第3章习题解答

合集下载

第3章 习题解答

第3章 习题解答

第三章 习题解答(部分)[1]求以下序列)(n x 的频谱()j X e ω,其中0a >。

(2)()an e u n - (5)0sin()()an e n u n ω-解:对题中所给的)(n x 先进行z 变换,再求其频谱。

(2)由于111)]([)(----==ze n u e Z z X a an ,所以ωωωj a ez j e e z X e X j --=-==11)()(。

(5)由于aa a ane z e z e z n u n eZ z X 2201010cos 21sin )]()sin([)(-------+-==ωωω,所以ωωj e z j z X e X ==)()(aj a j a j e e e e e e 2200c o s 21s i n ------+-=ωωωωω [2] 设()j X e ω和()j Y e ω分别是()x n 和()y n 的傅里叶变换,试求下面序列的傅里叶变换。

(7)(2)x n (8)(),()20n x n g n n ⎧⎪=⎨⎪⎩=偶,=奇解:(7)2)()2()]2([ωωn jn n jn en x en x n x DTFT -∞∞-∞=-∑∑==为偶数 2)]()1()([21ωn j nn e n x n x -∞-∞=-+=∑)(21)(21)(21)(212222⎪⎭⎫⎝⎛+∞-∞=⎪⎭⎫⎝⎛+-∞-∞=-+=+=∑∑πωωπωωj j n n j n n j e X e X e n x e n x(8))()'()2/()]([2''2ωωωj n n j n jn e X en x en x n g DTFT ===∑∑∞-∞=-∞-为偶数[3]求出下面序列的傅里叶变换(1))5(2)(-δ=n n x (4))3()2()(--+=n u n u n x解:由DFT 定义有:(1)ωωωδ52)5(2)(j n jn j e en e X -∞-∞=-=-=∑(4)ωωωωωωj j j n jn n jn j ee e een u n u e X ---=-∞-∞=---==--+=∑∑1)]3()2([)(3222⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛-=--=------ωωωωωωωωωωωω21sin 25sin 11222225252525j j j j j j j j j j e e e e e e e e e e [5]已知001,()0,j X e ωωωωωπ⎧≤⎪=⎨<≤⎪⎩,求()j X e ω的傅里叶逆变换()x n 。

第三章习题解答

第三章习题解答

第三章习题解答一、判断下列说法是否正确,凡对的在括号内打“√”,否则打“×”。

(1)现测得两个共射放大电路空载时的电压放大倍数均为-100,将它们连成两级放大电路,其电压放大倍数应为10000。

( )(2)阻容耦合多级放大电路各级的Q点相互独立,( )它只能放大交流信号。

( )(3)直接耦合多级放大电路各级的Q点相互影响,( )它只能放大直流信号。

( )(4)只有直接耦合放大电路中晶休管的参数才随温度而变化。

( )(5)互补输出级应采用共集或共漏接法。

( )二、现有基本放大电路:A.共射电路B.共集电路C.共基电路D.共源电路E.共漏电路根据要求选择合适电路组成两级放大电路。

(1)要求输入电阻为1kΩ至2kΩ,电压放大倍数大于3000,第一级应采用,第二级应采用。

(2)要求输入电阻大于10MΩ,电压放大倍数大于300,第一级应采用,第二级应采用。

(3)要求输入电阻为100kΩ~200kΩ,电压放大倍数数值大于100,第一级应采用,第二级应采用。

(4)要求电压放大倍数的数值大于10,输入电阻大于10MΩ,输出电阻小于100Ω,第一级应采用,第二级应采用。

(5)设信号源为内阻很大的电压源,要求将输入电流转换成输出电压,且,输出电阻R o<100,第一级应采用,第二级应采用。

三、选择合适答案填入空内。

(1)直接耦合放大电路存在零点漂移的原因是。

A.电阻阻值有误差B.晶体管参数的分散性C.晶体管参数受温度影响D.电源电压不稳定(2)集成放大电路采用直接耦合方式的原因是。

A.便于设计B.放大交流信号C.不易制作大容量电容(3)选用差分放大电路的原因是。

A.克服温漂B. 提高输入电阻C.稳定放入倍数(4)差分放大电路的差模信号是两个输入端信号的,共模信号是两个输入端信号的。

A.差B.和C.平均值(5)用恒流源取代长尾式差分放大电路中的发射极电阻R e,将使电路的。

A.差模放大倍数数值增大B.抑制共模信号能力增强C.差模输入电阻增大(6)互补输出级采用共集形式是为了使。

第3章习题答案

第3章习题答案

思考题:题3.1.1 组合逻辑电路在结构上不存在输出到输入的 ,因此 状态不影响 状态。

答:反馈回路、输出、输入。

题3.1.2 组合逻辑电路分析是根据给定的逻辑电路图,而确定 。

组合逻辑电路设计是根据给定组合电路的文字描述,设计最简单或者最合理的 。

答:逻辑功能、逻辑电路。

题3.2.1 一组合电路输入信号的变化顺序有以下三种情况,当 时,将可能出现竞争冒险。

(A )00→01→11→10 (B )00→01→10→11 (C )00→10→11→01 答:B题3.2.2 清除竞争冒险的常用方法有(1)电路输出端加 ;(2)输入加 ;(3)增加 。

答:电容,选通脉冲,冗余项。

题3.2.3 门电路的延时时间是产生组合逻辑电路竞争与冒险的唯一原因。

( ) 答:×题3.2.4 根据毛刺产生的方向,组合逻辑的冒险可分为 冒险和 冒险。

答:1型、0型。

题3.2.5 传统的判别方法可采用 和 法来判断组合电路是否存在冒险。

答:代数法、卡诺图。

题3.3.1 进程行为之间执行顺序为 ,进程行为内部执行顺序为 。

答:同时、依次。

题3.3.2 行为描述的基本单元是 ,结构描述的基本单元是 。

答:进程、调用元件语句。

题3.3.3 结构体中的每条VHDL 语句的执行顺序与排列顺序 。

答:无关题3.4.1串行加法器进位信号采用 传递,而并行加法器的进位信号采用 传递。

(A )超前,逐位 (B )逐位,超前 (C )逐位,逐位 (D )超前,超前 答:B题3.4.2 一个有使能端的译码器作数据分配器时,将数据输入端信号连接在 。

答:使能端题 3.4.3 优先编码器输入为70I I -(0I 优先级别最高),输出为2F 、1F 、0F (2F 为高位)。

当使能输入00,651====I I I S 时,输出012F F F 应为 。

答:110题3.4.4 用4位二进制比较器7485实现20位二进制数并行比较,需要 片。

教材第三章习题解答

教材第三章习题解答

第三章分子结构习题解答1.用列表的方式分别写出下列离子的电子分布式。

指出它们的外层电子分别属于哪种构型(8、9~17、18或18+2)?未成对电子数是多少?Al3+、V2+、V3+、Mn2+、Fe2+、Sn4+、Pb2+、I-【解答】离子离子的电子分布式外层电子构型未成对电子数Al3+1s22s22p68 0V2+1s22s22p63s23p63d39~17 3V3+1s22s22p63s23p63d29~17 2 Mn2+1s22s22p63s23p63d59~17 5 Fe2+1s22s22p63s23p63d69~17 4 Sn4+1s22s22p63s23p63d104s24p64d105s218+2 0 Pb2+1s22s22p63s23p63d104s24p64d104f145s25p65d106s218+2 0I-1s22s22p63s23p63d104s24p64d105s25p68 02.下列离子的能级最高的电子亚层中,属于电子半充满结构的是_________。

