数值计算方法 第三章 多项式插值与函数逼近(1)

合集下载

高中数学中的插值与多项式逼近

高中数学中的插值与多项式逼近

高中数学中的插值与多项式逼近在高中数学中,插值和多项式逼近是两个重要的概念和技巧。

它们在数学和工程领域中具有广泛的应用,可以用来解决实际问题,提高计算精度和效率。

本文将对插值和多项式逼近进行介绍和探讨。

一、插值的概念和应用1. 插值的概念插值是指通过已知数据点构造一个函数,使得这个函数在已知数据点上与已知函数或数据完全一致。

插值的目的是为了通过已知的离散数据点来估计未知的数据点,从而实现对数据的预测和补充。

2. 插值的应用插值在实际应用中非常广泛,例如地理信息系统中的地图绘制、图像处理中的图像重建、金融领域中的股票价格预测等。

通过插值方法,可以根据已知数据点的特征和规律,推断出未知数据点的值,从而提供更准确的预测和分析。

二、插值方法1. 拉格朗日插值法拉格朗日插值法是一种常用的插值方法,它通过构造一个多项式函数来逼近已知数据点。

这个多项式函数通过已知数据点的横纵坐标来确定,从而实现对未知数据点的估计。

2. 牛顿插值法牛顿插值法是另一种常用的插值方法,它利用差商的概念来构造一个多项式函数。

差商是指已知数据点之间的差值与对应函数值之间的比值,通过差商的递归计算,可以得到一个多项式函数,从而实现对未知数据点的估计。

三、多项式逼近的概念和方法1. 多项式逼近的概念多项式逼近是指通过一个多项式函数来逼近已知函数或数据,使得这个多项式函数在已知数据点上与已知函数或数据最接近。

多项式逼近的目的是为了简化计算和分析,提高计算效率和精度。

2. 最小二乘法最小二乘法是一种常用的多项式逼近方法,它通过最小化已知数据点与多项式函数之间的误差平方和,来确定最优的多项式函数。

最小二乘法可以用来解决数据拟合、曲线拟合等问题,广泛应用于统计学、信号处理等领域。

四、插值与多项式逼近的比较1. 精度比较插值方法可以通过已知数据点完全重构已知函数或数据,因此在已知数据点上的精度非常高。

而多项式逼近方法则是通过一个多项式函数来逼近已知函数或数据,因此在已知数据点上的精度可能会有一定的误差。

数学中的函数逼近与插值方法

数学中的函数逼近与插值方法

数学中的函数逼近与插值方法函数逼近和插值方法是数学中重要的概念与技术。

在数学与应用领域,我们经常会遇到需要近似计算或者重建一个函数的情况。

函数逼近和插值方法提供了一种有效的手段,能够用一个简单的函数或者曲线来近似代替原函数,并在一定程度上保留原函数的性质与结构。

1. 函数逼近在函数逼近中,我们需要给出一个近似函数,使其能够在原函数的一定范围内进行准确的近似。

这一方法常用于数据分析和拟合,以及在一些数学问题中的近似求解。

常见的函数逼近方法包括最小二乘逼近、Chebyshev逼近和插值型逼近等。

最小二乘逼近是一种通过使残差平方和最小化来确定近似函数的方法。

它的基本思想是将原函数表示为一个线性组合,通过求解线性方程组的最优解来确定系数。

Chebyshev逼近使用Chebyshev多项式来逼近函数。

这种方法的优点是能够在给定的逼近度下,取得最均匀的最小误差。

插值型逼近则是通过在一些数据点上确定一个插值多项式,然后用该多项式来逼近原函数。

这种方法的优点是能够在给定的数据点上实现完全的逼近。

2. 插值方法插值方法是一种通过给定的数据点来确定一个连续函数的方法。

在插值中,我们希望找到一个函数,使其通过给定的数据点,并且能够在这些点之间进行连续的插值。

常见的插值方法包括线性插值、拉格朗日插值和样条插值等。

线性插值是一种简单的插值方法,它假设插值函数在两个给定数据点之间是线性的。

通过连接两个邻近点,我们可以得到一个线性函数来近似整个区间上的函数。

拉格朗日插值是一种通过拉格朗日多项式来插值的方法。

它的基本思想是通过在每个数据点上构造一个插值多项式,然后将这些多项式进行线性组合来得到插值函数。

样条插值是一种在给定数据点上通过拟合一系列分段低次多项式来插值的方法。

这样可以在各个小区间上获得更好的逼近效果。

总结起来,函数逼近与插值方法是数学中重要且常用的技术。

它们在数学建模、数据分析以及计算数值方法中都起到了关键的作用。

数学中的函数逼近与插值

数学中的函数逼近与插值

数学中的函数逼近与插值数学中的函数逼近与插值是一门重要的数学分支,通过近似求解函数与数据之间的关系,可以快速计算和预测未知的数值。

本文将介绍函数逼近与插值的基本概念和方法,并探讨其在实际应用中的价值和意义。

一、函数逼近函数逼近是指通过一系列已知的数据点来建立一个近似的函数模型,以便于计算和预测未知的数值。

在实际应用中,我们经常需要使用函数逼近来处理大量的数据,从而节省计算和存储资源。

1.1 最小二乘法最小二乘法是函数逼近的常用方法,它通过最小化实际观测数据与模型预测值之间的误差平方和,来确定函数逼近的参数。

最小二乘法可以应用于线性和非线性函数逼近,是一种广泛使用的数学工具。

1.2 插值法插值法是函数逼近的一种常见技术,它通过已知的数据点构建一个多项式函数,以逼近未知的函数模型。

