七年级数学奥赛应用题
初一奥数竞赛题

初一奥数竞赛题一、小李和小王一起参加数学竞赛,小李的得分是小王的两倍。
如果小李少得3分,而小王多得3分,则小李的得分就是小王的3倍。
那么小李原来得了多少分?A. 12分B. 15分C. 18分D. 21分(答案:C)二、一个两位数,十位数字与个位数字的和是7,把这个两位数加上45后,结果恰好成为数字对调后组成的两位数。
试求原两位数是多少?A. 16B. 25C. 34D. 43(答案:B)三、甲、乙两数的和是185,已知甲数的1/4与乙数的1/5的和是42,求两数相差多少?A. 20B. 25C. 30D. 35(答案:B)四、三个连续奇数的和是159,那么其中最大的一个奇数是多少?A. 49B. 51C. 53D. 55(答案:C)五、甲、乙、丙三人进行象棋比赛,每两人赛一盘。
规定:赢一盘得2分,输得0分,打平各得1分,全部比赛的三盘棋下完后,甲得3分,乙得1分,那么丙得多少分?A. 1分B. 2分C. 3分D. 4分(答案:D)六、甲、乙、丙、丁四人进行象棋比赛,每两个都比赛一场,规定胜者得2分,平局各得1分,输者得0分。
结果甲第一,乙、丙并列第二,丁最后一名,那么乙得几分?A. 3分B. 4分C. 5分D. 6分(答案:B)七、甲用40秒可绕一环形跑道跑一圈,乙反向跑,每隔15秒与甲相遇1次,乙跑一圈所用的时间是多少秒?A. 20秒B. 25秒C. 30秒D. 35秒(答案:C)八、小明从家到学校时,前一半路程步行,后一半路程乘车;他从学校到家时,前1/3时间乘车,后2/3时间步行。
结果去学校的时间比回家的时间多10分钟。
已知小明从家到学校的全程是多少千米?A. 5千米B. 10千米C. 15千米D. 20千米(答案:B)九、小明和小亮想买同一本书,小明缺1元5角,小亮缺1元3角。
如果用他们的钱合买这本书,钱正好。
这本书的价钱是多少?A. 2元8角B. 3元C. 3元8角D. 4元(答案:A)十、有甲、乙、丙三人所处位置不同,甲说:“以我为坐标原点,乙的位置是(2,3)。
初一数学奥数竞赛题

初一数学奥数竞赛题近年来,数学奥数竞赛在中小学生中越来越受欢迎。
这些竞赛要求学生具备扎实的数学基础知识和灵活的解题能力,提高他们的逻辑思维和问题解决能力。
今天,我们来看几个适合初一学生的数学奥数竞赛题。
题目1:小美在她家门口卖冰淇淋,一支冰淇淋卖5元,两支冰淇淋卖9元。
小美今天一共卖出了30支冰淇淋,她一共赚了多少钱?解析:我们可以设冰淇淋的单价为x元,因为一支冰淇淋卖5元,所以我们可以得到一个方程:5 = x。
两支冰淇淋卖9元,所以我们可以得到另一个方程:9 = 2x。
解这个方程组,我们可以得到x = 4.5。
小美一共卖出30支冰淇淋,所以她赚的总钱数为30 * 4.5 = 135元。
题目2:小明的爸爸今年40岁,小明今年12岁。
假设小明的爸爸每年的年龄都是相同的增长,他几年后的年龄和小明的年龄之和是100岁。
请问那时小明的年龄是多少岁?解析:设小明的爸爸从现在开始每年的年龄增长为x岁。
那么,小明几年后的年龄就是12 + x岁,小明的爸爸几年后的年龄就是40 + x岁。
根据题意,小明几年后的年龄和小明的爸爸几年后的年龄之和是100岁,所以我们可以得到一个方程:(12 + x)+(40 + x)= 100。
解这个方程,我们可以得到x = 18。
所以,几年后小明的年龄就是12 + 18 = 30岁。
题目3:一个长方形花坛周长是20米,其中一条边的长度是4米。
我们要在长方形花坛的周围建一道宽度相等的砖墙,这道砖墙的长度是花坛周长的一半。
问这道砖墙的长度是多少米?解析:设砖墙的宽度为x米,花坛的长度为L米,宽度为W米。
花坛周长是20米,所以我们可以得到一个方程:2L + 2W = 20。
其中一条边的长度是4米,所以我们可以得到另一个方程:2L + W = 4。
将两个方程联立,我们可以解得L = 4,W = 6。
砖墙的长度是花坛周长的一半,所以砖墙的长度是20 / 2 = 10米。
通过解这些数学奥数竞赛题,可以让初一学生锻炼他们的数学思维和解题能力。
七年级数学奥数题

七年级数学奥数题七年级数学奥数题一、问题类型1、一元二次不等式给定一元二次不等式,求不等式的解的个数及其解的集合。
例:求解不等式x²-2x+2>0的解集合。
解:设ax²+bx+c>0,其中a≠0。
不等式的解的个数:对不等式ax²+bx+c>0的两端取对数,得ln(ax²+bx+c)>0,因lnx>0(x>0),得ax²+bx+c>0。
解的集合:利用二次不等式ax²+bx+c>0的一般形式x=(-b±√(b²-4ac))/2a,求得x=(-2±2√2)/2,即x=-1±√2,故解集合为x=-1±√2。
2、概率给出概率问题,求出概率大小及对应情况。
例:一个骰子投掷两次,求出和为六的概率。
解:由于一个骰子投掷两次,求和为六的概率,因此投掷一次的点数分别是(1,5)、(2,4)、(3,3)、(4,2)、(5,1),每种组合概率都为1/36,由此得出和为六的概率为1/36+1/36=2/36=1/18。
3、函数求解给出函数,利用函数的定义域求出函数的值。
例:求函数y=|x|+2x+3的定义域及其在定义域上的值。
解:函数y=|x|+2x+3在x>=0时,y=x+2x+3=3x+3;在x<0时,y=-x+2x+3=x+3,故定义域为R及(3x+3,x+3),在定义域上的值为3x+3或x+3。
二、应用题1、已知函数f(x)={2x-1,x<-1;3x+2,-1≤x≤2;x²+3,x>2,求函数f(x)的反函数。
解:设y=f(x),当y>=0,则x>2,即x=√(y-3);当y<0,则-1≤x≤2,即x=-(y-2)/3;当y=-1,即x=-1。
故反函数为x=√y+3(y>=-1)或x=-(y-2)/3(y<-1)。
初一数学奥林匹克竞赛题(含标准答案)

