA 上沿OA 方向以每秒2 cm 的速度匀速运动,Q 在线段CO 上沿CO 方向以每秒1 cm 的速度匀速运动.设运动时间为t 秒. (1)用t 的式子表示△OPQ 的面积S ;(2)求证:四边形OPBQ 的面积是一个定值,并求出这个定值; (3)当△OPQ 与△P AB 和△QPB 相似时,抛物线214y x bx c =++经过B 、P 两点,过线段BP 上一 动 点M 作y 轴的平行线交抛物线于N ,当线段MN 的长取最大值时,求直线MN 把四边形OPBQ 分成两部分的面积之比.CBA O y x图1DM 3、在直角梯形OABC 中,CB ∥OA ,∠CO A =90º,CB =3,OA =6,BA =35.分别以OA 、OC 边所在直线为x 轴、y 轴建立如图1所示的平面直角坐标系. (1)求点B 的坐标;(2)已知D 、E 分别为线段OC 、OB 上的点,OD =5,OE =2E B ,直线DE 交x 轴于点F .求直线DE 的解析式;(3)点M 是(2)中直线DE 上的一个动点,在x 轴上方的平面内是否存在另一个点N .使以O 、D 、M 、N 为顶点的四边形是菱形?若存在,请求出点N 的坐标;若不存在,请说明理由.4、如图1,已知梯形OABC ,抛物线分别过点O (0,0)、A (2,0)、B (6,3).(1)直接写出抛物线的对称轴、解析式及顶点M 的坐标;(2)将图1中梯形OABC 的上下底边所在的直线OA 、CB 以相同的速度同时向上平移,分别交抛物线于点O 1、A 1、C 1、B 1,得到如图2的梯形O 1A 1B 1C 1.设梯形O 1A 1B 1C 1的面积为S ,A 1、 B 1的坐标分别为 (x 1,y 1)、(x 2,y 2).用含S 的代数式表示2x -1x ,并求出当S =36时点A 1的坐标;(3)在图1中,设点D 坐标为(1,3),动点P 从点B 出发,以每秒1个单位长度的速度沿着线段BC运动,动点Q 从点D 出发,以与点P 相同的速度沿着线段DM 运动.P 、Q 两点同时出发,当点Q 到达点M 时,P 、Q 两点同时停止运动.设P 、Q 两点的运动时间为t ,是否存在某一时刻t ,使得直线PQ 、直线AB 、x 轴围成的三角形与直线PQ 、直线AB 、抛物线的对称轴...围成的三角形相似?若存在,请求出t 的值;若不存在,请说明理由.A BDEFC OMNxy图2O 1A 1O y xB 1C 1DM。

初三相似三角形讲义

初三相似三角形讲义

相似三角形知识点总结知识点1、三角对应相等,三边对应成比例的三角形叫相似三角形。

如△与△相似,记作: △∽△。

相似三角形的比叫相似比相似三角形的定义既是相似三角形的性质,也是三角形相似的判定方法。

注意:〔1〕相似比是有顺序的。

〔2〕对应性,两个三角形相似时,通常把对应顶点写在对应位置,这样写比拟容易找到相似三角形的对应角和对应边。

〔3〕顺序性:相似三角形的相似比是有顺序的,假设△∽△,相似比为k,那么△与△的相似比是1k 知识点2、相似三角形与全等三角形的关系〔1〕两个全等的三角形是相似比为1的相似三角形。

〔2〕两个等边三角形一定相似,两个等腰三角形不一定相似。

〔3〕二者的区别在于全等要对应边相等,而相似要求对应边成比例。

知识点3、平行线分线段成比例定理1. 比例线段的有关概念:在比例式::中,、叫外项,、叫内项,、叫前项,a b cda b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果,那么b 叫做a 、d 的比例中项。