插值法可以根据数据点的特点选择不同的插值多项式,如拉格朗日插值、牛顿插值等。

插值法在图像处理、信号处理等领域有广泛应用。

二、函数插值函数插值是指通过已知的数据点来构建一个连续的函数模型,以便于在任意位置计算函数值。

函数插值在数学、计算机科学和工程领域具有重要的应用价值。

2.1 插值多项式插值多项式是函数插值的一种常用方法,它通过已知的数据点构建一个多项式函数,以逼近未知的函数模型。

插值多项式可以使用拉格朗日插值、牛顿插值等方法进行构造,这些方法在实际应用中具有较好的效果。

2.2 样条插值样条插值是一种更加精确和平滑的插值方法,它通过已知的数据点构建一系列分段连续的多项式函数,以逼近未知的函数模型。

样条插值可以解决插值多项式在几点处不光滑的问题,常用的样条插值方法有线性样条插值、二次样条插值和三次样条插值等。

三、函数逼近与插值在实际应用中的意义函数逼近与插值在科学研究和工程实践中具有广泛的应用,对于大数据处理、数值计算和机器学习等领域具有重要的作用和意义。

3.1 数据拟合与预测函数逼近与插值可以通过已知的数据点建立一个模型,从而对未知的数据进行拟合和预测。

计算方法第三章(插值法)解答

计算方法第三章(插值法)解答

Aitken(埃特肯)算法 N 0,1,,k , p ( x) L( x) N 0,1,,k ( x)
N 0,1,,k 1, p ( x) N 0,1,,k ( x) x p xk
Neville(列维尔)算法
( x xk )
Ni ,i 1,,k ( x) L( x) Ni ,i 1,,k 1 ( x) Ni 1,i 2,k ( x) Ni ,i 1,,k 1 ( x) xk xi ( x xi )
( x0 , y0 ), ( x1 , y1 )
容易求出,该函数为:
x x0 x x1 y y0 y1 x0 x1 x1 x0
一般插值问题:求过n+1个点
( x0 , y0 ), ( x1 , y1 ),,( xn , yn )
的不超过n次多项式 Ln ( x )。
Ln ( x) yi li ( x )
例子:求方程 x3-2x-5=0 在(2 , 3)内的根 思路: 设 y = f(x) =x3-2x-5 ,其反函数为 x=f -1(y),则 根为x* =f -1(0) 。先用3= f -1(16), 2= f -1(-1)插值,得 N0,1 (y) ≈f -1(y), 计算N0,1 (0)= 2.058823, f(2.058823) = -0.39 ,以-0.39为新的节点,继续……
第三章 插值法
第一节 插值多项式的基本概念
假设已经获得n+1点上的函数值
f xi yi , i 0,1,, n,
即提供了一张数据表
x
y f x
x0
y0
x1
y1
x2


xn
y2

函数逼近与插值

函数逼近与插值

函数逼近与插值函数逼近和插值是数学的两个重要分支,在工程、科学和金融等领域都有广泛的应用。

本文将从数学角度介绍这两个概念,并讨论它们的优缺点和应用领域。

函数逼近函数逼近是指用一个已知的函数来近似另一个函数的过程。

通常情况下,我们会选择一组基函数,将待逼近函数表示为基函数的线性组合形式,然后通过确定基函数的系数,使得逼近函数与原函数的误差最小。

常用的基函数包括多项式、三角函数、指数函数等,其中最为广泛应用的是多项式基函数。

多项式函数的优点在于易于计算和控制,同时由于其具有良好的局部逼近性,因此在实际应用中得到了广泛的应用。

以多项式逼近为例,设待逼近函数为$f(x)$,逼近函数为$p(x)$,则有:$$p(x)=a_0+a_1x+a_2x^2+...+a_nx^n$$其中,$a_0,a_1,a_2,...,a_n$为待求系数。

我们可以通过最小二乘法来确定这些系数,即$$\min\limits_{a_0,a_1,...,a_n}\sum\limits_{i=1}^n(f(x_i)-p(x_i))^2$$这个问题可以通过求解线性方程组的方式得到解析解,也可以通过牛顿迭代等数值优化算法得到近似解。

在实际应用中,我们通常会选择适当的基函数来进行逼近,例如在图像处理中,一般采用的是小波基函数,而在金融工程中,常用的则是Gaussian基函数。

不同的基函数对逼近结果的精确度和复杂度有着不同的影响,因此需要根据具体的需求来选择适当的基函数。

函数插值函数插值是指通过已知的样本点来求出一条经过这些点的曲线的过程。

具体来说,就是找到一个函数$p(x)$,使得$p(x_i)=f(x_i)$,其中$x_i$为已知的样本点。

该函数$p(x)$称为插值函数。

常见的插值方法包括拉格朗日插值、牛顿插值、样条插值等。

其中,拉格朗日插值最为简单直观,其基本思想是假设插值函数为一个多项式,并通过已知的样本点来确定该多项式的系数。

例如,在二次插值中,设插值函数为$p(x)=ax^2+bx+c$,则有$p(x_1)=f(x_1),p(x_2)=f(x_2),p(x_3)=f(x_3)$。

插值与逼近

插值与逼近

插值与逼近一插值多项式有时候我们只知道函数f(x)在区间[a,b ]上的一系列点的函数值,即知道i i y x f =)(,而不知道它在区间[a,b ]上的具体的函数表达式。

