直角三角形的性质和判定(1)导学案

合集下载

1.1直角三角形的性质和判定课件(1)

1.1直角三角形的性质和判定课件(1)
在△ABC中,因为 ∠A +∠B +∠C=180°, 又∠A +∠B=90°, 所以∠C=90°. 于是△ABC是直角三角形.
图1-2
九龙中学 结论
由此得到:
直角三角形的判定定理:
有两个角互余的三角形是直角三角形.
要点精析: 判定定理的条件是 ( 两个角互余
)。
九龙中学
学以致用:
1、在△ABC中∠A=20°, ∠B=70°,则∠A+∠B= ∠C=__ 90° ,△ABC是
B
D
C
又∵ ∠A +∠B=90° , DCA+ DCB 90 , ∴ B DCB. ∴ CD = BD. 故得 CD = AD = BD = 1 AB. 2
图1-4
∴ 点D 是斜边上的中点,即 CD 是斜边 AB 的中线.
1 从而 CD与CD 重合,且 CD AB. 2
在Rt△ABC中,因为 ∠C=90°,由三角形内角和 定理,可得∠A +∠B=90°.
图1-1
首页
九龙中学
结论
由此得到:
直角三角形的性质:
直角三角形的两个锐角互余.
要点精析: 性质的结论是根据 ( 三角形的内角和定理
)。
性质的条件是 ( 直角三角形
)。
九龙中学
学以致用:
1、在Rt△ABC中 , ∠C=90°, ∠A=40° ,
九龙中学
当堂训练
5.如图,AB∥CD,∠BAC和∠ACD的平分线相交于 H点,E为AC的中点,EH=2. 那么△AHC是直角三 角形吗?为什么?若是,求出AC的长.
解 ∵ AB∥CD
∴∠BAC+∠DCA=180° ∵AH平分∠BAC,CH平分∠ACD 1 ACH 1 DCA ∴ CAH 2 BAC , 2

直角三角形全等判定(HL)导学案

直角三角形全等判定(HL)导学案

学校: 四族中学 年级:八年级 科目:数学 备课组:数学组 主备人:赵富存 班级: 组名: 姓名:- 1 - 直角三角形全等判定(HL )导学案教学目标1、在操作、比较中理解直角三角形全等的过程,并能用于解决实际问题.2、经历探索直角三角形全等判定的过程,掌握数学方法,提高合情推理的能力.教学重、难点重点:理解利用“斜边、直角边”来判定直角三角形全等的方法.难点:培养有条理的思考能力,正确使用“综合法”表达.教学过程一、回顾交流【问题探究】下图是两个直角三角形,除了直角相等的条件,还要满足几个条件,•这两个直角三角形才能全等?【学生活动】小组讨论,发表意见:“由三角形全等条件可知,对于两个直角三角形,满足一边一锐角对应相等,或两直角边对应相等,这两个直角三角形就全等了.”提问:如果已知两个直角三角形的一对直角边与一对斜边相等,那么这两个直角三角形全等吗?【学生活动】思考问题,探究原理.做一做如课本图11.2─11:任意画出一个Rt △ABC ,使∠C=90°,再画一个Rt•△A ′B ′C ′,使B ′C ′=BC ,A ′B ′=AB ,把画好的Rt △A ′B ′C ′剪下,放到Rt △ABC 上,•它们全等吗?【学生活动】画图分析,寻找规律.如下:规律:斜边和一条直角边对应相等的两个直角三角形全等(简写成“斜边、直角边”或“HL ”).二、范例点击,应用所学 如图11.2─12,AC ⊥BC ,BD ⊥AD ,AC=BD ,求证BC=AD . 证明:∵AC ⊥BC ,BD ⊥BD , ∴∠C 与∠D 都是直角. 在Rt △ABC 和Rt △BAD 中, ___________________________ ∴Rt △ABC ≌Rt △BAD (HL ). ∴BC=AD . 【注】在证明两个直角三角形全等时,要防止学生使用“SSA ”来证明. 四、课堂小结 五、教学反思。

北师大版八年级数学直角三角形(1)教案

北师大版八年级数学直角三角形(1)教案

“直角三角形〔第一课时〕〞教学设计一、教材的地位与作用“直角三角形〔第一课时〕〞选自《义务教育课程标准实验教科书〔北师大版〕·数学》八年级下册第一章第二节。

本课是《直角三角形》(第1课时)的教学内容,是在学生学习和掌握了直角三角形相关知识的根底上,进步探讨直角三角形的性质定理以及判定定理。

教学内容主要为勾股定理及其逆定理的证明方法,了解逆命题、互逆命题、逆定理的概念,让学生经历和了解勾股定理及其逆定理的证明方法,进一步理解证明的必要性,并通过具体例子了解逆命题的概念,会识别两个互逆命题,知道原命题成立,其逆命题不一定成立。

本节通过观察、操作、推理、交流等数学活动进一步探索直角三角形的性质和判定。

以直观认识为根底进行简单的说理,将直观与简单推理相结合,表达具体--抽象--具体的过程,培养学生学习数学的兴趣,提高他们应用所学知识解决问题的能力。

二、学情分析在图形的学习中,学生已经历观察、画图、推理、合作等活动体验,具备了本节课所需的探索、交流和演绎推理能力。

本节课在学生已经认识了直角三角形的性质和判定方法的根底上,将进一步探索直角三角形的性质和判定的证明方法。

让学生对命题的条件和结论经历观察、归纳出他们的共性,以得出互逆命题、逆命题的概念。

并能解决一些简单的实际问题。

同时注重培养学生寻找生活中蕴含数学知识的例子。

在活动中引导学生主动参与、相互合作,让他们感受到数学的乐趣、魅力和成功的快乐。

让学生参与知识的产生和开展教学过程,注重培养他们的自主学习的能力。

三、教学目标1.知识与能力目标〔1〕掌握直角三角形的性质定理及判定定理,了解勾股定理的证明,理解勾股定理逆定理的证明方法,并能应用定理解决与直角三角形有关的问题.〔2〕结合具体例子了解逆命题的概念,会识别两个互逆命题,并知道原命题成立其逆命题不一定成立.2.过程与方法目标〔1〕经历运用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,开展抽象思维。

直角三角形全等的判定导学案

直角三角形全等的判定导学案

2.7 直角三角形全等的判定1、全等三角形的对应边---------------------,对应角--------------------;2、判定三角形全等的方法有:------------------------------------------;3、“斜边、直角边”定理的内容是:-----------------------------------------------------------,作用是-----------------------;4、下列判断对吗?并说明理由:(1)、两个锐角对应相等的两个直角三角形全等; (2)、斜边及一个锐角对应相等的两个直角三角形全等; (3)、两直角边对应相等的两个直角三角形全等; (4)、一条直角边和另一条直角边上的中线对应相等的两个直角三角形全等.【反思小结】---------------------------------------------------------------------------------------------------------------------。

