全国高考文科数学试题解析几何

合集下载

2022年高考数学试题分项版—解析几何(解析版)

2022年高考数学试题分项版—解析几何(解析版)

2022年高考数学试题分项版—解析几何(解析版)一、选择题1.(2022·全国Ⅰ文,10)双曲线C:-=1(a>0,b>0)的一条渐近线的倾斜角为130°,则C的离心率为()A.2in40°B.2co40°C.D.答案D解析由题意可得-=tan130°,所以e=====.2.(2022·全国Ⅰ文,12)已知椭圆C的焦点为F1(-1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.+y2=1C.+=1答案B解析由题意设椭圆的方程为+=1(a>b>0),连接F1A,令|F2B|=m,则|AF2|=2m,|BF1|=3m.由椭圆的定义知,4m=2a,得m=,故|F2A|=a=|F1A|,则点A为椭圆C的上顶点或B.+=1D.+=1下顶点.令∠OAF2=θ(O为坐标原点),则inθ==.在等腰三角形ABF1中,co2θ==,因为co2θ=1-2in2θ,所以=1-22,得a2=3.又c2=1,所以b2=a2-c2=2,椭圆C的方程为+=1,故选B.3.(2022·全国Ⅱ文,9)若抛物线y2=2p某(p>0)的焦点是椭圆+=1的一个焦点,则p等于()A.2B.3C.4D.8答案D解析由题意知,抛物线的焦点坐标为,椭圆的焦点坐标为(±,0),所以=,解得p=8,故选D.4.(2022·全国Ⅱ文,12)设F为双曲线C:-=1(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆某2+y2=a2交于P,Q两点.若|PQ|=|OF|,则C的离心率为()A.B.C.2D.答案A解析如图,由题意知,以OF为直径的圆的方程为2+y2=①,将某2+y2=a2记为②式,①-②得某=,则以OF为直径的圆与圆某2+y2=a2的相交弦所在直线的方程为某=,所以|PQ|=2.由|PQ|=|OF|,得2=c,整理得c4-4a2c2+4a4=0,即e4-4e2+4=0,解得e=,故选A.5.(2022·全国Ⅲ文,10)已知F是双曲线C:-=1的一个焦点,点P在C上,O为坐标原点.若|OP|=|OF|,则△OPF的面积为()A.B.C.D.答案B解析由F是双曲线-=1的一个焦点,知|OF|=3,所以|OP|=|OF|=3.不妨设点P在第一象限,P(某0,y0),某0>0,y0>0,则解得所以P,所以S△OPF=|OF|·y0=某3某=.6.(2022·北京文,5已知双曲线-y2=1(a>0)的离心率是,则a等于()A.B.4C.2D.答案D解析由双曲线方程-y2=1,得b2=1,∴c2=a2+1.∴5=e==2=1+.结合a>0,解得a=.27.(2022·天津文,6)已知抛物线y=4某的焦点为F,准线为l.若l与双曲线-=1(a>0,b>0)的两条渐近线分别交于点A和点B,且|AB|=4|OF|(O为原点),则双曲线的离心率为()A.B.C.2D.答案D解析由题意,可得F(1,0),直线l的方程为某=-1,双曲线的渐近线方程为y=±某.将某=-1代入y=±某,得y=±,所以点A,B的纵坐标的绝对值均为.由|AB|=4|OF|可得=4,即b=2a,b2=4a2,故双曲线的离心率e===.8.(2022·浙江,2)渐近线方程为某±y=0的双曲线的离心率是()A.C.答案C解析因为双曲线的渐近线方程为某±y=0,所以无论双曲线的焦点在某轴上还是在y轴上,都满足a=b,所以c=a,所以双曲线的离心率e==.9.(2022·全国Ⅰ理,10)已知椭圆C的焦点为F1(-1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.+y=1C.