把线段分成两条线段和,使2·,叫做把线段黄金分割,C 叫做线段的黄金分割点。

2. 比例性质:①基本性质:a b c dad bc =⇔=②合比性质:±±a b c d a b b c dd =⇒=③等比性质:……≠……a b c d m n b d n a c m b d n ab===+++⇒++++++=()03. 平行线分线段成比例定理〔1〕平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.l1∥l2∥l3,A D l1B E l2C F l3可得EF BC DE AB DF EF AC BC DF EF AB BC DF DE AC AB EF DE BC AB =====或或或或等.〔2〕推论:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.AD EB C由∥可得:AC AEAB AD EA EC AD BD EC AE DB AD ===或或.此推论较原定理应用更加广泛,条件是平行.〔3〕推论的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.〔4〕定理:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的三边与原三角形三边对应成比例.知识点4:相似三角形的性质 ①相似三角形的对应角相等 ②相似三角形的对应边成比例③相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比④相似三角形周长的比等于相似比⑤相似三角形面积的比等于相似比的平方知识点5:相似三角形的判定:①两角对应相等,两个三角形相似②两边对应成比例且夹角相等,两三角形相似③三边对应成比例,两三角形相似④如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角形相似⑤平行于三角形一边的直线和其他两边〔或两边的延长线〕相交,所构成的三角形与原三角形相似⑥直角三角形被斜边上的高分成的两个直角三角形和原三角形相似如果两个三角形的两角分别于另一个三角形的两角对应相等,那么这两个三角形相似。

《相似三角形的应用》 讲义

《相似三角形的应用》 讲义

《相似三角形的应用》讲义一、相似三角形的定义与性质相似三角形是指对应角相等,对应边成比例的两个三角形。

相似三角形具有以下重要性质:1、对应角相等:两个相似三角形的对应角大小相等。

2、对应边成比例:相似三角形的对应边长度之比相等。

3、周长比等于相似比:两个相似三角形的周长之比等于它们的相似比。

4、面积比等于相似比的平方:相似三角形的面积之比等于相似比的平方。

二、相似三角形的判定方法1、两角分别相等的两个三角形相似。

如果两个三角形的两个角分别相等,那么这两个三角形相似。

2、两边成比例且夹角相等的两个三角形相似。

当两个三角形的两组对应边的长度之比相等,并且它们的夹角也相等时,这两个三角形相似。

3、三边成比例的两个三角形相似。

如果两个三角形的三条边的长度之比都相等,那么这两个三角形相似。

三、相似三角形在实际生活中的应用(一)测量高度在测量一些无法直接到达顶部的物体高度时,相似三角形可以发挥重要作用。

例如,要测量一棵大树的高度。

我们可以在与大树底部同一水平线上的位置,竖立一根较短的杆子,然后分别测量出杆子的长度、杆子的影子长度以及大树的影子长度。

由于太阳光线是平行的,所以杆子和大树分别与它们的影子构成的两个三角形是相似的。

设杆子长度为 a,影子长度为 b,大树影子长度为 c,大树高度为 x。

根据相似三角形的性质,我们可以得到:a/b = x/c,从而可以计算出大树的高度 x =(a×c) / b 。

(二)测量距离相似三角形也可以用于测量无法直接测量的距离。

比如,要测量一条河的宽度。

我们可以在河的一侧选择一个点 A,然后在对岸找到一个能够直接到达的点 B,接着在河这一侧再找一个点 C,使得 B、C 两点在同一直线上,并且 AC 垂直于河岸。

测量出 AC 和 BC 的长度。

此时,三角形 ABC 和三角形 ADB 是相似的(其中 D 是点 A 在对岸的垂足)。

设河宽为 x,根据相似三角形的性质,有 AC/BC = AD/BD =AD/x ,从而可以计算出河的宽度 x =(AD×BC) / AC 。

相似三角形的性质与判定讲义)讲解学习

相似三角形的性质与判定讲义)讲解学习

相似三角形的性质与判定讲义【知识点拨】一、相似三角形性质(1)相似三角形对应角相等,对应边成比例.(2)相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比. (3)相似三角形周长的比等于相似比. (4)相似三角形面积的比等于相似比的平方.(5)相似三角形性质可用来证明线段成比例、角相等,也可用来计算周长、边长等 二、 相似三角形的等价关系(1)反身性:对于任一ABC ∆有ABC ∆∽ABC ∆. (2)对称性:若ABC ∆∽'''C B A ∆,则'''C B A ∆∽ABC ∆.(3)传递性:若ABC ∆∽C B A '∆'',且C B A '∆''∽C B A ''''''∆,则ABC ∆∽C B A ''''''∆. 三、三角形相似的判定方法1、定义法:对应角相等,对应边成比例的两个三角形相似.2、平行法:平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似.3、判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.简述为:两角对应相等,两三角形相似.4、判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似.简述为:两边对应成比例且夹角相等,两三角形相似.5、判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似.简述为:三边对应成比例,两三角形相似.6、判定直角三角形相似的方法: (1)以上各种判定均适用. EDCBA(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.(3)直角三角形被斜边上的高分成的两个直角三角形与原三角形相似.直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。