【类型之一】已知:如图,D是△A B C的B C边上的中点,D E⊥A C,D F⊥A B,垂足分别为E,F,且D E=D F.求证:△A B C是等腰三角形.【反思小结】DB AF E【类型之二】如图,已知∠ACB= ∠BDA=90,要使△ACB与△BAD全等,还需要什么条件?把它们分别写出来. 【类型之三】如图,已知P是∠AOB内部一点,PD⊥OA,PE⊥OB,D,E分别是垂足,且PD=PE,则点P在∠AOB的平分线上。

请说明理由。

【反思小结】你能够用几种方法说明两个直角三角形全等?【学习笔记】【当堂测评】1、用三角尺作角平分线A B PODE【能力提升】 【课堂小结】2、如图,在△A B C 中,A B =2A C ,A D 是∠B A C 的平分线,且A D =B D ,试说明C D ⊥A C的理由。

直角三角形的性质和判定(1)(教案练习)

直角三角形的性质和判定(1)(教案练习)

1.2.1直角三角形的性质与判定练习题一、选择题1.如图,带阴影的矩形面积是()平方厘米.A.9 B.24 C.45 D.512、已知直角三角形两边的长为3和4,则此三角形的周长为().A.12B.7+7C.12或7+7D.以上都不对3.等腰三角形的腰长为10,底长为12,则其底边上的高为()A.13 B.8 C.25 D.644.如果一个直角三角形的两条直角边分别为n2﹣1,2n(n>1),那么它的斜边长是()A.2n B.n+1 C.n2﹣1 D.n2+15.已知一个直角三角形的两边长分别为3和4,则第三边长的平方是()A.25 B.7 C.5和7 D.25或76.将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为h cm,则h的取值范围是().A.h≤17cm B.h≥8cmC.15cm≤h≤16cm D.7cm≤h≤16cm7.如图,在长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A.6cm2 B.8cm2 C.10cm2 D.12cm2二、填空题8.在直角三角形ABC中,斜边AB=2,则AB2+AC2+BC2= .9.如图,△ABC中,AC=6,AB=BC=5,则BC边上的高AD=______.10.如图,四边形ABCD是正方形,AE垂直于BE,且AE=3,BE=4,阴影部分的面积是.11.直角三角形的三边长为连续偶数,则其周长为 cm.12.如图,△ABC中,∠C=90°,AB垂直平分线交BC于D.若BC=8,AD=5,则AC等于.三、解答题13.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面积之和是多少?14. 如图所示,在Rt△ABC中,∠C=90°,∠A=30°,BD是∠ABC的平分线,CD=5 cm,求AB的长.15.去年某省将地处A、B两地的两所大学合并成了一所综合性大学,为了方便A、B两地师生的交往,学校准备在相距2.732km的A、B两地之间修筑一条笔直公路(即图中的线段AB),经测量,在A地的北偏东60°方向、B地的西偏北45°方向C处有一个半径为0.7km的公园,问计划修筑的这条公路会不会穿过公园?为什么?(3≈1.732)答案:1. C分析:根据勾股定理先求出直角边的长度,再根据长方形的面积公式求出带阴影的矩形面积.解:∵=15厘米,∴带阴影的矩形面积=15×3=45平方厘米.故选C.2.C(提示:因直角三角形的斜边不明确,结合勾股定理可求得第三边的长为5或7,所以直角三角形的周长为3+4+5=12或3+4+7=7+7)故选C;3. B分析:先作底边上的高,由等腰三角形的性质和勾股定理即可求出此高的长度.解:作底边上的高并设此高的长度为x,根据勾股定理得:62+x2=102,解得:x=8.故选B.4. D分析:根据勾股定理直接解答即可.解:两条直角边与斜边满足勾股定理,则斜边长是:===n2+1.故选D.5. D分析:分两种情况:①当3和4为直角边长时;②4为斜边长时;由勾股定理求出第三边长的平方即可.解:分两种情况:①当3和4为直角边长时,由勾股定理得:第三边长的平方,即斜边长的平方=32+42=25;②4为斜边长时,由勾股定理得:第三边长的平方=42﹣32=7;综上所述:第三边长的平方是25或7;故选:D .6. D (提示:筷子在杯中的最大长度为22815+=17cm ,最短长度为8cm ,则筷子露在杯子外面的长度为24-17≤h ≤24-8,即7cm ≤h ≤16cm ,)故选D .7. A分析:首先根据翻折的性质得到ED=BE ,再设出未知数,分别表示出线段AE ,ED ,BE 的长度,然后在Rt △ABE 中利用勾股定理求出AE 的长度,进而求出AE 的长度,就可以利用面积公式求得△ABE 的面积了.解:∵长方形折叠,使点B 与点D 重合,∴ED=BE ,设AE=xcm ,则ED=BE=(9﹣x )cm ,在Rt △ABE 中,AB 2+AE 2=BE 2,∴32+x 2=(9﹣x )2,解得:x=4,∴△ABE 的面积为:3×4×=6(cm 2).故选:A .8.分析:由三角形ABC 为直角三角形,利用勾股定理根据斜边AB 的长,可得出AB 的平方及两直角边的平方和,然后将所求式子的后两项结合,将各自的值代入即可求出值. 解:∵△ABC 为直角三角形,AB 为斜边,∴AC 2+BC 2=AB 2,又AB=2,∴AC 2+BC 2=AB 2=4,则AB 2+BC 2+CA 2=AB 2+(BC 2+CA 2)=4+4=8.故答案为:89. 3.6(提示:设DC =x ,则BD =5-x .在Rt △ABD 中,AD 2=52-(5-x )2,在Rt △ADC 中,AD 2=62-x 2,∴52-(5-x )2=62-x 2,x =3.6.故AD =226.36-=4.8);10. 分析:在直角三角形ABE 中,由AE 与BE 的长,利用勾股定理求出AB 的长,由正方形面积减去直角三角形面积求出阴影部分面积即可.解:∵AE⊥BE,∴∠AEB=90°,在Rt△ABE中,AE=3,BE=4,根据勾股定理得:AB==5,则S阴影=S正方形﹣S△ABE=52﹣×3×4=25﹣6=19,故答案为:19.11.分析:设直角三角形的三边边长分别为2n﹣2,2n,2n+2,由勾股定理得:两直角边的平方和等于斜边的平方,据此列出关于n的方程,求出符合题意n的值,即求出了直角三角形的三边长,之后求出周长即可.解:设直角三角形的三边边长分别为2n﹣2,2n,2n+2.由勾股定理得:(2n﹣2)2+(2n)2=(2n+2)2,解得:n1=4,n2=0(不合题意舍去),即:该直角三角形的三边边长分别为6cm,8cm,10cm.所以,其周长为6+8+10=24cm.12.分析:根据线段垂直平分线的性质可求得BD的长,从而求得CD的长,再根据勾股定理即可求得AC的长.解:∵AB垂直平分线交BC于D,AD=5,∴BD=AD=5,∵BC=8,∴CD=BC﹣BD=3,∴AC==4,故答案是:4.13.分析:根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积.解:由图形可知四个小正方形的面积和等于最大正方形的面积,故正方形A ,B ,C ,D 的面积之和=49cm 2.故答案为:49cm 2. 14.解:.∵在Rt △ABC 中,∠C=90°,∠A=30°,BD 是∠ABC 的平分线,∴∠ABD=∠CBD=30°.∴AD=DB.又∵Rt △CBD 中,CD=5 cm ,∴BD=10 cm.∴BC=22BD CD -=22105-=53(cm).∴AB=2BC=103 cm.15. 解 如图所示,过点C 作CD ⊥AB ,垂足为点D ,由题意可得∠CAB =30°,∠CBA =45°,在Rt △CDB 中,∠BCD =45°,∴∠CBA =∠BCD ,∴BD =CD .在Rt △ACD 中,∠CAB =30°,∴AC =2CD .设CD =DB =x ,∴AC =2x .由勾股定理得AD =22CD AC -=224x x -=3x .∵AD +DB =2.732,∴3x +x =2.732,∴x ≈1.即CD ≈1>0.7,∴计划修筑的这条公路不会穿过公园.。

