最新华东师大版九年级数学上册《频率与概率》教学设计-评奖教案

合集下载

2024-2025学年华师版初中数学九年级(上)教案第25章随机事件的概率25.2.2频率与概率

2024-2025学年华师版初中数学九年级(上)教案第25章随机事件的概率25.2.2频率与概率

第25章 随机事件的概率25.2 随机事件的概率2 频率与概率教学目标1.知道通过大量重复试验,可以用频率估计概率.2.掌握用列表法、画树状图法求简单事件概率的方法.3.运用频率估计概率解决实际问题.教学重难点重点:掌握用列表法、画树状图法求简单事件概率的方法. 难点:由试验得出的频率与理论分析得出的概率之间的关系.教学过程复习巩固概率:一个事件发生的可能性叫做该事件的概率. ()所有机会均等的结果关注结果发生数事件发生=P .导入新课【问题1】抛掷一枚均匀的硬币,硬币落下后,会出现两种情况:一种是正面朝上,另一种是正面朝下.你认为正面朝上和正面朝下的可能性相同吗? 学生讨论,师归纳总结引出课题:25.2 随机事件的概率2 频率与概率探究新知探究点一 频率与概率的关系 活动1(学生互动,教师点评) 请同学们拿出准备好的硬币:(1)同桌两人做20次掷硬币的游戏,并将数据填在下表中:(2)各组分工合作,分别累计正面朝上的次数到20、40、60、80、100、120、140、160、180、200次,并完成下表:教学反思(3)请同学们根据已填的表格,完成下面的折线统计图(4)观察上面的折线统计图,你发现了什么规律? 结论:(学生回答,老师点评)当抛掷硬币的次数很多时,出现正面的频率值是稳定的,接近于常数0.5,在它左右摆动.无论是掷质地均匀的硬币还是掷图钉,在试验次数很大时正面朝上(钉尖朝上)的频率都会在一个常数附近摆动,这就是频率的稳定性.【总结】(老师点评总结)1. 对一般的随机事件,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总是在一个固定数的附近摆动,显示出一定的稳定性.在大量重复进行同一试验时,事件A 发生的频率mn 总是接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记做P (A )=mn.一般地,我们可以通过大量的重复试验,用一个随机事件发生的频率去估计它的概率.2. 频率与概率的关系概率是频率的稳定值,而频率是概率的近似值. 【即学即练】(小组讨论,老师点评)某篮球队教练记录该队一名主力前锋练习罚篮的结果如下: (2)比赛中该前锋队员上篮得分并造成对手犯规,罚篮一次,估计这次他能罚中的概率.【解】(1)表格中从左往右依次为0.900,0.750,0.867,0.787,0.805,0.797,0.805,0.802教学反思(2)从表中的数据可以发现,随着练习次数的增加,该前锋罚篮命中的频率稳定在0.8左右,所以估计他这次能罚中的概率为0.8.探究点二 列表法或树状图法求概率【问题2】小明、小凡和小颖周末都想去看电影,但只有一张电影票.三人决定一起做游戏,谁获胜谁就去看电影.游戏规则如下:连续抛掷两枚均匀的硬币,若两枚硬币都正面朝上,则小明获胜;若都反面朝上,则小颖获胜;若一枚正面朝上、一枚反面朝上,则小凡获胜.你认为这个游戏公平吗?活动2(学生互动,教师点评)让学生每人抛掷硬币(课前准备好)20次,并记录每次的试验结果,通过观察自己的结果说明游戏是否公平.5个学生为一个小组,把5个人的试验结果数据汇总,得到小组试验数据100次,依次累计各组的试验数据,得到试验200次、300次、400次、500次…时的试验结果,全班一起填写上表.通过做试验让学生思考从试验中有哪些发现. (学生总结,教师点评) 从试验中我们发现,试验次数较大时,试验频率基本稳定,而且在一般情况下,“一枚正面朝上,一枚反面朝上”发生的概率大于其他两个事件发生的概率.所以,这个游戏不公平,它对小凡比较有利.【合作探究】议一议:在上面抛掷硬币的试验中,(1)抛掷第一枚硬币可能出现哪些结果?它们发生的可能性是否一样? (2)抛掷第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?(3)在第一枚硬币正面朝上的情况下,抛掷第二枚硬币可能出现哪些结果?它们发生的可能性是否一样?如果第一枚硬币反面朝上呢?问题1:上述问题中一次试验涉及几个因素?你是用什么方法不重复、不遗漏地列出所有可能结果的?先让学生讨论,然后找学生代表叙述自己的解答过程,最后教师给出标准答案.总共有 4 种结果,每种结果出现的可能性相同.其中, 小明获胜的结果有 1 种:(正,正).所以小明获胜的概率是14.教学反思小颖获胜的结果有 1 种:(反,反).所以小颖获胜的概率是14.小凡获胜的结果有 2 种:(正,反),(反,正).所以小凡获胜的概率是24=12. 因此,这个游戏对三人是不公平的. 问题2:利用树状图或表格的优点是什么?什么时候用树状图比较方便?什么时候用表格比较方便?(学生总结,教师点评)当试验包含两步时,列表和画树状图都可以,当试验包含三步或三步以上时,画树状图比较方便.典例讲解(学生交流,老师点评)例1 如图,甲为三等分数字转盘,乙为四等分数字转盘.同时自由转动两个转盘,用列举的方法求两个转盘指针指向的数字均为奇数的概率.【解】列表如下:乙甲 1 2 3 41 (1,1) (1,2) (1,3) (1,4)2 (2,1) (2,2) (2,3) (2,4) 3(3,1) (3,2) (3,3) (3,4)由表格可知,一共有12种等可能的结果.其中两个转盘指针指向的数字均为奇数的有4种,故P (均为奇数)=412=13. 【总结】1.列表法就是把要求的对象用表格一一表示出来分析求解的方法.当一次试验要涉及两个元素,并且可能出现的结果数目较多时,为了不重不漏地列出所有可能的结果,通常采用列表的方法.2.当一次试验要涉及两个以上的元素,并且可能出现的结果数目较多时,为了不重不漏地列出所有可能的结果,通常采用画树状图的方法.例2 准备两组相同的牌,每组两张,两张牌的牌面数字分别是1和2.从每组牌中各摸出一张,称为一次试验.(1)一次试验中两张牌的牌面数字之和可能有哪些值? (2)两张牌的牌面数字之和等于3的概率是多少?【探索思路】 (引发学生思考)一张牌有几种结果?一次试验涉及几个元素? 【解】通过画树状图的方法表示出所有可能的结果:教学反思(1)由树状图可知,两张牌的牌面数字之和可能是2,3,4. (2)总共有4种等可能的结果,两张牌的牌面数字之和为3的结果有2种,因此P (两张牌的牌面数字之和等于3)=24=12.【题后总结】在一次试验中,如果可能出现的结果比较多,且各种结果出现的可能性相等,那么我们可以利用树状图或表格不重复、不遗漏地列出所有可能的结果,从而求出某些事件发生的概率.【即学即练】 【互动】(小组讨论)经过某十字路口的汽车,它可以继续直行,也可以向左转或向右转.如果这三种可能性大小相同,则两辆汽车经过这个十字路口全部继续直行的概率是( )A.19B.16C.13D.12由表格知,一共有9种等可能的情况,其中两辆汽车经过这个十字路口全部继续直行的有一种,所以两辆汽车经过这个十字路口全部继续直行的概率是19.【答案】A课堂练习1.“六一”儿童节,某玩具超市设立了一个如图所示的可以自由转动的转盘,开展抽奖活动.顾客购买玩具就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应奖品.下表是该活动的一组统计数据:教学反思A.当n很大时,指针落在“铅笔”区域的频率大约是0.70B.假如你去转动转盘一次,获得铅笔的概率大约是0.70C.如果转动转盘2 000次,指针落在“文具盒”区域的次数大约有600次D.如果转动转盘10次,一定有3次获得文具盒2.两个正四面体骰子的各面上分别标有数字1,2,3,4,若同时投掷这两个正四面体骰子,则着地的面所得的点数之和等于5的概率为( )A.14B.316C.34D.383.把1枚质地均匀的普通硬币重复掷两次,落地后两次都是正面朝上的概率是( )A.1B.12C.13D.144.从1,2,-3三个数中,随机抽取两个数相乘,积是正数的概率是( )A.0B.13C.23D.15.现有两个不透明的袋子,其中一个装有标号分别为1、2的两个小球,另一个装有标号分别为2、3、4的三个小球,小球除标号外其他均相同.从两个袋子中各随机摸出1个小球,两球标号恰好相同的概率是( )A.12B.13C.14D.16参考答案1.D【解析】A.由题意知A选项不符合题意;由A可知,转动转盘一次,获得铅笔的概率大约是0.70,故B选项不符合题意;C.指针落在“文具盒”区域的概率大约为0.30,转动转盘2 000次,指针落在“文具盒”区域的次数大约有2 000×0.3=600(次),故C选项不符合题意;D.随机事件,结果不确定,故D选项符合题意.2.A【解析】同时投掷两个正四面体骰子,有(1,1) , (1,2) , (1,3) , (1,4) , (2,1) , (2,2) , (2,3) , (2,4) , (3,1) , (3,2) ,(3,3) , (3,4) , (4,1) , (4,2) , (4,3),(4,4)共16种结果,点数之和等于5的有(1,4) , (2,3) , (3,2) , (4,1)共4种情况,所以P(点数之和等于5)=416=14.3.D【解析】画树状图如图所示.∴P(两次都是正面朝上)=1 4 .4.B【解析】随机从1,2,-3中抽取两个数相乘,积的结果共有1×2=2,1×(-3)= -3,2×(-3)=-6三种,所以积为正数的概率是1 3 .5.D【解析】画树状图,如图所示.教学反思由图可知共有6种等可能结果,其中标号相同的只有1种,所以两球标号恰好相同的概率是1 6 .课堂小结(学生总结,老师点评)一、频率与概率的关系概率是频率的稳定值,而频率是概率的近似值.二、用列表法或树状图法求概率(1)列表法就是把要求的对象用表格一一表示出来分析求解的方法.当一次试验要涉及两个元素,并且可能出现的结果数目较多时,为了不重不漏地列出所有可能的结果,通常采用列表的方法.(3)当一次试验要涉及两个以上元素,并且可能出现的结果数目较多时,为了不重不漏地列出所有可能的结果,通常采用画树状图的方法.布置作业教材第147页练习题,第153页习题25.2第3,4题.板书设计课题25.2 随机事件的概率2 频率与概率【问题1】一、频率与概率的关系例1【问题2】二、用列表法或树状图法求概率例2教学反思。