所以,无法研究该函数在其它点上的函数值的变化;也有些时候在[a,b ]区间上的函数)(x f 的表达式十分复杂,不便于利用函数的表达式研究问题。

插值法就是构造插值函数)(x p y =去近似被插值函数)(x f y =,使之满足插值条件)(i i x p y =。

通常我们构造插值多项式。

插值多项式就是利用一些已知的函数值所做的既能反映原来函数的主要性质,又有简单形式的一种较好的替代函数。

求插值多项式的基本思想:设函数)(x f 在区间[a,b ]上连续。

已知它在],[b a 上1+n 个互不相同的点nx x x ,,,10Λ处的值n y y y ,,,10Λ。

如果多项式)(x p 在点i x 上满足),,1,0()(n i y x p ii Λ==则称)(x p 是函数)(x f 的插值多项式。

在本章中讨论拉格朗日插值多项式、牛顿插值多项式、埃尔米特插值多项式和分段插值多项式。

1. 拉格朗日插值多项式拉格朗日插值法是最基本、最常用的插值方法,也是其他插值方法的基础。

我们讲授的拉格朗日插值多项式包括线性插值多项式、抛物线插值多项式和n 次插值多项式拉格朗日插值多项式的公式为:)())(()()()())(()()()()()()()()()(1101000110n i i i i i i i n ini i i ni i i n n o n x x x x x x x x x x x x x x x x y x x x x y x l y x l y x l y x l x L -⋅⋅⋅--⋅⋅⋅-='-⋅⋅⋅--='-==+⋅⋅⋅++=+-==∑∑ωωωω其中基函数的公式为:),...,2,1()()()())...()()...()(())...()()...()(()(11101110n i x x x x x x x x x x x x x x x x x x x x x x x x x l i i n i i i i i i i n i i i ='-=----------=+-+-ωω余项公式为),()()!1()()()()(1)1(b a x n f x P x f x R n n n n ∈+=-=++ξωξ其中拉格朗日插值多项式计算步骤:⑴ 准确计算插值基函数。

多项式插值和最佳逼近简析及比较

多项式插值和最佳逼近简析及比较

多项式插值和最佳逼近简析及比较多项式插值法是将若干离散的数据点用某个规律的多项式的综合函数来拟合表示,适用于已知曲线但未知函数时,利用经过几个点的函数值形成的初等多项式确定曲线上所有点的值。

最佳逼近是以尽量减少离散点与所拟合曲线的均方误差,或者存在一般约束条件下最小化拟合误差的极小曲线为目的。

条件约束的最小曲线常数的综合函数叫做最佳逼近曲线,其特色是在一定条件下准确地逼近离散点,甚至可以精确地逼近实质上的曲线。

比较:
1. 多项式插值更加简单,计算量小,但过拟合的可能性比较大,特别是当数据点分布不够均匀时;
2. 最佳逼近算法比较复杂,耗时较长,但是更拟合数据,并且能够尽量减少离散点与所拟合曲线的均方误差,更能够认型数据分布规律。

多项式插值与数值逼近理论

多项式插值与数值逼近理论

多项式插值与数值逼近理论多项式插值和数值逼近是数学分析领域中重要的数值计算方法,在科学计算、数据处理和图像处理等领域具有广泛应用。

本文将介绍多项式插值和数值逼近的基本概念、方法和应用。

一、多项式插值多项式插值是一种通过已知数据点来构造一个多项式函数,使该函数在给定点处的函数值与真实值尽可能接近的方法。

插值多项式通过在已知数据点之间“填充”适当的多项式函数,从而实现对未知函数的近似估计。

1.1 基本定义给定 n+1 个数据点(x0, y0),(x1, y1),...,(xn, yn),其中x0<x1<...<xn,多项式插值的目标是找到一个n次多项式 P(x),使得P(xi) = yi 对于所有的 i=0,1,...,n 成立。

1.2 拉格朗日插值多项式拉格朗日插值多项式是一种常用的多项式插值方法。

给定 n+1 个数据点(x0, y0),(x1, y1),...,(xn, yn),拉格朗日插值多项式可以通过如下公式得到:P(x) = ∑[i=0,n]( yi * li(x) )其中li(x) = ∏[j=0,n,j≠i]( (x-xj)/(xi-xj) ),称为拉格朗日基函数。

1.3 牛顿插值多项式牛顿插值多项式是另一种常用的多项式插值方法。

给定 n+1 个数据点(x0, y0),(x1, y1),...,(xn, yn),牛顿插值多项式可以通过如下公式得到:P(x) = ∑[i=0,n]( ci * Ni(x) )其中Ni(x) = ∏[j=0,i-1]( x-xj ),ci 是插值节点上的差商。