直角三角形全等的判定导学案

直角三角形全等的判定导学案

1.2 直角三角形第2课时直角三角形全等的判定学习目标:1、了解直角三角形全等的判定定理(HL),发展演绎推理能力;2、采用动手动脑相结合的方式,进一步学习严密科学的证明方法;3、通过推理、论证的训练,养成严谨的科学态度,不懈的探究精神和良好的说理方法。

学习过程:一、前置准备1、直角三角形的勾股定理及勾股定理的逆定理;2、命题与逆命题,定理与逆定理的关系。

二、自主学习问题1:两边分别相等且其中一边的对角分别相等的两个三角形全等吗?如果其中一边所对的角是直角呢?请证明你认为正确的结论。

问题2:(做一做)已知一条直角边和斜边,求作一个直角三角形。

作直角三角形:写出已知、求作、作法。

与教材第19页小明作的直角三角形进行比较,你们俩个作直角三角形的是全等的吗?得出定理:证明这个定理。

已知:求证:证明:三、例题讲解例如图,有两个长度相等的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,两个滑梯的倾斜角∠B和∠F的大小有什么关系?四、归纳总结1、直角三角形全等的判定定理及运用。

2、如何作一个直角三角形?五、知识应用D是△ABC的BC边上的中点,DE⊥AC,DF⊥AB,垂足分别为E、F,且DE=DF,求证BF=CE.[解析]本题解决的关键是利用“HL”证明△BFD≌△CED当堂训练:1、下列各选项中的两个直角三角形不一定全等的是()A.两条直角边对应相等的两个直角三角形。

B.两条锐角边对应相等的两个直角三角形。

C.斜边和一条直角边对应相等的两个直角三角形。

D.有一个锐角及这个锐角的对边对应相等的两个直角三角形全等。

2、下列长度的三条线段能构成直角三角形的是()①8、15、17 ②4、5、6、③7.5、4、8.5 ④ 24、25、7 ⑤ 5、8、10A.①②④B.②④⑤C.①③⑤D.①③④3、下列命题中,假命题是()A.三个角的度数之比为1:3:4的三角形是直角三角形。

B.三个角的度数之比为1:3:2的三角形是直角三角形。

中考数学专题复习导学案直角三角形(含答案)

中考数学专题复习导学案直角三角形(含答案)