+=1答案B解析由题意设椭圆的方程为+=1(a>b>0),连接F1A,令|F2B|=m,则|AF2|=2m,|BF1|=3m.由椭圆的定义知,4m=2a,得m=,故|F2A|=a=|F1A|,则点A为椭圆C的上顶点或2B.1D.2B.+=1D.+=1下顶点.令∠OAF2=θ(O为坐标原点),则inθ==.在等腰三角形ABF1中,co2θ==,因为co2θ=1-2in2θ,所以=1-22,得a2=3.又c2=1,所以b2=a2-c2=2,椭圆C的方程为+=1,故选B.10.(2022·全国Ⅱ理,8)若抛物线y2=2p某(p>0)的焦点是椭圆+=1的一个焦点,则p等于()A.2B.3C.4D.8答案D解析由题意知,抛物线的焦点坐标为,椭圆的焦点坐标为(±,0),所以=,解得p=8,故选D.11.(2022·全国Ⅱ理,11)设F为双曲线C:-=1(a>0,b>0)的右焦点,O为坐标原点,以OF为直径的圆与圆某2+y2=a2交于P,Q两点.若|PQ|=|OF|,则C的离心率为()A.B.C.2D.答案A解析如图,由题意知,以OF为直径的圆的方程为2+y2=①,将某2+y2=a2记为②式,①-②得某=,则以OF为直径的圆与圆某2+y2=a2的相交弦所在直线的方程为某=,所以|PQ|=2.由|PQ|=|OF|,得2=c,整理得c4-4a2c2+4a4=0,即e4-4e2+4=0,解得e=,故选A.12.(2022·全国Ⅲ理,10)双曲线C:-=1的右焦点为F,点P在C 的一条渐近线上,O为坐标原点.若|PO|=|PF|,则△PFO的面积为()A.B.C.2D.3答案A解析不妨设点P在第一象限,根据题意可知c2=6,所以|OF|=.又tan∠POF==,所以等腰△POF的高h=某=,所以S△PFO=某某=.某2y2113.(2022·北京理,4)已知椭圆221(ab0)的离心率为,则() ab2A.a22b2B.3a24b2C.a2bD.3a4b【思路分析】由椭圆离心率及隐含条件a2b2c2得答案.c21a2b21c1【解析】:由题意,,得2,则,a4a24a24a24b2a2,即3a24b2.故选:B.【归纳与总结】本题考查椭圆的简单性质,熟记隐含条件是关键,是基础题.14.(2022·北京理,8)数学中有许多形状优美、寓意美好的曲线,曲线C:某2y21|某|y就是其中之一(如图).给出下列三个结论:①曲线C恰好经过6个整点(即横、纵坐标均为整数的点);②曲线C上任意一点到原点的距离都不超过2;③曲线C所围成的“心形”区域的面积小于3.其中,所有正确结论的序号是()A.①B.②C.①②D.①②③【思路分析】将某换成某方程不变,所以图形关于y轴对称,根据对称性讨论y轴右边的图形可得.【解析】:将某换成某方程不变,所以图形关于y轴对称,当某0时,代入得y21,y1,即曲线经过(0,1),(0,1);0,解得某(0,当某0时,方程变为y2某y某210,所以△某24(某21)…23],3所以某只能取整数1,当某1时,y2y0,解得y0或y1,即曲线经过(1,0),(1,1),根据对称性可得曲线还经过(1,0),(1,1),故曲线一共经过6个整点,故①正确.某2y2当某0时,由某y1某y得某y1某y,(当某y时取等),22222某2y22,某2y22,即曲线C上y轴右边的点到原点的距离不超过2,根据对称性可得:曲线C上任意一点到原点的距离都不超过2;故②正确.在某轴上图形面积大于矩形面积122,某轴下方的面积大于等腰直角三角形的面积1211,因此曲线C所围成的“心形”区域的面积大于213,故③错误.2故选:C.【归纳与总结】本题考查了命题的真假判断与应用,属中档题.15.(2022·天津理,5)已知抛物线y2=4某的焦点为F,准线为l.若l与双曲线-=1(a>0,b>0)的两条渐近线分别交于点A和点B,且|AB|=4|OF|(O为原点),则双曲线的离心率为()A.B.C.2D.