A.Ca2+;B.Fe3+;C.Mn2+;D.Fe2+;E.S2-【解答】B,C。

离子离子的电子分布式属于电子半充满的结构Ca2+1s22s22p63s23p6 ×Fe3+1s22s22p63s23p63d5∨Mn2+1s22s22p63s23p63d5∨Fe2+1s22s22p63s23p63d4×S2-1s22s22p63s23p2 ×3.指出氢在下列几种物质中的成键类型:HCl中_______;NaOH中_______;NaH中_______;H2中__________。

【解答】极性共价键;极性共价键;离子键;非极性共价键。

4.对共价键方向性的最佳解释是_________。

A.键角是一定的; B.电子要配对;C.原子轨道的最大重叠; D.泡利原理。

【解答】C。

分析:原子间相互成键时,必须符合原子轨道最大重叠原则和对称性匹配原则,因而原子间形成共价键时,总是按确定的方向成键,这决定了共价键的方向性。

第三章习题解答

第三章习题解答

第3章 力学基本定律与守恒律 习题及答案1.作用在质量为10 kg 的物体上的力为i t F)210(+=N ,式中t 的单位是s ,(1)求4s 后,这物体的动量和速度的变化.(2)为了使这力的冲量为200 N ·s ,该力应在这物体上作用多久,试就一原来静止的物体和一个具有初速度j 6-m ·s -1的物体,回答这两个问题.解: (1)若物体原来静止,则i t i t t F p t 1401s m kg 56d )210(d -⋅⋅=+==∆⎰⎰,沿x 轴正向,ip I imp v111111s m kg 56s m 6.5--⋅⋅=∆=⋅=∆=∆ 若物体原来具有6-1s m -⋅初速,则⎰⎰+-=+-=-=t tt F v m t m F v m p v m p 000000d )d (,于是⎰∆==-=∆t p t F p p p 0102d,同理, 12v v ∆=∆,12I I=这说明,只要力函数不变,作用时间相同,则不管物体有无初动量,也不管初动量有多大,那么物体获得的动量的增量(亦即冲量)就一定相同,这就是动量定理. (2)同上理,两种情况中的作用时间相同,即⎰+=+=tt t t t I 0210d )210(亦即 0200102=-+t t 解得s 10=t ,(s 20='t 舍去)2.一颗子弹由枪口射出时速率为10s m -⋅v ,当子弹在枪筒内被加速时,它所受的合力为 F =(bt a -)N(b a ,为常数),其中t 以秒为单位:(1)假设子弹运行到枪口处合力刚好为零,试计算子弹走完枪筒全长所需时间;(2)求子弹所受的冲量.(3)求子弹的质量. 解: (1)由题意,子弹到枪口时,有0)(=-=bt a F ,得ba t =(2)子弹所受的冲量⎰-=-=tbt at t bt a I 0221d )(将bat =代入,得 ba I 22=(3)由动量定理可求得子弹的质量202bv a v I m == 3.如图所示,一质量为m 的球,在质量为M 半径为R 的1/4圆弧形滑槽中从静止滑下。

习题答案第3章

习题答案第3章

t s (2%) 4T
T ,为惯性环节的时间常数。 将已知数据 t s (2%)=15 秒代入上式,求得惯性环节的时间常数 T
则闭环传递函数为
3.75 秒。
WB ( s )
单位反馈系统的开环传递函数为
1 15s 1
WK ( s )
WB ( s) 1 1 WB ( s ) 15s
s0
劳斯表中出现 s 行为全 0 行,且无符号变化,则闭环系统临界稳定,有 2 对对称于原 点的特征根。可通过辅助方程得到。
3
令 F ( s ) 3s 18s 12 0
4 2
解得
3-9 系统如图 P3-4 所示,问 取何值系统方能稳定。
s1, 2 j 0.87 , s 3, 4 j 2.29 10 s ( s 1)
则 令 xc (t ) 0

xc (t ) L1 [ X c ( s )] 1 e t cos(3t )
可得 t m 0.94 s
阶跃响应的最大峰值 根据超调量的定义
x max (t m ) 1.37
%
调节时间 t s (5%)
x max (t m ) xc () 100% 37% x c ( )
0.2 sX c ( s ) 2 X r ( s )
又输入信号为 X r ( s )
1 ,则输出 s
X c ( s ) 10 s2
拉氏反变换后,得单位阶跃响应为
xc (t ) 10t
c (t ) 0.24 x c (t ) (2) 0.04 x
微分方程两侧同时取拉氏变换,得
5 4 3 2
(4) s 4 s 4 s 4 s 7 s 8s 10 0

第三章部分习题解答

第三章部分习题解答

(b) ( A + B)(AB ) = AAB + BAB = AB
(c) ABC(B + C ) = ( A + B + C )(B + C ) = C + B( A + B ) = C + AB
(d) A + ABC + ABC + CB + CB = A(1 + BC + BC) + C(B + B ) = A + C
L3 = A3 ⊕ C
可分别用异或门、三态门设计逻辑电路,如图题解 3.4.4a、b 所示。
图题解 3.4.4
7
3.4.7 某雷达站有 3 部雷达 A、B、C,其中 A 和 B 功率消耗相等,C 的 功率是 A 的两倍。这些雷达由两台发电机 X 和 Y 供电,发电机 X 的最大输出功 率等于雷达 A 的功率消耗,发电机 Y 的最大输出功率是 X 的 3 倍。要求设计一 个逻辑电路,能够根据各雷达的启动和关闭信号,以最节约电能的方式启、停 发电机。
X = ABC + ABC + ABC + ABC = AB ⊕ C + B A ⊕ C
Y =AB+C 由逻辑表达式可设计出最节约电能的发电机启、停方式的逻辑电路,如图 题解 3.4.7b 所示。
表题解 3.4.7
A
B
C
X
Y
0
0
0
0
0
0
0
1
0
1
0
1
0
1
0
0
1
1
0
1
1
0
0
1
0

《计算机组成原理》第3章习题答案

《计算机组成原理》第3章习题答案

第3章习题解答1 1..指令长度和机器字长有什么关系指令长度和机器字长有什么关系??半字长指令、单字长指令、双字长指令分别表示什么意思么意思? ?解:解:指令长度与机器字长没有固定的关系,指令长度与机器字长没有固定的关系,指令长度可以等于机器字长,指令长度可以等于机器字长,指令长度可以等于机器字长,也可以大于或也可以大于或小于机器字长。

通常,把指令长度等于机器字长的指令称为单字长指令;把指令长度等于机器字长的指令称为单字长指令;指令长度等于半个指令长度等于半个机器字长的指令称为半字长指令;指令长度等于两个机器字长的指令称为双字长指令。

机器字长的指令称为半字长指令;指令长度等于两个机器字长的指令称为双字长指令。

2 2..零地址指令的操作数来自哪里零地址指令的操作数来自哪里??一地址指令中,另一个操作数的地址通常可采用什么寻址方式获得寻址方式获得??各举一例说明。

各举一例说明。

解:解:双操作数的零地址指令的操作数来自堆栈的栈顶和次栈顶。

双操作数的一地址指令的另一个操作数通常可采用隐含寻址方式获得,即将另一操作数预先存放在累加器中。

例如,前述零地址和一地址的加法指令。

前述零地址和一地址的加法指令。

3 3.某机为定长指令字结构,.某机为定长指令字结构,.某机为定长指令字结构,指令长度指令长度16位;每个操作数的地址码长6位,指令分为无操作数、单操作数和双操作数三类。