中考数学专题练习19《直角三角形》【知识归纳】1.直角三角形的定义有一个角是的三角形叫做直角三角形2.直角三角形的性质(1)直角三角形的两个锐角;(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的;(3)在直角三角形中,斜边上的中线等于斜边的3.直角三角形的判定(1)两个内角的三角形是直角三角形;(2)一边上的中线等于这条边的的三角形是直角三角形4.勾股定理及逆定理勾股定理:如果直角三角形两条直角边分别为a,b,斜边为c,那么逆定理:如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是三角形【基础检测】1.(·广西百色·3分)如图,△ABC中,∠C=90°,∠A=30°,AB=12,则BC=()A.6 B.6 C.6 D.122.(·贵州安顺·3分)如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2 B. C. D.3.(广西南宁3分)如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD(D为底边中点)的长是()A.5sin36°米 B.5cos36°米 C.5tan36°米 D.10tan36°米4.(海南3分)如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿着直线AD对折,点C 落在点E的位置.如果BC=6,那么线段BE的长度为()A.6 B.6C.2D.35.(·四川南充)如图,在Rt△ABC中,∠A=30°,BC=1,点D,E分别是直角边BC,AC 的中点,则DE的长为()A.1 B.2 C.D.1+6. (·浙江省湖州市·4分)如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8,分别以点A,B为圆心,大于线段AB长度一半的长为半径作弧,相交于点E,F,过点E,F作直线EF,交AB于点D,连结CD,则CD的长是.7. (·湖北随州·3分)如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD=BD,连接DM、DN、MN.若AB=6,则DN= .8.(·湖北荆州·10分)如图,A、F、B、C是半圆O上的四个点,四边形OABC是平行四边形,∠FAB=15°,连接OF交AB于点E,过点C作OF的平行线交AB的延长线于点D,延长AF交直线CD于点H.(1)求证:CD是半圆O的切线;(2)若DH=6﹣3,求EF和半径OA的长.【达标检测】一.选择题1.(•毕节市)(第5题)下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是()A.,, B. 1,, C. 6,7,8 D. 2,3,42.(•青岛,第4题3分)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=()A. B. 2 C.3 D. +23. 如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线,若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个 B.3个 C.4个 D.5个4.如图,在△ABC中,∠C=90°,AB的垂直平分线交AB于D,交BC于E,连接AE,若CE=5,AC=12,则BE的长是A.5 B.10 C.12 D.135.(·湖北荆门·3分)如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5 B.6 C.8 D.106. 在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是( )A.120° B.90° C.60° D.30°7. 已知等腰三角形ABC中,腰AB=8,底BC=5,则这个三角形的周长为( )(第11题图)A. 21B. 20C. 19D. 188.(·四川宜宾)如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B、D两点间的距离为()A. B.2 C.3 D.29.(·湖北荆州·3分)如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则图中∠ABC的余弦值是()A.2 B. C. D.二.填空题10.(湖北省鄂州市,15,3分)著名画家达芬奇不仅画艺超群,同时还是一个数学家、发明家.他曾经设计过一种圆规如图所示,有两个互相垂直的滑槽(滑槽宽度忽略不计),一根没有弹性的木棒的两端A、B能在滑槽内自由滑动,将笔插入位于木棒中点P处的小孔中,随着木棒的滑动就可以画出一个圆来.若AB=20cm,则画出的圆的半径为10 cm.11.(·四川宜宾)在平面直角坐标系内,以点P(1,1)为圆心、为半径作圆,则该圆与y轴的交点坐标是.12.(·四川内江)如图4,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE⊥BC,垂足为点E,则OE=______.13. (·湖北武汉)如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA =55,则BD的长为_______.14. 如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为米(结果精确到0.1米,=1.73).15. (·江西·3分)如图是一张长方形纸片ABCD,已知AB=8,AD=7,E为AB上一点,AE=5,现要剪下一张等腰三角形纸片(△AEP),使点P落在长方形ABCD的某一条边上,则等腰三角形AEP的底边长是.DO CEBA图4三.解答题16.(江西,23,10分)某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:●操作发现:在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,则下列结论正确的是(填序号即可)①AF=AG=AB;②MD=ME;③整个图形是轴对称图形;④∠DAB=∠DMB.●数学思考:在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧..作等腰直角三角形,如图2所示,M是BC的中点,连接MD和ME,则MD和ME具有怎样的数量和位置关系?请给出证明过程;●类比探索:在任意△ABC中,仍分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M是BC的中点,连接MD和ME,试判断△MED的形状.答:.17.(·湖北咸宁)定义:数学活动课上,乐老师给出如下定义:有一组对边相等而另一组对边不相等的凸四边形叫做对等四边形.理解:(1)如图1,已知A、B、C在格点(小正方形的顶点)上,请在方格图中画出以格点为顶点,AB、BC为边的两个对等四边形ABCD;(2)如图2,在圆内接四边形ABCD中,AB是⊙O的直径,AC=BD.求证:四边形ABCD是对等四边形;(3)如图3,在Rt△PBC中,∠PCB=90°,BC=11,tan∠PBC=,点A在BP边上,且AB=13.用圆规在PC上找到符合条件的点D,使四边形ABCD为对等四边形,并求出CD的长.【知识归纳答案】1.直角三角形的定义有一个角是 90°的三角形叫做直角三角形2.直角三角形的性质(1)直角三角形的两个锐角互余;(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;(3)在直角三角形中,斜边上的中线等于斜边的一半3.直角三角形的判定(1)两个内角和为90°的三角形是直角三角形;(2)一边上的中线等于这条边的一半的三角形是直角三角形4.勾股定理及逆定理勾股定理:如果直角三角形两条直角边分别为a,b,斜边为c,那么a2+b2=c2逆定理:如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形【基础检测答案】1.(·广西百色·3分)如图,△ABC中,∠C=90°,∠A=30°,AB=12,则BC=()A.6 B.6C.6D.12【考点】含30度角的直角三角形.【分析】根据30°所对的直角边等于斜边的一半求解.【解答】解:∵∠C=90°,∠A=30°,AB=12,∴BC=12sin30°=12×=6,故答选A.2.(·贵州安顺)如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A.2B. C. D.【分析】根据勾股定理,可得AC、AB的长,根据正切函数的定义,可得答案.【解答】解:如图:,由勾股定理,得AC=,AB=2,BC=,∴△ABC为直角三角形,∴tan∠B==,故选:D.【点评】本题考查了锐角三角函数的定义,先求出AC、AB的长,再求正切函数.3.(广西南宁3分)如图,厂房屋顶人字形(等腰三角形)钢架的跨度BC=10米,∠B=36°,则中柱AD(D为底边中点)的长是()A.5sin36°米 B.5cos36°米 C.5tan36°米 D.10tan36°米【考点】解直角三角形的应用.【分析】根据等腰三角形的性质得到DC=BD=5米,在Rt△ABD中,利用∠B的正切进行计算即可得到AD的长度.【解答】解:∵AB=AC,AD⊥BC,BC=10米,∴DC=BD=5米,在Rt△ADC中,∠B=36°,∴tan36°=,即AD=BD•tan36°=5tan36°(米).故选:C.【点评】本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.4.(海南3分)如图,AD是△ABC的中线,∠ADC=45°,把△ADC沿着直线AD对折,点C 落在点E的位置.如果BC=6,那么线段BE的长度为()A.6 B.6C.2D.3【考点】翻折变换(折叠问题).【分析】根据折叠的性质判定△EDB是等腰直角三角形,然后再求BE.【解答】解:根据折叠的性质知,CD=ED,∠CDA=∠ADE=45°,∴∠CDE=∠BDE=90°,∵BD=CD,BC=6,∴BD=ED=3,即△EDB是等腰直角三角形,∴BE=BD=×3=3,故选D.