二、数值逼近数值逼近是一种利用已知数据点来估计未知函数的方法,数值逼近的目标是找到一个函数近似值,使其与真实值之间的差别尽可能小。

数值逼近可以通过多项式逼近、三角函数逼近等方法实现。

2.1 最小二乘逼近最小二乘逼近是一种常用的数值逼近方法。

给定 n+1 个数据点(x0, y0),(x1, y1),...,(xn, yn),最小二乘逼近的目标是找到一个 m 次多项式 P(x),使得P(x) = ∑[i=0,m]( ai * φi(x) ),其中 ai 是待确定的系数,φi(x) 是 m 个已经确定的基函数。

数值计算方法课后习题答案

数值计算方法课后习题答案

第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。

[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。

2、设x 的相对误差为2%,求n x 的相对误差。

[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。

3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。

[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。

4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。

(1)*4*2*1x x x ++; [解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。

第三章 参数多项式的插值与逼近

第三章 参数多项式的插值与逼近

第三章 参数多项式的插值与逼近2009年8月29日10时35分 1本章内容•几何不变性与参数变换•参数多项式插值与逼近的基本概念•参数多项式插值曲线与逼近曲线•张量积曲面•参数双三次曲面片2009年8月29日10时35分 22009年8月29日10时35分 3第一节 几何不变性和参数变换 • 一、几何不变性:1、定义:指曲线曲面不依赖于坐标系的 选择,或者说在旋转与平移变化下不变 的性质。

2、曲线曲面的基表示: 0 n i i i P a j = = å r r 其中: 为矢量系数,修改它可以改变曲线曲面的形状i a r i j 为单参数(表示曲线时)或双参数(表示曲面时) 的基函数,决定曲线曲面的几何性质2009年8月29日10时35分 43、基表示的分类:(1)规范基表示:即满足Cauchy 条件 也称权性。

这种表示下,曲线 (面)上的点是矢量系数的一个重心组 合,重心坐标是基函数。

其中 一、几何不变性:0 1n i i j = º å 我们常见的线性插值就是一种规范基表示。

(2)部分规范基表示:即满足 0 1,0 ki i k n j = º£< å 如: 01 () p u a a u =+ r r r 0 1j =一、几何不变性:(3)非规范基表示:除规范基表示和部分规范基表示以外的其它基表示。

4、基表示与几何不变性的关系:曲线曲面的规范基表示具有仿射不变性, 其余两种只具有几何不变性。

5、几何不变性的意义: (1)方便局部坐标与整体坐标之间的转换;(2)便于平移和旋转变换;(3)节省了计算量。

2009年8月29日10时35分 5• 1、概述• 曲线的参数域总是有界的。

• 曲线的参数可能有某种几何意义,也可能没有。

• 曲线的参数化:即确定曲线上的点与参数域中的参数值之间的一种对应关系。

• 这种对应关系可以是一一对应的,也可以不是一一对应的,后者称为奇点(Singularpoint),如曲线的自交点。

多项式插值与逼近

多项式插值与逼近
讲到特殊的多项式基-----幂 (单项式monomial)基
3.1.2 数据点的参数化 欲唯一的确定一条插值于n+1个点Pi(i=0,1,…,n)的参 数插值曲线或逼近曲线,必须先给数据点Pi赋予相 应的参数值Ui,使其形成一个严格递增的序列,称 为关于参数u的一个分割(partition),其中,每个参数 值称为节点(knot)或断点(breakpoint)
通常,用逼近曲线上参数值为Uk的点P(Uk)与数据点Pk间距离 的平方和
J = P(u k )-Pk =J x +J y +J z
2 k=0
m
达到最小来刻划逼近的程度。下面就是根据求偏导来计算。
由于输入比较麻烦,就不详细了
3.4 弗格森参数三次曲线
由于高次参数多项式曲线存在缺点,不适合用来插值,而低 次多项式曲线又难以用来描述形状复杂的曲线。唯一的选择 就是:将一段段低次曲线在满足一定的连接条件下逐段拼接 起来。这样以分段(piecewise)方式定义的曲线称为组合 (composite)曲线。
=
p(1)

= p (0) = p 1
可以写成矩阵的形式,可以求解出系数矢量。
0 1 -2 1
将上式代入(3.1)得
p(t)= 1 t t 2
p(0) 1 0 0 0 0 0 1 0 p(1) t3 -3 3 -2 -1 p (0) 2 -2 1 1 p (1)
3.4.1 参数三次曲线方程
参数三次(parametric cubic)曲线,简称PC曲线,若采用 幂基表示
p(t)=a0 +a1 t +a2 t +a3 t t [0,1]