华师版数学九年级上册教案 概率与频率

华师版数学九年级上册教案  概率与频率

课题 概率与频率【学习目标】1.会用频率估计概率; 2.会用画树状图的方法求概率; 3.知道用理论分析求概率的条件限制. 【学习重点】用理论分析的方法求概率. 【学习难点】频率与概率的关系.情景导入 生成问题问题:1.什么是概率? 2.概率的意义是什么?自学互研 生成能力知识模块 用频率估计概率 阅读教材P 141~146的内容.在第129页的重复试验中,我们发现:抛掷两枚硬币,“出现两个正面”的频率稳定在25%附近,怎样运用理论分析的方法求抛掷两枚硬币时出现两个正面的概率呢?分析:从下表和图中可以看出,抛掷两枚硬币共有4个机会均等的结果:“出现两正”、“出现两反”、“出现一正一反”、“出现一反一正”,因此P(出现两个正面)=14.硬币1 硬币2 正 反 正 正正 反正 反正反反反由此,我们可以看到:理论分析与重复试验得到的结论是一致的.在图中从上至下每条路径就是一个可能的结果.我们把它称为树状图(tree diagram ).用力旋转如图所示的转盘甲和转盘乙的指针,如果想让指针停在蓝色区域,那么选哪个转盘成功的概率比较大?请你和同学一起做重复试验,并将结果填入下表,在图中用不同颜色的笔分别画出相应的两条折线.两个转盘指针停在蓝色区域的频数、频率统计表旋转次数50 100 150 200 250 300 350 400 450 小转盘指针停在蓝色区域的频数大转盘指针停在蓝色区域的频数小转盘指针停在蓝色区域的频率大转盘指针停在蓝色区域的频率两个转盘指针停在蓝色区域的频率随试验次数变化趋势图分析:观察两个转盘,我们可以发现:转盘甲中的蓝色区域所对的圆心角为90°,说明它占整个转盘的四分之一;转盘乙尽管大一些,但蓝色区域所对的圆心角仍为90°,说明它还是占整个转盘的四分之一,你能预测指针指在蓝色区域的概率吗?结合重复试验与理论分析的结果,我们发现P(小转盘指针停在蓝色区域)=________,P(大转盘指针停在蓝色区域)=________.问题:将一枚图钉随意向上抛起,求图钉落定后钉尖触地的概率.分析:虽然一枚图钉被抛后落定的结果只有两种:“钉尖朝上”或“钉尖触地”,但由于图钉的形状比较特殊,我们无法用分析的方法预测P(钉尖朝上)与P(钉尖触地)的值.因此,只能让重复试验来帮忙.通过小组合作,分别记录抛掷40次、80次、120次、160次、200次、240次、280次、320次、400次、440次、480次后出现钉尖触地的频数和频率,列出统计表,绘制折线图.请根据我们小组的试验结果估计一下钉尖触地的概率是多少?和同学进行交流,看看不同小组得出的结果是否很接近?为什么?归纳:1.使用重复试验用频率估计概率,要求试验在相同条件下进行.2.试验的次数要足够多时,求得的频率会接近概率.交流展示生成新知1.将阅读教材时“生成的问题”和通过“自主探究、合作探究”得出的“结论”展示在各小组的小黑板上.并将疑难问题也板演到黑板上,再一次通过小组间就上述疑难问题相互释疑.2.各小组由组长统一分配展示任务,由代表将“问题和结论”展示在黑板上,通过交流“生成新知”.知识模块用频率估计概率检测反馈达成目标1.在大量重复试验中,关于随机事件发生的频率与概率,下列说法正确的是(D)A.频率就是概率B.频率与试验次数无关C.概率是随机的与频率无关D.随着试验次数的增加,频率一般会越来越接近概率2.袋子里有10个红球和若干个蓝球,小明从袋子里有放回地任意摸球,共摸100次,其中摸到红球的次数是25次,则袋子里蓝球大约有__30__个.3.在做种子发芽试验中,10000颗种子有9801颗发芽,据此估计该种子的发芽率是__98%__.(精确到1%)课后反思查漏补缺1.收获:________________________________________________________________________2.存在困惑:________________________________________________________________________。

华师版九年级数学上册(HS)教案 频率与概率

华师版九年级数学上册(HS)教案 频率与概率

2.频率与概率1.进一步理解有限等可能事件概率的意义.2.会用树状图或列表法求出一次试验中涉及多个因素时,不重复不遗漏地求出所有可能的结果,从而正确地计算问题的概率.3.理解试验次数较大时试验频率趋于稳定这一规律,能结合具体情境掌握如何用频率估计概率.一、情境导入养鱼专业户为了估计他承包的鱼塘里有多少条鱼(假设这个鱼塘里养的是同一种鱼),先捕上100条做上标记,然后放回塘里,过了一段时间,待带标记的鱼完全和塘里的鱼混合后,再捕上100条,发现其中带标记的鱼有10条,塘里大约有鱼多少条?二、合作探究探究点一:用树状图或列表法分析随机事件的所有等可能结果【类型一】用树状图求概率一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( )A.12B. 14C.16D.112解析:用树状图或列表法列举出所有可能情况,然后由概率公式计算求得.画树状图(如图所示):∴两次都摸到白球的概率是212=16,故选C. 【类型二】用列表法求概率从0,1,2这三个数中任取一个数作为点P 的横坐标,再从剩下的两个数中任取一个数作为点P 的纵坐标,则点P 落在抛物线y =-x 2+x +2上的概率为________.解析:用列表法列举点P 坐标可能出现的所有结果数和点P 落在抛物线上的结果数,然后代入概率计算公式计算.用列表法表示如下:共有6种等可能结果,其中点P 落在抛物线上的有(2,0),(0,2),(1,2)三种,故点P 落在抛物线上的概率是36=12,故答案为12. 方法总结:用列表法求概率时,应注意利用列表法不重不漏地表示出所有等可能的结果.探究点二:用频率估计概率【类型一】用频率估计概率掷一枚质地均匀的硬币10次,下列说法正确的是( )A .可能有5次正面朝上B .必有5次正面朝上C .掷2次必有1次正面朝上D .不可能10次正面朝上解析:掷一枚质地均匀的硬币1次,出现正面或反面朝上的概率都是错误!,因此,平均每两次中可能有1次正面向上或有1次反面向上.选项B 、C 、D 不一定正确,选项A 正确,故选A .方法总结:随机事件的频率,指此事件发生的次数与试验总次数的比值,当试验次数很多时,它具有一定的稳定性,即稳定在某一常数附近,而偏离的它可能性很小.【类型二】推算影响频率变化的因素“六·一”期间,小洁的妈妈经营的玩具店进了一纸箱除颜色外都相同的散装塑料球共1000个,小洁将纸箱里面的球搅匀后,从中随机摸出一个球记下其颜色,把它放回纸箱中;搅匀后再随机摸出一个球记下其颜色,把它放回纸箱中;……多次重复上述过程后,发现摸到红球的频率逐渐稳定在0.2,由此可以估计纸箱内红球的个数约是________个.解析:因为大量重复摸球实验后,摸到红球的频率逐渐稳定在0.2,说明红球大约占总数的0.2,所以球的总数为1000×0.2=200,故答案为:200.方法总结:解题的关键是知道在大量重复摸球实验后,某个事件发生的频率就接近于该事件发生的概率.概率与频率的关系是:(1)试验次数很大时,频率稳定在概率附近;(2)用频率估计概率.【类型三】频率估计概率的实际应用为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有________条鱼.解析:设鱼塘中估计有x条鱼,则5∶200=30∶x,解得:x=1200,故答案为:1200.方法总结:求出带标记的鱼占的百分比,运用了样本估计总体的思想.三、板书设计1.用树状图或列表法分析随机事件的所有等可能结果2.概率与频率的关系:(1)试验次数很大时,频率稳定在概率附近;(2)用频率估计概率.教学过程中,强调频率与概率的联系与区别.会用频率估计概率解决实际问题.。