【点评】本题考查了翻折变换,还考查的知识点有两个:1、折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;2、等腰直角三角形的性质求解.5.(四川南充)如图,在Rt△ABC中,∠A=30°,BC=1,点D,E分别是直角边BC,AC的中点,则DE的长为()A.1 B.2 C.D.1+【分析】由“30度角所对的直角边等于斜边的一半”求得AB=2BC=2.然后根据三角形中位线定理求得DE=AB.【解答】解:如图,∵在Rt△ABC中,∠C=90°,∠A=30°,∴AB=2BC=2.又∵点D、E分别是AC、BC的中点,∴DE是△ACB的中位线,∴DE=0.5 AB=1.故选:A.【点评】此题考查的是三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半.6. (浙江省湖州市·4分)如图,在Rt△ABC中,∠ACB=90°,BC=6,AC=8,分别以点A,B为圆心,大于线段AB长度一半的长为半径作弧,相交于点E,F,过点E,F作直线EF,交AB于点D,连结CD,则CD的长是 5 .【考点】作图—基本作图;直角三角形斜边上的中线;勾股定理.【分析】首先说明AD=DB,利用直角三角形斜边中线等于斜边一半,即可解决问题.【解答】解:由题意EF是线段AB的垂直平分线,∴AD=DB,Rt△ABC中,∵∠ACB=90°,BC=6,AC=8,∴AB===10,∵AD=DB,∠ACB=90°,∴CD=AB=5.故答案为5.7. (湖北随州·3分)如图,在△ABC中,∠ACB=90°,M、N分别是AB、AC的中点,延长BC至点D,使CD=BD,连接DM、DN、MN.若AB=6,则DN= 3 .【考点】三角形中位线定理;直角三角形斜边上的中线;平行四边形的判定与性质.【分析】连接CM,根据三角形中位线定理得到NM=CB,MN∥BC,证明四边形DCMN是平行四边形,得到DN=CM,根据直角三角形的性质得到CM=AB=3,等量代换即可.【解答】解:连接CM,∵M、N分别是AB、AC的中点,∴NM=CB,MN∥BC,又CD=BD,∴MN=CD,又MN∥BC,∴四边形DCMN是平行四边形,∴DN=CM,∵∠ACB=90°,M是AB的中点,∴CM=AB=3,∴DN=3,故答案为:3.8.(湖北荆州·10分)如图,A、F、B、C是半圆O上的四个点,四边形OABC是平行四边形,∠FAB=15°,连接OF交AB于点E,过点C作OF的平行线交AB的延长线于点D,延长AF交直线CD于点H.(1)求证:CD是半圆O的切线;(2)若DH=6﹣3,求EF和半径OA的长.【分析】(1)连接OB,根据已知条件得到△AOB是等边三角形,得到∠AO B=60°,根据圆周角定理得到∠AOF=∠BOF=30°,根据平行线的性质得到OC⊥CD,由切线的判定定理即可得到结论;(2)根据平行线的性质得到∠DBC=∠EAO=60°,解直角三角形得到BD=BC=AB,推出AE= AD,根据相似三角形的性质得到,求得EF=2﹣,根据直角三角形的性质即可得到结论.【解答】解:(1)连接OB,∵OA=OB=OC,∵四边形OABC是平行四边形,∴AB=OC,∴△AOB是等边三角形,∴∠AOB=60°,∵∠FAD=15°,∴∠BOF=30°,∴∠AOF=∠BOF=30°,∴OF⊥AB,∵CD∥OF,∴CD⊥AD,∵AD∥OC,∴OC⊥CD,∴CD是半圆O的切线;(2)∵BC∥OA,∴∠DBC=∠EAO=60°,∴BD=BC=AB,∴AE=AD,∵EF∥DH,∴△AEF∽△ADH,∴,∵DH=6﹣3,∴EF=2﹣,∵OF=OA,∴OE=OA﹣(2﹣),∵∠AOE=30°,∴==,解得:OA=2.【点评】本题考查了切线的判定,平行四边形的性质,直角三角形的性质,等边三角形的判定和性质,连接OB构造等边三角形是解题的关键.【达标检测答案】一.选择题1.(•毕节市)下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是() A.,, B. 1,, C. 6,7,8 D. 2,3,4【解析】勾股定理的逆定理..知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.【解答】解:A、()2+()2≠()2,不能构成直角三角形,故错误;B、12+()2=()2,能构成直角三角形,故正确;C、62+72≠82,不能构成直角三角形,故错误;D、22+32≠42,不能构成直角三角形,故错误.故选:B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.2.(•青岛)如图,在△ABC中,∠C=90°,∠B=30°,AD是△ABC的角平分线,DE⊥AB,垂足为E,DE=1,则BC=()A. B. 2 C.3 D. +2【解析】含30度角的直角三角形.根据角平分线的性质即可求得CD的长,然后在直角△BDE 中,根据30°的锐角所对的直角边等于斜边的一半,即可求得BD长,则BC即可求得.故选C .【点评】本题考查了角的平分线的性质以及直角三角形的性质,30°的锐角所对的直角边等于斜边的一半,理解性质定理是关键.3. 如图,在△ABC 中,∠A=36°,AB=AC ,BD 是△ABC 的角平分线,若在边AB 上截取BE=BC ,连接DE,则图中等腰三角形共有( )A .2个B .3个C .4个D .5个 【答案】D【解析】在△ABC 中,∠A=36°,AB=AC ,求得∠ABC=∠C=72°,且△ABC 是等腰三角形. 因为BD 是△ABC 的角平分线 所以∠ABD=∠DBC=36° 所以△ABD 是等腰三角形. 在△BDC 中有三角形的内角和求出∠BDC=72° 所以△BDC 是等腰三角形.所以BD=BC=BE 所以△BDE 是等腰三角形.所以∠BDE=72°, 所以∠ADE=36°, 所以△ADE 是等腰三角形.共5个. 故选D .4.如图,在△ABC 中,∠C=90°,AB 的垂直平分线交AB 于D ,交BC 于E ,连接AE ,若CE=5,AC=12,则BE 的长是 A .5B .10C .12D .13【解答】解:∵AD 是△ABC 的角平分线,DE ⊥AB ,∠C=90°, ∴CD=DE=1,又∵直角△BDE 中,∠B=30°, ∴BD=2DE=2, ∴BC=CD+BD=1+2=3.【答案】D.【解析】在Rt△CAE中,CE=5,AC=12,由勾股定理得:2213AE AC CE=+=又DE是AB的垂直平分线,∴BE=AE=13.故选D.5.(湖北荆门·3分)如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()A.5 B.6 C.8 D.10【考点】勾股定理;等腰三角形的性质.【分析】根据等腰三角形的性质得到AD⊥BC,BD=CD,根据勾股定理即可得到结论.【解答】解:∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,BD=CD,∵AB=5,AD=3,∴BD==4,∴BC=2BD=8,故选C.6. 在一个直角三角形中,有一个锐角等于60°,则另一个锐角的度数是( )A.120° B.90° C.60° D.30°【答案】D.【解析】根据直角三角形两锐角互余列式计算即可得解:(第11题图)∵直角三角形中,一个锐角等于60°,∴另一个锐角的度数=90°﹣60°=30°.故选D.7. 已知等腰三角形ABC中,腰AB=8,底BC=5,则这个三角形的周长为( )A. 21B. 20C. 19D. 18【答案】A.【解析】由于等腰三角形的两腰相等,题目给出了腰和底,根据周长的定义即可求解:∵8+8+5=21.∴这个三角形的周长为21.故选A.8.(四川宜宾)如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B、D两点间的距离为()A. B.2C.3 D.2【考点】旋转的性质.【分析】通过勾股定理计算出AB长度,利用旋转性质求出各对应线段长度,利用勾股定理求出B、D两点间的距离.【解答】解:∵在△ABC中,∠C=90°,AC=4,BC=3,∴AB=5,∵将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,∴AE=4,DE=3,∴BE=1,在Rt△BED中,BD==.故选:A.9.(湖北荆州·3分)如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC 的顶点都在格点上,则图中∠ABC的余弦值是()A.2 B. C. D.【分析】先根据勾股定理的逆定理判断出△ABC的形状,再由锐角三角函数的定义即可得出结论.【解答】解:∵由图可知,AC2=22+42=20,BC2=12+22=5,AB2=32+42=25,∴△ABC是直角三角形,且∠ACB=90°,∴cos∠ABC==.故选D.【点评】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键.二.填空题10.(湖北省鄂州市,15,3分)著名画家达芬奇不仅画艺超群,同时还是一个数学家、发明家.他曾经设计过一种圆规如图所示,有两个互相垂直的滑槽(滑槽宽度忽略不计),一根没有弹性的木棒的两端A、B能在滑槽内自由滑动,将笔插入位于木棒中点P处的小孔中,随着木棒的滑动就可以画出一个圆来.若AB=20cm,则画出的圆的半径为10 cm.【解析】直角三角形斜边上的中线.【解答】连接OP,根据直角三角形斜边上的中线等于斜边的一半可得OP的长,画出的圆的半径就是OP长.【点评】解:连接OP,∵△AOB是直角三角形,P为斜边AB的中点,∴OP=AB,∵AB=20cm,∴OP=10cm,故答案为:10.11.(四川宜宾)在平面直角坐标系内,以点P(1,1)为圆心、为半径作圆,则该圆与y轴的交点坐标是(0,3),(0,﹣1).【考点】坐标与图形性质.【分析】在平面直角坐标系中,根据勾股定理先求出直角三角形的另外一个直角边,再根据点P的坐标即可得出答案.【解答】解:以(1,1)为圆心,为半径画圆,与y轴相交,构成直角三角形,用勾股定理计算得另一直角边的长为2,则与y轴交点坐标为(0,3)或(0,﹣1).故答案为:(0,3),(0,﹣1).12.(四川内江)如图4,在菱形ABCD中,对角线AC与BD相交于点O,AC=8,BD=6,OE ⊥BC,垂足为点E,则OE=______.[答案]12 5[考点]菱形的性质,勾股定理,三角形面积公式。