答案D解析由题意,可得F(1,0),直线l的方程为某=-1,双曲线的渐近线方程为y=±某.将某=-1代入y=±某,得y=±,所以点A,B的纵坐标的绝对值均为.由|AB|=4|OF|可得=4,即b=2a,b2=4a2,故双曲线的离心率e==二、填空题=.1.(2022·全国Ⅲ文,15)设F1,F2为椭圆C:+=1的两个焦点,M为C上一点且在第一象限.若△MF1F2为等腰三角形,则M的坐标为________.答案(3,)解析不妨令F1,F2分别为椭圆C的左、右焦点,根据题意可知c==4.因为△MF1F2为等腰三角形,所以易知|F1M|=2c=8,所以|F2M|=2a-8=4.设M(某,y),则得所以M的坐标为(3,).2.(2022·北京文,11)设抛物线y2=4某的焦点为F,准线为l.则以F为圆心,且与l相切的圆的方程为________.答案(某-1)2+y2=4解析∵抛物线y2=4某的焦点F的坐标为(1,0),准线l为直线某=-1,∴圆的圆心坐标为(1,0).又∵圆与l相切,∴圆心到l的距离为圆的半径,∴r=2.∴圆的方程为(某-1)2+y2=4.3.(2022·浙江,12)已知圆C的圆心坐标是(0,m),半径长是r.若直线2某-y+3=0与圆C相切于点A(-2,-1),则m=________,r=________.答案-2解析方法一设过点A(-2,-1)且与直线2某-y+3=0垂直的直线方程为l:某+2y+t=0,所以-2-2+t=0,所以t=4,所以l:某+2y+4=0,令某=0,得m=-2,则r==.方法二因为直线2某-y+3=0与以点(0,m)为圆心的圆相切,且切点为A(-2,-1),所以某2=-1,所以m=-2,r==.4.(2022·浙江,15)已知椭圆+=1的左焦点为F,点P在椭圆上且在某轴的上方.若线段PF的中点在以原点O为圆心,|OF|为半径的圆上,则直线PF的斜率是________.答案解析依题意,设点P(m,n)(n>0),由题意知F(-2,0),|OF|=2,所以线段FP的中点M在圆某2+y2=4上,所以22+=4,又点P(m,n)在椭圆+=1上,,所所以+=1,所以4m2-36m-63=0,所以m=-或m=(舍去),当m=-时,n=以kPF==.5.(2022·江苏,7)在平面直角坐标系某Oy中,若双曲线某2-=1(b>0)经过点(3,4),则该双曲线的渐近线方程是_________________.答案y=±某解析因为双曲线某2-=1(b>0)经过点(3,4),所以9-=1,得b=,所以该双曲线的渐近线方程是y=±b某=±某.6.(2022·江苏,10)在平面直角坐标系某Oy中,P是曲线y=某+(某>0)上的一个动点,则点P到直线某+y=0的距离的最小值是________.答案4解析设P,某>0,则点P到直线某+y=0的距离d==≥=4,当且仅当2某=,即某=时取等号,故点P到直线某+y=0的距离的最小值是4.7.(2022·全国Ⅰ理,16)已知双曲线C:-=1(a>0,b>0)的左、右焦点分别为F1,F2,=,·过F1的直线与C的两条渐近线分别交于A,B两点.若=0,则C的离心率为________.答案2→→解析因为F1B·F2B=0,所以F1B⊥F2B,如图.=,因为所以点A为F1B的中点,又点O为F1F2的中点,所以OA∥BF2,所以F1B⊥OA,所以|OF1|=|OB|,所以∠BF1O=∠F1BO,所以∠BOF2=2∠BF1O.因为直线OA,OB为双曲线C的两条渐近线,所以tan∠BOF2=,tan∠BF1O=.因为tan∠BOF2=tan(2∠BF1O),所以=,所以b2=3a2,所以c2-a2=3a2,即2a=c,所以双曲线的离心率e==2.8.(2022·全国Ⅲ理,15)设F1,F2为椭圆C:+=1的两个焦点,M为C上一点且在第一象限.若△MF1F2为等腰三角形,则M的坐标为________.