华师大版-数学-九年级上册- 随机事件的概率 教案

华师大版-数学-九年级上册- 随机事件的概率 教案

随机事件的概率一、教学目标1. 理解概率的含义及概率的取值范围 2. 用实验的方法分析随机事件的概率; 3. 会用数学语言表示概率。

二、教学重点和难点教学重点:在具体情境中了解概率意义. 教学难点:对频率与概率关系的初步理解 教具准备:壹元硬币数枚、图钉数枚、多媒体课件 三.教学方法复习引入 实验、分组讨论、自主探究 四.教学过程 (一)复习引入事件⎪⎩⎪⎨⎧⎩⎨⎧不可能事件必然事件确定事件不确定事件:随机事件 (二)新课我们已经知道,抛掷一枚普通的硬币仅有两个可能的结果:“出现正面”和“出现反面”.这两个结果发生的可能性相等,所以各占50%的机会.50%这个数表示事件“出现正面”发生的可能性的大小.表示一个事件发生的可能性大小的这个数,叫做该事件的概率(probability ).例如,抛掷一枚硬币,“出现反面”的概率为21,可记为P (出现反面)=21. 再例如,投掷一枚普通的六面体骰子,“出现数字1”的概率为61,可记为P (出现数字1)=61.这两个问题比较简单,都可以经过分析得出概率,但有很多问题,人们也经常采取重复实验、观察频率值的办法,这种办法我们已经比较熟悉了.让我们一起回顾已经做过的几个实验及其结果,并完成表26.1.1.表26.1.1做过的几个实验及其实验结果我们发现,原来这几个动手实验观察到的频率值也可以开动脑筋分析出来,当然,最关键的有两点:(1) 要清楚我们关注的是发生哪个或哪些结果; (2) 要清楚所有机会均等的结果.(1)、(2)两种结果个数之比就是关注的结果发生的概率,如 P (掷得“6”)= 61,读作: 掷得“6”的概率等于61. 问题1掷得“6”的概率等于61表示什么意思? 有同学说它表示每6次就有1次掷出“6”,你同意吗?请你再做投掷骰子实验,一旦掷到“6”,就算完成了1次实验,然后数一数你投掷了几次才得到“6”的.看看能否发现什么.小明的实验结果如表26.1.2所示,在他10次实验中,有时很迟才掷得“6”,有时很早就掷得“6”,平均一下的话,平均每5.4次掷得一个“6”.你是平均几次掷得“6”的?表26.1.2平均投掷骰子几次得到1次“6”从实验结果看,原来这句话应该表示: 如果掷很多很多次的话,那么平均每6次有1次掷出“6”.思考1. 已知掷得“6”的概率等于61,那么不是“6”(也就是1~5)的概率等于多少呢?这个概率值又表示什么意思?2. 我们知道,掷得“6”的概率等于61也表示: 如果重复投掷骰子很多很多次的话,那么实验中掷得“6”的频率会逐渐稳定到61附近.这与“平均每6次有1次掷出‘6’”互相矛盾吗?练习投掷一个均匀的正八面体骰子,每个面上依次标有1、2、3、4、5、6、7和8. (1) 掷得“7”的概率等于多少?这个数表示什么意思? (2) 掷得的数不是“7”的概率等于多少?这个数表示什么意思? (3) 掷得的数小于或等于“6”的概率等于多少?这个数表示什么意思?在以前的学习中,我们主要是通过大数次的实验,用观察到的频率来估计概率的.这样做的优点是能够用很直观的方法解决许多日常生活中与随机性有关的问题,如游戏公平性问题、中奖机会问题等.它的缺点是估计值必须在实验之后才能得到,无法预测.这一节,我们主要学习在较为简单的问题情境下如何预测概率.例1 班级里有20个女同学,22个男同学,班上每个同学的名字都各自写在一张小纸条上,放入一个盒中搅匀.如果老师闭上眼睛随便从盒中取出一张纸条,那么抽到男同学名字的概率大还是抽到女同学名字的概率大?分析 全班42个学生名字被抽到的机会是均等的. 解P (抽到男同学名字)=4222=2111, P (抽到女同学名字)=4220=2110<2111,所以抽到男同学名字的概率大.思考1. 抽到男同学名字的概率是2111表示什么意思? 2. P (抽到女同学名字)+P (抽到男同学名字)=100%吗?如果改变男女生的人数,这个关系还成立吗?3. 下面两种说法你同意吗?如果不同意,想一想可以采用哪些办法来说服这些同学. (1) 有同学说: 抽到男同学名字的概率应该是21,因为“抽到男同学名字”与“抽到女同学名字”这两个结果发生的机会相同.(2) 有同学说: 虽然抽到男同学名字的概率略大,但是,只抽一张纸条的话,概率实际上还是一样大的.反思与小结通过本节课的学习,你学到了什么?体验到了什么?还有什么问题? 作业第109页、1、2、3题。

初中数学九年级上册第六章《频率与概率》教材分析

初中数学九年级上册第六章《频率与概率》教材分析
教学难点:设计模拟试验方案 教学建议:
编辑ppt
19
6.4 池塘里有多少鱼 (1)
教学目标与重点: 1.结合具体情境.初步感受统计推断的合理
性。 2.进一步体会概率与统计之间的联系。 教学难点:结合具体情境.初步感受统计推
断的合理性 教学建议:
编辑ppt
20
一些建议
注重学生的合作和交流活动,在活动中促 进知识的学习,并进一步发展学生的合作 交流的意识与能力;
编辑ppt
4
设计思路
第1节,通过一个课堂实验活动,归 纳出实验频率趋近于理论概率这一规律 性,同时进一步介绍两种计算理论概率 的方法——树状图和列表法 ;
第2、3节,利用实验频率来估计一 些复杂事件发生的理论概率;
第4节,揭示统计推断的一些理论依 据,力图加强概率与统计的联系.
编辑ppt
5
概率部分的教学目标
编辑ppt
7
具体问题
列举法求概率
(1)列表法(适用于两步实验) (2)树状图法(可列举出两步或两步
以上实验的结果)
编辑ppt
8
具体问题
模拟试验
(1)替代物(如球、卡片等)模拟试验 (2)计算器模拟试验
编辑ppt
9
各节分析
1.频率与概率(3课时) 2.投针试验(1课时) 3.生日相同的概率(2课时) 4.池塘里有多少条鱼(1课时) 回顾与思考(1课时)
进一步发展学生合作交流的意识和能力。 2.能用试验的方法估计一些复杂的随机事
件发生的概率。
编辑ppt
16
6.2 投针试验(1)
教学重点: 能用试验的方法估计一些复杂 的随机事件发生的概率
教学难点:借助大量重复试验去感悟当试 验次数较大时试验频率稳定于理论概率。