八年级数学 第1章 直角三角形 1.1 直角三角形的性质与判定(ⅰ)(第1课时)

八年级数学 第1章 直角三角形 1.1 直角三角形的性质与判定(ⅰ)(第1课时)

∠A=90°-∠B,
④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有
_____①__②__③__(填序号).
世纪金榜导学号
第十七页,共三十四页。
知识点二 直角三角形斜边上中线(zhōngxiàn)的性质 (P3探究拓展)
第十八页,共三十四页。
【典例2】 如图,△ABD是以BD为斜边的等腰直 角三角形,△BCD中,∠DBC=90°, ∠BCD=60°,DC中点为E,AD与BE的延长线交于点F,求∠AFB 度数(dù shu). 世纪金榜导学号
)
C
A.75° B.65° C.55° D.45°
第七页,共三十四页。
2.具备下列条件(tiáojiàn)的△ABC中,不是直角三角形的是 ( D) A.∠A+∠B=∠C
B.∠A-∠B=∠C
第八页,共三十四页。
C.∠A∶∠B∶∠C=1∶2∶3 D.∠A=∠B=3∠C
第九页,共三十四页。
3.(2019·睢宁县期中(qī zhōnɡ))已知一个直角三角形的斜边长 为12,则其斜边上的中线长为_____6_.
第十页,共三十四页。
知识点一直角三角形两锐角(ruìjiǎo)的关系及应用 (P2议一议拓展)
第十一页,共三十四页。
【典例1】如图,在△ABC中, ∠ACB=90°,CD是高. (1)图中有几个直角三角形?是哪几个? (2)∠1和∠A有什么(shén me)关系?∠2和∠A呢?还有哪些
锐角相等?
第二十五页,共三十四页。
【火眼金睛】 如图,△ABC为等腰直角三角形,AD为斜边BC上的高,E,F分 别(fēnbié)为AB和AC的中点,试判断DE和DF的关系.
第二十六页,共三十四页。
第二十七页,共三十四页。

1.1直角三角形的性质和判定(Ι)

1.1直角三角形的性质和判定(Ι)
本课内容 本节内容 1.1
直角三角形的性质 和判定(Ι)
直角三角形有哪些性质? (1) (2)
探究
0 MON ,使 MON=30 ( 1)
(2)在OM上任意取点p,过p作ON的垂线PK,垂 足为k,量一量PO、PK的长度,PO、PK有什么关系? 由此你发现了什么规律? 在直角三角形中,如果一个锐角为 30 0 ,那么它所 对的直角边等于斜边的一半。


图1-7
例2 如图1-8所示,在A岛周围20海里(1海里=1852m) 水域内有暗礁,一轮船由西向东航行到O处时, 发现A岛在北偏东60°的方向,且与轮船相距 30 3 海里,若该船继续保持航向不变,有触暗礁的 危险吗?
图1-8

轮船在航行过程中, 如果与A岛的距离始终大于20海里, 则轮船就不会触暗礁. 在图1-8中,过A点作AD⊥OB,垂足为D.
∴ ∠B= 60°. 又在Rt△ABC中,∠ACB=90°, ∴ ∠A= 90°- 60°= 30°.
中考 试题

如图所示,在锐角三角形ABC中,CD,BE分别是AB,AC 边上的高,且CD,BE交于一点P,若∠A=50°,则∠BPC的度 数是( B ). A.150° B.130° C.120° D.100° 解 因为BE,CD是ABC的高, 所以∠BDP=90°,∠BEA=90°. 又∠A=50° , 所以∠ABE=90°-∠A=90°-50°= 40°. 所以∠BPC =∠ABE +∠BDP = 90° + 40°= 130°. 故应选择B.
AB. ∴ BC BD= 1 2
图1-6
在直角三角形中,如 果一个锐角等于30°,那 么它所对的直角边等于斜 边的一半.
动脑筋

1.1直角三角形的性质和判定(Ⅰ)

1.1直角三角形的性质和判定(Ⅰ)

通道县第四中学数学导学案八年级数学备课组 第一章第1课时 总 课时 课题 1.1直角三角形的性质和判定(Ⅰ)(1)主备人杨通仁审核学习目标:(一)、知识与技能:1、理解并掌握直角三角形的判定定理和斜边上的中线性质定理;2、能应用直角三角形的判定与性质,解决有关问题。

(二)、过程与方法:通过对几何问题的“操作--探究--讨论--交流--讲评”的学习过程,提高分析问题和解决问题的能力。

(三)、情感态度与价值观:感受数学活动中的多向思维、合作交流的价值,主动参与数学思维与交流活动。

教学重点难点重点:直角三角形斜边上的中线性质定理的应用。

难点:直角三角形斜边上的中线性质定理的证明思想方法。

教法学法:观察、比较、合作、交流、探索 教具准备:多媒体课件 教学过程:导案学案设计意图一、 创设情境,导入新课。

1、什么叫直角三角形?2、直角三角形是一类特殊的三角形,除了具备三角形的性质外,还具备哪些性质? 二、自主学习,课堂导学1、预习教材 42p p 、例1内容。

(1)直角三角形性质定理1:直角三角形的两个锐角互余。

(2)直角三角形性质定理2:直角三角形斜边上的中线等于斜边的一半。

(3)直角三角形的判定定理1:有两个锐角互余的三角形是直角三角形。

2、预习检测(穿插练习): 练习一:三、合作交流,展示提升1、已知:∠ABC=∠ADC=90°,E 是AC 中点。

求证:(1)ED=EB 。

(2)∠EBD=∠EDB 。

(3)图中有哪些等腰三角形?2、已知:在△ABC 中,BD 、CE 分别是边AC 、AB 上的高, M 是BC 的中点。

如果连接DE,取DE 的中点 O,那么MO 与DE 有什么样的关系存在?BEA CB D(1)在Rt△ABC中,∠C=900,∠A -∠B =300,那么∠A= ,∠B= 。