函数逼近的几种算法及其应用

函数逼近的几种算法及其应用

函数逼近的几种算法及其应用函数逼近是数值计算中的一种重要技术,用于在给定的函数空间中找到与目标函数最相近的函数。

函数逼近算法可以在不知道目标函数解析表达式的情况下,通过对给定数据进行处理来逼近目标函数的结果。

这篇文章将介绍几种常见的函数逼近算法及其应用。

1.多项式逼近:多项式逼近是一种利用多项式函数逼近目标函数的方法。

多项式逼近算法有很多种,常见的有最小二乘法、拉格朗日插值法和牛顿插值法等。

多项式逼近广泛应用于数据拟合、信号处理和图像处理等领域。

最小二乘法是一种通过最小化实际观测值与多项式模型之间的差异来确定多项式系数的方法。

最小二乘法可以用于拟合非线性和线性函数。

拉格朗日插值法和牛顿插值法是通过插值多项式来逼近目标函数的方法,可以用于填充缺失数据或者生成曲线过程中的中间点。

2.三角函数逼近:三角函数逼近是一种利用三角函数来逼近目标函数的方法。

三角函数逼近算法有傅里叶级数逼近和小波变换等。

傅里叶级数逼近是一种利用三角函数的线性组合来逼近目标函数的方法。

这种方法广泛应用于信号处理、图像处理和数学建模等领域。

小波变换是一种通过特定的基函数来逼近目标函数的方法。

小波变换可以用于信号去噪、图像压缩和模式识别等应用。

3.插值逼近:插值逼近是一种通过已知数据点在给定区间内的函数值来确定目标函数的方法。

常见的插值逼近方法有拉格朗日插值法、牛顿插值法和差值多项式法等。

插值逼近广泛应用于任何需要通过已知数据点来逼近目标函数的领域。

在实际应用中,函数逼近常用于数据分析和模型构建。

例如,在金融领域,函数逼近可以用于确定股票价格走势的模型和预测。

在工程领域,函数逼近可以用于建立复杂系统的模型和优化控制。

在计算机图形学领域,函数逼近可以用于生成真实感图像和动画。

总结起来,函数逼近是一种重要的数值计算技术,有多种算法可供选择。

多项式逼近、三角函数逼近和插值逼近是常见的函数逼近算法。

函数逼近广泛应用于数据分析、模型构建和优化控制等领域,对于解决实际问题具有重要作用。

多项式逼近和插值

多项式逼近和插值

多项式逼近和插值多项式逼近和插值是计算数学中的两个基本概念,它们是求一定准确度下函数近似值所必须采用的数值方法。

多项式逼近是指用低阶多项式逼近原函数,插值是利用已知数据点在插值区间内构造一个多项式函数,使得该函数在已知数据点处等于原函数。

它们的应用范围很广,包括科学工程计算、图像处理、信号处理等领域。

下面介绍它们的原理和应用。

一、多项式逼近当我们需要用低阶多项式逼近原函数时,可以采用最小二乘法。

最小二乘法是一种在数据拟合中广泛使用的方法,通过将误差的平方和最小化来确定函数的系数。

假设给定函数$f(x)$及其在$n+1$个采样点$(x_0,y_0),(x_1,y_1),...,(x_n,y_n)$处的值,我们要用一个$m$次多项式$p_m(x)$去逼近$f(x)$。

我们可以将$p_m(x)$表示为$p_m(x)=a_0 + a_1x + a_2x^2 + ... + a_mx^m$,则函数的误差可以表示为$E(a_0,a_1,...,a_m)=\sum_{i=0}^n [f(x_i)-p_m(x_i)]^2$,通过最小化误差函数来确定多项式系数$a_0,a_1,...,a_m$。

最小二乘法可以用线性代数和矩阵计算方法求解。

最小二乘逼近是一种非常有效的数据拟合方法,并且有许多实际应用。

例如,在金融领域中,我们可以用该方法来估计股票期权价格;在图像处理中,我们可以用该方法实现图片的平滑处理和降噪处理。

二、插值插值是利用已知数据点构造一个多项式函数,使得该函数在已知数据点处等于原函数。

插值法可分为以下两种情况:一是利用拉格朗日插值公式,将函数表示为已知节点函数的线性组合;二是利用牛顿插值公式,基于差商的思想构造插值多项式。

两种方法的计算效果是相同的,但在计算机实现过程中,两者有些微小的差别。

在实际应用中,插值方法常常用于图像处理、信号处理、数值微分和数值积分等问题,例如,在金融领域中,也可以利用插值方法对期权的未来价格进行预测。

《数值分析》第3讲:函数逼近与计算

《数值分析》第3讲:函数逼近与计算
想)
函数的逼近与计算
pn * ( x) ? 1、Chebyshev给出如下概念
设 f ( x) C[a,b], 如p果( x) Hn ,
f (x)
|
p( x0 )
f
(
x0
)
|
max
a xb
|
p( x)
f ( x) |
p4 0*(x)
则称 x是0 偏差点。
如果 p( x0 ) f ( x0 ) 则称 x是0 正偏差点。
b
2a
a0 (
x ) 0 (
x)k
(
x)dx
b
b
2a an( x)n( x)k ( x)dx 2a ( x) f ( x)k ( x)dx

I ak
2a0 0( x),k ( x) 2a11( x),k ( x)
2an n( x),k ( x) 2 f ( x),k ( x)
函数的逼近与计算

1
1 1
2
n1
1 H 2
1 3
1 n2
1 n 1
1 n2
1 2n 1
例3.2 (P56)
已知 f ( x) 1 x2 C[0, 1], span{1, x}