初一数学奥林匹克竞赛题(含答案)初一奥数题一甲多开支100元,三年后负债600元.求每人每年收入多少?S的末四位数字的和是多少?4.一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程.5.求和:6.证明:质数p除以30所得的余数一定不是合数.8.若两个整数x,y使x2+xy+y2能被9整除,证明:x和y能被3整除.9.如图1-95所示.在四边形ABCD中,对角线AC,BD的中点为M,N,MN的延长线与AB边交于P点.求证:△PCD的面积等于四边形ABCD的面积的一半.解答:所以x=5000(元).所以S的末四位数字的和为1+9+9+5=24.3.因为a-b≥0,即a≥b.即当b≥a>0或b≤a<0时,等式成立.4.设上坡路程为x千米,下坡路程为y千米.依题意则有由②有2x+y=20,③由①有y=12-x.将之代入③得 2x+12-x=20.所以x=8(千米),于是y=4(千米).5.第n项为所以6.设p=30q+r,0≤r<30.因为p为质数,故r≠0,即0<r<30.假设r 为合数,由于r<30,所以r的最小质约数只可能为2,3,5.再由p=30q+r 知,当r的最小质约数为2,3,5时,p不是质数,矛盾.所以,r一定不是合数.7.设由①式得(2p-1)(2q-1)=mpq,即(4-m)pq+1=2(p+q).可知m<4.由①,m>0,且为整数,所以m=1,2,3.下面分别研究p,q.(1)若m=1时,有解得p=1,q=1,与已知不符,舍去.(2)若m=2时,有因为2p-1=2q或2q-1=2p都是不可能的,故m=2时无解.(3)若m=3时,有解之得故 p+q=8.8.因为x2+xy+y2=(x-y)2+3xy.由题设,9|(x2+xy+y2),所以3|(x2+xy +y2),从而3|(x-y)2.因为3是质数,故3|(x-y).进而9|(x-y)2.由上式又可知,9|3xy,故3|xy.所以3|x或3|y.若3|x,结合3(x-y),便得3|y;若3|y,同理可得,3|x.9.连结AN,CN,如图1-103所示.因为N是BD的中点,所以上述两式相加另一方面,S△PCD =S△CND+S△CNP+S△DNP.因此只需证明S△AND =S△CNP+S△DNP.由于M,N分别为AC,BD的中点,所以S△CNP =S△CPM-S△CMN=S△APM-S△AMN=S△ANP.又S△DNP =S△BNP,所以S△CNP+S△DNP=S△ANP+S△BNP=S△ANB=S△AND.初一奥数题二1.已知3x2-x=1,求6x3+7x2-5x+2000的值.2.某商店出售的一种商品,每天卖出100件,每件可获利4元,现在他们采用提高售价、减少进货量的办法增加利润,根据经验,这种商品每涨价1元,每天就少卖出10件.试问将每件商品提价多少元,才能获得最大利润?最大利润是多少元?3.如图1-96所示.已知CB⊥AB,CE平分∠BCD,DE平分∠CDA,∠1+∠2=90°.求证:DA⊥AB.4.已知方程组的解应为一个学生解题时把c抄错了,因此得到的解为求a2+b2+c2的值.5.求方程|xy|-|2x|+|y|=4的整数解.6.王平买了年利率7.11%的三年期和年利率为7.86%的五年期国库券共35000元,若三年期国库券到期后,把本息再连续存两个一年期的定期储蓄,五年后与五年期国库券的本息总和为47761元,问王平买三年期与五年期国库券各多少?(一年期定期储蓄年利率为5.22%)7.对k,m的哪些值,方程组至少有一组解?8.求不定方程3x+4y+13z=57的整数解.9.小王用5元钱买40个水果招待五位朋友.水果有苹果、梨子和杏子三种,每个的价格分别为20分、8分、3分.小王希望他和五位朋友都能分到苹果,并且各人得到的苹果数目互不相同,试问他能否实现自己的愿望?解答:1.原式=2x(3x2-x)+3(3x2-x)-2x+2000 =2x×1+3×1-2x+2000=2003.2.原来每天可获利4×100元,若每件提价x元,则每件商品获利(4+x)元,但每天卖出为(100-10x)件.如果设每天获利为y元,则y =(4+x)(100-10x)=400+100x-40x-10x2=-10(x2-6x+9)+90+400=-10(x-3)2+490.所以当x=3时,y最大=490元,即每件提价3元,每天获利最大,为490元.3.因为CE平分∠BCD,DE平分∠ADC及∠1+∠2=90°(图1-104),所以∠ADC+∠BCD=180°,所以AD∥BC.①又因为 AB⊥BC,②由①,② AB⊥AD.4.依题意有所以a2+b2+c2=34.5.|x||y|-2|x|+|y|=4,即|x|(|y|-2)+(|y|-2)=2,所以(|x|+1)(|y|-2)=2.因为|x|+1>0,且x,y都是整数,所以所以有6.设王平买三年期和五年期国库券分别为x元和y元,则因为y=35000-x,所以 x(1+0.0711×3)(1+0.0522)2+(35000-x)(1+0.0786×5)=47761,所以 1.3433x+48755-1.393x=47761,所以 0.0497x=994,所以 x=20000(元),y=35000-20000=15000(元).7.因为 (k-1)x=m-4,①m为一切实数时,方程组有唯一解.当k=1,m=4时,①的解为一切实数,所以方程组有无穷多组解.当k=1,m≠4时,①无解.所以,k≠1,m为任何实数,或k=1,m=4时,方程组至少有一组解.8.由题设方程得z=3m-y.x=19-y-4(3m-y)-m =19+3y-13m.原方程的通解为其中n,m取任意整数值.9.设苹果、梨子、杏子分别买了x,y,z个,则消去y,得12x-5z=180.它的解是x=90-5t,z=180-12t.代入原方程,得y=-230+17t.故x=90-5t,y=-230+17t,z=180-12t.x=20,y=8,z=12.因此,小王的愿望不能实现,因为按他的要求,苹果至少要有1+2+3+4+5+6=21>20个.初一奥数题三1.解关于x的方程2.解方程其中a+b+c≠0.3.求(8x3-6x2+4x-7)3(2x5-3)2的展开式中各项系数之和.4.液态农药一桶,倒出8升后用水灌满,再倒出混合溶液4升,再用水灌满,这时农药的浓度为72%,求桶的容量.5.满足[-1.77x]=-2x的自然数x共有几个?这里[x]表示不超过x的最大整数,例如[-5.6]=-6,[3]=3.6.设P是△ABC内一点.求:P到△ABC三顶点的距离和与三角形周长之比的取值范围.7.甲乙两人同时从东西两站相向步行,相会时,甲比乙多行24千米,甲经过9小时到东站,乙经过16小时到西站,求两站距离.8.黑板上写着三个数,任意擦去其中一个,将它改写成其他两数的和减1,这样继续下去,最后得到19,1997,1999,问原来的三个数能否是2,2,2?9.设有n个实数x1,x2,…,xn,其中每一个不是+1就是-1,且求证:n是4的倍数.解答:1.化简得6(a-1)x=3-6b+4ab,当a≠1时,2.将原方程变形为由此可解得x=a+b+c.3.当x=1时,(8-6+4-7)3(2-1)2=1.即所求展开式中各项系数之和为1.依题意得去分母、化简得7x2-300x+800=0,即7x-20)(x-40)=0,5.若n为整数,有[n+x]=n+[x],所以[-1.77x]=[-2x+0.23x]=-2x+[0.23x].由已知[-1.77x]=-2x,所以-2x=-2x+[0.23x],所以 [0.23x]=0.又因为x为自然数,所以0≤0.23x<1,经试验,可知x可取1,2,3,4,共4个.6.如图1-105所示.在△PBC中有BC<PB+PC,①延长BP交AC于D.易证PB+PC<AB+AC.②由①,② BC<PB+PC<AB+AC,③同理 AC<PA+PC<AC+BC,④AB<PA+PB<AC+AB.⑤③+④+⑤得AB+BC+CA<2(PA+PB+PC)<2(AB+BC+CA).所以7.设甲步行速度为x千米/小时,乙步行速度为y千米/小时,则所求距离为(9x+16y)千米.依题意得由①得16y2=9x2,③由②得16y=24+9x,将之代入③得即 (24+9x)2=(12x)2.解之得于是所以两站距离为9×8+16×6=168(千米).8.答案是否定的.对于2,2,2,首先变为2,2,3,其中两个偶数,一个奇数.以后无论改变多少次,总是两个偶数,一个奇数(数值可以改变,但奇偶性不变),所以,不可能变为19,1997,1999这三个奇数.。
七年级数学奥数竞赛题

七年级数学奥数竞赛题
【原创实用版】
目录
1.题目概述
2.题目类型
3.题目解析
4.题目答案
5.题目启示
正文
一、题目概述
本次我们要解答的题目是七年级数学奥数竞赛题,这是一道典型的奥数题目,旨在考验学生的数学思维能力和解题技巧。
题目具有一定的难度,需要学生运用所学的数学知识进行综合分析和解决问题。
二、题目类型
这道题目属于几何题,主要考察学生对几何知识的掌握程度,包括相似三角形、勾股定理等内容。
通过此类题目,学生可以巩固和提高自己的几何解题能力。
三、题目解析
题目给出了一个直角三角形,要求学生求解另外两个角的度数。
题目中给出的条件是两个边长比例,需要运用勾股定理和相似三角形的知识进行解答。
首先,根据勾股定理,可以求得直角三角形的斜边长度。
然后,根据相似三角形的性质,可以得到两个相似三角形的比例关系。
最后,利用比例关系和已知条件,可以求得另外两个角的度数。
四、题目答案
根据上述解题过程,可以得到题目的答案:两个角的度数分别为 45 度和 45 度。
五、题目启示
这道题目给学生提供了一个很好的学习奥数的例子。
通过解答这类题目,学生可以学习到如何运用所学的数学知识进行综合分析和解决问题。
同时,题目的解答过程也体现了数学的逻辑性和思维性,有助于培养学生的数学思维能力。
广东省七年级竞赛数学试题

广东省七年级竞赛数学试题一、选择题(每题2分,共10分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 如果一个数的平方等于该数本身,那么这个数可能是:A. 0B. 1C. -1D. 23. 一个等差数列的首项是3,公差是2,那么第5项是多少?A. 11B. 13C. 15D. 174. 一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π5. 一个长方体的长、宽、高分别是2、3、4,那么它的体积是多少?A. 24B. 32C. 48D. 64二、填空题(每题2分,共10分)6. 一个数的绝对值是5,这个数可能是______或______。
7. 一个数的相反数是-3,这个数是______。
8. 如果一个数的平方根是4,那么这个数是______。
9. 一个数的立方根是2,这个数是______。
10. 一个三角形的三个内角之和等于______度。
三、简答题(每题5分,共20分)11. 解释什么是质数,并给出小于20的质数列表。
12. 描述如何使用勾股定理来解决直角三角形的问题。
13. 给定一个直角三角形,斜边长为13,一条直角边长为5,求另一条直角边的长度。
14. 解释什么是代数表达式,并给出一个例子,然后简化它。
四、计算题(每题10分,共20分)15. 计算下列表达式的值:(3x + 2)(3x - 2),其中x = 2。
16. 解下列方程:2x + 5 = 3x - 1。
五、应用题(每题15分,共30分)17. 一个班级有40名学生,其中20名男生和20名女生。
如果每个学生平均借阅了5本书,那么这个班级总共借阅了多少本书?18. 一个农场有鸡和兔子共35只,它们的腿总共有94条。
问农场中各有多少只鸡和兔子?六、证明题(每题15分,共15分)19. 证明:在一个直角三角形中,斜边的平方等于两直角边的平方和。
请注意,以上题目仅为示例,实际的竞赛试题可能会有所不同。
初一奥数竞赛考试题及答案

初一奥数竞赛考试题及答案一、选择题1. 一个数列的前三项为 2, 3, 5,每一项都是前两项的和,那么第10项是多少?A. 144B. 145C. 146D. 147答案:D2. 一个正整数,如果加上100后是一个完全平方数,那么这个数最小是多少?A. 49B. 50C. 51D. 52答案:B3. 一个长方体的长、宽、高分别为 a, b, c,且 a < b < c,如果长方体的体积是 216 立方厘米,那么 a 的可能值是?A. 3B. 4C. 6D. 8答案:C二、填空题1. 一个数的平方比它本身大 40,这个数是 _______。
答案:7 或 -72. 一个数列的前三项为 1, 2, 3,每一项都是前一项的两倍加上 1,那么第 5 项是多少?答案:11三、解答题1. 一个水池有一个进水管和一个出水管,单独开进水管 5 小时可以注满水池,单独开出水管 3 小时可以放空水池。
现在同时打开进水管和出水管,需要多少时间才能注满水池?解答:设水池的容量为 V 升。
进水管的流量为 V/5 升/小时,出水管的流量为 V/3 升/小时。
设同时打开两个水管需要 t 小时注满水池,则有:(V/5 - V/3) * t = V解得 t = 15/2 = 7.5 小时。
2. 一个班级有 40 名学生,其中 1/4 喜欢数学,1/3 喜欢英语,1/6 喜欢历史,剩下的学生喜欢科学。
问喜欢科学的有几人?解答:喜欢数学的学生有 40 * 1/4 = 10 人,喜欢英语的学生有40 * 1/3 ≈ 13.33,取整数为 13 人,喜欢历史的学生有 40 * 1/6 ≈ 6.67,取整数为 7 人。
喜欢科学的人数为:40 - 10 - 13 - 7 = 10 人。
结束语:以上是初一奥数竞赛考试题及答案,希望同学们能够通过这些题目,锻炼自己的逻辑思维能力和数学解题技巧,为未来的学习打下坚实的基础。
初一奥数竞赛试题及答案