(2)在△ABC中,∠ACB=900,CD是斜边AB上的高,那么,①与∠B互余的角有②与∠A相等的角有。

1.2第1课时直角三角形的性质与判定(教案)

1.2第1课时直角三角形的性质与判定(教案)
举例解释:
-重点讲解勾股定理的证明过程,通过实际操作和图形演示,让学生深刻理解直角三角形两条直角边与斜边的关系;
-强调勾股定理在实际问题中的应用,如测量距离、计算面积等;
-通过典型例题,让学生熟练掌握使用勾股定理解决直角三角形相关问题的方法。
2.教学难点
a.理解并运用勾股定理的逆定理判断非直角三角形是否为直角三角形;
2.学习直角三角形的判定方法:
a.利用勾股定理的逆定理判断三角形是否为直角三角形;
b.通过三角函数(正弦、余弦、正切)判断三角形是否为直角三角形。
二、核心素养目标
本节课的核心素养目标主要包括以下方面:
1.培养学生的逻辑推理能力:通过引导学生探究直角三角形的性质,使其掌握逻辑推理方法,能运用性质解决相关问题。
其次,我发现学生们在运用勾股定理的逆定理判断直角三角形时存在一定的困难。这一点在小组讨论和实验操作环节中尤为明显。针对这个问题,我在课堂上进行了反复解释和举例,鼓励学生们多动手实践,以便加深对逆定理的理解。
此外,三角函数在直角三角形中的应用也是一个教学难点。我尝试通过实际案例和练习题,让学生们逐步掌握正弦、余弦和正切的概念。在接下来的教学中,我还需要继续关注这个部分,确保学生们能够熟练运用三角函数解决实际问题。
b.掌握三角函数(正弦、余弦、正切)在直角三角形中的应用,以及通过三角函数判定直角三角形;
c.解决涉及直角三角形的综合应用问题。
举例解释:
-难点在于让学生理解勾股定理的逆定理,即如果三角形的三边满足a²+b²=c²的关系,那么这个三角形是直角三角形。通过具体例子和图示,帮助学生理解这一概念;
-对于三角函数的应用,难点在于让学生理解正弦、余弦、正切的概念,并能在具体的直角三角形中正确运用这些函数进行计算;

华师大版数学八年级上册《直角三角形的判定》教学设计1

华师大版数学八年级上册《直角三角形的判定》教学设计1

华师大版数学八年级上册《直角三角形的判定》教学设计1一. 教材分析《直角三角形的判定》是华师大版数学八年级上册的一章内容。

本章主要让学生掌握直角三角形的判定方法,理解直角三角形的性质,并能够运用这些性质解决实际问题。

本节课的教学内容主要包括直角三角形的定义、直角三角形的判定方法以及直角三角形的性质。

二. 学情分析学生在学习本节课之前,已经学习了三角形的性质、判定等基础知识,对三角形有一定的认识。

但是,对于直角三角形的特殊性质和判定方法可能还不太了解。

因此,在教学过程中,需要引导学生回顾以前学过的知识,为新知识的学习做好铺垫。

三. 教学目标1.了解直角三角形的定义和判定方法。

2.掌握直角三角形的性质,并能够运用这些性质解决实际问题。

3.培养学生的逻辑思维能力和空间想象能力。

四. 教学重难点1.直角三角形的定义和判定方法。

2.直角三角形的性质及其应用。

五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。

通过提出问题,引导学生思考和探索;通过案例分析,让学生了解直角三角形的应用;通过小组合作学习,培养学生的团队协作能力。

六. 教学准备1.PPT课件。

2.直角三角形的相关图片和案例。

3.练习题。

七. 教学过程导入(5分钟)教师通过提问方式引导学生回顾三角形的基本知识,如三角形的性质、判定等。

然后,提出本节课的主题——直角三角形的判定。

呈现(10分钟)教师通过PPT课件展示直角三角形的定义和判定方法,让学生直观地了解直角三角形的性质。

同时,给出一些实际案例,让学生了解直角三角形在实际生活中的应用。

操练(10分钟)教师提出一些有关直角三角形的问题,让学生独立思考和解答。

问题包括:如何判断一个三角形是否为直角三角形?如何运用直角三角形的性质解决实际问题?巩固(10分钟)教师学生进行小组合作学习,让学生互相讨论和交流,进一步巩固直角三角形的知识。

同时,教师给予学生一定的指导,帮助学生更好地理解和掌握直角三角形的性质。

1.2直角三角形全等的判定1

1.2直角三角形全等的判定1

C(C')B'B A(A')B'C'A'B CA1.2直角三角形全等的判定(1)班级 姓名 【学习目标】掌握了直角三角形的全等判定定理和其它相关性质的证明方法. 【重点、难点】1.直角三角形的判定定理.2.直角三角形和其它相关知识的证明方法. 【新知预习】我们已经学习过有关全等三角形的判定方法,请你说出全等三角形判定定理:可以判断两个直角三角形全等吗? 【导学过程】1.定理:斜边和一条直角边对应相等的两个直角三角形全等.(简写为“H L ”)问题:你能证明吗?已知,在△ABC 和△A ˊB ˊC ˊ中,∠ACB=∠A ˊC ˊB ˊ=90°,AB= A ˊB ˊ,AC= A ˊC ˊ. 求证:△ABC ≌△A ˊB ˊC ˊ.2.在上面的图中,如果∠BAC=30°,那么BC=21AB 吗?并用文字语言叙述出来.例1.如图,已知∠A=∠D=90°,若要直接证明△ABC ≌△DCB,,还需要补充一个条件,这个条件是 ,(把你认为正确的都写出来,图中不可添加任何辅助线和字母).例2.如图,AB=AD ,AB ⊥BC,AD ⊥DC. 求证:ACl例3.如图,已知BD ⊥AD,AC ⊥BC,D 、C 为垂足,且AC=BD ,求证:OA=OB.【反馈练习】1. 两个直角三角形全等的条件 ( )A 、一锐角对应相等B 、两锐角对应相等C 、一条边对应相等D 、两条边对应相等2.△ABC 中,∠C=90°,AD 为角平分线,BC=32,BD ∶DC=9:7,则点D 到AB 的距离为 ( )A.18cmB.16cmC.14cmD.12cm3.已知:如图,AC 平分∠BAD ,CE ⊥AB 于E ,CF ⊥AD 于F ,且BC =DC .你能说明BE 与DF 相等吗?4.如图,在等腰直角三角形ABC 中,∠ACB=90O ,直线l 经过点C ,AD ⊥l , BE ⊥l ,垂足分别为D 、E.求证:AD=CE5. 在⊿ABC 中,D 是BC 的中点,DE ⊥AB,DF ⊥AC,垂足分别为E 、F ,且DE=DF. 求证:⊿ABC 是等腰三角形.6.如图,直角梯形纸片ABCD 中,AD //BC ,∠A =90º,∠C =30º.折叠纸片使BC 经过点D ,点C 落.在点E 处,BF 是折痕,且BF =CF =8. (1)求∠BDF 的度数; (2)求AB 的长.A B CD E F1 2B CED A F☆7.如图,△ABC是等腰直角三角形,∠A=90°,点P、Q分别是AB、AC上的一动点,且满足BP=AQ,D是BC的中点. 求证:△PDQ是等腰直角三角形.思考:当点P运动到什么位置时,四边形APDQ是正方形,并说明理由。

