第三章 系统的时域分析 4 离散单位脉冲响应
微积分讲座---Z3.13 单位脉冲响应的定义和求解
3.2 基本信号与基本响应
第三章 离散系统的时域分析
特征根为:
1 1, 2 3
所以:
h(k) [C1(1)k C2 (3)k ] (k)
代入初始值得:
h(0) C1 C2 3
h(1) C1 3C2 11
解得:
C1 1,C2 4
由于h(0), h(1)作为初始值代入,因而方程的解也满足
h(k)隐含的条件:
f(k)=δ(k) h(-1) = h(-2) = 0 (对二阶系统)
基本信号:单位脉冲序列δ(k) 基本响应:单位脉冲响应h(k)
2
3.2 基本信号与基本响应 2.求法
第三章 离散系统的时域分析
由于单位脉冲序列δ(k)仅在k=0处等于1,而在k>0时 为零,因而此时单位脉冲响应h(k)与系统的零输入响 应的函数形式相同。这样就把求解h(k)的问题转换为 求解齐次方程的问题。而k=0处的值h(0)可按零状态的 条件由差分方程确定。
右边加法器的输出为:
y(k) 3x(k) x(k 1)
4
3.2 基本信号与基本响应
第三章 离散系统的时域分析
y(k) 4y(k 1) 3y(k 2) 3 f (k) f (k 1)
h(k) 4h(k 1) 3h(k 2) 3 (k) (k 1) (1)
初始状态: h(1) h(2) 0
k=0和k=1。所以系统的单位脉冲响应为:
h(k) [1 4(3)k ] (k)
6
3.2 基本信号与基本响应
知识点Z3.13
第三章 离散系统的时域分析
单位脉冲响应的定义和求解
主要内容:
1. 单位脉冲响应的定义 2. 单位脉冲响应的求解
基本要求:
第3章 系统的时间响应分析
第3章 系统的时间响应分析在建立系统的数学模型(微分方程或传递函数)之后,就可以采用不同的方法,通过系统的数学模型来分析系统的特性,时间响应分析是重要的方法之一。
第3.1节 时间响应及其组成一、时间响应的概念所谓时间响应指系统在外加激励作用下,其输出量随时间变化的函数关系。
或者说 在输入作用下,系统的输出(响应)在时域的表现形式;在数学上,就是系统的动力学方程在一定初始条件下的解。
自变量为时间t ,因变量为输出()[()]o x t y t二、时间响应的组成分析:第一、二项是由微分方程的初始条件(即系统的初始状态)引起的自由振动,即自由响应。
ω。
应该说第三项的自第三项是由作用力引起的自由振动即自由响应,其振动频率均为nω与作用力频率ω无关,由响应并不完全自由。
因为它的幅值受到F的影响,当然,它的频率n自由即在此。
第四项是由作用力引起的强迫振动即强迫响应,其振动频率即为作用力频率ω。
因此系统的时间响应可从两方面分类:按振动性质可分为自由响应与强迫响应,按振动来源可分为零输入响应(即由“无输入时系统的初态”引起的自由响应)与零状态响应(即在“无输入时的系统初态”为零而仅由输入引起的响应)Array所以我们的研究对象是:零状态响应。
另外还有两个需了解的概念:瞬态响应和稳态响应。
瞬态响应:系统在外加激励作用后,从初始状态到最终状态的响应过程称为瞬态响应。
反映了系统的快、稳特性。
稳态响应:时间趋于无穷大时,系统的输出状态为稳态响应。
反映系统的准确性。
三、系统方程的特征根影响系统自由响应的收敛性和振荡第3.2节 典型的输入信号由于系统的输入具有多样性,所以在分析和设计系统时,需要规定一些典型的输入信号,然后比较各系统对典型信号的时间响应。
不同系统或参数不同的同一系统对同一典型信号的时间响应不同,反映出各种系统动态特性的差异,从而可以定出相应的性能指标,对系统的性能予以评定。
尽管在实际中,输入信号很少是典型信号,但由于系统对典型信号的时间响应和对任意信号的时间响应之间存在一定的关系统,所以知道系统对典型信号的响应就可求出对任意输入的响应。
离散时间LTI系统的单位脉冲响应
系统分析和设计
通过单位脉冲响应可以分析系统 的稳定性、频率响应和因果性等 特性,用于系统的设计和优化。
信号处理
单位脉冲响应可以用于信号的滤 波、预测和合成等处理,提高信 号的质量和性能。
控制工程