新华师大版九年级上册初中数学 25-2-2 频率与概率 教学课件

新华师大版九年级上册初中数学 25-2-2 频率与概率 教学课件

“兵”字面朝上的次数 14 18 38 47 52 66 78 88
“兵”字面朝上的频率 0.70 0.45 0.63 0.59 0.52 0.55 0.56 0.55
对一般的随机事件在做大量重复试验时,随着试验次 数的增加,一个事件出现的频率,总在一个固定数的附近 摆动,显示出一定的稳定性,因此,我们可以通过大量的 重复试验,用一个随机事件发生的频率去估计它的概率.
新课讲解
为什么要用频率估计概率?虽然之前我们学过用列举法确 切地计算出随机事件的概率,但由于列举法受各种结果出现的 可能性相等的限制,有些事件的概率并不能用列举法求出.例如: 抛掷一枚图钉,估计“钉尖朝上”的概率,这时我们就可以通过 大量重复试验估计它们的概率.
8 47 235 369 662 1335 3203 6335 8073 12628
成活的频率
m n
0.8
0.94
0.870
0.923
0.883
0.890
0.915
0.905
0.897
0.902
新课讲解
由上表可以发现,幼树移植成活的频率在 0.9 左右摆 动,并且随着移植棵数越来越大,这种规律愈加明显.
新课讲解
练一练
一粒木质中国象棋“兵”,它的正面雕刻一个“兵”字,它的反面是平 的.将它从一定高度下掷,落地反弹后可能是“兵”字面朝上,也可能是“兵” 字面朝下.由于棋子的两面不均匀,为了估计“兵”字面朝上的概率,某试验小 组做了棋子下掷的试验,试验数据如下表:
实验次数
20 40 60 80 100 120 140 160
稳定于某个常数b,则该事件发生
的概率P(A)= __b__.
新课讲解
频率

华师版九年级上册第25章数学【学案】频率与概率

华师版九年级上册第25章数学【学案】频率与概率

频率与概率
一、学习目标
进一步体会理论分析与重复试验结果的一致性。

二、学习重点
用理论分析的方法预测结果。

三、自主预习
仔细阅读教材141-147,完成下列各题。

1.认真理解问题2中树状图是如何画出来的,并“先两个正面,再一个反面”和
“两个正面,一个反面”一样吗?
2.回答142-143页中“问题3”中的“思考”。

3.完成书中问题4。

四、合作探究
实验:两位同学之间进行“石头”、“剪刀”、“布”的游戏,并将实验数据记录下表中。

(表格可由同学们自行设计)
1
由实验中统计出数据,完成填空:平均______次中有_______次双方不分胜负,经过十八次实验,估计这个概率是________. 这个估计值与其他小组分析得到的概率值_________。

结论:
1.通过重复试验用频率估计概率,必须要求:。

2.在相同的条件下,实验次数越多,就越可能,但是不同的小组实验所得的估计值也不一定相同。

五、巩固反馈(当堂检测)
1.教材147页课后习题。

2.在口袋装有两个不同编号的白球,两个不同编号的黑球(这四球的形状、大小、质量都相同),从中任取两球,恰好颜色相同,请预测可能会出现的情况。

华师大版九年级上册课件:2522频率与概率 省优获奖课件ppt

华师大版九年级上册课件:2522频率与概率  省优获奖课件ppt
驶向胜利 的彼岸
回顾与思考 3
频率与概率知几何
普查,总体,个体,样本, 抽查,频数,频率
普查 为了一定的目的,而对考察对象进行全面的调查, 为普查; 总体,个体 所要考察对象的全体,称为总体,而组成总体 每一个考察对象称为个体; 抽样调查,样本 从总体中抽取部分个体进行调查,这种调 查称为抽样调查;其中,从总体中抽取的一部分个体叫做 体的一个样本;
频数,频率 在考察中,每个对象出现的次数 称为频数,而每个对象出现的次数与总次数 的比值称为频率. 驶向胜 利的彼 岸
做一做
1
你是“玩家”吗
探索频率与概率的关系
游戏规则: 准备两组相同的牌,每组两张,两张牌面的数字分别是 和2.从两组牌中各摸出一张为一次试验. (1)一次试验中两张牌的牌面的数字和可能有哪些值?
两张牌的牌面数字和等于2的理论概率等于1/4.
小结
拓展
回味无穷
频率与概率的关系
当试验次数很大时,一个事件发生频率 也稳定在相应的概率附近.因此,我 们可以通过多次试验, 用一个事件发生的频率来估计这一事 件发生的概率.
独立 作业
知识的升华
祝你成功!
下课了!
结束寄语
• 统计的基本思想: • 用样本去估计总体. • 用频率去估计概率.
2,3,4
(2)每人做30次试验,依次记录每次摸得的牌面数字,并 据试验结果填写下表:
牌面数字和 频数 频率 2 3 4
驶向胜利 的彼岸
做一做
2
ห้องสมุดไป่ตู้
是“玩家”就玩有用的
探索频率与概率的关系
(3)根据上表,制作相应的频数分布直方图. (4)你认为哪种情况的频率最大? (5)两张牌的牌面数字和等于3的频率是多少? (6)六个同学组成一个小组,分别汇总其中两人,三人, 四人,五人,六人的试验数据,相应得到试验60次,90 次,120次,150次,180次时两张牌的牌面数字和等于3的 频率,并填写下表,并绘制相应的频数分布直方图.

华师大版-数学-九上-25.2.2 频率与概率 教案

华师大版-数学-九上-25.2.2 频率与概率 教案

25.2.2频率与概率教学目标:知识目标:学习用列表法计算涉及两步实验的随机事件发生的概率.能力目标:(1)培养学生合作交流的意识和能力.(2)提高学生对所研究问题及所用方法进行反思和拓广的能力,以及将实际问题化归为数学问题的能力.情感目标:积极参与数学活动,经历成功与失败,获得成就感,提高学生学习数学的兴趣. 教学重点:用列表法计算涉及两步实验的随机事件发生的概率.教学难点:正确地用列表法计算涉及两步实验的随机事件发生的概率.教学方法:引导——探索法教具准备:多媒体课件教学过程:一、创设情境,引入新课师:也许你曾被大幅的彩票广告所吸引,也许你曾经历过各种摇奖促销活动,不少同学会感到十分神秘,其实这只是一个概率问题.针对这一问题,我们一起做一个有趣的游戏:玲玲和倩倩是一对好朋友,她俩都想去观看周杰伦的演唱会,可手头只有一张票,怎么办呢?玲玲对倩倩说:“我向空中抛2枚同样的一元硬币,如果落地后一正一反,就我去;如果落地后两面一样,就你去!”结果倩倩欣然答应.请问:你觉得这个游戏公平吗?(学生思考、讨论,教师巡视,并不时对部分学生进行启发).生1:我觉得不公平.理由如下:向空中掷两枚硬币有三种情形出现:正、正;反、反;一正一反.出现一正一反的概率为1/3,因此,倩倩听了当然非常高兴,因为他获胜的概率为2/3.生2:我觉得这个游戏对双方是公平的.玲玲和倩倩获胜的概率都为1/2,分析如下:所以由上面的树状图可知,向空中抛两枚同样的一元硬币,出现(正,正),(正,反),(反,正),(反,反)的可能性是相同的,而出现两面一样的概率为1/2,出现一正一反的概率也为1/2.师:两位同学积极思考,大胆发言的精神值得肯定.不过这只是个数学游戏,老师只是想用此介绍一些概率问题,国家规定中小学生是不能参与购买彩票的,而赌博更是有百害而无一益的噢!那么谁的分析正确呢?(引导学生分析,生1分析的三种情形发生的可能性是不相等的,(正,反)、(反,正)是两种不同情况;生2的分析是正确的.)下面让我们再来看一个游戏.二、师生互动,探求新知师:如果有两组牌,它们的牌面数字分别是1.2.3,那么从每组牌中各摸出一张牌,两张牌的牌面数字和等于4的概率是多少呢?两张牌的牌面数字和为几的概率最大?对于上面的问题,可以要求学生自己尝试求解,从中发现不同的解法和错误的解法,提供给全班讨论.师:下面是小明、小颖、小亮的求解过程.(用多媒体演示)小明的做法:总共有9种情况,每种情况发生的可能性相同,而两张牌的牌面数字和等于4的情况出现得最多,共3次.因此牌面数字和等于4的概率最大,概率为3/9,即1/3.小颖的做法:我通过列下表得到牌面数字和等于4的概率为1/5.小亮的做法:我也用了列表的方法,可我得到牌面数字和等于4的概率为1/3.你认为谁做得对?并说出你的理由.生:……师:刚才很多同学都说出了自己的看法,我想不管结果怎样,我和同学们都非常感谢你们.因为我认为:当你把自己的想法暴露给大家的时候,无论是对的还是错的,你对班级的贡献是一样的.现在让我们一起来分析,请看:小明的方法借助于树状图,从树状图可以发现共有9种情况,每种情况的可能性是相同的,而两张牌的牌面数字和等于4的情况出现最多,共3次.小颖和小亮都用了列表的方法.但小颖认为和为2.3.4.5.6的可能性相同.从而得到牌面数字和为4的概率为1/5.而和为2.3.4.5.6的可能性不相同,因为两次出现1.2.3点的可能性是相同的,正如小亮列表所示,共有9种可能:(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)、(3,3).它们的可能性是相同的,所以小亮的做法正确.符合条件的有(1,3)、(2,2)、(3,1)三种可能,也就是说牌面数字和为4的概率等于3/9,即1/3.所以,小明和小亮做得对,小颖做得不对.并且由以上分析我们可以看出,小亮同学的方法是解决这类问题的又一常用方法,我们将这一方法叫做列表法.然而,小颖和小亮都用了列表法,为什么小颖的做法是错误的,而小亮的做法是正确的.这又是什么原因呢?你认为用列表法求概率时要注意些什么?生:用列表法求概率时应注意各种情况出现的可能性务必相同.师:很正确.用列表法求概率时,条件是各种情况出现的可能性必须相同.(多媒体显示)师:那么从小亮的表格中你还能获得哪些事件发生的概率呢?生:两张牌的牌面数字和为3的概率为2/9.生:两张牌的牌面数字和为5的概率为2/9.……生:两张牌的牌面数字和为奇数的概率为4/9.生:两张牌的牌面数字和为偶数的概率为5/9.……(学生的回答可以多种多样.安排此问的目的在于引导学生对所研究的问题,所用的方法进行反思和拓广,逐步形成良好的反思意识.)师:由小亮的表格你还能提出一些问题来吗?生:……师:还记得前面的游戏吗?请你用列表法求出将两枚均匀的一元硬币抛出去,两个都是正面朝上的概率是多少?生:由于每一枚硬币出现正面、反面的可能性是相同的,因此可列表如下:因此,两枚硬币都是正面朝上的概率为1/4.三、自主探索,合作交流1.请你思考:师:小金为学校联欢会设计了一个“配紫色”的游戏:下面是两个带指针的圆盘,每个圆盘被分成相等的几个扇形.游戏者转动圆盘上的指针,如果A盘转出了蓝色,B盘转出了红色,那么他就赢了,因为红色和蓝色在一起配成了紫色,用列表法求游戏获胜的概率.A转盘B转盘生:对于A转盘,转出黄色、蓝色、绿色的可能性是一样的;对于B转盘,转出红色、白色的可能性是一样的.列表如下:由表格可以看出游戏者获胜的概率为1/6.2.请你判断小芳制作了如图所示的转盘进行“配紫色”游戏,列出了下表:A转盘B转盘并据此求出游戏者获胜的概率为1/2.你认为小芳的做法对吗?为什么?(引导学生分析:A 转盘出现“红”、“蓝”的可能性是不相同的)3.请你设计提问:要怎样做才能使A转盘转动时,出现“红”、“蓝”的可能性相同?请大家想一想.(学生讨论,老师点评.指出将A转盘红色部分等分成两份:红1.红2就行了.师生共同完成列表法)由上表可知:游戏者获胜的概率是3/6即1/2.四、归纳总结,画龙点睛在学生自行归纳总结的基础上,教师从以下三方面进一步点拨:1.本节课主要学习了用列表法求随机事件发生的理论概率.(可借助树状图分析)2.用列表法求概率时应注意各种情况出现的可能性务必相同.3.肯定学生在课堂中合作交流的意识和良好的反思习惯,在今后的学习中要继续发扬.。