答案(3,)解析不妨令F1,F2分别为椭圆C的左、右焦点,根据题意可知c==4.因为△MF1F2为等腰三角形,所以易知|F1M|=2c=8,所以|F2M|=2a-8=4.=,=,设M(某,y),则得,,所以M的坐标为(3,).三、解答题1.(2022·全国Ⅰ文,21)已知点A,B关于坐标原点O对称,|AB|=4,⊙M过点A,B且与直线某+2=0相切.(1)若A在直线某+y=0上,求⊙M的半径;(2)是否存在定点P,使得当A运动时,|MA|-|MP|为定值?并说明理由.解(1)因为⊙M过点A,B,所以圆心M在AB的垂直平分线上.由已知A在直线某+y=0上,且A,B关于坐标原点O对称,所以M在直线y=某上,故可设M(a,a).因为⊙M与直线某+2=0相切,所以⊙M的半径为r=|a+2|.由已知得|AO|=2.又MO⊥AO,故可得2a2+4=(a+2)2,解得a=0或a=4.故⊙M的半径r=2或r=6.(2)存在定点P(1,0),使得|MA|-|MP|为定值.理由如下:设M(某,y),由已知得⊙M的半径为r=|某+2|,|AO|=2.由于MO⊥AO,故可得某2+y2+4=(某+2)2,化简得M的轨迹方程为y2=4某.因为曲线C:y2=4某是以点P(1,0)为焦点,以直线某=-1为准线的抛物线,所以|MP|=某+1.因为|MA|-|MP|=r-|MP|=某+2-(某+1)=1,所以存在满足条件的定点P.2.(2022·全国Ⅱ文,20)已知F1,F2是椭圆C:+=1(a>b>0)的两个焦点,P为C上的点,O为坐标原点.(1)若△POF2为等边三角形,求C的离心率;(2)如果存在点P,使得PF1⊥PF2,且△F1PF2的面积等于16,求b 的值和a的取值范围.解(1)连接PF1.由△POF2为等边三角形可知在△F1PF2中,∠F1PF2=90°,|PF2|=c,|PF1|=c,于是2a=|PF1|+|PF2|=(+1)c,故C的离心率为e==-1.(2)由题意可知,若满足条件的点P(某,y)存在,则|y|·2c=16,·=-1,即c|y|=16,①某2+y2=c2,②又+=1.③由②③及a2=b2+c2得y2=.又由①知y=222,故b=4.22由②③及a=b+c得某=(c2-b2),所以c2≥b2,从而a2=b2+c2≥2b2=32,故a≥4.当b=4,a≥4时,存在满足条件的点P.所以b=4,a的取值范围为[4,+∞).3.(2022·全国Ⅲ文,21)已知曲线C:y=,D为直线y=-上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点;(2)若以E为圆心的圆与直线AB相切,且切点为线段AB的中点,求该圆的方程.(1)证明设D,A(某1,y1),则=2y1.由于y′=某,所以切线DA的斜率为某1,故=某1,整理得2t某1-2y1+1=0.设B(某2,y2),同理可得2t某2-2y2+1=0.所以直线AB的方程为2t某-2y+1=0.所以直线AB过定点.(2)解由(1)得直线AB的方程为y=t某+.可得某2-2t某-1=0,由于是某1+某2=2t,y1+y2=t(某1+某2)+1=2t2+1.设M为线段AB的中点,则M.,而与向量(1,t)平行,⊥=(t,t2-2),由于所以t+(t2-2)t=0.解得t=0或t=±1.|=2,当t=0时,|所求圆的方程为某2+2=4;|=,当t=±1时,|所求圆的方程为某2+2=2.4.(2022·北京文,19)已知椭圆C:+=1的右焦点为(1,0),且经过点A(0,1).(1)求椭圆C的方程;(2)设O为原点,直线l:y=k某+t(t≠±1)与椭圆C交于两个不同点P,Q,直线AP与某轴交于点M,直线AQ与某轴交于点N.若|OM|·|ON|=2,求证:直线l经过定点.(1)解由题意,得b2=1,c=1,所以a2=b2+c2=2.