初一奥数竞赛试题及答案试题一:数字逻辑问题题目:有一个数字序列,前三个数字是5,7,9。
从第四个数字开始,每个数字都是前三个数字的和。
请问这个序列的第10个数字是多少?答案:首先,我们可以计算出第四个数字是5+7+9=21。
然后依次计算后面的数字:- 第五个数字是7+9+21=37- 第六个数字是9+21+37=67- 第七个数字是21+37+67=125- 第八个数字是37+67+125=229- 第九个数字是67+125+229=421- 第十个数字是125+229+421=775所以,这个序列的第10个数字是775。
试题二:几何问题题目:在一个直角三角形中,已知直角边长分别为3厘米和4厘米,求斜边的长度。
答案:根据勾股定理,直角三角形的斜边长度可以通过以下公式计算:\[ c = \sqrt{a^2 + b^2} \],其中a和b是直角边的长度。
将题目中给出的数值代入公式中,我们得到:\[ c = \sqrt{3^2 + 4^2} =\sqrt{9 + 16} = \sqrt{25} = 5 \]厘米。
所以,斜边的长度是5厘米。
试题三:组合问题题目:有5个不同的球和3个不同的盒子,每个盒子至少放一个球。
问有多少种不同的放球方法?答案:首先,我们需要将5个球分成3组,其中至少有1个球。
我们可以将这个问题看作是将5个球中的4个球分配到3个盒子中,剩下的一个球可以放在任意一个盒子中。
这相当于在4个球之间插入2个隔板来形成3个部分。
我们有4个空位可以放置隔板,所以总共有\[ C(4,2) \]种方法,即\[ \frac{4!}{2!(4-2)!} = 6 \]种方法。
但是,我们需要排除所有球都在一个盒子里的情况,这种情况有3种。
因此,最终的放球方法有\[ 6 - 3 = 3 \]种。
试题四:数列问题题目:一个数列的前两项是1和2,从第三项开始,每一项都是前两项的差。
求这个数列的第10项。
答案:我们可以列出数列的前几项来找出规律:1, 2, 1, 1, 0, 1, 1, 2, 3, 5, ...数列的规律是斐波那契数列,但是从第三项开始,每一项是前两项的差。
七年级奥数题训练十篇

七年级奥数题训练十篇1.七年级奥数题训练篇一1、姐妹两人骑车从相距10千米的甲地去乙地,妹妹比姐姐早出发10分钟,结果两人同时到达,姐妹两人骑车速度比是5:4,求姐姐甲地去乙地用了多少时间?2、小张爬山,下山按原路返回,往返共用了1.5小时。
上山时间是下山时间的1.5倍,上山速度比下山速度每分钟慢50米。
小张上下山共行了多少米?3、一辆汽车往返于甲、乙两地。
去时的速度是返回速度的3/4,去时比返回时多用了1小时,已知返回速度是每小时60千米,求甲、乙两地相距多少千米?4、一个快钟每时比标准时间快1分,一个慢钟每时比标准时间慢2分.若将两个钟同时调到标准时间,结果在24时内,快钟显示9点整时,慢钟恰好显示8点整.此时的标准时间是多少?何时将两个钟同时调准的?5、某科学家设计了一只怪钟,这只怪钟每昼夜10时,每小时100分钟.当这只钟显示5点整时,实际上是中午12点整.当这只钟显示3点75分时,实际上是什么时间?实际时间下午5点24分时,这只钟显示什么时间?2.七年级奥数题训练篇二1、学校组织两个课外兴趣小组去郊外活动。
第一小组每小时走4.5千米,第二小组每小时行3.5千米。
两组同时出发1小时后,第一小组停下来参观一个果园,用了1小时,再去追第二小组。
多长时间能追上第二小组?2、有甲乙两个仓库,每个仓库平均储存粮食32.5吨。
甲仓的存粮吨数比乙仓的4倍少5吨,甲、乙两仓各储存粮食多少吨?3、甲、乙两队共同修一条长400米的公路,甲队从东往西修4天,乙队从西往东修5天,正好修完,甲队比乙队每天多修10米。
甲、乙两队每天共修多少米?4、学校买来6张桌子和5把椅子共付455元,已知每张桌子比每把椅子贵30元,桌子和椅子的单价各是多少元?5、一列火车和一列慢车,同时分别从甲乙两地相对开出。
快车每小时行75千米,慢车每小时行65千米,相遇时快车比慢车多行了40千米,甲乙两地相距多少千米?3.七年级奥数题训练篇三1.两袋玻璃球,每袋个数相等。
初一数学奥数应用题超难

初一数学奥数应用题超难1. 若干学生住若干间房间,如果每间住4人,则有20人没有地方住,如果每间房住8人,则有一间只有4人住,问共有多少个学生?设有x间宿舍每间住4人,则有20人无法安排所以有4x+20人每间住8人,则最后一间不空也不满所以x-1间住8人,最后一间大于小于8所以0<(4x+20)-8(x-1)<80<-4x+28<8 乘以-1,不等号改向 -8<4x-28<0加上28 20<4x<28 除以4 5<x<7x是整数所以x=6 4x+20=44所以有6间宿舍,44人2.甲对乙说:“你给我100元,我的钱将比你多1倍。
”乙对甲说:“你只要给我10元,我的钱将比你多5倍。
”问甲乙两人各有多少元钱?设甲原有x元,乙原有y元.x+100=2*(y-100) 6*(x-10)=y+10x=40 ,y=1703.小王和小李从AB两地,相向而行,80分钟后相遇,小王先出发60分钟后小李在出发,40分钟后相遇,问小李和小王单独走完这段距离需要多长时间?解:设小王的速度为x,小李的速度为y根据:路程=路程,可列出方程:80(x+y)=60x+40(x+y)解得y=1\2x 设路程为单位1,则:80(1\2x+x)=1 解得x=1\120 所以y=1\240所以小王单独用的时间:1*1\120=120(分)小李单独用的时间:1*1\240=240(分)4.一天,猫发现前面20米的地方有只老鼠,立即去追,同时,老鼠也发现了猫,马上就跑。
猫每秒跑7米,用了10秒追上老鼠。
老鼠每秒跑多少米?解:设老鼠每秒跑X米7*10=10X+20 10X=70-20 X=5 答:老鼠每秒跑5米。
5.一项工程,甲单独做10天完成,乙单独做6天完成。
先由甲先做2天,然后甲乙合作,问:甲乙合作还需要多少天完成工作?设甲乙合作一起还需要x天完成总工程为1 甲先做了2天他完成了总工程的2*1/10=1/5 那么此时还剩下为1-1/5=4/5那么就有了(1/10+1/6)*x=4/5 解得x=3即一起工作3天完成整个工作思路 :主要是看每个完成的工作量跟整个的相对关系的。
七年级下册数学竞赛题和经典题含解答共20题

七年级下册数学竞赛题和经典题含解答共10题1. 题目:甲、乙两个正整数的和是300,差是120,求甲、乙两个数分别是多少?解答:设甲的数为x,乙的数为y。
根据题意,我们可以得到以下两个方程:x + y = 300 (方程1)x - y = 120 (方程2)解方程组得到甲的数x = 210,乙的数y = 90。
2. 题目:某数的4倍减去该数的2倍等于30,求这个数。
解答:设这个数为x。
根据题意,我们可以得到以下方程:4x - 2x = 30化简得到2x = 30解方程得到x = 153. 题目:一个正整数加上自身的平方等于140,求这个正整数。
解答:设这个正整数为x。
根据题意,我们可以得到以下方程:x + x²= 140化简得到x²+ x - 140 = 0解方程得到x = 10 或x = -14,由题目要求为正整数,所以x = 10。
4. 题目:一个三位数加上它的逆序数等于1333,求这个三位数。
解答:设这个三位数为xyz。
根据题意,我们可以得到以下方程:100x + 10y + z + 100z + 10y + x = 1333化简得到101x + 20y + 101z = 1333由于101为质数,所以x和z只能为1,y只能为6。
解方程得到x = 1,y = 6,z = 1,所以这个三位数为161。
5. 题目:甲、乙两个数的和是90,差是20,求甲、乙两个数分别是多少?解答:设甲的数为x,乙的数为y。
根据题意,我们可以得到以下两个方程:x + y = 90 (方程1)x - y = 20 (方程2)解方程组得到甲的数x = 55,乙的数y = 35。
6. 题目:某个三位数的百位数是7,个位数是2,且各位上的数字之和是13,求这个三位数。
解答:设这个三位数为xyz。
根据题意,我们可以得到以下方程:x = 7 (百位数是7)z = 2 (个位数是2)x + y + z = 13 (各位上的数字之和是13)代入得到7 + y + 2 = 13解方程得到y = 4所以这个三位数为742。
初一奥数比赛试题及答案