1
(0 , 0 )
1dx 1,
0
(0 , 1)
1
1
xdx
0
2
(1, 0 )
1
1
xdx ,
▲ 1856年解决了椭圆积分的雅可比逆转问题,建立了椭圆函数 新结构的定理,一致收敛的解析函数项级数的和函数的解析性的 定理,圆环上解析函数的级数展开定理等。
函数的逼近与计算

函数逼近中的插值和逼近理论

函数逼近中的插值和逼近理论

函数逼近是数学中的一个重要分支,旨在通过已知的数据点构造一个逼近目标函数的函数,并用于预测未知数据值。

在函数逼近中,插值和逼近理论是两种常见方法。

插值是通过已知数据点在特定区间内构造一个函数,使该函数通过所有已知数据点。

插值函数在已知数据点上完全匹配原函数,但在其他位置可能会有较大误差。

常用的插值方法有拉格朗日插值和牛顿插值。

拉格朗日插值是一种通过拉格朗日多项式将函数逼近到已知数据点的方法。

该方法利用了拉格朗日多项式具有唯一性的性质,可以通过已知数据点构造一个唯一的函数。

这个唯一函数将准确地经过已知数据点,但在其他位置的逼近可能不够理想。

牛顿插值是一种利用差商和牛顿插值多项式来逼近函数的方法。

差商的定义是通过已知数据点的函数值来定义的,可以递归地计算出牛顿插值多项式的系数。

牛顿插值在构造插值函数时比拉格朗日插值更方便,并且在处理带噪声的数据时表现更好。

插值方法的优点是对已知数据点完全匹配,但缺点是在其他位置可能存在较大误差。

插值方法适用于已知数据点密集的情况,对于数据点较少或有噪声的情况可能不够适用。

逼近理论是另一种函数逼近的方法,它通过在整个区间内构造一个函数,使该函数与目标函数在整个区间上的误差最小。

逼近方法的目标是尽可能通过已知数据点,同时在整个区间上的误差最小。

常用的逼近方法有最小二乘逼近和Chebyshev逼近。

最小二乘逼近是一种通过最小化目标函数和逼近函数之间的二乘误差来逼近函数的方法。

该方法通过求解线性方程组来确定逼近函数的系数,使得目标函数和逼近函数之间的二乘误差最小。

最小二乘逼近在处理带噪声的数据时表现良好,同时对于数据点较少的情况也适用。

Chebyshev逼近是一种通过构造一系列Chebyshev多项式来逼近函数的方法。

这些多项式在某些特定点上取值最大,因此在逼近函数时能够在整个区间上准确逼近目标函数。

Chebyshev逼近在逼近理论中具有广泛的应用,能够以较高的精度逼近各种函数。

数值分析--chapter3 多项式插值与样条插值

数值分析--chapter3 多项式插值与样条插值
end41牛顿newton插值差商二维数组pn数组p的第1列为节点值x第2列为函数值y42牛顿newton插值牛顿插值公式及其余项n次牛顿插值多项式n1542牛顿newton插值牛顿插值公式及其余项牛顿插值余项rn1t是数据x1次多项式nn1t与n次多项式n1642牛顿newton插值牛顿插值公式及其余项由于nn11次牛顿插值多项式则在点x处一定满足插值条件42牛顿newton插值牛顿插值公式及其余项牛顿插值多项式的余项1
其中Ak 为待定系数。
由条件lk (xk ) = 1 可定Ak ,于是
lk=(xj)=n0=xx(k−x−k(xx−xjj−x0x)0()x(kx−−xx11))······((xxk−−xxkk−−11))((xx−k −xkx+k1+)1·)···(··x(−xkx−n)xn)
(6)
j =k
§3.2 拉格朗日(Lagrange)插值−−拉格朗日插值多项式
基函数法:由线性空间的基出发,构造满足插值条件的多项式方 法。
用基函数法求插值多项式分两步:
(1)定义n + 1个线性无关的特殊代数多项式(插值基函数), 用ϕ0(x), · · · , ϕn(x)表示;
(2)利用插值条件,确定插值基函数的线性组合表示的n次插值多
项式
p(x) = a0ϕ0(x) + a1ϕ1(x) + · · · + anϕn(x)
− −
x0 x0
y1
(8)
用L1(x)近似代替f (x)称为线性插值,公式(8)称为线性插值多项 式或一次插值多项式。
§3.2 拉格朗日(Lagrange)插值−−拉格朗日插值多项式
当n = 2时,拉格朗日插值多项式(7)为