相似三角形教学讲义

相似三角形教学讲义

一、 课堂检测1.已知3)(4)2(y x y x -=+,则=y x : ,=+xyx 2.543z y x ==,则=++xzy x ,=+-++z y x z y x 532323. 若线段AB=10cm ,C 是AB 的黄金分割点,则较短线段CB= cm 。

4.如图,直线321////l l l ,已知AG=1.2cm ,BG=2.4cm ,EF=4cm ,CD=3cm ,则CH= ,KF= 。

5.比例尺为1:50000的地图上,两城市间的图上距离为20cm ,则这两城市的实际距离是 公里。

6.梯形的两腰AD ,BC 延长后相交于点M , (1) 如果AD=3.3cm ,BC=2cm ,DM=2.1cm ,则MC= cm 。

(2) 如果95=AB CD ,AD=16cm ,则DM= cm 。

7. 若b a b +=53,那么ba= 8. 若3:2:1::=c b a ,求cb a cb a +---的值。

参考答案:1. 1:10 ;1011 2. 4 ;1926 3. 555- 4. CH=1 ;KF=385. 106.1114 7.358. -2 二、知识梳理1. 相似三角形的性质 (1)相似图形与相似变换相似图形的本质是形状相同,与图形的大小、位置没有关系。

如果两个三角形相同并且大小相同时,它们是全等图形,也就是全等是相似的一种特殊情况。

两个图形相似,其中一个图形可以看作是由另一个图形按照一定的比例放大或缩小得到的。

(2)相似三角形定义:一般地,对应角相等,对应边成比例的两个三角形,叫做相似三角形。

相似用符号“∽”来表示,读作相似于。

(3)有定义得到相似三角形的性质:相似三角形的对应角相等,对应边成比例。

(4)相似三角形对应边的比,叫做两个相似三角形的相似比。

注意:求两个相似三角形的相似比,应注意这两个三角形的前后顺序.全等三角形是相似三角形的特殊情况,它的相似比是1.2.相似三角形的引理及判定(1)相似三角形的引理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。

相似三角形的性质讲义

相似三角形的性质讲义

相似三角形的性质一、知识点讲解1、相似三角形对应角相等,对应边成比例。

2、相似三角形对应高、对应中线、对应角平分线比等于相似比。

相似三角形对应周长的比等于相似比,面积的比等于相似比的平方。

二、典例分析(一)相似三角形对应线段的比例1如图,i∆ABCs^k A'B'C',相似比为k,AD、N D z分别是边BC、B'C'上的中线,求证:AD, =K OA,D,变式练习:1、∆ABC</>∆A,B'C',AD和A'D'分别是aABC和aA'B'C,的中心,假设BC=IoCm,B zC f=6cm,AD=7cm,那么A'D'=()16 21 35A、12cmB、——cmC、——cmD、——cm3 5 32、如图,在aABC中,点D在线段BC上,且aABCsaDBA,那么以下结论一定正确的选项是()A、AB2=BC∙BDB、AB2=AC-BDC、AB・AD=BD・BCD、AB・AD=AD・CD3、如图,电灯P在横杆AB的正上方,AB在灯光的影子长为CD,AB〃CD,AB=2cm,CD=5cm,点P到CD的距离是3cm,那么点P到AB的距离是O5 6 6 10A、—mB、—m C^—m D、一tn6 7 5 34、如下图,在Rt△ABC中,NACB=90°,CD_1.AB于D,E为AC的中点,F为BC的中点,NDCB=30°,求DE:DF的值。

(二)相似三角形对对应周长与面积的比例2如图,在正方形网格上有ZXABC和4DEF0(1)求证:^ABC S∕∖DEF;(2)计算这两个三角形的周长比;(3)根据上面的计算结果,你有何猜测?变式练习:1、假设^ABCsaDEF,Z∖ABC与ADEF的相似比为2:3,那么S MB C:S ADEF为0A、2:3B、4:9C、72:73D、3:2ΔΓ)12、如图,在AABC中,DE/7BC,——=-,那么以下结论中正确的选项是0DB2AE1 A、 --- =—AC2DE 1 ZXADE的周长 1 ZXADE的面积 1 B、= Cx ,. ,—Ds —BC 2 4ABC的周长 3 ZXABC的面积 3第2题第3题第4题第5题3、如图,在aABC中,D、E分别是AB、AC上的点,DE〃BC,且那么aADE的周长3与aABC的周长之比为。