初一奥数比赛试题及答案【试题一】题目:一个数列的前三项是1, 2, 3。
从第四项开始,每一项都是前三项的和。
求第10项的值。
【答案】根据题目描述,数列是1, 2, 3, 6, 11, 21, 43, 86, 171, 341。
第10项的值是341。
【试题二】题目:一个长方体的长、宽、高分别是a, b, c。
如果长方体的体积是120立方厘米,且a, b, c都是整数。
求所有可能的a, b, c的组合。
【答案】体积为120立方厘米,即120=abc。
120的因数分解为2^3 * 3 * 5。
可能的组合有:- a=1, b=2, c=60- a=1, b=3, c=40- a=1, b=4, c=30- a=1, b=5, c=24- a=1, b=6, c=20- a=1, b=8, c=15- a=1, b=10, c=12- a=2, b=2, c=30- a=2, b=3, c=20- a=2, b=4, c=15- a=2, b=5, c=12- a=3, b=3, c=13.333...(不是整数,排除)- a=3, b=4, c=10- a=4, b=4, c=7.5(不是整数,排除)- a=5, b=5, c=4.8(不是整数,排除)因此,所有可能的整数组合是:(1, 2, 60), (1, 3, 40), (1, 4, 30), (1, 5, 24), (1, 6, 20), (1, 8, 15), (1, 10, 12), (2, 2, 30), (2, 3, 20), (2, 4, 15), (3, 4, 10)。
【试题三】题目:在一个平面上,有5个点,其中任意3个点都不在同一条直线上。
这些点可以构成多少个不同的三角形?【答案】从5个点中选择3个点来构成一个三角形,组合数为C(5,3)。
计算公式为C(n,k) = n! / [k! * (n-k)!],其中n是总数,k是选择的数量。
数学初一奥数题及答案

数学初一奥数题及答案题目一:数列问题题目描述:有一个数列:2, 4, 7, 11, ... 这个数列的第10项是多少?解题思路:观察数列可以发现,每一项与前一项的差值依次为2, 3, 4, 5, ... 这是一个等差数列,差值的公差为1。
因此,第n项与第1项的差值是1+2+3+...+(n-1)。
答案:首先计算第10项与第1项的差值,即1+2+3+...+9,这是一个等差数列求和问题,公式为\( S = \frac{n(n+1)}{2} \),代入n=9得到\( S = \frac{9 \times 10}{2} = 45 \)。
所以第10项是2 + 45 = 47。
题目二:几何问题题目描述:在一个直角三角形ABC中,∠C是直角,AC=6,BC=8,求斜边AB的长度。
解题思路:根据勾股定理,直角三角形的斜边的平方等于两直角边的平方和。
答案:根据勾股定理,\( AB^2 = AC^2 + BC^2 \),代入AC=6,BC=8,得到\( AB^2 = 6^2 + 8^2 = 36 + 64 = 100 \),所以AB = √100 = 10。
题目三:逻辑推理问题题目描述:有5个盒子,每个盒子里装有不同数量的球,分别是1, 2, 3, 4, 5个。
现在将这5个盒子重新排列,使得每个盒子里的球数都比前一个盒子多1个。
问:重新排列后的盒子里球的数量分别是多少?解题思路:由于每个盒子里的球数都比前一个盒子多1个,我们可以从最小的数开始排列,即5, 4, 3, 2, 1。
答案:重新排列后的盒子里球的数量分别是5, 4, 3, 2, 1。
题目四:组合问题题目描述:有红、黄、蓝三种颜色的球各10个,现在要从中选出5个球,求有多少种不同的选法?解题思路:这是一个组合问题,可以使用组合公式\( C(n, k) =\frac{n!}{k!(n-k)!} \)来计算,其中n是总数,k是选出的数量。
答案:首先考虑不考虑颜色的情况下,从30个球中选出5个球的组合数为\( C(30, 5) \)。
初一奥赛数学题大全(100道)