初识插值法和逼近法

初识插值法和逼近法

初识插值法和逼近法插值法和逼近法是数值分析领域中常用的数值逼近方法。

两者在数学和工程领域均有广泛的应用。

本文将会介绍插值法和逼近法的基本原理、常用方法以及应用实例等内容。

一、插值法1. 插值法的基本原理插值法是利用一系列已知数据点,通过构造一个适当的函数来近似代替这些数据点之间未知函数的数值。

插值方法的基本思想是通过已知数据点的数值来推导出未知函数在数据点之间的数值,从而利用得到的函数对其他未知数据进行估计预测。

2. 常用插值方法(1)拉格朗日插值法:拉格朗日插值法是一种基于多项式的插值方法。

通过构造一个多项式函数,使其经过已知数据点,从而利用该多项式函数来逼近未知函数。

(2)牛顿插值法:牛顿插值法也是一种基于多项式的插值方法。

它通过构造一个递推公式,逐步逼近未知函数。

(3)样条插值法:样条插值法是一种相对较为复杂的插值方法。

它将函数划分为多个小区间,并在每个区间上构造一个低次多项式,利用这些多项式来逼近真实函数。

3. 插值法的应用实例插值法在工程和科学领域有广泛应用。

例如,在图像处理中,插值法常用于图像的放大和缩小。

在地理信息系统中,插值法可用于构建高程模型。

此外,插值法还在金融领域中用于利率曲线的估计等。

二、逼近法1. 逼近法的基本原理逼近法是指通过选择一个适当的函数类,使其与所需逼近的函数相似,从而用该函数类逼近未知函数。

逼近方法的基本思想是通过一些已知的函数,找到一个最接近未知函数的函数。

2. 常用逼近方法(1)最小二乘逼近法:最小二乘逼近法是一种通过最小化残差平方和来逼近未知函数的方法。

它通过构造一个最优解,选择一个函数类,使其与未知函数的残差平方和最小。

(2)离散逼近法:离散逼近法是一种基于离散数值数据的逼近方法。

它通过选择一个函数类,在已知数据点上的函数值与未知函数在这些数据点上的函数值之间的差异最小。

3. 逼近法的应用实例逼近法在信号处理、数据拟合和函数逼近等领域有广泛应用。

例如,在信号处理中,逼近法可用于去除噪声信号。

函数逼近与插值法

函数逼近与插值法

函数逼近与插值法是数学中重要的概念和方法,它们在科学研究和实际应用中具有广泛的应用。

函数逼近是指利用已知数据点构造一个与原函数具有相似性质的函数,而插值法则是在一组已知数据点上确定一个函数,使得该函数在这些点上与已知值完全相等。

函数逼近在数学中被广泛应用于求解问题的数值解,特别是在数值计算和数值分析中。

通过将实际问题转化为数学形式,我们可以用函数逼近来近似求解问题。

例如,在多项式函数逼近中,我们可以通过极小化逼近函数与原函数之间的差距来确定逼近函数的系数,从而得到问题的数值解。

插值法是在一组已知数据点上确定一个函数的方法,它在计算机图形学、数据处理、信号处理等领域中得到广泛应用。

在插值法中,我们通过已知数据点上的函数值来确定一个函数,使得该函数在这些点上与已知值完全相等,从而可以在这些点之外的区域进行函数值的预测。

函数逼近与插值法都需要根据给定的问题和数据点选择合适的逼近函数或插值函数。

常用的逼近函数包括多项式、三角函数、指数函数等,而插值函数则通常使用拉格朗日插值、牛顿插值等。

选择合适的函数形式和插值方法对于问题求解的准确性和效率起着至关重要的作用。

函数逼近与插值法的核心思想是用简单的函数近似描述一个复杂函数的行为。

在实际问题中,我们常常无法找到精确的数学表示,但通过逼近和插值,我们可以在局部区域获得近似的值,从而帮助我们更好地理解和解决问题。

然而,函数逼近与插值法也存在一些局限性。

首先,逼近过程中所选的函数形式可能与原函数的性质不吻合,导致逼近结果的误差较大。

其次,在插值法中,过分关注已知数据点的函数值可能导致插值函数在数据点之外的区域出现较大的误差。

因此,在实际应用中,我们需要仔细选择逼近函数和插值方法,避免引入较大的误差。

总结起来,函数逼近与插值法是数学中重要的概念和方法,它们在科学研究和实际应用中都有广泛的应用。

通过函数逼近和插值,我们可以近似描述和预测复杂的现象和问题。

然而,由于逼近和插值过程中引入的误差,我们需要注意选择合适的逼近函数和插值方法,以提高逼近和插值结果的准确性和可靠性。

计算物理学:第三章 函数逼近(插值和拟合)

计算物理学:第三章 函数逼近(插值和拟合)