操作数、单操作数和双操作数三类。

若双操作数指令已有若双操作数指令已有K 种,无操作数指令已有L 种,问单操作数指令最多可能有多少种单操作数指令最多可能有多少种??上述三类指令各自允许的最大指令条数是多少上述三类指令各自允许的最大指令条数是多少? ? 解:解:解:X= (2X= (24一K)×26一[L/26]双操作数指令的最大指令数:双操作数指令的最大指令数:双操作数指令的最大指令数:224一1。

单操作数指令的最大指令数:15×2单操作数指令的最大指令数:15×26一l(l(假设双操作数指令仅假设双操作数指令仅1条,为无操作数指令留出1个扩展窗口个扩展窗口))。

第三章习题解答及参考答案

第三章习题解答及参考答案

(
)

2 式中 m 为整数。令 u = αr ,显然上式是 u 的周期函数,周期为 2π ,故可展开成傅里 ∞ 1 1 + sgn (cos u ) = ∑ Cn e inu 2 2 n = −∞
叶级数:
其中,
Cn =
1 2π

π 2
−π 2
e −inu du =
sin (nπ 2) nπ

遂有:
∞ 1 1 sin (nπ 2 ) inαr 2 e + sgn cos αr 2 = ∑ 2 2 nπ n= −∞

σ ( f x ,0 ) 2λd i =1− f x = 1− f x f0 σ0 l
l l ≤ λd i f x ≤ (见附图3 - 4(b)) 4 2
2 1 l l σ ( f x ,0 ) = (l − λd i f x ) l − = − λd i l f x 2 2 2
λd ;两个一级分量与中央亮斑 L
附图 3-2
习题[3-2]图示
附图 3-3
归一化强度分布
[3-3]
将面积为 10 mm × 10 mm 的透射物体置于一傅里叶变换透镜的前焦面上作频谱分析。
用波长 λ = 0.5 µ m 的单色平面波垂直照明,要求在频谱面上测得的强度在频率 140 线/mm 以下能准确代表物体的功率谱。并要求频率为 140 线/mm 与 20 线/mm 在频谱面上的间隔为 30mm,问该透镜的焦距和口径各为多少? 解:取面积为10mm ×10mm 的透射物体的对角线方向为 x 轴。因要求在 140 线/mm 以下的 空间频率成分不受到有限孔径的渐晕效应的影响,故透镜的口径 D 应满足条件:

第3章处理机调度与死锁课后习题解答

第3章处理机调度与死锁课后习题解答
8
第3章 处理机调度与死锁
12.在解决死锁问题的几个方法中,哪种方法最易实现? 哪种方法资源利用率最高? 【解答】解决死锁问题的方法有:死锁的预防、死锁的避免、死锁
的检测和解除等。
死锁的预防:主要是破坏产生死锁的必要条件。该方法容易实现,但 资源的利用率低。 死锁的避免:比较常用的有银行家算法。在该算法中有一些数据结构 及必要的计算,因此,实现起来不太容易,但资源的利用率最高。 死锁的检测和解除:是基于死锁定理而设计的,定期或不定期运行该 算法对系统的状态进行检测,发现死锁便予以解除。其中,需要比较 一下各种死锁解除方案的代价,找到代价最小的方案。该算法资源利 用率较高,但最难实现。因此,在以上几种方法中,死锁的预防最易 实现;死锁的避免资源利用率最高。
15.说明Linux系统的进程有哪几个状态? 【解答】 Linux系统内核在进程控制块中用state成员描述 进程当前的状态,并明确定义了5种进程状态。它们分别 是: (1)TASK-RUNNING状态,Linux系统中的运行状态实 际包含了上述基本状态中的执行和就绪两种状态。 (2)TASK-INTERRUPTIBLE状态,可中断的等待态。 (3)TASK-UNINTERRUPTIBLE状态,等待态,不可中 断状态。 (4)TASK-ZOMBIE状态,僵死态。 (5)TASK-STOPPED状态,暂停态。
1
第3章 处理机调度与死锁
2.高级调度与低级调度的功能是什么? 【解答】高级调度即作业调度。作业调度又称为高 级调度或长调度,用于选择把外存上处于后备队列 中的哪些作业调入内存,并为它们创建进程、分配 必要的资源。然后,再将新创建的进程排在就绪队 列上,准备执行。低级调度又称为进程调度,它的 功能是按照某种策略和算法,将处理机分配给一个 处于就绪状态的进程。

第3章 习题及参考解答

第3章  习题及参考解答

第3章习题及参考解答1.指出下列各指令中源操作数和目的操作数的寻址方式。

(1)MOV DI,100(2)MOV CX.100[SI](3)MOV [SI],AX(4)ADD AX,[BX+DI](5)AND AX,BX(6)MOV DX,[1000](7)MOV BX,[BP+DI+100](8)PUSHF(9)SUB [1050],CX(10)AND DH,[BP+4]解源操作数目的操作数(1)立即寻址寄存器寻址(2)变址寻址寄存器寻址(3)寄存器寻址寄存器间接寻址(4)基址加变址寻址寄存器寻址(5)寄存器寻址寄存器寻址(6)直接寻址寄存器寻址(7)基址加变址寻址寄存器寻址(8)寄存器寻址寄存器间接寻址(9)寄存器寻址直接寻址(10)变址寻址寄存器寻址2.试述指令MOV AX,2000H和MOV AX,DS:[2000H]的区别?解区别有三条:(1)MOV AX,2000H对源操作数是立即寻址,而MOV AX.[2000H]对源操作数是直接寻址;(2)前者功能是把立即数2000H送入AX中,而后者是把内存2000H单元与2001H单元的内容取出送入AX 中;(3)两者的机器代码不同,执行速度也不同,前者执行时间快,后者执行时间慢。

4.若DS=4000H,BX=0800H,[40800H]=05AOH,[40802H]=2000H,求执行指令LDS SI,[BX]后,DS与SI中的内容。

若上题中的DS换成ES,其他条件不变,求执行指令LES DI,[BX]后,ES与DI 中的内容。

解SI=05AOH,DS=2000HDI=05AOH,ES=2000H5.若AX=98ABH,BX=A8BCH。

求执行指令ADD AX,BX后,AX与BX中的内容,并指出SF,ZF,AF,PF,CF和OF的状态。

解AX=4167H,BX=A8BCH,SFZFAFPFCFOF=001011B。

6.若CX=6700H,DX=78FFH,CF=1。

(完整版)高频电子线路第三章习题解答

(完整版)高频电子线路第三章习题解答

3—1 若反馈振荡器满足起振和平衡条件,则必然满足稳定条件,这种说法是否正确?为什么?解:否。

因为满足起振与平衡条件后,振荡由小到大并达到平衡。

但当外界因素(T 、V CC )变化时,平衡条件受到破坏,若不满足稳定条件,振荡器不能回到平衡状态,导致停振。

3—2 一反馈振荡器,欲减小因温度变化而使平衡条件受到破坏,从而引起振荡振幅和振荡频率的变化,应增大i osc )(V T ∂∂ω和ωωϕ∂∂)(T ,为什么?试描述如何通过自身调节建立新平衡状态的过程(振幅和相位)。

解:由振荡稳定条件知:振幅稳定条件:0)(iAiosc <∂∂V V T ω相位稳定条件:0)(oscT <∂∂=ωωωωϕ若满足振幅稳定条件,当外界温度变化引起V i 增大时,T(osc )减小,V i 增大减缓,最终回到新的平衡点。