单位脉冲响应可以用于控制系统 的分析和设计,优化控制性能和 稳定性。
BIG DATA EMPOWERS TO CREATE A NEW ERA
IIR系统
系统的输出不仅与当前的输入有关, 还与过去的输入有关,因此其单位脉 冲响应在时间上是无限的。
系统的表示方法
差分方程
离散时间LTI系统的动态行为通常由差分方 程描述,如 $y(n) = f(n) + g(n)u(n)$。
传递函数
通过将差分方程转换为传递函数的形式,可以更方 便地分析系统的频率响应和稳定性。
仿真分析的步骤与过程
建立数学模型
根据系统定义,建立离散时间LTI系统的数学模型,包括差分方程或传递函数。
生成单位脉冲信号
在仿真中,生成一个单位脉冲信号,用于输入到离散时间LTI系统中。
计算单位脉冲响应
将单位脉冲信号输入到系统中,并记录系统的输出,即单位脉冲响应。
分析单位脉冲响应
对单位脉冲响应进行分析,包括幅度和相位特性,以及稳定性等。
性质
单位脉冲响应是线性时不变系统的内 部动态特性,具有稳定性、因果性和 可预测性。
单位脉冲响应的求解方法
直接法
根据系统函数或差分方程,直接计算单位脉冲响 应的数值解。
迭代法
根据系统函数或差分方程,通过迭代计算单位脉 冲响应的数值解。
逆系统法
通过求解系统的逆系统,得到单位脉冲响应的数 值解。
单位脉冲响应的应用
自动控制原理-第3章-时域分析法
调节时间
系统响应从峰值回到稳态值所需的时间。
振荡频率
系统阻尼振荡的频率,反映系统的动态性能。
系统的阶跃响应与脉冲响应
阶跃响应
系统对阶跃输入信号的响应,反映系 统的动态性能和稳态性能。
脉冲响应
系统对脉冲输入信号的响应,用于衡 量系统的冲激响应能力和动态性能。
03
一阶系统时域分析
01
单位阶跃响应是指系统在单位阶跃函数作为输入时的
输出响应。
计算方法
02 通过将单位阶跃函数作为输入,代入一阶系统的传递
函数中,求出系统的输出。
特点
03
一阶系统的单位阶跃响应是等值振荡的,其最大值为1,
达到最大值的时间为T,且在时间T后逐渐趋于0。
一阶系统的单位脉冲响应
定义
单位脉冲响应是指系统在单 位脉冲函数作为输入时的输
无法揭示系统结构特性
时域分析法主要关注系统的动态行为和响应,难以揭示系统的结构特 性和稳定性。
对初值条件敏感
时域分析法的结果对系统的初值条件较为敏感,初值条件的微小变化 可能导致计算结果的较大偏差。
感谢您的观看
THANKS
计算简便
时域分析法通常采用数值积分方法进 行计算,计算过程相对简单,易于实 现。
时域分析法的缺点
数值稳定性问题
对于某些系统,时域分析法可能存在数值稳定性问题,例如数值积分 方法的误差累积可能导致计算结果失真。
计算量大
对于高阶系统和复杂系统,时域分析法需要进行大量的数值积分计算, 计算量较大,效率较低。
自动控制原理-第3章-时域 分析法
目录
• 时域分析法概述 • 时域分析的基本概念 • 一阶系统时域分析 • 二阶系统时域分析 • 高阶系统时域分析 • 时域分析法的优缺点
自动控制原理课后答案第3章
第3章 控制系统的时域分析【基本要求】1. 掌握时域响应的基本概念,正确理解系统时域响应的五种主要性能指标;2. 掌握一阶系统的数学模型和典型时域响应的特点,并能熟练计算其性能指标和结构参数;3. 掌握二阶系统的数学模型和典型时域响应的特点,并能熟练计算其欠阻尼情况下的性能指标和结构参数;4. 掌握稳定性的定义以及线性定常系统稳定的充要条件,熟练应用劳斯判据判定系统稳定性;5. 正确理解稳态误差的定义,并掌握系统稳态误差、扰动稳态误差的计算方法。
微分方程和传递函数是控制系统的常用数学模型,在确定了控制系统的数学模型后,就可以对已知的控制系统进行性能分析,从而得出改进系统性能的方法。
对于线性定常系统,常用的分析方法有时域分析法、根轨迹分析法和频域分析法。
本章研究时域分析方法,包括简单系统的动态性能和稳态性能分析、稳定性分析、稳态误差分析以及高阶系统运动特性的近似分析等。
根轨迹分析法和频域分析法将分别在本书的第四章和第五章进行学习。
这里先引入时域分析法的基本概念。