华师大版数学九年级上册2随机事件的概率1第2课时频率与概率课件

华师大版数学九年级上册2随机事件的概率1第2课时频率与概率课件

如果某水果公司以2元/千克的成本进了10000千克柑橘,则这 批柑橘中完好柑橘的质量是________,若公司希望这些柑橘 能够获利5000元,那么售价应定为_______元/千克比较合适.
归纳
利用频率估计概率
当实验的所有可能结果不是有限个,或各种可能结果产生的 可能性不相等时,我们一般可以通过统计频率来估计概率.
当实验的所有可能结果不是有限个,或各种可能结果产 生的可能性不相等时,常常是通过统计频率来估计概率, 即在同样条件下,大量重复实验所得到的随机事件产生 的频率的稳定值来估计这个事件产生概率.
等可能性事件
讲授新课
一 用列表法求概率
等可能性事件
等可能性事件的两个特征: 1.出现的结果有限多个; 2.各结果产生的可能性相等; 等可能性事件的概率可以用列举法而求得. 列表法就是把要求的对象一一用表格表示出来分析求解的 方法.
思考: 小明和小亮做扑克游戏,桌面上放有两堆牌,分别是红桃 和黑桃的1,2,3,4,5,6,小明建议:我从红桃中抽取一张牌,你 从黑桃中取一张,当两张牌数字之积为奇数时,你得1分, 为偶数我得1分,先得到10分的获胜”.如果你是小亮,你愿 意接受这个游戏的规则吗?
27
2.如图,甲、乙用4张扑克牌玩游戏,他俩将扑克牌洗匀后背 面朝上,放置在桌面上,每人抽一张,甲先抽,乙后抽,抽 出的牌不放回.甲、乙约定:只有甲抽到的牌面数字比乙大 时甲胜;否则乙胜.请你用树状图或列表法说明甲、乙获胜 的机会是否相同.
解:画树状图得:
∵共有12种等可能的结果,甲抽到的牌面数字比乙大的有5
种情况,小于等于乙的有7种情况,
∴P(甲胜)= 7 ,P(乙胜)= 12
5

12
∴甲、乙获胜的机会不相同.

华师大版数学九年级上册精品导学案:频率与概率

华师大版数学九年级上册精品导学案:频率与概率

25.2.2频率与概率导学案一、教材136页问题2在重复试验中,我们发现:抛两枚硬币,出现两个正面的频率稳定在25%附近.怎样运用理论分析的方法求抛掷两枚硬币时出现两个正面的概率呢?正反硬币1硬币2正反树状图:P(出现两个正面)= 。

总结:树状图:。

问题3用力旋转图所示的转盘甲和转盘乙的指针,如果想让指针停在蓝色区域,那么选哪个转盘成功的概率比较大?有同学说:转盘乙大,相应地,蓝色区域的面积也大,所以选转盘乙成功的概率比较大你同意吗?还有同学说:每个转盘只有两种颜色,指针不是停在红色区域就是停在蓝色区域,成功的概率都是50%,所以随便选哪个转盘都可以.你同意吗?结合重复试验与理论分析的结果,我们发现:P(小转盘指针停在蓝色区域)= 。

P(大转盘指针停在蓝色区域)= 。

从重复试验结果中你得出了哪些结论?。

二、教材137页问题1问题4将一枚图钉随意向上抛起,求图钉落定后钉尖触地的概率.虽然一枚图钉被抛起后落定的结果只有两种:“钉尖朝上”“钉尖触地”,但由于图钉的形状比较特殊,我们无法用分析的方法预测P(钉尖朝上)与P(钉尖触地)的数值,因此,只能让重复试验来帮忙.思考,如果你和同伴使用的图钉形状分别是如图所示的两种,那么这两种图钉钉尖触地的概率相同吗?能把你们两个人的试验数据合起来进行统计吗?从上面的问题可以看出什么?,。

三、教材137页试一试那么,总共要做多少次试验才能认为得出的结果比较可靠呢?1、下列说法中不正确的是( )A.试验中,随着试验次数的增加,随机事件发生的频率逐渐稳定到一个数值,这个数值可以作为这一随机事件发生概率的估计值B.通过试验的方法用频率估计概率的大小,必须要求试验是在相同条件下进行C.抛两枚硬币的试验,可用这样的试验替换:在两个袋子中各放一黑一白两球,闭上眼睛分别从两个袋子中各摸一只球,若摸出两个黑球,代表两个正面D.转动半径大小不同外其他都一样的两个转盘(如图),转大转盘时指针落入红色的概率比转小转盘时指针落入红色的概率大.2、某批乒乓球产品质量检查情况如下表:抽取球数n50100200500 1 000 2 000优等品数m4592194470954 1 902。

北师大版数学九年级上册6.5《频率与概率》教学设计

北师大版数学九年级上册6.5《频率与概率》教学设计

北师大版数学九年级上册6.5《频率与概率》教学设计一. 教材分析《频率与概率》这一节内容,主要让学生了解频率与概率的概念,掌握频率与概率之间的关系,并通过实例让学生学会如何运用频率来估计概率。

教材通过生活中的实例,引导学生从实际问题中抽象出频率与概率的概念,培养学生的抽象思维能力。

二. 学情分析九年级的学生已经具备了一定的数学基础,对一些基本的数学概念和运算方法有一定的了解。

但是,对于频率与概率这一节内容,由于涉及到一些生活中的实际问题,学生可能对其概念和关系理解不够深入。

因此,在教学过程中,需要教师通过生动的实例和讲解,帮助学生理解和掌握。

三. 教学目标1.让学生理解频率与概率的概念,掌握频率与概率之间的关系。

2.培养学生从实际问题中抽象出频率与概率的能力。

3.培养学生运用频率来估计概率的方法。

四. 教学重难点1.频率与概率的概念。

2.频率与概率之间的关系。

3.如何运用频率来估计概率。

五. 教学方法采用问题驱动的教学方法,通过生活中的实例,引导学生从实际问题中抽象出频率与概率的概念,然后通过讲解和练习,使学生掌握频率与概率之间的关系,并学会如何运用频率来估计概率。