【导语】数学奥林匹克活动的蓬勃发展,极⼤地激发了⼴⼤少年⼉童学习数学的兴趣,成为引导少年积极向上,主动探索,健康成长的⼀项有益活动。
以下是为您整理的相关资料,希望对您有⽤。
1.甲、⼄、丙三⼈在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、⼄、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,⼄先在A地植树,然后转到B地植树.两块地同时开始同时结束,⼄应在开始后第⼏天从A地转到B 地?2.有三块草地,⾯积分别是5,15,24亩.草地上的草⼀样厚,⽽且长得⼀样快.第⼀块草地可供10头⽜吃30天,第⼆块草地可供28头⽜吃45天,问第三块地可供多少头⽜吃80天?3. 某⼯程,由甲、⼄两队承包,2.4天可以完成,需⽀付1800元;由⼄、丙两队承包,3+3/4天可以完成,需⽀付1500元;由甲、丙两队承包,2+6/7天可以完成,需⽀付1600元.在保证⼀星期内完成的前提下,选择哪个队单独承包费⽤最少?4. ⼀个圆柱形容器内放有⼀个长⽅形铁块.现打开⽔龙头往容器中灌⽔.3分钟时⽔⾯恰好没过长⽅体的顶⾯.再过18分钟⽔已灌满容器.已知容器的⾼为50厘⽶,长⽅体的⾼为20厘⽶,求长⽅体的底⾯⾯积和容器底⾯⾯积之⽐.5. 甲、⼄两位⽼板分别以同样的价格购进⼀种时装,⼄购进的套数⽐甲多1/5,然后甲、⼄分别按获得80%和50%的利润定价出售.两⼈都全部售完后,甲仍⽐⼄多获得⼀部分利润,这部分利润⼜恰好够他再购进这种时装10套,甲原来购进这种时装多少套?6. 有甲、⼄两根⽔管,分别同时给A,B两个⼤⼩相同的⽔池注⽔,在相同的时间⾥甲、⼄两管注⽔量之⽐是7:5.经过2+1/3⼩时,A,B两池中注⼊的⽔之和恰好是⼀池.这时,甲管注⽔速度提⾼25%,⼄管的注⽔速度不变,那么,当甲管注满A池时,⼄管再经过多少⼩时注满B池?7. ⼩明早上从家步⾏去学校,⾛完⼀半路程时,爸爸发现⼩明的数学书丢在家⾥,随即骑车去给⼩明送书,追上时,⼩明还有3/10的路程未⾛完,⼩明随即上了爸爸的车,由爸爸送往学校,这样⼩明⽐独⾃步⾏提早5分钟到校.⼩明从家到学校全部步⾏需要多少时间?8. 甲、⼄两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离.⼄车的速度是甲车速度的80%.已知⼄车⽐甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后⼄车⽐甲车迟4分钟到C地.那么⼄车出发后⼏分钟时,甲车就超过⼄车.9. 甲、⼄两辆清洁车执⾏东、西城间的公路清扫任务.甲车单独清扫需要10⼩时,⼄车单独清扫需要15⼩时,两车同时从东、西城相向开出,相遇时甲车⽐⼄车多清扫12千⽶,问东、西两城相距多少千⽶?10. 今有重量为3吨的集装箱4个,重量为2.5吨的集装箱5个,重量为1.5吨的集装箱14个,重量为1吨的集装箱7个.那么最少需要⽤多少辆载重量为4.5吨的汽车可以⼀次全部运⾛集装箱?⼩学数学应⽤题综合训练(02)11. 师徒⼆⼈共同加⼯170个零件,师傅加⼯零件个数的1/3⽐徒弟加⼯零件个数的1/4还多10个,那么徒弟⼀共加⼯了⼏个零件?12. ⼀辆⼤轿车与⼀辆⼩轿车都从甲地驶往⼄地.⼤轿车的速度是⼩轿车速度的80%.已知⼤轿车⽐⼩轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往⼄地;⽽⼩轿车出发后中途没有停,直接驶往⼄地,最后⼩轿车⽐⼤轿车早4分钟到达⼄地.⼜知⼤轿车是上午10时从甲地出发的.那么⼩轿车是在上午什么时候追上⼤轿车的.13. ⼀部书稿,甲单独打字要14⼩时完成,,⼄单独打字要20⼩时完成.如果甲先打1⼩时,然后由⼄接替甲打1⼩时,再由甲接替⼄打1⼩时.......两⼈如此交替⼯作.那么打完这部书稿时,甲⼄两⼈共⽤多少⼩时?14. 黄⽓球2元3个,花⽓球3元2个,学校共买了32个⽓球,其中花⽓球⽐黄⽓球少4个,学校买哪种⽓球⽤的钱多?15. ⼀只帆船的速度是60⽶/分,船在⽔流速度为20⽶/分的河中,从上游的⼀个港⼝到下游的某⼀地,再返回到原地,共⽤3⼩时30分,这条船从上游港⼝到下游某地共⾛了多少⽶?16. 甲粮仓装43吨⾯粉,⼄粮仓装37吨⾯粉,如果把⼄粮仓的⾯粉装⼊甲粮仓,那么甲粮仓装满后,⼄粮仓⾥剩下的⾯粉占⼄粮仓容量的1/2;如果把甲粮仓的⾯粉装⼊⼄粮仓,那么⼄粮仓装满后,甲粮仓⾥剩下的⾯粉占甲粮仓容量的1/3,每个粮仓各可以装⾯粉多少吨?17. 甲数除以⼄数,⼄数除以丙数,商相等,余数都是2,甲、⼄两数之和是478.那么甲、⼄丙三数之和是⼏?18. ⼀辆车从甲地开往⼄地.如果把车速减少10%,那么要⽐原定时间迟1⼩时到达,如果以原速⾏驶180千⽶,再把车速提⾼20%,那么可⽐原定时间早1⼩时到达.甲、⼄两地之间的距离是多少千⽶?19. 某校参加军训队列表演⽐赛,组织⼀个⽅阵队伍.如果每班60⼈,这个⽅阵⾄少要有4个班的同学参加,如果每班70⼈,这个⽅阵⾄少要有3个班的同学参加.那么组成这个⽅阵的⼈数应为⼏⼈?20. 甲、⼄、丙三台车床加⼯⽅形和圆形的两种零件,已知甲车床每加⼯3个零件中有2个是圆形的;⼄车床每加⼯4个零件中有3个是圆形的;丙车床每加⼯5个零件中有4个是圆形的.这天三台车床共加⼯了58个圆形零件,⽽加⼯的⽅形零件个数的⽐为4:3:3,那么这天三台车床共加⼯零件⼏个?⼩学数学应⽤题综合训练(03)21. 圈⾦属线长30⽶,截取长度为A的⾦属线3根,长度为B的⾦属线5根,剩下的⾦属线如果再截取2根长度为B的⾦属线还差0.4⽶,如果再截取2根长度为A的⾦属线则还差2⽶,长度为A的等于⼏⽶?22. 某公司要往⼯地运送甲、⼄两种建筑材料.甲种建筑材料每件重700千克,共有120件,⼄种建筑材料每件重900千克,共有80件,已知⼀辆汽车每次最多能运载4吨,那么5辆相同的汽车同时运送,⾄少要⼏次?23. 从王⼒家到学校的路程⽐到体育馆的路程长1/4,⼀天王⼒在体育馆看完球赛后⽤17分钟的时间⾛到家,稍稍休息后,他⼜⽤了25分钟⾛到学校,其速度⽐从体育馆回来时每分钟慢15⽶,王⼒家到学校的距离是多少⽶?24. 师徒两⼈合作完成⼀项⼯程,由于配合得好,师傅的⼯作效率⽐单独做时要提⾼1/10,徒弟的⼯作效率⽐单独做时提⾼1/5.两⼈合作6天,完成全部⼯程的2/5,接着徒弟⼜单独做6天,这时这项⼯程还有13/30未完成,如果这项⼯程由师傅⼀⼈做,⼏天完成?25. 六年级五个班的同学共植树100棵.已知每个班植树的棵数都不相同,且按数量从多到少的排名恰好是⼀、⼆、三、四、五班.⼜知⼀班植的棵数是⼆、三班植的棵数之和,⼆班植的棵数是四、五班植的棵数之和,那么三班最多植树多少棵?26. 甲每⼩时跑13千⽶,⼄每⼩时跑11千⽶,⼄⽐甲多跑了20分钟,结果⼄⽐甲多跑了2千⽶.⼄总共跑了多少千⽶?27. 有⾼度相等的A,B两个圆柱形容器,内⼝半径分别为6厘⽶和8厘⽶.容器A中装满⽔,容器B是空的,把容器A中的⽔全部倒⼊容器B中,测得容器B中的⽔深⽐容器⾼的7/8还低2厘⽶.容器的⾼度是多少厘⽶?28. 有104吨的货物,⽤载重为9吨的汽车运送.已知汽车每次往返需要1⼩时,实际上汽车每次多装了1吨,那么可提前⼏⼩时完成.29. 师、徒⼆⼈第⼀天共加⼯零件225个,第⼆天采⽤了新⼯艺,师傅加⼯的零件⽐第⼀天增加了24%,徒弟增加了45%,两⼈共加⼯零件300个,第⼆天师傅加⼯了多少个零件?徒弟加⼯了⼏个零件?30. 奋⽃⼩学组织六年级同学到百花⼭进⾏野营拉练,⾏程每天增加2千⽶.去时⽤了4天,回来时⽤了3天,问学校距离百花⼭多少千⽶?⼩学数学应⽤题综合训练(04)31. 某地收取电费的标准是:每⽉⽤电量不超过50度,每度收5⾓;如果超出50度,超出部分按每度8⾓收费.每⽉甲⽤户⽐⼄⽤户多交3元3⾓电费,这个⽉甲、⼄各⽤了多少度电?32. 王师傅计划⽤2⼩时加⼯⼀批零件,当还剩160个零件时,机器出现故障,效率⽐原来降低1/5,结果⽐原计划推迟20分钟完成任务,这批零件有多少个?33. 妈妈给了红红⼀些钱去买贺年卡,有甲、⼄、丙三种贺年卡,甲种卡每张1.20元.⽤这些钱买甲种卡要⽐买⼄种卡多8张,买⼄种卡要⽐买丙种卡多买6张.妈妈给了红红多少钱?⼄种卡每张多少钱?34. ⼀位⽼⼈有五个⼉⼦和三间房⼦,临终前⽴下遗嘱,将三间房⼦分给三个⼉⼦各⼀间.作为补偿,分到房⼦的三个⼉⼦每⼈拿出1200元,平分给没分到房⼦的两个⼉⼦.⼤家都说这样的分配公平合理,那么每间房⼦的价值是多少元?35. ⼩明和⼩燕的画册都不⾜20本,如果⼩明给⼩燕A本,则⼩明的画册就是⼩燕的2倍;如果⼩燕给⼩明A本,则⼩明的画册就是⼩燕的3倍.原来⼩明和⼩燕各有多少本画册?36. 有红、黄、⽩三种球共160个.如果取出红球的1/3,黄球的1/4,⽩球的1/5,则还剩120个;如果取出红球的1/5,黄球的1/4,⽩球的1/3,则剩116个,问(1)原有黄球⼏个?(2)原有红球、⽩球各⼏个?37. 爸爸、哥哥、妹妹三⼈现在的年龄和是64岁,当爸爸的年龄是哥哥年龄的3倍时,妹妹是9岁.当哥哥的年龄是妹妹年龄的2倍时,爸爸是34岁.现在三⼈的年龄各是多少岁?38. B在A,C两地之间.甲从B地到A地去送信,出发10分钟后,⼄从B地出发去送另⼀封信.⼄出发后10分钟,丙发现甲⼄刚好把两封信拿颠倒了,于是他从B地出发骑车去追赶甲和⼄,以便把信调过来.已知甲、⼄的速度相等,丙的速度是甲、⼄速度的3倍,丙从出发到把信调过来后返回B地⾄少要⽤多少时间?39. 甲、⼄两个车间共有94个⼯⼈,每天共加⼯1998⽵椅.由于设备和技术的不同,甲车间平均每个⼯⼈每天只能⽣产15把⽵椅,⽽⼄车间平均每个⼯⼈每天可以⽣产43把⽵椅.甲车间每天⽵椅产量⽐⼄车间多⼏把?40. 甲放学回家需⾛10分钟,⼄放学回家需⾛14分钟.已知⼄回家的路程⽐甲回家的路程多1/6,甲每分钟⽐⼄多⾛12⽶,那么⼄回家的路程是⼏⽶?⼩学数学应⽤题综合训练(05)41. 某商品每件成本72元,原来按定价出售,每天可售出100件,每件利润为成本的25%,后来按定价的90%出售,每天销售量提⾼到原来的2.5倍,照这样计算,每天的利润⽐原来增加⼏元?42. 甲、⼄两列⽕车的速度⽐是5:4.⼄车先发,从B站开往A站,当⾛到离B站72千⽶的地⽅时,甲车从A站发车往B站,两列⽕车相遇的地⽅离A,B两站距离的⽐是3:4,那么A,B两站之间的距离为多少千⽶?43. ⼤、⼩猴⼦共35只,它们⼀起去采摘⽔蜜桃.猴王不在的时候,⼀只⼤猴⼦⼀⼩时可采摘15千克,⼀只⼩猴⼦⼀⼩时可采摘11千克.猴王在场监督的时候,每只猴⼦不论⼤⼩每⼩时都可以采摘12千克.⼀天,采摘了8⼩时,其中只有第⼀⼩时和最后⼀⼩时有猴王在场监督,结果共采摘4400千克⽔蜜桃.在这个猴群中,共有⼩猴⼦⼏只?44. 某次数学竞赛设⼀、⼆等奖.已知(1)甲、⼄两校获奖的⼈数⽐为6:5.(2)甲、⼄来年感校获⼆等奖的⼈数总和占两校获奖⼈数总和的60%.(3)甲、⼄两校获⼆等奖的⼈数之⽐为5:6.问甲校获⼆等奖的⼈数占该校获奖总⼈数的百分数是⼏?45. 已知⼩明与⼩强步⾏的速度⽐是2:3,⼩强与⼩刚步⾏的速度⽐是4:5.已知⼩刚10分钟⽐⼩明多⾛420⽶,那么⼩明在20分钟⾥⽐⼩强少⾛⼏⽶?46. 加⼯⼀批零件,原计划每天加⼯15个,若⼲天可以完成.当完成加⼯任务的3/5时,采⽤新技术,效率提⾼20%.结果,完成任务的时间提前10天,这批零件共有⼏个?47. 甲、⼄⼆⼈在400⽶的圆形跑道上进⾏10000⽶⽐赛.两⼈从起点同时同向出发,开始时甲的速度为8⽶/秒,⼄的速度为6⽶/秒,当甲每次追上⼄以后,甲的速度每秒减少2⽶,⼄的速度每秒减少0.5⽶.这样下去,直到甲发现⼄第⼀次从后⾯追上⾃⼰开始,两⼈都把⾃⼰的速度每秒增加0.5⽶,直到终点.那么者到达终点时,另⼀⼈距离终点多少⽶?48. ⼩明从家去学校,如果他每⼩时⽐原来多⾛1.5千⽶,他⾛这段路只需原来时间的4/5;如果他每⼩时⽐原来少⾛1.5千⽶,那么他⾛这段路的时间就⽐原来时间多⼏分⼏之?49. 甲、⼄、丙、丁现在的年龄和是64岁.甲21岁时,⼄17岁;甲18岁时,丙的年龄是丁的3倍.丁现在的年龄是⼏岁?50. 加⼯⼀批零件,原计划每天加⼯30个.当加⼯完1/3时,由于改进了技术,⼯作效率提⾼了10%,结果提前了4天完成任务.问这批零件共有⼏个?⼩学数学应⽤题综合训练(06)51. ⾃动扶梯以均匀的速度向上⾏驶,⼀男孩与⼀⼥孩同时从⾃动扶梯向上⾛,男孩的速度是⼥孩的2倍,已知男孩⾛了27级到达扶梯的顶部,⽽⼥孩⾛了18级到达顶部.问扶梯露在外⾯的部分有多少级?52. 两堆苹果⼀样重,第⼀堆卖出2/3,第⼆堆卖出50千克,如果第⼀堆剩下的苹果⽐第⼆堆剩下的苹果少,那么两堆剩下的苹果⾄少有多少千克?53. 甲、⼄两车同时从A地出发,不停的往返⾏驶于A、B两地之间.已知甲车的速度⽐⼄车快,并且两车出发后第⼀次和第⼆次相遇都杂途中C地,甲车的速度是⼄车的⼏倍?54. ⼀只⼩船从甲地到⼄地往返⼀次共⽤2⼩时,回来时顺⽔,⽐去时的速度每⼩时多⾏8千⽶,因此第⼆⼩时⽐第⼀⼩时多⾏6千⽶.求甲、⼄两地的距离.55. 甲、⼄两车分别从A、B两地出发,并在A,B两地间不断往返⾏驶.已知甲车的速度是15千⽶/⼩时,甲、⼄两车第三次相遇地点与第四次相遇地点相差100千⽶.求A、B两地的距离.56. 某⼈沿着向上移动的⾃动扶梯从顶部朝底下⽤了7分30秒,⽽他沿着⾃动扶梯从底朝上⾛到顶部只⽤了1分30秒.如果此⼈不⾛,那么乘着扶梯从底到顶要多少时间?如果停电,那么此⼈沿扶梯从底⾛到顶要多少时间?57. 甲、⼄两个圆柱体容器,底⾯积⽐为5:3,甲容器⽔深20厘⽶,⼄容器⽔深10厘⽶.再往两个容器中注⼊同样多的⽔,使得两个容器中的⽔深相等.这时⽔深多少厘⽶?58. A、B两地相距207千⽶,甲、⼄两车8:00同时从A地出发到B地,速度分别为60千⽶/⼩时,54千⽶/⼩时,丙车8:30从B 地出发到A地,速度为48千⽶/⼩时.丙车与甲、⼄两车距离相等时是⼏点⼏分?59. ⼀个长⽅形的周长是130厘⽶,如果它的宽增加1/5,长减少1/8,就得到⼀个相同周长的新长⽅形.求原长⽅形的⾯积.60. 有⼀长⽅形,它的长与宽的⽐是5:2,对⾓线长29厘⽶,求这个长⽅形的⾯积.⼩学数学应⽤题综合训练(07)61. 有⼀个果园,去年结果的果树⽐不结果的果树的2倍还多60棵,今年⼜有160棵果树结了果,这时结果的果树正好是不结果的果树的5倍.果园⾥共有多少棵果树?62. ⼩明步⾏从甲地出发到⼄地,李刚骑摩托车同时从⼄地出发到甲地.48分钟后两⼈相遇,李刚到达甲地后马上返回⼄地,在第⼀次相遇后16分钟追上⼩明.如果李刚不停地往返于甲、⼄两地,那么当⼩明到达⼄地时,李刚共追上⼩明⼏次?63. 同样⾛100⽶,⼩明要⾛180步,⽗亲要⾛120步.⽗⼦同时同⽅向从同⼀地点出发,如果每⾛⼀步所⽤的时间相同,那么⽗亲⾛出450⽶后往回⾛,还要⾛多少步才能遇到⼩明?64. ⼀艘轮船在两个港⼝间航⾏,⽔速为6千⽶/⼩时,顺⽔航⾏需要4⼩时,逆⽔航⾏需要7⼩时,求两个港⼝之间的距离.65. 有甲、⼄、丙三辆汽车,各以⼀定的速度从A地开往B地,⼄⽐丙晚出发10分钟,出发后40分钟追上丙;甲⽐⼄⼜晚出发10分钟,出发后60分钟追上丙,问甲出发后⼏分钟追上⼄?66. 甲、⼄合作完成⼀项⼯作,由于配合的好,甲的⼯作效率⽐单独做时提⾼1/10,⼄的⼯作效率⽐单独做时提⾼1/5,甲、⼄合作6⼩时完成了这项⼯作,如果甲单独做需要11⼩时,那么⼄单独做需要⼏⼩时?67. A、B、C、D、E五名学⽣站成⼀横排,他们的⼿中共拿着20⾯⼩旗.现知道,站在C右边的学⽣共拿着11⾯⼩旗,站在B 左边的学⽣共拿着10⾯⼩旗,站在D左边的学⽣共拿着8⾯⼩旗,站在E左边的学⽣共拿着16⾯⼩旗.五名学⽣从左⾄右依次是谁?各拿⼏⾯⼩旗?68. ⼩明在360⽶长的环⾏的跑道上跑了⼀圈,已知他前⼀半时间每秒跑5⽶,后⼀半时间每秒跑4⽶,问他后⼀半路程⽤了多少时间?69. ⼩英和⼩明为了测量飞驶⽽过的⽕车的长度和速度,他们拿了两块秒表,⼩英⽤⼀块表记下⽕车从他⾯前通过所花的时间是15秒,⼩明⽤另⼀块表记下了从车头过第⼀根电线杆到车尾过第⼆根电线杆所花的时间是18秒,已知两根电线杆之间的距离是60⽶,求⽕车的全长和速度.70. ⼩明从家到学校时,前⼀半路程步⾏,后⼀半路程乘车;他从学校到家时,前1/3时间乘车,后2/3时间步⾏.结果去学校的时间⽐回家的时间多20分钟,已知⼩明从家到学校的路程是多少千⽶?⼩学数学应⽤题综合训练(08)71. 数学练习共举⾏了20次,共出试题374道,每次出的题数是16,21,24问出16,21,24题的分别有多少次?72. ⼀个整数除以2余1,⽤所得的商除以5余4,再⽤所得的商除以6余1.⽤这个整数除以60,余数是多少?73. 少先队员在校园⾥栽的苹果树苗是梨树苗的2倍.如果每⼈栽3棵梨树苗,则余2棵;如果每⼈栽7棵苹果树苗,则少6棵.问共有多少名少先队员?苹果和梨树苗共有多少棵?74. 某⼈开汽车从A城到B城要⾏200千⽶,开始时他以56千⽶/⼩时的速度⾏驶,但途中因汽车故障停车修理⽤去半⼩时,为了按时到达,他必须把速度增加14千⽶/⼩时,跑完以后的路程,他修车的地⽅距离A 城多少千⽶?75. 甲、⼄两⼈分别从A、B两地同时出发,相向⽽⾏,⼄的速度是甲的2/3,两⼈相遇后继续前进,甲到达B地,⼄到达A地⽴即返回,已知两⼈第⼆次相遇的地点距离第⼀次相遇的地点是3000⽶,求A、B两地的距离.76. ⼀条船往返于甲、⼄两港之间,已知船在静⽔中的速度为9千⽶/⼩时,平时逆⾏与顺⾏所⽤时间的⽐为2:1.⼀天因下⾬,⽔流速度为原来的2倍,这条船往返共⽤10⼩时,问甲、⼄两港相距多少千⽶?77. 某学校⼊学考试,确定了录取分数线,报考的学⽣中,只有1/3被录取,录取者平均分⽐录取分数线⾼6分,没有被录取的同学其平均分⽐录取分数线低15分,所有考⽣的平均分是80分,问录取分数线是多少分?78. ⼀群学⽣搬砖,如果有12⼈每⼈各搬7块,其余的每⼈搬5块,那么最后余下148块;如果有30⼈每⼈各搬8块,其余的每⼈搬7块,那么最后余下20块.问学⽣共有多少⼈?砖有多少块?79. 甲、⼄两车分别从A、B两地同时相向⽽⾏,已知甲车速度与⼄车速度之⽐为4:3,C地在A、B之间,甲、⼄两车到达C地的时间分别是上午8点和下午3点,问甲、⼄两车相遇是什么时间?80. ⼀次棋赛,记分⽅法是,胜者得2分,负者得0分,和棋两⼈各得1分,每位选⼿都与其他选⼿各对局⼀次,现知道选⼿中男⽣是⼥⽣的10倍,但其总得分只为⼥⽣得分的4.5倍,问共有⼏名⼥⽣参赛?⼥⽣共得⼏分?⼩学数学应⽤题综合训练(09)81. 有若⼲个⾃然数,它们的算术平均数是10,如果从这些数中去掉的⼀个,则余下的算术平均数为9;如果去掉最⼩的⼀个,则余下的算术平均数为11,这些数最多有多少个?这些数中的数值是⼏?82. 某班有少先队员35⼈,这个班有男⽣23⼈,这个班⼥⽣少先队员⽐男⽣⾮少先队员多⼏⼈?83. ⼩东计划到周⼝店参观猿⼈遗址.如果他坐汽车以40千⽶/⼩时的速度⾏驶,那么⽐骑车去早到3⼩时,如果他以8千⽶/⼩时的速度步⾏去,那么⽐骑车晚到5⼩时,⼩东的出发点到周⼝店有多少千⽶?84. 甲、⼄两船在相距90千⽶的河上航⾏,如果相向⽽⾏,3⼩时相遇,如果同向⽽⾏则15⼩时甲船追上⼄船.求在静⽔中甲、⼄两船的速度.85. ⼆年级两个班共有学⽣90⼈,其中少先队员有71⼈,⼀班少先队员占本班⼈数的75%,⼆班少先队员占本班⼈数的5/6.⼀班少先队员⼈数⽐⼆班少先队员⼈数多⼏⼈?86. ⼀个容器中已注满⽔,有⼤、中、⼩三个球.第⼀次把⼩球沉⼊⽔中,第⼆次把⼩球取出,把中球沉⼊⽔中,第三次把中球取出,把⼩球和⼤球⼀起沉⼊⽔中,现知道每次从容器中溢出⽔量的情况是:第⼀次是第⼆次的1/2,第三次是第⼆次的1.5倍.求三个球的体积之⽐.87. 某⼈翻越⼀座⼭⽤了2⼩时,返回⽤了2.5⼩时,他上⼭的速度是3000⽶/⼩时,下⼭的速度是4500⽶/⼩时.问翻越这座⼭要⾛多少⽶?88. 钢筋原材料每根长7.3⽶,每套钢筋架⼦⽤长2.4⽶、2.1⽶和1.5⽶的钢筋各⼀段.现需要绑好钢筋架⼦100套,⾄少要⽤去原材料多少根?89. 有⼀块铜锌合⾦,其中铜和锌的⽐2:3.现知道再加⼊6克锌,熔化后共得新合⾦36克,新合⾦中铜和锌的⽐是多少?90. ⼩明通常总是步⾏上学,有⼀天他想锻炼⾝体,前1/3路程快跑,速度是步⾏速度的4倍,后⼀段的路程慢跑,速度是步⾏速度的2倍.这样⼩明⽐平时早35分到校,⼩明步⾏上学需要多少分钟?⼩学数学应⽤题综合训练(10)91. 甲、⼄、丙三⼈,甲的年龄⽐⼄的年龄的2倍还⼤3岁,⼄的年龄⽐丙的年龄的2倍⼩2岁,三个⼈的年龄之和是109岁,分别求出甲、⼄、丙的年龄.92. 快车以60千⽶/⼩时的速度从甲站向⼄站开出,1.5⼩时后,慢车以40千⽶/⼩时的速度从⼄站⾏甲站开出,.两车相遇时,相遇点离两站的中点70千⽶.甲、⼄两站相距多少千⽶?93. 甲、⼄两车先后离开学校以相同的速度开往博物馆,已知8:32分甲车与学校的距离是⼄车与学校距离的3倍,8:39分甲车与学校的距离是⼄车与学校距离的2倍,求甲车离开学校的时间.94. 有⼀个⼯作⼩组,当每个⼯⼈在各⾃的⼯作岗位上⼯作时,7⼩时可⽣产⼀批零件,如果交换⼯⼈甲、⼄的岗位,其他⼈不变,那么可提前1⼩时,完成这批零件,如果交换⼯⼈丙、丁的岗位,其他⼈不变,也可提前1⼩时,问如果同时交换甲与⼄、丙与丁的岗位,其他⼈不变,那么完成这批零件需多长的时间.95. ⽤10块长7厘⽶、宽5厘⽶、⾼3厘⽶的长⽅体积⽊,拼成⼀个长⽅体,这个长⽅体的表⾯积最⼩是多少?96. 公圆只售两种门票:个⼈票每张5元,10⼈⼀张的团体票每张30元,购买10张以上的团体票的可优惠10%.(1)甲单位45⼈逛公园,按以上规定买票,最少应付多少钱?(2)⼄单位208⼈逛公园,按以上的规定买票,最少应付多少钱?97. 甲、⼄、丙三⼈,参加⼀次考试,共得260分,已知甲得分的1/3,⼄得分的1/4与丙得分的⼀半减去22分都相等,那么丙得分多少?98. ⼀项⼯程,甲、、⼄两⼈合作4天后,再由⼄单独做5天完成,已知甲⽐⼄每天多完成这项⼯程的1/30.甲、⼄单独做这项⼯程各需要⼏天?99. 有长短两⽀蜡烛,(相同时间中燃烧长度相同),它们的长度之和为56厘⽶,将它们同时点燃⼀段时间后,长蜡烛同短蜡烛点燃前⼀样长,这时短蜡烛的长度⼜恰好是长蜡烛的2/3.点燃前长蜡烛有多长?100. ⼀批苹果平均分装在20个筐中,如果每筐多装1/9,可省下⼏只筐?。
七年级数学计算竞赛试题