若在新平衡点上负斜率越大,则到达新平衡点所需V i 的变化就越小,振荡振幅就越稳定。

若满足相位稳定条件,外界因素变化oscT()最终回到新平衡点。

这时,若负斜率越大,则到达新平衡点所需osc的变化就越小,振荡频率就越稳定。

3-3 并联谐振回路和串联谐振回路在什么激励下(电压激励还是电流激励)才能产生负斜率的相频特性?解:并联谐振回路在电流激励下,回路端电压V的频率特性才会产生负斜率的相频特性,如图(a )所示。

串联谐振回路在电压激励下,回路电流I的频率特性才会产生负斜率的相频特性,如图(b)所示。

3—5 试判断下图所示交流通路中,哪些可能产生振荡,哪些不能产生振荡。

若能产生振荡,则说明属于哪种振荡电路。

osc阻止osc 增大,解:(a)不振.同名端接反,不满足正反馈;(b)能振.变压器耦合反馈振荡器;(c)不振.不满足三点式振荡电路的组成法则;(d)能振。

但L2C2回路呈感性,osc 〈2,L1C1回路呈容性,osc >1,组成电感三点式振荡电路。

(e)能振。

计入结电容C b e,组成电容三点式振荡电路。

(完整版)第三章习题解答

(完整版)第三章习题解答

第三章双极型三极管基本放大电路3-1 选择填空1.晶体管工作在放大区时,具有如下特点______________。

a. 发射结正偏,集电结反偏。

b. 发射结反偏,集电结正偏。

c. 发射结正偏,集电结正偏。

d. 发射结反偏,集电结反偏。

2.晶体管工作在饱和区时,具有如下特点______________。

a. 发射结正偏,集电结反偏。

b. 发射结反偏,集电结正偏。

c. 发射结正偏,集电结正偏。

d. 发射结反偏,集电结反偏。

3.在共射、共集、共基三种基本组态放大电路中,电压放大倍数小于1的是______组态。

a. 共射b. 共集c. 共基d. 不确定4.对于题3-1图所示放大电路中,当用直流电压表测得U CE ≈V CC 时,有可能是因为______,测得U CE ≈0时,有可能是因为________。

题3-1图ccR La.R B 开路b. R C 开路c. R B 短路d. R B 过小5.对于题3-1图所示放大电路中,当V CC =12V ,R C =2k Ω,集电极电流I C 计算值为1mA 。

用直流电压表测时U CE =8V ,这说明______。

a.电路工作正常b. 三极管工作不正常c. 电容C i 短路d. 电容C o 短路 6.对于题3-1图所示放大电路中,若其他电路参数不变,仅当R B 增大时,U CEQ 将______;若仅当R C 减小时,U CEQ 将______;若仅当R L 增大时,U CEQ 将______;若仅更换一个β较小的三极管时,U CEQ 将______;a.增大b. 减小 c . 不变 d. 不确定 7.对于题3-1图所示放大电路中,输入电压u i 为余弦信号,若输入耦合电容C i 短路,则该电路______。

a.正常放大b. 出现饱和失真c. 出现截止失真d. 不确定 8. 对于NPN 组成的基本共射放大电路,若产生饱和失真,则输出电压_______失真;若产生截止失真,则输出电压_______失真。

第三章 习题解答

第三章      习题解答
(5)语言简捷,易学易用。
解析
详细的可参考《概论》上3.1.10。注意不要仅仅背这些特点,关键是要通过具体的练习、使用SQL语句来理解这些特点。
2.试述SQL的定义功能。
答:
SQL的数据定义功能包括定义表、定义视图和定义索引。
SQL语言使用CREATE TABLE语句建立基本表,ALTER TABLE语句修改基本表定义,DROP TABLE语句删除基本表;使用CREATE INDEX语句建立索引,DROP INDEX 语句删除索引;使用CREATE VIEW语句建立视图,DROP VIEW语句删除视图。
INSERT INTO SPJ(SN0,JN0,PNO,QTY) /*INTO子句中指明列名*/
VALUES(S2,J6,P4,200); /*插入的属性值与指明列要对应*/或
INSERT INTO SPJ /* INTO子句中没有指明列名*/
VALUES(S2,P4,J6,2000); /*插入的记录在每个属性列上有值*/
SELECT SNO /*这是嵌套查询*/
FROM SPJ
WHERE JNO=’j1’
AND PNO IN /*找出红色零件的零件号码 PNO */
(SELECT PNO
FROM P /*从P表中找*/
WHERE COLOR =’红’);

SELECT SNO
9.哪一类视图是可以更新的?哪类视图是不可更新的?各举一例说明。
答:
基本表的行列子集视图一般是可更新的,如《概论》3.5.3中的例1。
若视图的属性来自集函数、表达式,则该视图肯定是不可以更新的,如《概 论》3.5.3中的S_G视图。
10.试述某个你熟悉的实际系统中对视图更新的规定。

第3章 三相交流电路 习题参考答案

第3章 三相交流电路 习题参考答案

第3章 三相交流电路 习题参考答案3-1一台三相交流电动机,定子绕组星形连接于U L =380V 的对称三相电源上,其线电流I L =2.2A ,cos φ=0.8,试求每相绕组的阻抗Z 。

解:先由题意画出电路图(如下图),以帮助我们思考。

因三相交流电动机是对称负载,因此可选一相进行计算。

三相负载作星接时p l U U 3=由于U l =380(V),I L =2.2(A)则 U P =220(V), I p =2.2(A),1002.2220===pp U U Z (Ω) 由阻抗三角形得808.0100=⨯==ϕCOS Z R (Ω) 60801002222=-=-=R Z X L (Ω)所以 Z=80+j60(Ω)3-2已知对称三相交流电路,每相负载的电阻为R=8Ω,感抗为X L =6Ω。

(1)设电源电压为U L =380V ,求负载星形连接时的相电流、相电压和线电流,并画相量图; (2)设电源电压为U L =220V ,求负载三角形连接时的相电流、相电压和线电流,并画相量图; (3)设电源电压为U L =380V ,求负载三角形连接时的相电流、相电压和线电流,并画相量图。

解:由题意:(1)负载作星接时p l U U 3=因380=l U V ,则2203380====c b a U U U (V )设︒=0/220a U (V )因相电流即线电流,其大小为: ︒-=+︒=9.36/22680/220.j I A (A)9.156/22.-=B I (A) ︒=1.83/22.C I (A) 此时的相量图略。

(2)负载作三角形连接时p l U U =因220=l U V ,则220===ca bc ab U U U (V )设︒=0/220abU 则相电流 ︒-=+︒==9.36/22680/220..j Z U I ab ab (A ) ︒-=9.156/22.bcI(A )︒=1.83/22.ca I (A )线电流 ︒-=︒-=9.66/3830/3.ab AI I (A ) ︒=︒-=︒-=1.173/389.186/3830/3bcB I I (A ) ︒=︒-=1.53/3830/3.ca CI I (A ) 此时的相量图略。