所谓控制系统时域分析方法,就是给控制系统施加一个特定的输入信号,通过分析控制系统的输出响应对系统的性能进行分析。
由于系统的输出变量一般是时间t 的函数,故称这种响应为时域响应,这种分析方法被称为时域分析法。
当然,不同的方法有不同的特点和适用范围,但比较而言,时域分析法是一种直接在时间域中对系统进行分析的方法,具有直观、准确的优点,并且可以提供系统时间响应的全部信息。
3.1 系统的时域响应及其性能指标为了对控制系统的性能进行评价,需要首先研究系统在典型输入信号作用下的时域响应过程及其性能指标。
下面先介绍常用的典型输入信号。
3.1.1 典型输入信号由于系统的动态响应既取决于系统本身的结构和参数,又与其输入信号的形式和大小有关,而控制系统的实际输入信号往往是未知的。
为了便于对系统进行分析和设计,同时也为了便于对各种控制系统的性能进行评价和比较,需要假定一些基本的输入函数形式,称之为典型输入信号。
3第三章 系统的时间响应分析
( 2 1)nt
2 2 1
-1 0
1
2 t(sec) 2 t(sec) 2 t(sec)
2. 二阶系统的单位阶跃响应
xi (t) u(t)
L[u(t)] 1 s
X o (s)
G(s)
1 s
s2
n2 2n s
n2
1 s
xo(t)
n
2
1
s 2n
1
s (s n jd )(s n jd )
xi1 (t) xo2 (t) xi2 (t) xo1 (t)
实际中经常使用下述两类输入信号:系 统正常工作时的输入信号和外加测试信号;
输入信号即简单又不会因外加扰动而破坏 系统的正常运行,然而,这不一定能保证有 足够的能激励系统的信息,从而获得对系统 动态特性的全面了解;
测试信号在实验条件下用得很成功,但在 实际生产过程中对正常的生产运行干扰太大, 往往不能使用。
X
i
(s)
1 Ts
1
1 s
xo
t
L-1[
X
o
(s)]
L-1[
1 Ts
1
1 s
]
0T
1 et T
t(sec)
瞬态响应:et T
稳态响应: 1
3. 一阶系统单位斜坡响应
xo(t)
xi (t) r(t t
Xi (s) 1 s2
X
o
(s)
G(s)
X
i
(s)
G(s)
1 s2
xo
t
L-1[
X
o
(s)]
由Xo(s)=Xi(s)G(s) =Xi(s)W(s)
可得: xo(t)=xi(t)*w(t)
机械工程控制基础[3]系统的时间响应分析
动态过程与稳态过程 在典型输入信号作用下,任何一个控制系统的时 间响应都由动态过程和稳态过程两部分组成。
动 态 过 程
动态过程又称过渡过程或瞬态过程,指系统在典型输入 信号作用下,系统输出量从初始状态到最终状态的响应过 程。 由于实际控制系统具有惯性、摩擦以及其他一些原因, 系统输出量不可能完全复现输入量的变化。 根据系统结构和参数选择情况,动态过程表现为衰减、 发散或等幅振荡形式。 动态过程除提供系统稳定性的信息外,还可以提供响应 速度及阻尼情况等信息,这些信息用动态性能描述。
单位阶跃响应
单位阶跃响应
单位阶跃响应
一 阶 系 统 的 动 态 性 能 指 标 由上表的数据分析可知,一阶系统的单位阶跃响应是一条单调上升指数曲 线,一阶系统的响应速度随时间 t 的增大而单调减小。根据动态性能指标 的定义可求出,一阶系统的动态性能指标为:td=0.69T,tr=2.20T,ts=3T。
二阶系统的单位阶跃响应 当ξ=0,系统为无阻尼系统时,特征根为一对共轭纯虚根,由式(4-5 ),有h(t)=1-cosωnt(t≥0)。此时,系统以无阻尼振荡频率ωn作等幅振 荡。 当0<ξ<1,系统为欠阻尼系统时,特征根为一对实部为负的共轭复根 ,由式(4-5),有
1
2
二阶系统的单位阶跃响应
二阶系统0<ξ<1的单位阶跃响应如下图所示。
二阶系统的单位阶跃响应
二、二阶系统的单位阶跃响应
当ξ=0,系统为无阻尼系统时,特征根为一对共轭纯虚根,由式(4-5 ),有h(t)=1-cosωnt(t≥0)。此时,系统以无阻尼振荡频率ωn作等幅振 荡。 当0<ξ<1,系统为欠阻尼系统时,特征根为一对实部为负的共轭复根 ,由式(4-5),有
第三章系统的时间响应分析机械工程控制基础教案