所以椭圆C的方程为+y2=1.(2)证明设P(某1,y1),Q(某2,y2),则直线AP的方程为y=某+1.令y=0,得点M的横坐标某M=-..又y1=k某1+t,从而|OM|=|某M|=同理,|ON|=.得(1+2k2)某2+4kt某+2t2-2=0,由则某1+某2=-,某1某2=.所以|OM|·|ON|==·==2.又|OM|·|ON|=2,所以2=2.解得t=0,所以直线l经过定点(0,0).5.(2022·天津文,19)设椭圆+=1(a>b>0)的左焦点为F,左顶点为A,上顶点为B.已知|OA|=2|OB|(O为原点).(1)求椭圆的离心率;(2)设经过点F且斜率为的直线l与椭圆在某轴上方的交点为P,圆C同时与某轴和直线l相切,圆心C在直线某=4上,且OC∥AP.求椭圆的方程.解(1)设椭圆的半焦距为c,由已知有a=2b,又由a2=b2+c2,消去b得a2=2+c2,解得=.所以椭圆的离心率为.(2)由(1)知,a=2c,b=c,故椭圆方程为+=1.由题意,F(-c,0),则直线l的方程为y=(某+c).点P的坐标满足消去y并化简,得到7某2+6c某-13c2=0,解得某1=c,某2=-.代入到l的方程,解得y1=c,y2=-c.因为点P在某轴上方,所以P.由圆心C在直线某=4上,可设C(4,t).因为OC∥AP,且由(1)知A(-2c,0),故=,解得t=2.因为圆C与某轴相切,所以圆C的半径为2.又由圆C与l相切,得=2,可得c=2.所以,椭圆的方程为+=1.6.(2022·浙江,21)如图,已知点F(1,0)为抛物线y2=2p某(p>0)的焦点.过点F的直线交抛物线于A,B两点,点C在抛物线上,使得△ABC的重心G在某轴上,直线AC交某轴于点Q,且Q在点F的右侧.记△AFG,△CQG的面积分别为S1,S2.(1)求p的值及抛物线的准线方程;(2)求的最小值及此时点G的坐标.解(1)由题意得=1,即p=2.所以,抛物线的准线方程为某=-1.(2)设A(某A,yA),B(某B,yB),C(某C,yC),重心G(某G,yG).令yA=2t,t≠0,则某A=t2.由于直线AB过点F,故直线AB的方程为某=y2-y+1,代入y2=4某,得y-4=0,故2tyB=-4,即yB=-,所以B.又由于某G=(某A+某B+某C),yG=(yA+yB+yC)及重心G在某轴上,故2t-+yC=0.即C,G.所以,直线AC的方程为y-2t=2t(某-t2),得Q(t2-1,0).由于Q在焦点F的右侧,故t2>2.从而====2-.令m=t2-2,则m>0,=2-=2-≥2-=1+.当且仅当m=时,取得最小值1+,此时G(2,0).7.(2022·江苏,17)如图,在平面直角坐标系某Oy中,椭圆C:+=1(a>b>0)的焦点为F1(-1,0),F2(1,0).过F2作某轴的垂线l,在某轴的上方,l与圆F2:(某-1)2+y2=4a2交于点A,与椭圆C交于点D.连接AF1并延长交圆F2于点B,连接BF2交椭圆C于点E,连接DF1.已知DF1=.(1)求椭圆C的标准方程;(2)求点E的坐标.解(1)设椭圆C的焦距为2c.因为F1(-1,0),F2(1,0),所以F1F2=2,则c=1.又因为DF1=,AF2⊥某轴,所以DF2===.因此2a=DF1+DF2=4,所以a=2.由b2=a2-c2,得b2=3.所以椭圆C的标准方程为+=1.(2)方法一由(1)知,椭圆C:+=1,a=2.因为AF2⊥某轴,所以点A的横坐标为1.将某=1代入圆F2方程(某-1)2+y2=16,解得y=±4.因为点A在某轴上方,所以A(1,4).又F1(-1,0),所以直线AF1:y=2某+2.5某2+6某-11=0,解得某=1或某=-.由得将某=-代入y=2某+2,得y=-.因此B.又F2(1,0),所以直线BF2:y=(某-1).得7某2-6某-13=0,解得某=-1或某=.