六. 教学准备1.准备一些生活中的实际问题,用于引导学生理解和掌握频率与概率的概念。

2.准备一些练习题,用于巩固学生对频率与概率的理解。

七. 教学过程1.导入(5分钟)通过一个简单的实例,如抛硬币实验,引导学生关注事件发生的频率和概率。

提出问题:在抛硬币实验中,正面朝上的频率和概率分别是多少?让学生思考和讨论。

2.呈现(10分钟)讲解频率与概率的概念,以及它们之间的关系。

通过PPT或者黑板,呈现频率与概率的定义和公式。

让学生理解和掌握。

3.操练(15分钟)让学生通过一些练习题,运用频率与概率的知识。

教师可适时给予解答和指导。

4.巩固(10分钟)通过一些实际问题,让学生运用频率与概率的知识。

教师可适时给予解答和指导。

5.拓展(5分钟)引导学生从实际问题中抽象出频率与概率的概念,并学会如何运用频率来估计概率。

华师大版九年级数学上册【教案】概率及其意义【新版】

华师大版九年级数学上册【教案】概率及其意义【新版】

概率及其意义【知识与技能】通过试验,理解事件发生的可能性问题,感受理论概率的意义.【过程与方法】经历试验等活动过程,学会用分析的方法在较为简单的问题情境下预测概率.【情感态度】发展学生合作交流的意识和能力.【教学重点】运用分析的方法在较为简单的问题情境下预测概率.【教学难点】对概率的理解.一、情境导入,初步认识教师活动:拿出一枚硬币抛掷,提问:结果有几种情况?学生活动:拿出一枚硬币抛掷,发现结果只有两种情况——“出现正面”和“出现反面”,而且发生的可能性均等,各占50%的机会.教师引入:一个事件发生的可能性就叫做该事件的概率.学生联想:抛掷一枚硬币出现正面的概率是12,出现反面的概率是12.教师引导:可记作P(出现正面)=12,P(出现反面)=12.二、思考探究,获取新知抛掷一枚普通的六面体骰子,“出现数字为5”的概率为多少?学生回答:16,可记作P(出现数字5)=16.上述例子可以经过分析很快地得出概率,但是实际中,许多问题是要进行重复实验、观察频率值的办法来解决的,请看下面一个例子,见课本P136表25.2.1.学生活动:对表25.2.1中的问题进行试验.思路点拨:(1)关注的是哪个或哪些结果;(2)注意所有机会均等.(1)、(2)这两种结果个数的比就是所关注的结果发生的概率.【教学说明】引导学生在实验中寻找方法.问题情境1:课本P137问题1学生活动:分四人小组展开对“问题1”的试验,并从中得到规律:如果掷的次数很多,试验的频率渐趋稳定,平均每6次就有1次掷出“6”.【教学说明】通过试验,让学生逐步计算一个随机事件发生的试验频率,并观察其中的规律性,从而归纳出试验概率趋于理论概率这一规律.例1见课本P 139例1思路点拨:本题是简单的古典概率,理论上很容易求出其概率.P(抽到男同学名字)=12242112=; P(抽到女同学名字)=101121221204=<,得出结论为抽到男同学名字的概率大 【教学说明】让学生感受到古典概率的内涵以及计算方式.拓展延伸:课本P 140“思考”【教学说明】分小组进行讨论,然后再在全班进行发言.例2 见课本P 140例2思路点拨:这是一个理论概率问题,袋中球的总数为8+16=24只,由于红球有8只,因此,P(取出红球)=81243=,黑球16只,P(取出黑球)= 162243=.也可以这样计算黑球:P(取出黑球)=1-P(取出红球)=121-33=. 例3见课本P 140例3思路点拨:这是一道通过比较取出黑球的概率大小进行判断的题目,首先要计算从甲、乙两只口袋中取出黑球的概率,P 甲(取出黑球)843015==,P 乙(取出黑球)=80842902915=>,所以选乙袋成功机会大. 三、运用新知,深化理解1.任意投掷均匀的骰子,4朝上的概率是______.2.袋中装有6个红球和7个白球,且除颜色外,这些球都相同,从袋中任意摸出红球的概率是______.3.一副扑克牌(去掉大王和小王),随机抽取一张,抽取红桃的概率是______.4.如图,有一个被等分为8个扇形的转盘,转动转盘,指针落在白色区域的概率是( )A.1B.1/3C.5/8D.3/85.袋子里有1个红球,3个白球,5个黄球,每个球除颜色外都相同,从中任意摸1个球:(1)摸到红球的概率是多少?(2)摸到白球的概率是多少?(3)摸到黄球的概率是多少?(4)哪一个概率最大?【答案】1.1/6 2.6/13 3.1/4 4.C5.(1)1/9 (2)1/3 (3)5/9 (4)摸到黄球的概率最大四、师生互动,课堂小结1.什么叫概率?2.本节中的试验结果所产生的趋势与理论概率之间有什么关系?3.试验次数的大小与所得的“估计值”有什么关系?4.谈谈你对概率的理解和体会.1.布置作业:从教材相应练习和“习题25.2”中选取.2.完成练习册中本课时练习.通过抛掷硬币,用学生喜欢的掷骰子和扑克牌试验导入新课,吸引学生迅速进入状态,让学生充分认识概率的意义;由学生自主探索,合作交流运用分析的方法预测概率,使学生掌握本节课的知识.学生在解决问题的过程中,提高了思维能力,增强思维的缜密性,并且培养了学生解决问题的能力和信心.。