第三章系统的时间响应分析机械⼯程控制基础教案Chp.3时间响应分析基本要求(1) 了解系统时间响应的组成;初步掌握系统特征根的实部和虚部对系统⾃由响应项的影响情况,掌握系统稳定性与特征根实部之间的关系。
(2 ) 了解控制系统时间响应分析中的常⽤的典型输⼊信号及其特点。
(3) 掌握⼀阶系统的定义和基本参数,能够求解⼀阶系统的单位脉冲响应、单位阶跃响应及单位斜坡响应;掌握⼀阶系统时间响应曲线的基本形状及意义。
掌握线性系统中,存在微分关系的输⼊,其输出也存在微分关系的基本结论。
(4) 掌握⼆阶系统的定义和基本参数;掌握⼆阶系统单位脉冲响应曲线、单位阶跃响应曲线的基本形状及其振荡情况与系统阻尼⽐之间的对应关系;掌握⼆阶系统性能指标的定义及其与系统特征参数之间的关系。
(5) 了解主导极点的定义及作⽤;(6) 掌握系统误差的定义,掌握系统误差与系统偏差的关系,掌握误差及稳态误差的求法;能够分析系统的输⼊、系统的结构和参数以及⼲扰对系统偏差的影响。
(7) 了解单位脉冲响应函数与系统传递函数之间的关系。
重点与难点重点(1) 系统稳定性与特征根实部的关系。
(2) ⼀阶系统的定义和基本参数,⼀阶系统的单位脉冲响应、单位阶跃响应及单位斜坡响应曲线的基本形状及意义。
(3) ⼆阶系统的定义和基本参数;⼆阶系统单位脉冲响应曲线、单位阶跃响应曲线的基本形状及其振荡情况与系统阻尼⽐之间的对应关系;⼆阶系统性能指标的定义及其与系统特征参数之间的关系。
(4) 系统误差的定义,系统误差与系统偏差的关系,误差及稳态误差的求法;系统的输⼊、系统的结构和参数以及⼲扰对系统偏差的影响。
难点(1) ⼆阶系统单位脉冲响应曲线、单位阶跃响应曲线的基本形状及其振荡情况与系统阻尼⽐之间的对应关系;⼆阶系统性能指标的定义及其与系统特征参数之间的关系。
(2) 系统的输⼊、系统的结构和参数以及⼲扰对系统偏差的影响。
建⽴数学模型后进⼀步分析、计算和研究控制系统所具有的各种性能。
自动控制原理-第3章
响应曲线如图3-2所示。图中
为输出的稳态值。
第三章 线性系统的时域分析 法
图 3-2 动态性能指标
第三章 线性系统的时域分析 法
动态性能指标通常有以下几种:
延迟时间td: 指响应曲线第一次达到稳态值的一半所需的时间
上升时间tr: 若阶跃响应不超过稳态值, 上升时间指响应曲线从 稳态值的10%上升到90%所需的时间; 对于有振荡的系统, 上升时 间定义为响应从零第一次上升到稳态值所需的时间。上升时间越 短, 响应速度越快。
可由下式确定: (3.8)
振荡次数N: 在0≤t≤ts内, 阶跃响应曲线穿越稳态值c(∞)次 一半称为振荡次数。
上述动态性能指标中, 常用的指标有tr、ts和σp。上升时间tr 价系统的响应速度; σp评价系统的运行平稳性或阻尼程度; ts是同
时反映响应速度和阻尼程度的综合性指标。 应当指出, 除简单的一 、二阶系统外, 要精确给出这些指标的解析表达式是很困难的。
中可以看出, 随着阻尼比ζ的减小, 阶跃响应的振荡程度加剧。 ζ =0时是等幅振荡, ζ≥1时是无振荡的单调上升曲线, 其中临界阻尼 对应的过渡过程时间最短。 在欠阻尼的状态下, 当0.4<ζ<0.8时过
渡过程时间比临界阻尼时更短, 而且振荡也不严重。 因此在 控制工程中, 除了那些不允许产生超调和振荡的情况外, 通常都希
第三章 线性系统的时域分析法 4. 脉冲函数 脉冲函数(见图3-1(d))的时域表达式为
(3.4)
式中,h称为脉冲宽度, 脉冲的面积为1。若对脉冲的宽度取趋于 零的极限, 则有
(3.5) 及
(3.6)
称此函数为理想脉冲函数, 又称δ函数(见图3-1(e))。
第三章 线性系统的时域分析 法
哈工大机电系统控制第三章答案-
3—1 题图3-1所示的阻容网络中,i ()[1()1(30)](V)u t t t =--.当t =4s 时,输出o ()u t 值为多少?当t 为30s 时,输出u o (t )又约为多少?解:661(s)1111(s)1110410141o i U sCU RCs s R sC -====+⨯⨯⨯+++(4)0.632(V)o u ≈,(30)1(V)o u ≈3—2 某系统传递函数为21()56s s s s +Φ=++,试求其单位脉冲响应函数。