相似三角形的判定及证明技巧讲义

相似三角形的判定及证明技巧讲义

相似三角形(三)知识点(一):相似三角形的证明技巧1.相似三角形的基本图形2.相似三角形判定定理(3条)3.相似三角形的具体解题方法1.“三点定形法”:即由有关线段的三个不同的端点来确定三角形的方法。

具体做法是:先看比例式前项和后项所代表的两条线段的三个不同的端点能否分别确定一个三角形,若能,则只要证明这两个三角形相似就可以了,这叫做“横定”;若不能,再看每个比的前后两项的两条线段的两条线段的三个不同的端点能否分别确定一个三角形,则只要证明这两个三角形相似就行了,这叫做“竖定”。

例1、已知:如图△ABC中,CE⊥AB,BF⊥AC.求证:AE•AB=AC•AF.(判断“横定”还是“竖定”?)例2、如图,CD是Rt△ABC的斜边AB上的高,∠BAC的平分线分别交BC、CD于点E、F,AC·AE=AF·AB 吗?说明理由。

分析方法:1)先将积式______________2)______________(“横定”还是“竖定”?)练习1.已知:如图,△ABC中,∠ACB=90°,AB的垂直平分线交AB于D,交BC延长线于F。

求证:CD2=DE·DF。

C2.过渡法(或叫代换法)有些习题无论如何也构造不出相似三角形,这就要考虑灵活地运用“过渡”,其主要类型有三种,下面分情况说明.(1)等量过渡法(等线段代换法)遇到三点定形法无法解决欲证的问题时,即如果线段比例式中的四条线段都在图形中的同一条直线上,不能组成三角形,或四条线段虽然组成两个三角形,但这两个三角形并不相似,那就需要根据已知条件找到与比例式中某条线段相等的一条线段来代替这条线段,如果没有,可考虑添加简单的辅助线。

然后再应用三点定形法确定相似三角形。

只要代换得当,问题往往可以得到解决。

当然,还要注意最后将代换的线段再代换回来。

例1:如图3,△ABC中,AD平分∠BAC,AD的垂直平分线FE交BC的延长线于E.求证:DE2=BE·CE.(2)等比过渡法(等比代换法)当用三点定形法不能确定三角形,同时也无等线段代换时,可以考虑用等比代换法,即考虑利用第三组线段的比为比例式搭桥,也就是通过对已知条件或图形的深入分析,找到与求证的结论中某个比相等的比,并进行代换,然后再用三点定形法来确定三角形。

初二数学相似三角形讲义

初二数学相似三角形讲义

1.相似三角形相似三角形的本质特征是“具有相同形状”,它们的大小不一定相等,这是和全等三角形的重要区别。

为加深学生对相似三角形概念的本质的认识,教学时可预先准备几对相似三角形,让学生观察或测量对应元素的关系,然后直观地得出:两个三角形形状相同,就是他们的对应角相等,对应边成比例。

定义:对应角相等,对应边成比例的三角形,叫做相似三角形。

另外,相似三角形具有传递性(性质)。

注:在证两个三角形相似时,通常把表示对应顶点的字母写在对应位置上。

思考问题:(1)所有等腰三角形都相似吗?所有等边三角形呢?为什么?(2)所有直角三角形都相似吗?所有等腰直角三角形呢?为什么?2.相似比的概念相似三角形对应边的比K,叫做相似比(或相似系数)。

注:①两个相似三角形的相似比具有顺序性。

②全等三角形的相似比为1,这也说明了全等三角形是相似三角形的特殊情形。

教材通过探讨的方法,根据题设中有平行线的条件,结合5.2节例6定理的结论,再根据三角形的定义,从而得出了这两个三角形相似的结论,这里要强调的是:(1)本定理的导出不仅让学生复习了相似三角形的定义,而且为后面的证明打下了基础,它的重要性是显而易见的。

(2)由本定理的题设所构成的三角形有三种可能,除教材中两种情况外还有如左图所示的情形,它可以看成 BC截△ADE 两边所得,其中BC//DE,本质上与右图是一致的。