概率论课后习题第3章答案

概率论课后习题第3章答案

第三章 多维随机向量及其概率分布(一)基本题答案1、设X 和Y 的可能取值分别为.2,1,0;3,2,1,0,==j i j i 则与因盒子里有3种球,在这3种球中任取4个,其中黑球和红球的个数之和必不超过4.另一方面,因白球只有2个,任取的4个球中,黑球和红球个数之和最小为2个,故有j i 与ٛ且,42≤+≤j i ./),(474223C C C C j Y i X p j i j i −−===因而 或0),(===j Y i X P 2).2,1,0;3,2,1,0,4(<+j i ==>+j i j i于是 ,0)0,0(1111======y Y x X P P ,0)0,0(2112======y Y x X P p.35/1/)0,0(472212033113=======C C C C y Y x X P p即 2、X 和. ⎥⎦⎤⎢⎣⎡04.032.064.0210~X ⎥⎦⎤⎢⎣⎡25.05.025.0210~Y 由独立性知,X 和Y 的联合分布为3、Y 的分布函数为显知有四个可能值:).0(0)(),0(1)(≤=>−=−y y F y e y F y ),(21X X }{{}{}11−=e ,2,10,0).1,1(),0,1(),1,0(),0,0(121−≤=≤≤===Y P Y Y P X X P 易知{}{}{}{}{},221−−−=e e 12<=P ,10,1,02,11,02121≤≤>====>≤===Y Y Y P X X P Y Y P X X P{}{}{},212,10,12121−=≤<=≤>===e e Y P Y Y P X X P {}−− {}{}.22,11,1221−=>=>>===e Y P Y Y P X X P于是,可将X 1和X 24、∑=====nm m n P n X P 0),()(ηζ∑=−−−−=nm mn m n e m n m p p 0)!(!)1(λλ()[]).,2,1,0(!1!)1()!(!!!==−+=−−=−−−=−∑n n e p p n e p p m n m n n e n n n mn m nm n λλλλλλ即X 是服从参数为λ的泊松分布.∑∑∞=−−∞=−−−−−=−−==mn mn m n mn m m mn m n m n p m e p em n m p p m Y P )!()1(!)!(!)1()(λλλλλ).,2,1,0(,!)(!)()1( ==⋅=−−−−m m ep e e m ep pmp mλλλλλλ即Y 是服从参数为λp 的泊松分布.5、由定义F (y x ,)=P {}∫∫∞−∞−=≤≤x y dxdy y x y Y x X .),(,ϕ因为ϕ(y x ,)是分段函数,要正确计算出F (y x ,;1>y ),必须对积分区域进行适当分块:等5个部分.10,10,1;1,1;10,100≤≤≤≤>>>≤≤<x y x y x y y x 或;0<≤≤x (1)对于 有 F (,00<<y x 或y x ,)=P{X ≤,x Y ≤y}=0; (2)对于 有 ;,10,10≤≤≤≤y x 2204),(y x vdudv u y x F x y ==∫∫(3)对于, 有 10,1≤≤>y x {};,1),(2y y Y X P y x F =≤≤= (4)对于, 有 10,1≤≤>x y {}21,),(x Y x X P y x F =≤≤=; (5)对于 有 ,1,1>>y x 1),(=y x F .故X 和Y 的联合分布函数⎪⎪⎪⎩⎪⎪⎪⎨⎧<<≤≤<<≤≤≤≤≤≤<<=.1,1,.1,10,1,,1,10,,10,10,,00,0),(2222y x y x y y x x y x y x y x y x F 或6、(1) ,0,0;0),(,00>>=≤≤y x y x F y x 或),(y x F =∫∫+−x y t s dsdt ze)2())(())((200202yt x s y t x se e dt e ds e−−−−−−==∫∫=)1)(1(2y x e e −−−−即⎩⎨⎧>>−−=−−.,0,0,0),1)(1(),(2其它y x e e y x F y x (2)P ()()220(),22x x y x yxy xY X f x y dxdy dx e dy e e d +∞+∞−−−−<≤===−∫∫∫∫∫x∫∫∞+−−−∞+−−=−−=03220)(2)1(2dx e e dx e e x x x x .312131(2)2131(2023=−−=−=∞+−−x x e e7、(1)时,0>x ,0)(,0;)(=≤==∫∞+−−x f x e dy e x f X Xx y X 时 即 ⎩⎨⎧≤>=−.0,0,0,)(x x e x f x X (2){}2/111210121),(1−−≤+−−−+===≤+∫∫∫∫e e dy e dxdxdy y x f Y X P y x x xy8、(1)(i )时,,;),()(计算根据公式∫∞+∞−=dy y x f x f X 0≤x 当10;0)(<<=x x f X 当时()();24.224.2)2(8.4)(202x x x y dy x y x f xx X −=−=−=∫0)(,1=≥x f x X 时当即⎩⎨⎧<<−=.,0;10),2(4.2)(2其它x x x x f X (ii ) 利用公式计算. 当∫∞+∞−=dx y x f y f Y ),()(;0)(,0=≤y f y Y 时,10时当<<y112)22(8.4)2(8.4)(y y Y x x y dx x y y f ∫−=−=⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−=222128.42y y y );43(4.2)2223(8.422y y y y y y +−=+−=当时,1≥y .0)(=y f Y 即⎩⎨⎧<<+−=.0;10),43(4.2)(2其它y y y y y f Y 121111222211111(2)((1(,1(,)1.22222P X Y P X Y f x y dxdy dx dxdy +∞+∞⎧⎫<<=−≥≥=−=−=⎨⎬⎩⎭∫∫∫∫∪58、47809、本题先求出关于x 的边缘概率密度,再求出其在2=x 之值. 由于平面区域D 的面积为)2(X f ,2121=dx =∫x S e D 故(X,Y )的联合概率密度为⎪⎩⎪⎨⎧∈=.,0;),(,21),其它D y x y x (f易知,X 的概率密度为∫∞+∞−⎪⎩⎪⎨⎧<<==,,0,1,21),()(2其它e x xdy y x f x f X 故.41221)2(=×=X f 10、(1)有放回抽取:当第一次抽取到第个数字时,第二次可抽取到该数字仍有十种可能机会,即为 k {}).9, ,1,0(101====i k Y i X P (2)不放回抽取:(i )当第一次抽取第)90(≤≤k k 个数时,则第二次抽到此(第个)数是不可能的,故 k {}.)9,,1,0,; =k i k (0====i k Y i X P(ii )当第一次抽取第个数时,而第二次抽到其他数字(非k )的机会为,知)90(≤≤k k 9/1{}.)9,,1,0,; =k i k (9/1≠===i k Y i X P 11、(1)因∫−=−=12,)1(12)1(24)(yy y ydx x y f η.,0)(;10其它=≤≤y f y n 故在0≤y ≤1时,⎩⎨⎧≤≤−−=;1)1/()1(2)(2其它x y y x y x f ηξ因()∫−=−=x y x ydy x x f 022,)1(12124)(ξ.,0)(;10其它=≤≤x f x ξ故在0≤x ≤1时,⎩⎨⎧≤≤=.0,0/2)(2其它x y x y x y f ξη(2)因;1,121)(2/12∞≤≤==∫x x nxdy y x X f x x ξ;,0)(其它=x f ξ故在1≤x<时,∞⎪⎩⎪⎨⎧<<=.,1121)(其它x y xnxy x y f ξη因 ⎪⎪⎪⎩⎪⎪⎪⎨⎧∞<<=≤<==∫∫∞∞,002121102121)(22/12其它y y dx y x y dx y x y f y y η 故在10≤<y 时,⎪⎩⎪⎨⎧∞<<=;011)(2其它x y y x x y f ξη 而在,1时∞<<y ⎪⎩⎪⎨⎧∞<<=.0)(2其它x y x yx y f ξη(3)在x >0,.0,0)(;0,)(≤=>==∫∞−−x x f x e dy e x f x xy ξξ⎪⎩⎪⎨⎧>=−.0,)(其它x y e x y f y x ξη ;0,)(0>==∫−−y ye dx e y f y yy η .