解:2(s)112(s)5623o i X s X s s s s +-==+++++ 其单位脉冲响应函数为23(t)(e 2e )1()t t x t δ--=-+⋅3-3 某网络如图3—3所示,当t ≤0-时,开关与触点1接触;当t ≥0+时,开关与触点2接触。
试求输出响应表达式,并画出输出响应曲线。
1V题图3-1 题图3—3解:1(s)11(s)2121()o i R U RCs s sCU RCs s R R sC++===++++01(t)1(2)1()(V)i i i u u u t =+=+-⋅1111212(s)(s)121212o i s s U U s s s ss ++-===-+++ 则21(t)(e 2)1()(V)t o u t -=-⋅1201(t)1(e 2)1()(V)o o o u u u t -=+=+-⋅其输出响应曲线如图3—3所示图3-3 题图3—43-4 题图3—4所示系统中,若忽略小的时间常数,可认为1d 0.5()d yB s x-=∆。
其中,ΔB 为阀芯位移,单位为cm ,令a =b (ΔB 在堵死油路时为零)。
(1) 试画出系统函数方块图,并求(s)(s)Y X 。
(2) 当i ()[0.51()0.51(4)1(40)]cm x t t t s t s =⨯+⨯---时,试求t =0s,4s ,8s,40s,400s 时的y (t )值,()B ∆∞为多少?(3) 试画出x (t )和y (t )的波形。
new第三章离散时间系统的时域分析
3. 举例 • 例1 已知 x(n)=(n),y(-1)=0, 用迭代法解方程:
y(n) ay(n 1) x(n)
• 解:y(0)=ay(-1)+1=1 • y(1)=ay(0)+0=a • y(2)=ay(1)+0=a2 • • y(n)=ay(n-1)+0=an • y(n)=ay(n-1)+0=anu(n)
n y(n) 0.45(0.9) u(n) 0.5u(n) 自由响应 强迫响应
• 零输入响应和零状态响应
用边界条件求系数
C1
5
1
, C2
n
5
1
最终解
1 1 5 1 1 5 y ( n) 5 2 5 2
n
例3 求 y(n)+6y(n-1)+12y(n-2)+8y(n-3)=x(n) 的齐次解 • 解(有重根)
差分方程特解的形式 • • • • • • • • • 激励 x(n) 特解 yp(n)的形式 A(常数) C(常数) An C1n+C2 nk C1 nk+ C2 nk-1++ Ck+1 nkan an(C1 nk+ C2 nk-1++ Ck+1 ) sin(bn)或 C1sin(bn)+C2cos(bn) con(bn) an [sin(bn)或 an[C1sin(bn)+C2cos(bn)] cos(bn)]
– 常系数线性差分方程(递归关系式) – 后向(或右移) 差分方程;前向(或左移) 差分方程
例2 已知离散时间系统如图示,写出 系统的差分方程。
自动控制原理第3章
例1. 系统特征方程式为
s 6 s 12 s 11 s 6 0
4 3 2
例2. 系统特征方程式为
s 3 s 2 s s 5s 6 0
5 4 3 2
特殊情况:
1) 劳斯行列表中某一行左边第一个数为零,其余 不为零或没有. 例: 例:
s 4 3s 3 s 2 3S 1 0
-
1/s
k/(s+5)(s+1)
例:系统特征方程式:
2 s 3 T s 2 10 s 100 0 s
4
按稳定要求确定T的临界值.
六.系统的相对稳定性
§3-3 控制系统的稳态误差
一.误差及稳态误差的定义 系统的误差为 e(t)=被控量的希望值-被控量的实际值 常用的误差定义有两种
二.线性定常系统稳定的充分必要条件
线性定常系统微分方程为:
a0
d dt
n 1
n
n
c (t )
d a dt
1
n 1
c (t ) n 1
d a dt
2
n2 n2
c (t )
d a dt
3
n3 n3
c ( t ) ........