(3)根据两个三角形相似写对应边的比例式时,每个比的前项是同一个三角形的三边,而比的后项是另一个三角形的三条对应边,它们的位置不能写错,作题时务必要认真仔细,如本定理的比例式,防止出现的错误,如出现错误,教师要及时予以纠正。

(4)根据两个三角形相似写对应边的比例式时,还应给学生强调,这两个三角形中相等的角所对的边就是对应边,对应边应写在对应位置。

相似三角形的判定与性质讲义一、比例线段的有关定理1.三角形中平行线分线段成比例定理:平行于三角形一边的直线截其它两边(或两边的延长线)所得的对应线段成比例.由DE∥BC可得:ACAEABADEAECADBDECAEDBAD===或或注:①重要结论:平行于三角形的一边,并且和其它两边相交的直线,所截的三角形的....三边..与原三角形三边......对应成比例.②三角形中平行线分线段成比例定理的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例.那么这条直线平行于三角形的第三边.A此定理给出了一种证明两直线平行方法,即:利用比例式证平行线.③平行线的应用:在证明有关比例线段时,辅助线往往做平行线,但应遵循的原则是不要破坏条件中的两条线段的比及所求的两条线段的比.2.平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例. 已知AD ∥BE ∥CF,可得AB DE AB DE BC EF BC EF AB BCBC EF AC DF AB DE AC DF DE EF=====或或或或等.注:平行线分线段成比例定理的推论:平行线等分线段定理:两条直线被三条平行线所截,如果在其中一条上截得的线段相等,那么在另一条上截得的线段也相等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

相似三角形
一、本章的两套定理
第一套(比例的有关性质):
涉及概念:①第四比例项②比例中项③比的前项、后项,比的内项、外项④黄金分割等。

二、有关知识点:
1.相似三角形定义:
对应角相等,对应边成比例的三角形,叫做相似三角形。

2.相似三角形的表示方法:用符号“∽”表示,读作“相似于”。

3.相似三角形的相似比:
相似三角形的对应边的比叫做相似比。

4.相似三角形的预备定理:
平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。

5.相似三角形的判定定理:
从表中可以看出只要将全等三角形判定定理中的“对应边相等”的条件改为“对应边
成比例”就可得到相似三角形的判定定理,这就是我们数学中的用类比的方法,在旧知识的基础上找出新知识并从中探究新知识掌握的方法。

6.直角三角形相似:
(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。

(2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。

7.相似三角形的性质定理: (1)相似三角形的对应角相等。

(2)相似三角形的对应边成比例。

(3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。

(4)相似三角形的周长比等于相似比。

(5)相似三角形的面积比等于相似比的平方。

8. 相似三角形的传递性
如果△∽△A 1B 1C 1,△A 1B 1C 1∽△A 2B 2C 2,那么△∽A 2B 2C 2 三、注意
1、相似三角形的基本定理,它是相似三角形的一个判定定理,也是后面学习的相似三
角形的判定定理的基础,这个定理确定了相似三角形的两个基本图形“A ”型和“ 8 ”型。

c
d a b = d
b c a a c b d ==或 合比性质:d
d
c b b a ±=
± ⇒=⇔=bc ad d c
b a (比例基本定理) b
a n d
b m
c a n
d b n m d c b a =++++++⇒≠+++===ΛΛΛΛ:)0(等比性质
在利用定理证明时要注意A 型图的比例AD AB DE BC AE
AC
==
,每个比的前项是同一个三 角形的三条边,而比的后项是另一个三角形的三条对应边,它们的位置不能写错,尤其是要防止写成AD DB DE BC AE
EC
==的错误。