直角三角形的性质和判定(教案练习)

直角三角形的性质和判定(教案练习)

湘教版数学八年级下册1.2.2课时教学设计课题直角三角形的性质与判定单元 1 学科数学年级八学习目标情感态度和价值观目标体会从“一般到特殊”的思维方法和“逆向思维”方法,培养逆向思维能力。

能力目标发展有条理思考和有条理表达的能力,通过实际问题的解决让学生体会数学的应用价值知识目标运用勾股定理及直角三角形的判定条件解决实际问题重点能运用勾股定理及直角三角形的判定条件解决实际问题难点能运用勾股定理及直角三角形的判定条件解决实际问题学法自主探究,合作交流教法多媒体,问题引领教学过程教学环节教师活动学生活动设计意图导入新课如图,学校有一块长方形花园,有极少数人为了避开拐角走“捷径”,在花园内走出了一条“路”,仅仅少走了________步路, 却踩伤了花草。

(假设1m为2步)这种做法不可取学生解答问题培养学生爱护环境的意识。

讲授新课例1、如图,电工师傅把4m长的梯子靠在墙上,使梯脚离墙脚的距离为1.5m,准备在墙上安装电灯.当他爬上梯子后,发现高度不够,于是将梯脚往墙脚移近0.5m.那么,梯子顶端是否往上移动0.5m 呢?分析:如图,在 Rt△ABC 中,计算出 AB;再在 Rt△A′BC′中,计算出 A′B,则可得出梯学生思考,将实际问题转化为几何问题,并进行解答增强学生自己解决问题的能力。

子往上移动的距离为(A′B- AB)m.解:在△ABC中,AC=4,BC=1.5,由勾股定理得:在Rt△A’BC’中,A’C’=4,BC’=1,故,从而A′A=3.87-3.71=0.16.即梯子顶端A只向上移动了0.16m,而不是移动0.5m.练习:一个门框尺寸如图所示,一块长3m,宽2.2m的薄木板能否从门框内通过?为什么?例2、“引葭(jia)赴岸”是《九章算术》中一道题“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何?”学生解答练习题进行巩固通过此题的解答,充分调动学生动脑的积极性,培养学生发散思维。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直角三角形 于是△ABC是__________. 互余 由上可得:有两个角_______的三角形是直角三角 形
2.如图,Rt△ABC中,CD是斜边AB上的中线, (l)量一量斜边AB的长度=__________ (2)量一量斜边上的中线CD的长度=________ (3)于是有CD=__AB 由此可得: 一半 直角三角形斜边上的中线等于斜边的________
梅田中学 陈剑峰
学习目标
1.了解直角三角形的判定定理和性质定 理
2.会用定理解决有关问题
知识链接
180° 1.三角形内角和是________, 54° 2.若∠A=36°,则它的余角∠B=_______ 3.画出AB边上的中线
C
A
D
B
自主探究
阅读课本第85至86页内容,并自主探究下列几个问 题: 0 90 1.在△ABC中,如果∠A+∠B=90°,则∠C=____。
A
D
B
A
C E
B 1 ∴∠EAB+∠EBA= (∠CAB+∠DBA)=90° 2
∴∠AEB=180°- (∠EAB+∠EBA)=90°
D
小结
今天我们学了什么?你还有什么疑 惑吗?
作业
如图,△ABC中,∠BAC=90°BD=CD, AC=CD,求∠B的度数
解: ∵ ∠BAC=90°BD=CD 1 ∴AD= BC=CD 2 又∵ AC=CD ∴ AC=CD= AD ∴ △ACD是等边三角形 C ∴∠C=60° ∴∠B=90°-∠C=30°
C
A
D
B
合作交流
根据以上探究过程,请你与小组成员一起交 流,解决下列问题: 1.在△ABC中,∠ACB=90°CD⊥AB,那么与 ∠B互余的角有______,_______, 与∠B相 ∠A ∠BCD 等的角有___________。 ∠ACD
C
A
D
B
2. 如图,Rt△ABC中,CD是斜边AB上的中线, AB=8cm, 则 AD=____cm, BD=_____cm, 4 4 CD=________cm 4
1 证明:∵CD= AB=BD=AD 2
求.在△ABC中,若∠A=25°,∠B=65°,此 直角 三角形为________三角形 2.直角三角形中,两锐角的平分线相交所成 的角的度数是_________。 135° 3.若∠A:∠B:∠C=2:3:5, 直角 则△ABC是_________三角形
B D
A
C
3.如图,CD是△ABC的中线,∠ACB=90°, ∠CDB=110°,则∠A=__________ 55°
C
B
D
A
实践应用
1 已知,如图,CD是△ABC的AB边上的中线,CD= AB, 2
∴∠1=∠A, ∠2=∠B D 又∵ ∠A+∠B+∠ACB=180° ∴∠A+ ∠B+ ∠1+ ∠2=180° 即 2(∠A+ ∠B)=180° A C ∴ ∠A+ ∠B= 90° ∴△ABC是直角三角形(有两个角互余的三角形是直角三角形)
4.已知,△ABC中,AB=AC,AD平分∠BAC, 点E为AC的中点,请你写一个正确的结论. ________________________________
A E
B
D
C
5.如图,AC∥BD, ∠A和∠B的平分线的平分线相交于 E,则∠AEB等于多少度?为什么?
解: ∵ AC∥BD ∴∠CAB+∠DBA=180° 又∵AE和BE分别是∠CAB和 ∠DBA的平分线
相关文档
最新文档