故在y>0时,0,0)(≤=y y f η⎪⎩⎪⎨⎧<<=.0,01)(其它y x y y x f ηξ12、1(1)(2)2(),0(1)(1)X n n n n n f x dy x x y x ∞−−−−==+++∫>,故12(1)(2)0,(/1)0.n nY X n y y f y −⎧−+>=⎨⎩其它 13、X 和Y 是否独立,可用分布函数或概率密度函数验证.方法一:X 的分布函数的分布函数分别为 Y x F X 和)()(y F Y ⎩⎨⎧<≥−=+∞=−,0001),()(5.0x x e x F x F x X ⎩⎨⎧<≥−=+∞=−.0001),()(5.0y y e y F y F yY 由于独立.Y X y F x F y x F Y X 和知),()(),(={}{}{}[][]1.005.005.0)1.0(1)1.0(11.01.01.0,1.0−−−=⋅=−⋅−=>⋅>=>>=e e e F F Y P X P Y X P Y X αY X Y X x f x f y x f Y X 和分别表示和),,()()(),,(方法二:以的概率密度,可知 ⎩⎨⎧≥≥=∂∂∂=+−.00,025.0),(),()(5.02其它y x e y x y x F y x f y x ∫∞+∞−−⎩⎨⎧<≥==,0005.0),()(5.0x x e dy y x f x f x X ∫∞+∞−−⎩⎨⎧<≥==.00,05.0),()(5.0y y e dx y x f y f yY ∫∫∞+∞+−+−==>>==1.01.01.0)(5.0.25.0}1.0,1.0{.),()(),(e dxdy e Y X P a Y X y f x f y x f y x Y X 独立和知由于)()(),(j i j i y Y P x x P y Y x X P =⋅====14、因知X 与Y 相互独立,即有 . )3,2,1,2,1(==j i 首先,根据边缘分布的定义知 .2418161),(11=−===y Y x X P 又根据独立性有),(61)()(},{2411111i x X p y Y p x X p y Y x X p ===⋅===== 解得41)(==i x X P ,从而有 1218124141),(31=−−===y Y x X P 又由 )()(),(2121y Y P x X P y Y x X P =⋅====, 可得 ),(41812y Y P == 即有21)(2==y Y P , 从而 838121),(22=−===y Y x X P .类似地,由),()(),(3131y Y P x X P y Y x X P ===== 有),(411213y Y P ==得31)(3==y Y P ,从而,.111),(31=−===y Y x X P 最后=)(2x X P =1+3+1=3. 将上述数值填入表中有1x1/24 1/8 1/12 1/4 2x1/8 3/8 1/4 3/4 {}j P y X P j ⋅==1/6 1/2 1/3115、本题的关键是由题设P{X 1X 2=0}=1,可推出P{X 1X 2≠0}=0;再利用边缘分布的定义即可列出概率分布表.(1)由P{X 1X 2=0}=1,可见易见,0}1,1{}1,1{2121=====−=X X P X X P 25.0}1{}0,1{121=−===−=X P X X P 5.0}1{}1,0{221=====X P X X P 25.0}1{}0,1{121=====X P X X P 0}0,0{21===X X P121212.16、(1) ⎩⎨⎧<<=,,0,10,1)(其他x x f X ⎪⎩⎪⎨⎧≤>=−.0,0,021)(2y y ey f yY 因为X ,Y 独立,对任何y x ,都有 ).,()()y x f y f x Y =⋅(f X ⎪⎩⎪⎨⎧><<=−.,0,0,10,21),(2其他所以有y x e y x f y(2)二次方程 有实根,△ t Y Xt t 中022=++,04)2(2≥−=Y X ,02≥−Y X 即,2X Y ≤ 故=)(有实根t P dydx e dydx y x f X Y P yx y x 2122221),(}{−≤∫∫∫∫==≤∫−−=1022)(dx ex y=dx edx edx x x x 2101010222221211)21(−−∫∫−=−=−πππ21−=[∫∫∞−∞−−−−1022222121dx edx exx ππ].1445.08555.01]5.08413.0[21)]0()1([21=−≈−−≈Φ−Φ−=ππ17、(1)因为X ,Y 独立,所以 .⎩⎨⎧>>==+−.,0,0,0,)()(),()(其他y x e y f x f y x f uy x Y X λλμ(2)根据Z 的定义,有 P{z=1}=P{Y ≥X}∫∫∫∫∞+∞−+−≥==)(),(xy x xy dydx e dydx y x f μλλμ∫∫∞+∞+−−=)(dx dy e e xy x μλμλ ),0u dx ee x x +=⋅=∫∞+−−λλλμλ{}{110=−==Z P Z P Z 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤+<=.1,1,10,,0,0)(z z z z F Z μλμ18、∵X 、Y 分别仅取0,1两个数值,∴Z 亦只取0,1两个数值. 又∵X 与Y 相互独立,∴{}{}{}{}==========00)0,0(0),max(0Y P X P Y X P Y X P Z P 1/2×1/2=1/4, 故{}{}.4/34/110111=−==−===Z P Z P 19、 X 由2×2阶行列式表示,仍是一随机变量,且X=X 1X 4--X 2X 3,根据X 1,X 2,X 3,X 4的地位是等价且相互独立的,X 1X 4与X 2X 3也是独立同分布的,因此可先求出X 1X 4和X 2X 3的分布律,再求X 的分布律. ,则X=Y 1--Y 2.随机变量Y 1和Y 2独立同分布:322411,X X Y X X Y ==记}{}{}{{}.84.016.01}0{0112121=−========Y P Y Y P Y P 16.01,132===P X X P 显见, 随机变量X=Y 1--Y 2有三个可能值--1,0,1.易见 P{X=--1}=P{Y 1=0,Y 2=1}=0.84×0.16= 0.1344, P{X=1}=P{Y 1=1,Y 2=0}=0.16×0.84=0.1344, P{X=0}=1--2×0.1344=0.7312. 于是,行列式的概率分布为 4321X X X X X =~ ⎥⎦⎤⎢⎣⎡−1344.07312.01344.010120、因为{Z=i }={X+Y=i }={X=0,Y=i }}.0,{}1,1{==−==Y i X i Y X ∪ ∪∪ 由于上述各事件互不相容,且注意到X 与Y 相与独立,则有 ∑∑==−===−====i k ik k i Y P k X P k i Y k X P i Z P 00}{}{},{}{∑=+−−−−−=−−=iik ki n ki k i nkn kk n P p pC P p c 022111()1()1∑=−−+ik k i n k n in n C Cp 02121)(,,1,0,)1(212121n n i p p C i n n i i n n+=−=−++).,(~21p n n B Y X Z ++=故注:在上述计算过程中,已约定:当r>n 时,用到了公式 并,0=rnC .12121∑=+−=ik i n n k i n k n C C C21、X 和Y 的概率分布密度为},2)(exp{21)(22σσπy x x f X −−=);(+∞<<−∞x ⎩⎨⎧≤≤−=.,0,),2/(1)(其它πππy y f Y 因X 和Y 独立,考虑到 )仅在[)(y f Y ππ,−]上才有非零值,故由卷积公式知Z 的概率密度为.221)()()(222)(dy edy y f y z f z f a y z Y X Z ∫∫−−−−∞+∞−=−=ππμσππ令σμ−−=y z t ,则上式右端等于.