七年级数学计算竞赛试题一、选择题(每题3分,共15分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 22. 已知一个数的平方根是4,这个数是多少?A. 16B. 8C. 4D. 23. 如果一个角的补角是120°,那么这个角是多少度?A. 60°B. 120°C. 180°D. 30°4. 一个数的绝对值是5,这个数可能是:A. -5B. 5C. -5或5D. 05. 下列哪个分数是最简分数?A. 4/8B. 5/10C. 3/4D. 6/9二、填空题(每题2分,共10分)6. 计算:\( 3x + 2y = 7 \) 和 \( 2x - 3y = 8 \),求 \( x \) 和 \( y \) 的值。
7. 一个数的立方根是2,那么这个数是________。
8. 如果一个三角形的内角和为180°,那么一个直角三角形的两个锐角的和是________。
9. 一个数的倒数是1/4,这个数是________。
10. 计算:\( \frac{3}{4} + \frac{2}{5} = \)________。
三、计算题(每题5分,共20分)11. 计算下列表达式的值:\( (3x - 2)^2 + 5x - 3 \)假设 \( x = 1 \)。
12. 解下列方程:\( 4x + 3 = 11 \)。
13. 计算下列多项式的乘积:\( (2x + 3)(3x - 2) \)。
14. 计算下列分数的和:\( \frac{1}{2} + \frac{3}{4} + \frac{5}{6} \)。
四、解答题(每题10分,共30分)15. 一个长方形的长是15厘米,宽是10厘米,求这个长方形的周长和面积。
16. 一个圆的半径是7厘米,求这个圆的周长和面积。
17. 一个班级有45名学生,其中男生占总人数的55%,求这个班级的男生和女生各有多少人。
初一数奥数题