x0=1, x1=4, x2=9
y0=1, y1=2, y2=3
y(x)
=
(x− (x0 −
x1)(x− x2) x1)(x0 −x2)
y0
+
(x− (x1 −
x0)(x− x2) x0)(x1 −x2)
y1
+
(x− (x2 −
x0)(x− x1) x0)(x2 −x1)
y2
y(7) = (7− 4)(7− 9) ×1+ (7 −1)(7 − 9) ×2+ (7−1)(7 − 4) ×3 (1− 4)(1− 9) (4−1)(4− 9) (9−1)(9− 4)
xn ) − xn
)
Language 插值程序
1. function f = Language(x, y, x0) :x0 待求点的坐标
2.
3. f = 0.0;
4. for(i = 1:n)
5. l = y(i);
6. for(j = 1:i-1)
7.
l = l*(t-x(j))/(x(i)-x(j));
0858724127582961113拟合曲线与实验点的关系321可化为线性拟合的情形一些非线性关系可以通过变换变为线性关系我们更关心的是关于系数ab是否线性关系lnlnlnlnlnlnln在某化学反应里测得生成物浓度y与时间t的数据如下试建立y关于t的经验公式t12345678910111213141516y40064080088092295097098610001020103210421050105510581060画出时间与浓度
反插值方法
+ ( y + 2.0)( y + 0.8)( y − 0.4) × 2.0 (1.2 + 2.0)(1.2 + 0.8)(1.2 − 0.4)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b a
b
W ( x )dx
2 ( x ) ( x ) ( x ) f ( x )W ( x )dx
( x) ( x) ( x) f ( x)W ( x)dx (b a ) ( x ) f ( x ) ( x )W ( x )dx 0
上述方程组存在唯一解
设由上述方程组的解确定的广义多项式为:
( x) a00 ( x) a11( x)
对于任意广义多项式
ann ( x) bnn ( x)
2
( x) b00 ( x) b11( x)
下面证明
b 2 b
f ( x) ( x) W ( x)dx f ( x) ( x) W ( x)dx
2
,
1 xቤተ መጻሕፍቲ ባይዱ
,x
n
1,cos x,sin x, ,cos nx,sin nx
指数函数系:
e
0 x
,e ,
,e
n x
函数逼近构造思想: 要求构造函数在整个区间上 与已知函数的误差尽可能小
误差度量标准:
(1)
a xb
b
max f ( x ) ( x )
a
(2)

f ( x ) ( x ) W ( x )dx
( x ) 在[a,b]上的最佳平方逼近.
由定义可以看出,最佳平方逼近问题实际上是个多元极值问题

F (a0 , a1 ,
b
, an )
f ( x ) ( x ) W ( x )dx a
b 2
由极值的必要条件
F ak ak
b a
f ( x) ( x) W ( x)dx 0 k 0,1,
p
对于给定的函数系
使得函数 ( x ) (1) (2)
n a x b
b
( x )
j
其中W ( x ) 0为权函数
n
c ( x) 满足
j 0 j j
n
j 0
,寻求一组系数c0 , c1 ,
, cn
lim max f ( x ) ( x ) 0
lim f ( x ) ( x ) W ( x )dx 0
易证Gram矩阵为实对称正定矩阵:
x ( x0 , x1 ,
T T
, xn ) 0
T
x Gn x 0
T
x Gn x x ( , ) x i j ( n1)( n1)
( xk k ( x ), xk k ( x ))
k 0 k 0
n
n
0
将 ( x ) 代入前式:
( i , f ) i ( x ) f ( x )W ( x )dx i 0,1, 2,

Gn ( , ) i j ( n1)( n1)
n
i , j 0,1,
,n
称矩阵
Gn 是关于函数系 j ( x ) j 0的Gram(格拉姆)矩阵
a a

f ( x) ( x) W ( x)dx min
b 2 a

D
f ( x ) ( x ) a
b b
2
W ( x )dx
2
f ( x ) ( x ) a b 2 D ( x ) ( x ) W ( x )dx a
a
b
k 0,1, 2,
b a b
,n
,n ,n
( i , j ) i ( x ) j ( x )W ( x )dx i , j 0,1, 2,
a
( x) a00 ( x) ann ( x ) ( 0 , 0 )a0 ( 0 , 1 )a1 ( 0 , n )an ( 0 , f ) (1 , 0 )a0 (1 , 1 )a1 (1 , n )an (1 , f ) ( n , 0 )a0 ( n , 1 )a1 ( n , n )an ( n , f )
p n a
一致逼近
Lp逼近
二、最佳平方逼近/*Best Approximation in Quadratic Norm*/
假设 f ( x ) C[a, b] , j ( x )


n j 0
是[a,b]上的一个线性无
关函数系,且 j ( x) C[a, b] , W ( x ) 为[a,b]上的一个权函数 如果存在一组系数 使得广义多项式 满足
§6 函数逼近/* Approximation of Function */
一、函数逼近问题的提法
假设 f ( x ) 是定义在某区间 [a , b]上的函数,现寻求另一个构 造简单、计算量小的函数 ( x )来近似地代替:
n
( x ) c00 ( x )
cn n ( x ) c j j ( x )
b
a0 , a1 , , an ( x) a00 ( x )
2
ann ( x )
f ( x) ( x) W ( x)dx min
a
称函数 ( x )为 f
( x ) 在[a,b]上关于权函数 W ( x ) 的最佳
平方逼近或最小二乘逼近;特别,若W ( x ) 1 ,则称 ( x ) 是f
2 a
,n
f ( x) ( x) ( x)W ( x)dx 0
k
k 0,1,
,n
即:

b
a
( x ) k ( x )W ( x )dx f ( x ) k ( x )W ( x )dx
a
b
k 0,1, 2,
,n


b
a
( x ) k ( x )W ( x )dx f ( x ) k ( x )W ( x )dx
j 0
0 ( x),1 ( x), ,n ( x) 为区间[a , b] 上的一个线性无关函数系
c0 , c1 ,
, cn 为一组实常数。
,x
广义多项式
n1
若线性无关函数系取 1, x, x 2 ,
,x
n
就是我们前面讨论的多项式逼近
常用的函数系: 幂 函数系: 1, x, x 三角函数系:
相关文档
最新文档