(2122122⎥⎦⎤⎢⎣⎡⎟⎠⎞⎜⎝⎛−−Φ−−+Φ=∫−+−−−σμπσμππππσμπσμπz z dt e z z t 22、(1)由题设知 {}y X X P y M P y F n M ≤=≤=),,max()()(1),,(1y X y X P n ≤≤= )()()()()(121y F y F y X P y X P y X P Xn X n =≤≤≤=.∵),1(],0[~:,,1n i U X X X i n ≤≤θ独立且同分布 ∴⎪⎩⎪⎨⎧><<≤=,0,1,0,,0,0)(x x x x x F i X θθ∴⎪⎪⎩⎪⎪⎨⎧≥<<≤=.,1,0,,0,0)(θθθy y y y y F n n M 故⎪⎩⎪⎨⎧<<=−.,0,0,)(1其它θθy ny y f n n M(2){}y X X P y N P y N P y F n N >−=>−=≤=),,min(1)(1)()(1()y X P y X P y X P y X y X y X P n n >>>−=>>>−= )()(1,,,12121()[])(11)(11y F y X P i X i ni −−=>Π−==故 ⎪⎩⎪⎨⎧<<−=⎪⎩⎪⎨⎧<<−−−=−−其它其它,0,00,)(,001(1()(11y y n y y n y f n n n N θθθθθ 23、由题设容易得出随机变量(X ,Y )的概率密度,本题相当于求随机变量X 、Y 的函数S=XY 的概率密度,可用分布函数微分法求之.依题设,知二维随机变量(X ,Y )的概率密度为()()()⎩⎨⎧∉∈=G y x Gy x y x f ,,0,2/1,若若 设为S 的分布函数,则 当{s S P s F ≤=)(}0≤s 时,()0=s F ; 当时, .2≥s ()1=s F 现设0<s<2. 曲线s xy =与矩形G 的上边交于点(s,1);位于曲线s xy =上方的点满足s xy >,位于下方的点满足s xy <. 故(){}{}{}).ln 2ln 1(2211211121s sdy dx dxdy S XY P s XY P s S P s F s x s sxy −+=−=−=>−=≤=≤=∫∫∫∫>于是,⎩⎨⎧≥≤<<−=.20,0,20,2/)ln 2(ln )(s s s s s f 或若若(二)、补充题答案1.由于即{},0)(),,min(,,max =<==Y X P Y X 故知ηξηξ{}{}{}03,23,12,1=========Y X P Y X P Y X P ;又易知{}{}{}{},9/1111,11,1==⋅=======ηξηξP P P Y X P{}{},9/12,22,2======ηξP Y X P {}{},9/13,33,3======ηξP Y X P {}{}{},9/29/19/11,22,11,2=+===+=====ηξηξP P Y X P{}{}{},9/22,33,22,3===+=====ηξηξP P Y X P {}.9/29/711,3=−===Y X P 所以2.(1)x{}.,2,1,0,0,)1( =≤≤−===n n m P P C n X m Y P m n {}(2){}{}n X P n X m Y P m Y n X P ======,.,2,1,0,0,!)1( =≤≤⋅⋅−=−−n n m e P P C n m n mm n λλ3.22)1()1()1()0()0()1(p p Y P X P Y P X P z P +−===+====)1(2)0()1()1()0()0(p p Y P X P Y P X P z P −===+====而,由2)1,1()1,1(p Y X P Z X P ======),1()1()1,1(=====Z P X P Z X P 得. 2/1=p 5.:设随机变量ξ和η相互独立,都服从分 )1,0(N 布.则⎭⎬⎫⎩⎨⎧+−⋅=)(21exp 21),(22y x y x p π.显然, ,),(),(∫∫∫∫<SGdxdy y x p dxdy y x p,其中 G 和S 分别是如图所示的矩形ABCD 和圆.22/)21(),(2∫∫∫−−=a ax Gdx e dxdy y x p π,令,sin ,cos ϕγϕγ==y x 则 ∫∫∫∫=ππ20221),(a aSdxdy y x p 所以221212/a aaxe dx e −−−−<∫π.6.设这类电子管的寿命为ξ,则(1)三个管子均不要替换的概率为;(2)三个管子均要替换的概率为 .∫∞+==>1502.3/2)/(100)150(dx x P ξ21(−27/8)3/2(3=27/1)3/3=7.假设总体X 的密度函数为,分布函数为,第次的观察值为,独立同分布,其联合密度函数)(x f ,(1x f )(x F )()2x f i (n x )1(n i X i ≤≤i X )(),1n f x f x =.依题意,所求的概率为{}∫∫∫∫∫∫∞+∞−∞−∞−∞−−−−=−==>>><n n n nx i x x x x n n nn nn n i n n n n dx x f dx x f dx x f dx x f dx dx xx f X X X X X X P 112211111,...,2,1121)(...)()()(),,(.,...,,∫∫∞+∞−∞+∞−−−==)()()()(11n n n n n n n x dF x F dx x f x F.1)(1n x F nn n=∞−∞+=8.)(),()(21211211n P n k P n k P =+=+===+=ξξξξξξξξ)()()(2121n P k n P k P =+−===ξξξξ.由普哇松分布的可加性,知服从参数为的普哇松分布,所以 21ξξ+21λλ+)(21212112121!)()!(!)(λλλλλλλλξξξ+−−−−+−⋅==+=e n e k n ek n k P n k n k.1211211kn kk n −⎟⎟⎠⎞⎜⎜⎝⎛+−⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛=λλλλλλ9.当,0≤z (),0)(=≤=z Z P z F z ,0>z 当()z Z P z F z ≤=)(∫∫−+−=20)2(02xz y x z dy e dx∫∫−−−−−−−==202012x z z z y z x ze e dy e dxe ,所以 Y X z 2+=的分布函数为 ⎩⎨⎧>+−≤=−.0,)1(1,0,0),(z e z z y x F z10.由条件知X 和Y 的联合密度为⎪⎩⎪⎨⎧≤≤≤≤=其他若,0,31,31,41),(y x y x p以表示随机{})()(∞<<−∞≤=u u U P u F 变量U 的分布函数.显然,当0≤u 时, 0)(=u F ;当时,; 2≥u 1)(=u F 当,则20<<u []∫∫∫∫≤−uy x y x p ||,(≤−−−=−−===uy x u u dxdy dxdy u F ||2)2(411)2(44141))(2u−于是,随机变量的密度为⎪⎩⎪⎨⎧<<−=其他,0;20),2(21)(u u u p .11.记为这3个元件无故障工作的时间,则的分布函数321,,X X X ),,min(321X X X T ={}[][].)(1),,min(1(31321t X P t X X X P t F T −=>−(11)13X P t ≤−−=>)()t T P =≤=⎩⎨⎧≤>−=∴⎩⎨⎧=≤>−=−−,0,0,0,1)()3,2,1(,0,0,0,1)(~3t t e t F i t t e t F X t T t i λλ∵ 故 ⎪⎩⎪⎨⎧≤>==−.0,0,0,3)(')(3t t e t F t f t T T λλ。