初一数奥数题题目一:某网吧有8台电脑,每台电脑的工作时间分别为1小时30分钟、2小时、2小时15分钟、1小时45分钟、1小时、1小时30分钟、2小时30分钟、1小时45分钟。
请问这8台电脑累计工作了多少时间?解析与计算:- 将每台电脑的工作时间转换为分钟数:1小时30分钟 = 90分钟,2小时 = 120分钟,2小时15分钟 = 135分钟,1小时45分钟 = 105分钟,1小时 = 60分钟,1小时30分钟 = 90分钟,2小时30分钟 = 150分钟,1小时45分钟 = 105分钟。
- 累计工作时间 = 90 + 120 + 135 + 105 + 60 + 90 + 150 + 105 = 855分钟。
答案:这8台电脑累计工作了855分钟。
题目二:某班级有50名学生,其中男生占总人数的40%。
请问班级中男生和女生的人数分别是多少?解析与计算:- 班级中男生的人数 = 总人数 ×男生占比 = 50 × 0.4 = 20人。
- 班级中女生的人数 = 总人数 - 男生人数 = 50 - 20 = 30人。
答案:班级中男生的人数为20人,女生的人数为30人。
题目三:某超市举办了一次促销活动,原价10元的商品打7折出售。
小明买了3个,小红买了5个。
他们一共支付了多少钱?解析与计算:- 单个商品的折后价格 = 原价 ×折扣 = 10 × 0.7 = 7元。
- 小明购买3个商品的总价格 = 单个商品折后价格 ×数量 = 7 × 3 = 21元。
- 小红购买5个商品的总价格 = 单个商品折后价格 ×数量 = 7 × 5 = 35元。
- 他们一共支付的金额 = 小明购买总价 + 小红购买总价 = 21 + 35 = 56元。
答案:他们一共支付了56元。
题目四:在一个三位数中,百位数是个位数和十位数之和,百位数比个位数大3。
请问这个三位数是多少?解析与计算:- 设个位数为x,则十位数为x+3,百位数为2x+3。
七年级数学经典奥数题

七年级数学经典奥数题
1.某人沿着向上移动的自动扶梯从顶部朝底下用了7分30秒,而他沿着自动扶梯从底朝上走到顶部只用了1分30秒如果此人不走,那么乘着扶梯从底到顶要多少时间?如果停电,那么此人沿扶梯从底走到顶要多少时间?
2.甲、乙两个圆柱体容器,底面积比为5: 3,甲容器水深20厘米,乙容器水深10厘米.再往两个容器中注,入同样多的水,使得两个容器中的水深相等这时水深多少厘米?
3.A、B两地相距207千米,甲、乙两车8: 00同时从A地出发到B 地,速度分别为60千米/小时,54千米/小时,两车8: 30从B地出发到A地,速度为48千米/小时.车与甲、乙两车距离相等时是几点几分?
4.一个长方形的周长是130厘米,如果它的宽增加1/5,长减少1/8,就得到一个相同周长的新长方形.求原长方形的面积.
5.有一长形,它的长与宽的比是5: 2,对角线长29厘米,求这个长方形的面积.。
初一数学奥赛题