a
d dt
m m
c (t )
a
n
c (t )
第三章 控制系统的时域分析法
§3-1 引言
一. 典型输入信号 1、阶跃函数
r(t)
r (t ) {
0 A
t0 t0
A
t
2、斜坡函数
r(t) {
r(t)
0 At
t0 t0
斜率=A
离散时间系统的时域特性分析
离散时间系统的时域特性分析离散时间系统是指输入和输出均为离散时间信号的系统,如数字滤波器、数字控制系统等。
时域分析是研究系统在时间上的响应特性,包括系统的稳定性、响应速度、能否达到稳态等。
在时域分析中,我们通常关注系统的单位采样响应、阶跃响应和脉冲响应。
1. 单位采样响应单位采样响应是指当输入信号为单位脉冲序列时,系统的输出响应。
在时间域上,单位脉冲序列可以表示为:$$ u[n] = \begin{cases}1 & n=0\\ 0 & n \neq 0\end{cases} $$系统的单位采样响应可以表示为:$$ h[n] = T\{ \delta[n]\} $$其中,$T\{\}$表示系统的传输函数,$\delta[n]$表示单位脉冲序列。
通常情况下,我们可以通过借助系统的差分方程求得系统的单位采样响应。
对于一种具有一阶差分方程的系统,其单位采样响应可以表示为:2. 阶跃响应其中,$\alpha$为系统的传递常数。
3. 脉冲响应脉冲响应是指当输入信号为任意离散时间信号时,系统的输出响应。
其主要思路是通过将任意输入信号拆解成单位脉冲序列的线性组合,进而求得系统的输出响应。
设输入信号为$x[n]$,系统的脉冲响应为$h[n]$,则系统的输出信号$y[n]$可以表示为:$$ y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k] $$在实际计算中,通常采用卷积算法实现脉冲响应的计算,即将输入信号和脉冲响应进行卷积运算。
总之,时域特性分析是对离散时间系统进行分析和设计时的基础。
对于实际工程应用中的系统,需要综合考虑其时域和频域特性,进而选择合适的滤波器结构、控制算法等来实现系统的优化设计。
武汉理工大学控制工程第三章时域分析法
结论:系统极点决定了系统瞬态响应的特性。
系统的零点对响应的影响
例2
已知两个系统的传递函数
G1 (s)
4s 2 s 2 3s
2
单位阶跃响应分别为
y1 (t) 1 2et 3e2t
1
2 k
s2
2
k nk
s
2 nk
通过拉氏
反变换,输出
q
r
c(t) A0
Aje pjt
Bk e knkt cos nk
1
2 k
t
j 1
k 1
响应可表示为:
r
Ck e knkt sin nk
1
2 k
t
t0
k 1
1. 闭环主导极点
当某极点(一对共轭极点)离虚轴很 近,其余极点实部之模大于该极点(该对 共轭极点)实部模的5倍以上时,则其他极 点对应的响应持续时间很短,系统输出响 应可以近似地视为该极点(该对共轭极点) 所产生,其余极点对应的响应可以忽略不 计。该极点(该对共轭极点)称为系统的 闭环主导极点。据此,假如闭环主导极点 附近没有闭环零点时,可以消去其他远极 点而实现对系统的降阶。须注意保持系统 稳态增益不变。
T2
-
0.368
1 T2
-0.135
1 T2
输入的响应达到稳态值的 98%所对应的时间为系统 的过渡过程时间,为4T。
一阶系统对单位脉冲
4T
0.018
1 T
-0.018
1 T2
输入的响应达到初始值的 2%所对应的时间为系统
0
0
第三章 时域分析法
1 h()
0.9 h()
td
0.5 h()
td
0.1 h()
0 tr tp
ts
单位阶跃响应曲线
响延应迟曲时线间第t一d :次
达到稳态值的一 半所需的时间。
0.02或 0.05上升时间 tr :
响应曲线从稳态值 的 10%上升到 9t 0%,所需的时间。
峰值时间 t p :响应曲
线达到超调量的第一个 峰值所需要的时间。
s2 = -n - n 2 -1 = -1/ T2
R(s)
22 nn
ss((ss 22nn))
C(s)
29
二阶系统的传递函数
开环传递函数:
G(s) =
n2
s(s 2n )
闭环传递函数:
C(s) R(s)
=
s2
n2 2ns
n2
30
二阶系统的特征方程为
s2 2ns n2 = 0
解方程求得特征根:
s1,2 = -ns n 2 -1
s1,s2完全取决于 ,n两个参数。
h(tp)于终值之差的 百分比,即
单位阶跃响应曲线
tr 或t p 评价系统的响应速度;
% = h(tp ) - h() 100%
h()
t s 同时反映响应速度和阻尼程度的综合性指标。
% 评价系统的阻尼程度或振荡最大峰值。
17
注意事项:
%, ts及ess三项指标是针对阶跃响应
而言的,对于非阶跃输入,则只有
=
t
- T(1-
-1t
eT
)
=
t
-
T
-1t
Te T
因为
-1t
e(t) = r(t) - c(t) = T (1- e T )
第三章线性系统的时域分析法
s
1 T2
1
T1s 1T2s 1
1
T1
n
2 1 ,
1 T2
n
2 1