大学物理第3章刚体的定轴转动习题解答

大学物理第3章刚体的定轴转动习题解答

习题3-1 一汽车发动机曲轴的转速在12s 内由每分钟1200转匀加速地增加到每分钟2700转,求:(1)角加速度;(2)在此时间内,曲轴转了多少转?解:(1))/(401s rad πω= )/(902s rad πω=)/(1.13)/(6251240902212s rad s rad t≈=-=∆-=πππωωβ匀变速转动(2))(78022122rad πβωωθ=-= )(3902圈==πθn 3-2 一飞轮的转动惯量为J ,在0=t 时角速度为0ω,此后飞轮经历制动过程。

阻力矩M 的大小与角速度ω的平方成正比,比例系数0>K 。

求:(1)当30ωω=时,飞轮的角加速度;(2)从开始制动到30ωω=所需要的时间。

解:(1)依题意 2ωβK J M -== )/(92202s rad JK J K ωωβ-=-= (2)由J K dt d 2ωωβ-== 得 ⎰⎰-=32000ωωωωK Jd dt t ωK Jt 2=3-3 如图所示, 发电机的轮A 由蒸汽机的轮B 通过皮带带动。

两轮半径A R =30cm ,=B R 75cm 。

当蒸汽机开动后,其角加速度π8.0=B βrad/s 2,设轮与皮带之间没有滑动。

求(1)经过多少秒后发电机的转速达到A n =600rev/min ?(2)蒸汽机停止工作后一分钟内发电机转速降到300rev/min ,求其角加速度。

解:(1)t A A βω= t B B βω=因为轮和皮带之间没有滑动,所以A 、B 两轮边缘的线速度相同,即B B A A R R ωω=又)/(20606002s rad A ππω=⨯=联立得)(10s R R t B B A A ==βω(2))/(10603002s rad A ππω=⨯=)/(62s rad t A A A πωωβ=-'= 3-4 一个半径为=R 1.0m 的圆盘,可以绕过其盘心且垂直于盘面的转轴转动。

第三章习题(答案)

第三章习题(答案)

第三章辛亥革命与君主专制制度的终结一、单项选择题1. 1903年6月,()在上海《苏报》发表《驳康有为论革命书》,批驳康有为所谓“中国之可立宪,不可革命”的谬论A.陈天华B.邹容C.章炳麟D.梁启超2.1903年邹容写的()是中国近代史上第一部宣传革命和资产阶级共和国思想的著作A.《猛回头》B.《警世钟》C.《革命军》D.《驳康有为论革命书》3.中国近代第一个资产阶级革命政党是()A.强学会B.兴中会C.同盟会D.国民党4. 孙中山三民主义思想的核心是()A.驱除鞑虏B.恢复中华C.创立民国D.平均地权5.1905年11月,孙中山在《民报》发刊词中将中国同盟会的政治纲领概括为()A.创立民国、平均地权B.驱除鞑虏、恢复中华、创立合众政府C.民族主义、民权主义、民生主义D.联俄、联共、扶助农工6.武昌起义前同盟会领导的影响最大的武装起义是()A.广州起义B.萍浏醴起义C.镇南关起义D.黄花岗起义7.中国历史上第一部具有资产阶级共和国宪法性质的法典是()A.《钦定宪法大纲》B.《中华民国临时约法》C.《中华民国约法》D.《试训政纲领》8. 辛亥革命取得的最大成就是()A.推翻了封建帝制B.促进了资本主义的发展C.使人民获得了一些民主自由权利D.打击了帝国主义的殖民势力9. 南京临时政府的局限性表现为()A.承认清政府与列强所订的一切不平等条约和一切外债有效B.没有提出任何可以满足农民土地要求的政策和措施C.维护封建土地制度以及官僚、地主所占有的土地财产D.主体是资产阶级革命派10. 二次革命失败的最重要原因是()A.革命党人军队不足B.国民党力量涣散C.袁世凯军队强大D.袁世凯得到帝国主义的支持11.1915年,()在云南率先举起反袁护国的旗帜,发动护国战争A.黄兴B.段祺瑞C.蔡锷D.孙中山12.资产阶级革命派开展护国运动的主要原因是()A.袁世凯指使刺杀宋教仁B.袁世凯强迫国会选举他为正式大总统C.袁世凯解散国会D.袁世凯复辟帝制13. 袁世凯为复辟帝制不惜出卖主权,与日本签订了卖国的()A.中日共同防敌军事协定B.承认外蒙自治C.“二十一条”D.出让川汉、粤汉铁路14. 1917年孙中山针对()指出“以假共和之面孔,行真专制之手段”,并举起“护法”旗帜A.黎元洪B.张勋C.张作霖D.段祺瑞15.标志着整个中国民族资产阶级领导的旧民主主义革命终结的是()A.二次革命的失败B.护国运动的失败C.护法运动的失败D.保路风潮的失败16.20世纪初主张“实业救国”的著名实业家楷模是()A.张謇B.周学熙C.荣宗敬D.荣德生二、多项选择题1.《辛丑条约》的签订,标志着()。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第3章习题解答
3.4.2 电路如图题3.4.2所示,电源v s为正弦波电压,试绘出负载R L
两端的电压波形。

设二极管是理想的。

解v s〉0时,D2、D4导通,v L= v s;v s〈0时,D1、D3导通,v L=-v s。

故v L波形如图解所示。

3.4.3 电路如图题3.4.3所示。

(1)利用硅二极管恒压降模型求电路的I D和V o的值;(2)在室温(300K)的情况下,利用二极管的小信号模型求v o的变化范围。

解(1)求二极管的电流和电压
mA A V R v V I D DD D 6.8106.8101)7.0210(233=⨯=Ω
⨯⨯-=-=- V V V V D O 4.17.022=⨯==
(2)求v o 的变化范围
图题2.4.1的小信号模型等效电路如图解2.4.l 所示,温度 T =300 K 。

Ω≈==02.36.826mA
mV I V r D T d 当r d1=r d2=r d 时,则
mV V r R r V v d d DD O 6)
02.321000(02.32122±=Ω⨯+Ω⨯⨯±=+∆=∆ O v 的变化范围为)(~)(O O O O v V v V ∆-∆+,即1.406V ~1.394V 。

3.4.6 试判断图题 3.4.6中二极管是导通还是截止,为什么?
解 图a :将D 断开,以“地”为电位参考点,这时有
V V k k V A 115)10140(10=⨯Ω
+Ω= V V k k V k k V B 5.315)525(510)218(2=⨯Ω
+Ω+⨯Ω+Ω= D 被反偏而截止。

图b :将D 断开,以“地”为参考点,有
V V k k V A 115)10140(10=⨯Ω+Ω= V V k k V k k V B 5.115)525(5)10()218(2=⨯Ω+Ω+-⨯Ω+Ω=
3.5.1 电路如图题3.5.1所示,稳压管D Z的稳定电压V Z=8V,限流电阻R=3kΩ,设v I=v i=15sinωt V,试画出v o的波形。

解0<V i<V Z(=8V)时,D Z截止,v o=v I;
v I≥V z时,D Z反向击穿,v o=8V;
-0.7V<v I<0时,D Z截止,v o=v I;
v I≤-0.7V时,D Z正向导通,v o=-0.7V
v o的波形图如图解3.5.1所示。

图题3.5.1 图解3.5.1
3.5.3:稳压管电路如图所示。

若V I=10V,R=100 ,稳压管的V Z=5V,
I Zmin=5mA,I Zmax=50mA,问:
(1)负载R L的变化范围是多少?
(2)稳压管电路的最大输出功率P OM是多少?
(3)稳压管的最大耗散功率P ZM和限流电阻R上的最大耗散功率P RM 是多少?
解:(1)总电流1050.0550100
I Z R V V I A mA R --==== 输出电流最大时,必须保证稳压管中至少有5mA 电流流过,即max min
max min 50545R o z o R z I I I I I I mA -><-=-=所以
负载开路时,电流全部流经稳压管,且未超过稳压管最大电流。

所以负载R L 的变化范围是
min max 50.11111145
Z L o V R K I >=≈Ω=Ω (2)max 545225OM Z o P V I mW ==⨯=
(3)负载开路时,稳压管的耗散功率最大,即
max max 550250()(105)50250ZM Z R RM I Z R P V I mW
P V V I mW ==⨯==-=-⨯=。

相关文档
最新文档