初一数学奥赛题初一数学奥赛题是一个富有挑战性的测试,旨在考察学生在数学领域的知识和解题能力。
以下是一个关于数学奥赛题的文章,希望对你有所帮助。
参加初一数学奥赛是每位初中生都向往的挑战,虽然我只是个初一的新生,但我也有机会参加这个令人兴奋的比赛。
数学是我最喜欢的学科之一,我真心希望在这次奥赛中能有好的表现。
让我们来看一道典型的初一数学奥赛题吧:题目:一根长梯梁高度为240cm,底部离墙底20cm,若踢球员从墙角射门,角度为30度,求射门时的水平距离。
解析:这道题涉及到了三角函数的知识。
首先,我们需要明确射门时的角度和所求的水平距离。
角度为30度,水平距离即为斜边的长度。
根据题目给出的条件,我们可以得出以下等式:tan(30°) = (240 - 20)/x 。
这是因为tan函数的定义是对边/邻边。
通过进一步计算,我们可以得到 x = (240 - 20)/ tan(30°) = (220)/(√3 / 3)= 220 * 3 / √3 = 220√3。
所以答案为220√3,即射门时的水平距离为220√3 cm。
这是一道典型的初一数学奥赛题,通过灵活运用三角函数的知识,解决了问题。
数学奥赛不仅考察了我们的计算能力,更重要的是考察我们的逻辑思维和解决问题的能力。
参加初一数学奥赛对我们来说是一个很好的机会。
它可以激发我们对数学的兴趣,锻炼我们的思维能力。
在参加数学奥赛的过程中,我们不仅仅是为了争夺名次和荣誉,更应该注重对数学知识的理解和应用。
数学在生活中无处不在,一个人对数学的掌握程度也很大程度上决定了他的学业发展。
通过参加数学奥赛,我们可以更好地理解和掌握数学知识,提高我们的数学水平。
当然,参加数学奥赛也有一定的困难和挑战,我们可能会遇到一些晦涩难懂的题目,但是这正是数学的魅力所在。
在解决难题的过程中,我们可以学到更多的知识,培养我们的耐心和毅力。
总的来说,初一数学奥赛是一个很好的机会,它可以帮助我们提高数学水平,培养我们的创造力和解决问题的能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用题(一)
1.(06,希望杯)已知A 港在B 港的上游,小船于凌晨3:00从A 港出发开往B 港,到达后立即返回,来回穿梭于A 、B 港之间,若小船在静水中的速度为16千米/小时,水流速度是4千米/小时,在当晚23:00时,有人看见小船在距离
A 港80千米处行驶,求
A 、
B 两个港
口之间的距离.
2.(07,希望杯)男女运动员各一名,在环形跑道上练习长跑,男运动员比女运动员速度快,
如果他们从同一起跑点沿相反方向同时出发,那么每隔25秒钟相遇一次;现在他们从同一
起跑点沿相同方向同时出发,男运动员经过15分钟追上女与动员,并且比女运动员多跑了
16圈,此时,女运动员跑了多少圈?
3.(07,希望杯)小明和哥哥在环形跑道上练习长跑,他们从同一起跑点沿相反方向同时出发,每隔25秒相遇一次;现在,他们从同一起跑点沿相同方向同时出发,经过25分钟哥哥
又追上小明,并且比小明多跑了
20圈。
求:(1)哥哥速度是小明速度的多少倍?(
2)哥哥
在第25分钟追上小明时,小明跑了多少圈?
4.(07,希望杯)甲、乙两车分别从A 地将一批物品运往B 地,再返回A 地,如图表示两车离
A 地的距离s (千米)
随时间t (小时)变化的图像,已知乙车到达B 地后以30
千米/小时的速度返回,请根据图像中的数据回答:
(1)
甲车出发多长时间后被乙车追上?(2)甲车与乙车在距
离A 地多远处迎面相遇?(3)甲车从B 地返回的速度多
大时,才能比乙车先回到
A 地?
5.(06,城市邀请赛)一辆汽车下坡速度为72km/h ,在平地上的速度为63km/h ,上坡速度
为56km/h ,汽车从A 地到B 地用了4h ,而返程用了4h40min ,则AB 两地相距_______km.
6.(10,华罗庚)汽车A 从甲站出发开往乙站,同时汽车B 、C 从乙站出发开往甲站,途中
A 与
B 相遇后15分钟再与
C 相遇,已知A 、B 、C 的速度分别是每小时
90km 、80km 、70km ,
那么甲乙两站的路程是__________km.
s/千米
t/小时
O
3048 2.4
1.0
7.甲、乙两车同时由A地出发,当甲车到达C地时,乙车到达B地;当乙车到达C地时,甲车到达D地,已知甲、乙两车的速度之和是每小时220千米,AB:AD=25:36,求甲车的速度。
8.如图,正方形跑道ABCD,甲、乙、丙三个人同时从A点出发通向跑步,他们的速度分别
为每秒5米、4米、3米,若干时间后,甲看到乙和丙都与自己在正方形的同一条边上,且
他们在自己的前方,从甲这一次看到乙和丙都与自己在正方形的同一条边上,且他们在自己的前方的时刻起,又经过21秒,甲、乙、丙三人处在跑道的同一位置,这是出发后三人第
一次处在同一位置,问:正方形的周长的可能值是多少米?
9.小明去参加会议,11点45分从家里出发,预计一路步行,可在开会前5分钟到达,不料
走到从家到会场的1
4
处,忽然想起有一文件忘记带上,连忙跑步回家,拿了文件又立即奔
向会场,一路连走带跑,结果还是迟到5分钟,回想起来,这次出来开会走与跑的时间比是
4:1,如果从家里出来就开始跑步,一直跑到发现忘记带文件夹的地方往回走,回家后立即
回头,走到从家至会场一半的地方再跑步,并且坚持到底,那么就能按原定的时间到达会场了. 如果走的速度和跑的速度都是一定的,问:会议是什么时候开始的?
10.(09,全国)小王沿街匀速行走,发现每隔6分钟从背后驶过一辆18路公交车,每隔3分钟从迎面驶来一辆18路公交车,假设每辆18路公交车行驶速度相同,而且18路公交车总站每隔固定时间发一辆车,那么发车间隔的时间是几分钟?
11.(10,全国)一辆客车、一辆货车和一辆小轿车在一条笔直的公路上朝同一方向匀速行
驶,在某一时刻,客车在前,小轿车在后,货车在客车与小轿车的正中间,过了10分钟小轿车追上了货车;又过了5分钟,小轿车追上了客车,再过几分钟,货车追上客车?
12.(06,五羊杯)甲、乙两车在A、B两城不断来回开行,速度不变(忽略掉头等时间),其中甲车从A城开出,乙车从B城开出,两车在距离A城36千米处第一次相遇。
当甲车还
没有到达B城时,两车又在距离B城若干千米的某处第二次相遇,并且后来再在距离B城36千米处第三次相遇,那么第二次相遇时,两车距离B城多少千米?
13.(07,五羊杯)工人在隧道里检修,所在位置与入口的距离为隧道全长的五分之二,他
听到一列火车向隧道口驶来,如果他尽力奔跑,不论向哪一头跑,火车到达他跟前时,他都
刚好离开隧道,设火车的速度是每小时60千米,工人奔跑的速度是多少?
14.(06,希望杯)某工程的施工费用不得超过190万元,该工程若由甲公司承担需用20天,每天付费10万元;若由乙公司承担,需用30天,每天付费6万元,为缩短工期,决定由甲
公司先工作m天,余下的工作由乙公司完成,那么m=________,完工共需要_______天.
15.(07,希望杯)一项机械加工作业,用4台A型车床,5天可以完成;用4台A型车床和2台B型,三天可以完成;用3台B型车床和9台C型车床,2天可以完成。
若A型、B 型、C型车床各用一台一起工作6天后,只余下一台A型车床继续工作,则再用几天就可以
完成这项作业?
16.(08,希望杯)某林场安排了7天植树工作。
从第二天起每天都比前一天增加5个植树的人,但从第二天起每人每天都比前一天少植5棵树,且同一天植树的人,植相同数量的树。
若这7天共植树9947棵,则植树最多的那天共植了多少棵?植树最少的那天,有多少人在
植树?
17.一个存有一些水的水池,有一个进水口和若干个口径相同的出水口,进水口每分钟进水3立方米,若同时打开进水口和三个出水口,池中水16分钟放完;若同时打开进水口与五个
出水口,池中水9分钟放完,池中原有多少水?
18.(06,希望杯)某校初一、初二年级的学生人数相同,初三年级的学生人数是初二年级
学生人数的五分之四,已知初一年级的男生人数与初二年级的女生人数相同,初三年级男生人数占三个年级男生人数的四分之一,那么三个年级女生人数占三个年级学生人数的几分之
几?
19.(08,华罗庚)小明将164个桃子分给猴子,余下的几个留给了自己,每只猴子得到相
同数目的桃子,小明留给自己的桃子数是一只猴子的四分之一,问共有多少只猴子?
20.(07,华罗庚)生物小组将300粒种子分成三组做对比实验,规定第一组的七分之一、
第二组的五分之一与第三组的三分之一的总和共50粒种子,问有多少种分组的方法?
21.(07,华罗庚)壮壮、菲菲、璐璐出生时,他们的妈妈都是27岁,某天三位妈妈王雪、
刘芳和李薇闲谈时,王雪说:“菲菲比刘芳小
29岁。
”李薇说:“璐璐和刘芳的年龄的和是
36。
”刘芳说:“璐璐和王雪的年龄的和是
35。
”已知壮壮、菲菲、璐璐和他们的妈妈
6个人
年龄的总和是
105岁。
请问:谁是璐璐的妈妈?壮壮、菲菲、璐璐的年龄各是多少岁?
22.(05,初中生夏令营)某计算机用户计划用不超过500元的资金购买单价分别为60元、
70元的单片软件和盒装磁盘,根据需要软件至少买3片,磁盘至少买
2盒,则不同的选购
方式共有______种.
23.(09,城市邀请赛)小马在体育场卖饮料,雪碧每瓶4元,汽水每瓶7元,开始时,他有350瓶饮料,虽然没有全部卖完,但是他的销售收入恰好是2009元,则他至少卖出了多少瓶汽水?
24.某校初二有甲、乙、丙三个半,甲班比乙班多4个女生,乙班比丙班多一个女生,如果把甲班的第一组调到乙班,
乙班的第一组调到丙班,
丙班的第一组调到甲班,
则三个半女生
人数恰好相等,已知丙班第一组中共有两个女生,问:甲、乙两班第一组各有几个女生?
25.A 、B 、C 三所学校各买甲、乙两种商品. A 校计划用1051元,购买甲种商品
x 个,乙种商品y 个;B 校购买时,与A 校相比,甲种商品每个贵6元,乙种商品每个便宜
1元,结果购
买的甲种商品的个数比
A 校少5个,乙种商品的个数相同,总金额比A 校多用71元;C 校
购买时,与A 校相比,甲、乙两种商品每个各贵1元,结果购买甲种商品的个数比
A 校少
10个,乙种商品的个数相同,共用金额930元. 如果A 校准备购买家中商品的个数是原来
的2倍,购买乙种商品的个数是原来的一般,那么两种商品共买
82个. 问:A 校原来准备
购买甲、乙两种商品各多少个?
26.如图所示,在3×3的方格内已经填好两个数19和96,可以再其余的
空格中填上适当的数,使得每一行、每一列以及两条对角线上的三个数
之和都相等,求
x.
27.(06,全国)小明家电话号码原为六位数,第一次升位是在首位号码和第二位号码之间加上数字8,成为一个七位数的电话号码;第二次升位是在首位号码前加上数字2,成为一个八位数的电话号码。
小明发现,他家两次升位后的电话号码的八位数,
恰是原来电话号码
的六位数的81倍,则小明家原来的电话号码是多少?
19
96
x。