【注】过阻尼二阶系统看作两个时间常数不同的一阶系统 的串联。
当系统的输入信号为单位阶跃函数时 R(s) 1 s
系统输出
c t L1 C s 1
T1
t
e T1
T2
t
e T2
T2 T1
T1 T2
c(t)
n 86.2, 0.2; t p 0.037, ts 0.174, % 52.7%, N 2.34
由此可见,KA越大, ξ越小, 越大n ,tp越小,б%越大, 而调节时间ts无多大变化。
3 KA 13.5
n 8.22, 2.1
系统工作在过阻尼状态,峰值时间,超调量和振荡 次数不存在,而调节时间可将二阶系统近似为大 时间常数T的一阶系统来估计或在响应曲线上求 得。
0.02 10
10KO (s) KOG(S) 0.2s 1 10KO
1 KHG(s) 1 10KH 0.2s 110KH 0.2s 1
0.2
110K 10KO
H
T* 0.02 K* 10
110KH
K H 0.9
KO
10
10KO 1 10K H
0.2 s 1 1 10K H
瞬态响应可以提供关于系统稳定性、响应速度及阻尼情 况等信息。
4. 稳态响应
指系统在典型输入信号作用下,当时间t趋于无穷时,系 统输出量的表现方式。稳态响应又称稳态过程。 稳态响应可以提供系统有关稳态误差的信息。
5. 稳定性
若控制系统在初始条件或扰动影响下,其瞬态响应随
着时间的推移而逐渐衰减并趋于零,则称系统稳定;反之, 不稳定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据卷积积分的结合律性质,有
y (t ) = x(t ) * h1 (t ) * h2 (t ) = x(t ) *[h1 (t ) * h2 (t )]
h(t)
一、级联系统的冲激响应 级联系统的冲激响应
↓
冲激响应表示的系统特性 冲激响应表示的系统特性
级联系统的冲激响应 级联系统的冲激响应 并联系统的冲激响应 并联系统的冲激响应 因果系统 稳定系统
一、级联系统的冲激响应 级联系统的冲激响应
z (t ) = x(t ) * h1 (t ) y (t ) = z (t ) * h2 (t ) = z (t ) * h1 (t ) * h2 (t )
y[k] = 0
k < 0时, RN [n]与RN [k−n]图形没有相遇 0≤ k ≤ N −1时,重合区间为[0,k] N−1 < k≤ 2N −2时, 重合区间为[k −(N−1) ,N−1]
RN[k]*RN[k] N
⋮
y[k ] = ∑ 1 = k + 1
n =0
k
y[k ] =
n = k − ( N −1)
分配律: 分配律:
x[k] ∗ { h1 [k] + h2 [k] } = x[k] ∗ h1 [k] + x[k] ∗ h2 [k]
三、卷积和的性质
位移特性: 位移特性: x[k] ∗ δ [k−n] = x[k−n] 推论: 推论:若x[k]∗h[k]=y[k],则
x[k−n] ∗ h[k− l] = y[k− (n+l)]
h[-n] 1
0
k < 0, x[n]与h[k−n]图形没有相遇
y[k]=0
例1 已知x[k] = u[k],h[k] = aku[k],0<a<1, 计算y[k] = x[k]*h[k]
h[-n] 1
0
k ≥ 0, x[n]与h[k−n]图形相遇
y[ k ] =
n=0
∑
k
a
k −n
k ≥0
例1 已知x[k] = u[k],h[k] = aku[k],0<a<1, 计算y[k] = x[k]*h[k] k < 0, x[n]与h[k−n]图形没有相遇 k ≥ 0,x[n]与h[k−n]图形相遇
n = −∞
∑
∞
x[n]h[k − n]
例1 已知x[k] = u[k],h[k] = aku[k],0<a<1, 计算y[k] = x[k]*h[k]
h [ k ] 或 h[ n ] 1
k 0 n
h[-n] 1
0
n
例1 已知x[k] = u[k],h[k] = aku[k],0<a<1, 计算y[k] = x[k]*h[k]
的卷积和。 解:
x[k ] = δ [k + 2] + 2δ [k ] + 4δ [k − 1]
↓
↓
利用位移特性
x[k ] * h[k ] = {δ [k + 2] + 2δ [k ] + 4δ [k − 1]} * h[k ] = h[k + 2] + 2h[k ] + 4h[k − 1]
y[k ] = x[k ] * h[k ] = {1, 4, 7, 15, 26, 26, 12}
n =0 k
当k = 0时, y[0] = x[0]h[0] 当k = 1时, y[1] = x[0]h[1] + x[1]h[0] 当k = 2时, y[2] = x[0]h[2] + x[1]h[1] + x[2]h[0] 当k = 3时, y[3] = x[0]h[3] + x[1]h[2] + x[2]h[1] + x[3]h[0]
∑
i =0
n
ai h[ k − i ] = ∑ b jδ [k − j ]
j =0
m
二、 h[k]的求解 的求解