初中数学九年级上册第六章《频率与概率》教案

初中数学九年级上册第六章《频率与概率》教案

课时课题:第六章 第一节 频率与概率第一课时课 型:新授课 教学目标:1.理解当试验次数较大时试验频率稳定于理论概率,并据此估计某一事件发生的概率.(重点)2.会用试验方法估计一些复杂的随机事件发生的概率.(难点)教法与学法指导:这节课主要采用“分组试验—统计汇总—合作交流—得出结论”教学模式,引导学生经历试验的全过程,在自主探究的基础上合作交流,从而形成对知识的建构.另外利用多媒体、导学案和学生熟悉的教具,一方面生动直观,有本可依,另一方面突出重点,分散难点.课前准备:师制作课件和导学案;生同位准备两张牌(牌面数字分别是1和2)、 一枚硬币、一个啤酒瓶盖教学过程:一、 创设情境 感悟导入[师]我想用掷硬币的方法决定我们班和19班承担下周一的升旗仪式:任意掷一枚均匀的硬币.如果正面朝上,我们班担任;如果反面朝上,19班担任.这样决定对双方公平吗?[来源 [生1]公平!因为我们做过这样的试验,历史上的数学家也做过掷硬币的实验,经过实验发现当次数很大时,任意掷一枚硬币.会出现两种可能的结果:正面朝上、反面朝上.这两种结果出现的可能性相同.都是21[师]很好!我们再来看一个问题:任意掷一枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6).“6”朝上的概率是多少?[生2]任意掷一枚均匀的小立方体,所有可能出现的结果有6种:“1”朝上,“2”朝上, “3”朝上,“4”朝上,“5”朝上,“6”朝上,每种结果出现的概率都相等,其中“6”朝上的结果只有一种,因此P(“6”朝上)=61.[师]上面两个试验涉及的都是一步.如果是连续掷两次均匀的硬币,会出现几种等可能的结果?出现“一正一反”的概率为多少呢?如果将上面均匀的小立方体也连续掷两次,会出现几种等可能的结果,两次总数都是偶数的概率为多少呢?从这一节开始我们将进一步学习概率的有关知识.[设计意图]本环节出示2个试验的目的是为了帮助学生回顾概率的相关知识,为本节课的学习作好铺垫.二、活动探究统计汇总[师] 我们用实验的方法估计出了任意掷一枚硬币“正面朝上”和“反面朝上”的概率.同样的我们也可以通过实验活动.估计较复杂事件的概率.(课件演示活动方案)从准备好的牌面数字分别是1和2的两张牌中各摸出一张,称为一次试验.(1)估计一次试验中,两张牌的牌面数字和可能有哪些值?(2)以同桌为单位,每人做30次实验,根据实验结果填写下面的表格:(4)根据频数分布直方图.估计哪种情况的频率最大?(5)计算两张牌的牌面数字和等于3的频率是多少?(6)六个同学组成一组,分别汇总其中两人、三人、四人、五人、六人的实验数据,相应得到实验60次、90次、120次、150次、180次时两张牌的牌面数字之和等于3的频率,填写下表.并绘制相应的折线统计图.[设计意图]让学生经历试验、统计等活动过程,通过摸牌活动,体会试验次数很大时,试验中的频率稳定于理论上的概率.在活动中进一步发展学生合作交流的意识和能力.试验活动的展开过程中.体现各个步骤的渐次递进.一方面为了复习巩固有关频数、频率的知识,同时也便于学生更为直观地获得新的结论.三、合作交流归纳结论[师]在上面的试验中,你发现了什么?如果继续增加试验次数呢?与其他小组交流所绘制的图表和发现的结论.[生1]在与各组交流图表的过程中,我发现:在各组的折线统计图中,随着实验次数的增加,频率的“波动”变小了.[生2]随着实验次数的增加,试验结果的差异变小了.试验的数据即两张牌的牌面数字和等于3的频率比较稳定.[生3]一个人的试验数据相差可能较大,而多人汇总后的实试验数据即两张牌的牌面数字和等于3的频率相差较小.[师]也就是说,同学们从试验中都能体会到试验次数较大时,试验频率比较稳定.请同学们估计一下,当试验次数很大时,两张牌的牌面数字和等于3的频率大约是多少?[生齐答]大约是21.[师]很好!准能将试验次数更进一步增加呢?越大越好.[生4]可以把全班各组数据集中起来,这样实验次数就会大大增加.[师]太棒了!我们集和全班的试验数据,交流合作,可以使试验次数达到一千多次.下面我们汇总全班的试验次数及两张牌的牌面数字和为3的频数,求出两张牌的牌面数字和等于3的频率.(可让各组一一汇报,然后请同学们自己算出)[生5]约为21.[师]与你们的估计相近吗? [生齐答]相近.[师]谁能总结出一般性结论吗?[生6] 当试验次数很大时,频率比较稳定,稳定在相应的概率附近.[生7]也就是说,当实验次数很大时,两张牌的牌面数字和等于3的频率稳定在相应的概率附近.[师]非常好!由于实验次数很大时,两张牌的牌面数字和等于3的频率稳定在相应的概率附近,因此我们可以通过多次试验,用一个事件发生的频率来估计这一事件发生的概率. “当试验次数很大时,两张牌的牌面数字和等于3的频率稳定在相应的概率附近”是否意味着试验次数越大,就越为靠近?应该说.作为一个整体趋势,上述结论是正确的,但也可能会出现这样的情形:增加了几次试验,试验数据与理论概率的差距反而扩大了.同学们可从绘制的折线统计图中发现.[设计意图]: 引导各小组观察自己的试验数据,观察频率和试验次数的关系,接着让各小组之间进行交流,观察其他小组的频率和试验次数之间是否存在着刚才发现的关系,最后让各小组交流数据,并将全部数据汇总,再次引导学生观察频率和试验次数的关系.从而使学生感悟经过大量试验后,其频率稳定于其理论概率附近.体现了让学生自主建构知识的教学理念.四、小组讨论 理解新知[师]课件出示讨论题 抛掷一枚质量均匀的硬币,出现“正面”和“反面”的概率均相等,因此,抛掷1000次的话,一定有500次“正”、500次“反”.你对这个问题有什么看法?[生] 分组讨论交流.[师]哪个小组说说你们讨论的结果[1组代表]错,虽然“正”“反”出现的概率均为21,但频率并不等同于概率,即使多次抛掷以后,频率也只能是与概率十分接近,但不一定相等,因此,抛1000次硬币,也不一定有500次“正”,500次“反”.[师]回答很正确,历史上曾经做过抛硬币的大量试验结果如下:(课件出示)一次试验中是否发生虽然不能事先确定,但是在大量重复试验的情况下,它的发生呈现出一定的规律性.[设计意图]: 使学生体会频率与概率的的联系,从“偶然中蕴涵必然”的角度,认识频率的稳定性,并与历史上科学家的研究结果对比,感受用频率估计概率的合理性,借助大量重复试验发现:试验频率并不等于理论概率,虽然多次实验的频率逐步稳定于理论概率,但也可能会发现,无论做多少次试验,试验频率仍仅是理论概率的近似值,而不能等同于理论概率.五、设计习题 巩固新知[师]课件出示试验:抛掷一枚啤酒瓶盖,求啤酒瓶盖花面朝上的概率(8个组每组完成50次试验,然后全班汇总)啤酒盖花面朝上的频率稳定在哪个数附近? [生] 分组认真试验并统计数据计算[设计意图]:学生学习完用频率求随机事件概率的方法,并没有强烈感受到新方法有什么用处,在这里设计一个新的试验,让学生认识到新方法的价值.五、反思感悟 总结新知[师]同学生掌握的很好,那么这节课你有哪些收获呢?还有那些困惑? [生] 各抒己见,认真总结反思本节课自己的收获.[设计意图]:培养学生语言表达归纳总结的能力和反思意识,总结研究概率问题的一般方法,形成完整的知识体系,六、达标测试1.下列说法正确的是……………( )A. 某事件发生的概率为21,这就是说:在两次重复实验中,必有一次发生B .一个袋子里有100个球,小明摸了8次,每次都只摸到黑球,没摸到白球,结论:袋子里只有黑色的球C .两枚一元的硬币同时抛下,可能出现的情形有:①两枚均为正;②两枚均为反;③一正一反,所以出现一正一反的概率是31D .全年级有400名同学,一定会有2人同一天过生日 2.一个家庭两个孩子,两个都是男孩的概率是 .[设计意图]: 通过达标检测及时反馈学生对本节课知识点的掌握程度, 以便有的放矢进行后续教学.七、作业布置A. P 159习题6.1 1.B. 小组撰写一份试验报告反映对概率的理解.板书设计本节课只有让学生经历试验,才能感悟频率稳定概率这一规律.频率稳定概率这一规律是解决本节概率的基础,所以本节课一定要学生亲身参与试验全过程,教师应深入到小组中去,了解学生合作的效果,讨论的焦点,认知的进程等,不可为了赶进度而忽略试验过程,在活动过程中注重引导学生合作交流,在活动中形成对知识的建构.而不是直接告诉学生结论,从而培养学生解决问题的能力,提高学生的综合素质.。

九年级数学上册《用频率估计概率》教案、教学设计

九年级数学上册《用频率估计概率》教案、教学设计
(二)讲授新知
1.教师介绍频率与概率的概念,强调频率是实验中观察到的结果,而概率是理论上计算出的结果。
2.讲解频率与概率的关系,通过实际例子让学生理解频率可以用来估计概率。
3.介绍频率分布表和频率分布直方图的制作方法,示范如何利用它们分析数据。
4.讲解如何运用概率知识解决实际问题,如根据频率分布表和频率分布直方图进行决策等。
4.培养学生正确的价值观,使学生明白概率知识在实际生活中的重要意义,激发学生为国家和民族的发展贡献自己的力量。
二、学情分析
九年级的学生已经具备了一定的数学基础,对概率的概念有了初步的了解。在此基础上,他们对本章节的学习将面临以下挑战:
1.对频率和概率的关系理解不够深入,需要通过具体实例和实验,引导学生深入理解两者之间的联系;
4.学生活动与练习:
a.学生分小组进行实验,收集数据,制作频率分布表和频率分布直方图;
b.各小组展示实验成果,进行交流讨论,提高数据处理和分析能力;
c.学生尝试运用概率知识解决实际问题,教师给予指导和反馈。
5.教学难点突破:
a.通过具体实例,让学生感受频率与概率的关系,提高理解程度;
b.对频率分布表和频率分布直方图的制作方法进行详细讲解,确保学生掌握;
c.针对不同学生的实际情况,给予个性化指导,帮助他们克服学习难点。
6.课堂小结:对本节课的知识点进行总结,强调频率与概率的关系,以及频率分布表和频率分布直方图在数据分析中的应用。
7.课后作业:布置与课堂内容相关的作业,巩固所学知识,提高学生的实际操作能力。
8.教学评价:采用过程性评价和终结性评价相结合的方式,关注学生在实验、讨论、解决问题等方面的表现,全面评估学生的学习效果。
4.学生在讨论中互相学习,共同提高。