2、 相似三角形的基本图形
Ⅰ.平行线型:即A 型和X 型。

Ⅰ.相交线型
三角形相似及比例式或等积式。

4、添加辅助平行线是获得成比例线段和相似三角形的重要途径。

5、对比例问题,常用处理方法是将“一份”看着k ;对于等比问题,常用处理办法是设“公比”为k 。

相似三角形测试卷
一、选择题
1.下列命题中,正确的是( )
A .任意两个等腰三角形相似
B .任意两个菱形相似
C .任意两个矩形相似
D .任意两个等边三角形相似 2、.已知点C 在直线上,且线段2,则( )
A . 1
B . 2
C . 3
D . 1或3
3、如图,在长为8 、宽为4 的矩形中,截去一个矩形,使得留下的矩形与原矩形相似,则留下矩形的面积是( ) A . 2 2
B . 4 2
C . 8 2
D . 16 2
4、Δ中,,且S Δ梯形1:2,则的值是( ) A .1:2
B .1:3
C .1:2
D .1:3
5、如图□中是上的点,交于点P ,交的延长线于点R ,若4:3,则( ) A .4:3
B .4:7
C .3:4
D .3:7
6、如图,梯形的对角线相交于点O ,有如下结论:①Δ∽Δ,②Δ∽Δ,③S ΔΔ,④S ΔΔ;其中一定正确的有( ) A .1个
B .2个
C .3个
D .4个
7 、如图,□中,E 为的中点.已知△的面积为S ,则△的面积为( ) A .S B .2S C .3S D .4
8、在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比。

已知这本书的长为20,则它的宽约为 A .12.36 B.13.6 C.32.36 D.7.64c
C
E
D
B A
C
A
D
B.
C
B
E
A
O
C
D Q
P
D
A
第3题 第5题 第6题 第7题 9、如图,Rt ABC △中,AB AC ⊥,3AB =,4AC =,P 是BC 上一点, 作PE AB ⊥于E ,PD AC ⊥于D ,设BP x =,则PD PE +=( )
A .35
x +
B .45
x
-
C .72
D .2
1212525
x x -
10、如图,在□中,E 是的中点,且∠∠,下列结论不正确...的是( ) A 、
2
1
B 、S △2S △
C 、四边形是等腰梯形
D 、∠∠ 二、填空题
11、如图,将三个全等的正方形拼成一个矩形,则:
ADE ACE ABE ∠+∠+∠等于 度
12、一张等腰三角形纸片,底边长l5,底边上的高长22.5.现沿底边依次从下往上裁剪宽度均为3的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是第张.
13、如图ABC ∆中,AB CD ⊥,垂足是D ,下列条件中能证明ABC ∆是直角三角形的有 (只填序号)。

①ο
90=∠+∠B A ②2
2
2
BC AC AB += ③
BD
CD AB AC =
④BD AD CD ⋅=2
14、如图,点M 是△内一点,过点M 分别作直线平行于△的各边,所形成的三个小三角形△1、△2、△3(图中阴影部分)的面积分别是4,9和49.则△的面积是
第11题 第12题 第13题 第14题
三、解答题
15、(1)已知:15
1110a
c c b b a +=
+=+,求 c b a ::的值
16、如图,在平行四边形中,过点A 作⊥,垂足为E ,连接,F 为线段上一点,且∠=∠B.①求证:△∽△②若=4=33=3,求的长.
17、已知ABC △,延长到D ,使CD BC =.取AB 的中点F ,连结FD 交AC 于点E .
A D
C
P
B
E
A B
C
D
E
F H
G F E
D C B A
D C
A
(1)求AE
AC
的值;(2)若AB a FB EC ==,,求AC 的长.
18、如图,已知:DE
BC
AE AC AD AB =
=,求证:BD AC CE AB ⋅=⋅
19.如图,在△中1,点D 、E 在直线上运动,设x y .如果∠30°,∠105°,试确定y 与x 之间的函数关系。

20.已知,如图,梯形 中,∥,梯形外一点 P ,连结 、 分别交于F 、G ,且,对角线 交于E ,求证:∶ = ∶
21、E 为正方形 的边上的中点,1,⊥ 交 于 M ,交的 延长线于N ,求证:⑴2
·;⑵4
1
; ⑶ = 45;
22、如图ABC ∆中,边60,高40,是内接矩形,交于P ,设,⑴求矩形的周长y 与
x 的函数关系式;⑵求矩形的面积S 与x 的函数关系式。

E
D
C
A E A D
B
C A
B C
D F P G
E P
H
G
F
A
B
A
B
C
D
E
M
N
23正方形ABCD 边长为4,M 、N 分别是BC 、CD 上的两个动点,当M 点在BC 上运动时,保持AM 和MN 垂直(1)证明:Rt Rt ABM MCN △∽△;
(2)设BM x ,梯形ABCN 的面积为y ,求y 与x 之间的函数关系式;当M 点运动到什么位置时,四边形ABCN 面积最大,并求出最大面积;
(3)当M 点运动到什么位置时Rt Rt ABM AMN △∽△,求此时x 的值.。

相关文档
最新文档