求解方法: 求解方法:
1) 迭代法 2) 等效初始条件法 将δ [k−j]对系统的瞬时作用转化为系统的等 效初始条件。 等效初始条件由差分方程和h[−1] = h[−2] = … = h[−n] = 0 递推求出。
1 βt αt (e − e )u (t ) α ≠ β αt βt e u (t ) ∗ e u (t ) = β − α te at u (t ) α =β
三、卷积和的性质
交换律: 交换律: 结合律: 结合律:
x[k] ∗ { h1[k] ∗ h2[k]} ={ x[k] ∗ h1 [k] } ∗ h2 [k] x[k] ∗ h[k] = h[k] ∗x[k]
∑1
N −1
= 2N −1− k
RN[n]
1
RN[k -n] , N − 1 < k ≤ 2 N − 2 -n]
0
k-(N-1)
N-1
k
n
k > 2N−2时,RN [n]与RN [k−n]图形不再相遇
y[k] = 0
例2 计算 y[k] = RN[k]* RN[k]
1 0 ≤ k ≤ N − 1 R N [k ] = 0 otherwise
卷积和的定义为 计算步骤: 计算步骤:
1) 将x[k]、h[k]中的自变量由k改为n; 2) 把其中一个信号翻转,如将h[n]翻转得 h[−n] ; 3) 把h[−n]平移k,k是参变量。k>0图形右移,k<0图形 左移。 4) 将x[n]与 h[k−n] 相乘; 5) 对乘积后的图形求和。
x[k ] ∗ h[k ] =
差分与求和特性: 差分与求和特性:若f[k]∗h[k]=y[k]
∇x[k ] * h[ k ] = x[ k ] * ∇h[k ] = ∇y[k ]
x[k ] * ∑ h[n] = ( ∑ x[n]) * h[k ] =
n = −∞ n = −∞ k k
n = −∞
∑
k
y[n]
例5 计算 x[k ] = {1, 0, 2, 4} 与 h[k ] = {1, 4, 5, 3}
y[k ] = ∑1 = k + 1
n =0
k-(N-1)
0
k
N- 1
n
例2 计算 y[k] = RN[k]* RN[k]
1 0 ≤ k ≤ N − 1 R N [k ] = 0 otherwise
N−1< k≤ 2N −2时,重合区间为[k −(N−1) ,N−1]
y[k ] =
n = k − ( N −1)
g [k ] = − ∑ ( −1) n + 2 ∑ ( −2) n
n =0 n =0 k k
1 4 1 k k = [− (−1) + (−2) + ]u[k ] 2 3 6
卷积和的计算与性质
图解法计算卷积和 列表法计算卷积和 卷积和的性质
交换律 结合律 分配律 位移特性 差分与求和特性
一、图解法计算卷积和 图解法计算卷积和
1 0 ≤ k ≤ N − 1 R N [k ] = 0 otherwise
y[k] = 0
k < 0时, RN [n]与RN [k−n]图形没有相遇
RN[k -n] , k < 0 1 RN[n]
k-(N-1)
k
0
N-1
k
n
0≤ k ≤ N −1时,重合区间为[0,k]
RN[k -n] , 0 ≤ k ≤ N − 1 1 RN[n]
例1 描述某离散因果LTI系统的差分方程为 y[k ] + 3 y[k − 1] + 2 y[k − 2] = x[k ] 求系统的单位脉冲响应h[k]。 解:h[k]满足方程
h[k ] + 3h[k − 1] + 2h[k − 2] = δ [k ]
1) 求等效初始条件
对于因果系统有h[−1] = h[−2] = 0,代入上面方程可推出
的卷积和。 解:
=
n = −∞
∑
+∞
α k u[k ] * β k u[k ]
α n u[n] ⋅ β k − n u[ k − n]
β k +1 − α k +1 k ≥0 u[k ] α ≠ β = β −α k < 0 (k + 1)a k u[k ] α = β
k α n ⋅ β k −n ∑ = n =0 0
y[k]
y[k]=0
y[ k ] =
n=0
∑
k
a k −n
1 k
0
例2 计算 y[kቤተ መጻሕፍቲ ባይዱ = RN[k]* RN[k]
1 0 ≤ k ≤ N − 1 R N [k ] = 0 otherwise
RN[k] 或 RN[k]
1 k 0
RN[-n] 1
N- 1
n
-(N-1)
0
n
例2 计算 y[k] = RN[k]* RN[k]
g[ k ] =
n = −∞
∑ h[n]
k
h[k]=g[k]−g[k−1]
例2 求例1所述系统的单位阶跃响应 g[k]。
例1 若描述某离散时间LTI系统的差分方程为
y[k ] + 3 y[k − 1] + 2 y[k − 2] = x[k ]
解: 例1 所述系统的单位脉冲响应为 h[k] = [ −(−1)k + 2(−2)k ] u[k] 利用h[k]与g[k] 的关系,可得
∑1
N −1
= 2N −1− k
y[k] = 0
k > 2N−2时,RN [n]与RN [k−n]图形不再相遇