九年级数学上册 第26章《概率》第一课时教案 华东师大版【教案】

九年级数学上册 第26章《概率》第一课时教案 华东师大版【教案】

一.投影展示课题二.各位评委老师你们好!我是来自云阳县宝坪初级中学的数学教师曾靖。

非常高兴能有机会来参加这次教学活动,向大家学习交流。

我说课的内容是华东师大版九年义务教育课程标准实验教科书九年级上册第26章《概率》的第一课时。

三.现代数学教育观认为:数学教学过程就是在学生已有的知识水平,认知水平和经验的基础上引导学生通过实践探索交流活动理解掌握基础知识和基本技能。

所以在教学中学生才是主体,教师只是组织者与引导者。

四.本着这样的前提我将从“教材分析”“教法选择与学法指导”“教学过程分析”“教学评价分析”四个方面来说明我的构思和设想。

首先说教材分析我将谈以下几点(一)教材的地位和作用:概率在日常生活中、科学预测中有着非常重要而广泛的应用,因此它是整个初中数学的一个重点,也是数学研究的一个重要分支.按照教学内容交叉编排、螺旋上升的方式,统计与概率的内容已经由简单到复杂,由低层次的展开到高层次的综合,得到了不断的深化.本节在学生已有的实验概率的知识基础上,首先引出概率的计算;通过问题1,介绍如何从频率的角度解释某一个具体的概率值,通过本节的学习,为后面概率的计算和沟通实验概率与理论概率作了准备.(二)教学目标:分为知识目标,能力目标与情感目标知识目标有两个:1.理解概率定义和简单的计算2.充分利用学生对已有的试验概率的经验,从频率的角度去解释某一个具体的概率值的含义能力目标一个:通过活动帮助学生感受到数学与现实生活的联系,提高用数学知识来解决实际问题的能力。

情感目标也有两个:1.培养学生实事求是的态度与勇于探索的精神2.培养学生交流与合作的协作精神(三)教学重难点重点有两个:1.通过回顾以往的实验引出概率的定义和计算公式2.通过学生对已有实验的经验去体会某一概率值的含义这节课的难点是:从实验中某事件发生的频率去理解某一概率值的含义接下来看学法指导与教法选择:(一)学情分析:根据我所教班级的学生实际情况他们已经具有一定的动手实验能力和归纳概括能力,同时也希望老师能创设便于观察和思考的学习环境,结合具有现实背景的素材,获得数学概念,掌握解决问题的技能与方法.(二)学法与教法分析:1.学法分析:根据学生的学情我创设生动有趣的学习情境,本着“结论让学生得,疑难让学生议,思路让学生想,错误让学生析,规律让学生找,小结让学生讲“的原则,在方法的设计上,把重点放在了逐步展示知识的形成过程上,激发学生学习数学的兴趣。

初中数学初三数学上册《用频率估计概率》教案、教学设计

初中数学初三数学上册《用频率估计概率》教案、教学设计
2.在实际问题中运用频率估计概率,分析数据,总结规律。
3.学生对概率与频率之间关系的认识,以及在实际问题中的应用。
(三)教学设想
为了突破教学重难点,提高学生的学习效果,我设想以下教学策略:
1.创设情境,激发兴趣:
结合生活实例,如彩票抽奖、球赛预测等,让学生感受到数学与生活的紧密联系,激发学生的学习兴趣。
4.小组合作,共同探讨以下问题:
a.在实验中,如何判断频率已经足够接近概率?
b.在实际问题中,如何运用频率估计概率?
c.请举例说明频率与概率在实际应用中的区别和联系。
要求各小组整理讨论成果,形成文字报告,以培养学生的团队合作精神和沟通表达能力。
5.阅读拓展资料,了解概率论在生活中的其他应用,如统计学、经济学、心理学等,拓宽学生的知识视野。
作业布置要求:
1.学生在完成作业时,要认真思考,确保作业质量。
2.作业完成后,要进行自查,确保格式规范,表述清晰。
3.教师在批改作业时,要及时给予反馈,指导学生改进。
4.鼓励学生在完成作业过程中,积极提问,主动探讨,提高自身能力。
5.融入信息技术,提高教学效果:
利用多媒体、网络等信息技术手段,展示实验过程、数据分析等,使抽象的数学概念形象化,降低学习难度。
6.注重个体差异,因材施教:
关注学生的个体差异,针对不同学生的学习需求,给予个性化的指导。对于学习困难的学生,给予关心和支持,提高他们的自信心。
7.反馈评价,促进反思:
教学过程中,及时给予学生反馈,引导学生自我评价,促使学生反思学习过程和方法,提高学习效果。
2.强调频率在实际问题中的应用,让学生认识到数学知识在生活中的价值。
3.鼓励学生主动发现生活中的概率问题,用所学知识解决实际问题,提高学生的数学素养。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

频率与概率
【知识与技能】
1.了解运用列表法和树状图法理论分析随机事件的概率.
2.理解每次试验可能的结果不是有限个,或各种可能结果发生的可能性不相等时,利用统计频率的方法估计概率.
【过程与方法】
经历利用频率估计概率的学习,使学生明白在同样条件下,大量重复试验时,根据一个随机事件发生的频率所逐渐稳定到的常数,可以估计这个事件发生的概率.
【情感态度】
通过研究如何用统计频率求一些现实生活中的概率问题,培养使用数学的良好意识,激发学习兴趣,体验数学的应用价值.
【教学重点】
频率与概率的理解和应用.
【教学难点】
利用频率估计概率的理解.
一、情境导入,初步认识
问题:要想知道一个鱼缸里有12条鱼,只要数一数就可以了,但要估计一个鱼塘里有多少条鱼,该怎么办?
【教学说明】先前我们学习了用分析的方法求随机事件的概率,那么这里的问题情境中,很容易让学生想到这个事件的结果不能分析出来,而且每种结果出现的可能性也不一定是相同的,从而引发学生的求知:对这类事件的概率该怎样求解呢?引入课题.
二、思考探究,获取新知
问题1:怎样运用理论分析的方法求抛掷两枚硬币时出现两个正面的概率呢?
【分析】
列表法
树状图法
思考:理论分析与重复试验得到的结果是否是一致的?
问题2:见课本P142问题3
学生用自制的转盘做试验,并完成课本P143表25.2.4和图25.2.3.
拓展延伸:课本P143“思考”
【教学说明】让学生通过试验的方法来预测随机事件的概率.
问:你能用理论分析的方法来预测两个转盘指针停在蓝色区域的概率吗?
归纳:P(小转盘指针停在蓝色区域)=1
4
P(大转盘指针停在蓝色区域)=1
4
思考1:从重复试验结果中你得出了哪些结论?
对以上这些问题,既可以通过分析用计算的方法预测概率,也可以通过重复试验用频率来估计概率.
思考2:是不是所有的问题都可以这样呢?
问题3:将一枚图钉随意向上抛起,求图钉落定后钉尖触地的概率.
【分析】由于图钉的形状比较特殊,我们无法用分析的方法预测P(钉尖朝上)与P(钉尖触地)的值,因此只能靠重复试验来帮忙.
【教学说明】让学生分成几个小组,每小组10人,每人试验50次,每个小组数据累加起来,并作好每个小组的实验记录.
归纳:通过试验发现,当试验进行到720次后,所得的频率值就在46%上下浮动,我们可以取46%作为这个事件发生概率的估计值,即P(钉尖触地)≈46%.
三、运用新知,深化理解
1.含有4种花色的36张扑克牌的牌面都朝下,每次抽出一张记下花色后再原样放回,洗匀牌后再抽.不断重复上述过程,记录抽到红心的频率为25%,那么其中扑克牌花色是红心的大约有______张.
2.一个口袋中有12个白球和若干个黑球,在不允许将球倒出来数的前提下,小亮为估计口袋中黑球的个数,采用了如下的方法:每次先从口袋中摸出10个球,求出其中白球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程5次,得到的白球数与10的比值分别为:0.4,0.1,0.2,0.1,0.2.根据上
述数据,小亮可估计口袋中大约有______个黑球.
3.在一个不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20只,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回袋中,不断重复.下表是活动进行中的一组统计数据:
(1)请估计,当n很大时,摸到白球的频率将会接近______;
(2)假如你去摸一次,你摸到白球的概率是,摸到黑球的概率是______.
(3)试估算口袋中黑、白两种颜色的球各有多少只.
【答案】1.9 2.48
3.(1)0.6 (2)0.6 0.4 (3)8,12
【教学说明】可让学生自主完成,分小组展示,教师点评.
四、师生互动,课堂小结
1.你知道什么时候用频率来估计概率吗?
2.你会用频率估计概率来解决实际问题吗?
【教学说明】教师先提出上述问题,让学生相互交流,再选
派几名同学进行回顾总结,师生再共同完善.
1.布置作业:从教材相应练习和“习题25.2”中选取.
2.完成练习册中本课时练习.
1.猜想试验、分析讨论、合作探究的学习方式十分有益于学生对概率意义的理解,明确频率与概率的联系,也使本节课教学重难点得以突破.当然,学生随机观念的养成是循序渐进的、长期的.这节课教师应把握教学难度,注意关注学生接受情况.
2.一般地,当试验的可能结果是有限个而且各种结果发生的
的方式得出概率.当试验的所有可可能性相等时,可以用P(A)=m
n
能的结果是无限个,或各种可能结果发生的可能性不相等时,常常是通过统计频率来估计概率的.。

相关文档
最新文档