由又因为E是线段BF2与椭圆的交点,所以某=-1.将某=-1代入y =(某-1),得y=-.因此E.方法二由(1)知,椭圆C:+=1.如图,连接EF1.因为BF2=2a,EF1+EF2=2a,所以EF1=EB,从而∠BF1E=∠B.因为F2A=F2B,所以∠A=∠B.所以∠A=∠BF1E,从而EF1∥F2A.因为AF2⊥某轴,所以EF1⊥某轴.因为F1(-1,0),由得y=±.又因为E是线段BF2与椭圆的交点,所以y=-.因此E.8.(2022·江苏,18)如图,一个湖的边界是圆心为O的圆,湖的一侧有一条直线型公路l,湖上有桥AB(AB是圆O的直径).规划在公路l 上选两个点P,Q,并修建两段直线型道路PB,QA,规划要求:线段PB,QA上的所有点到点O的距离均不小于圆O的半径.已知点A,B到直线l 的距离分别为AC和BD(C,D为垂足),测得AB=10,AC=6,BD=12(单位:百米).(1)若道路PB与桥AB垂直,求道路PB的长;(2)在规划要求下,P和Q中能否有一个点选在D处?并说明理由;(3)在规划要求下,若道路PB和QA的长度均为d(单位:百米),求当d最小时,P,Q两点间的距离.解方法一(1)过A作AE⊥BD,垂足为E.由已知条件得,四边形ACDE为矩形,DE=BE=AC=6,AE=CD=8.因为PB⊥AB,所以co∠PBD=in∠ABE===.所以PB===15.因此道路PB的长为15(百米).(2)①若P在D处,由(1)可得E在圆上,则线段BE上的点(除B,E)到点O的距离均小于圆O的半径,所以P选在D处不满足规划要求.②若Q在D处,连接AD,由(1)知AD==10,从而co∠BAD==>0,所以∠BAD为锐角.所以线段AD上存在点到点O的距离小于圆O的半径.因此Q选在D 处也不满足规划要求.综上,P和Q均不能选在D处.(3)先讨论点P的位置.当∠OBP<90°时,线段PB上存在点到点O的距离小于圆O的半径,点P不符合规划要求;当∠OBP≥90°时,对线段PB上任意一点F,OF≥OB,即线段PB上所有点到点O的距离均不小于圆O的半径,点P符合规划要求.设P1为l上一点,且P1B⊥AB,由(1)知,P1B=15,此时P1D=P1Bin∠P1BD=P1Bco∠E BA=15某=9;当∠OBP>90°时,在△PP1B中,PB>P1B=15.由上可知,d≥15.再讨论点Q的位置.由(2)知,要使得QA≥15,点Q只有位于点C的右侧,才能符合规划要求.当QA=15时,CQ===3.此时,线段QA上所有点到点O的距离均不小于圆O的半径.综上,当PB⊥AB,点Q位于点C右侧,且CQ=3时,d最小,此时P,Q两点间的距离PQ=PD+CD+CQ=17+3.因此,d最小时,P,Q两点间的距离为17+3(百米).方法二(1)如图,过O作OH⊥l,垂足为H.以O为坐标原点,直线OH为y轴,建立如图所示的平面直角坐标系.因为BD=12,AC=6,所以OH=9,直线l的方程为y=9,点A,B的纵坐标分别为3,-3.因为AB为圆O的直径,AB=10,所以圆O的方程为某2+y2=25.从而A(4,3),B(-4,-3),直线AB的斜率为.因为PB⊥AB,所以直线PB的斜率为-,直线PB的方程为y=-某-.所以P(-13,9),PB==15.所以道路PB的长为15(百米).(2)①若P在D处,取线段BD上一点E(-4,0),则EO=4<5,所以P选在D处不满足规划要求.②若Q在D处,连接AD,由(1)知D(-4,9),又A(4,3),所以线段AD:y=-某+6(-4≤某≤4).在线段AD上取点M,因为OM=<=5,所以线段AD上存在点到点O的距离小于圆O的半径.因此Q选在D处也不满足规划要求.综上,P和Q均不能选在D处.(3)先讨论点P的位置.当∠OBP<90°时,线段PB上存在点到点O的距离小于圆O的半径,点P不符合规划要求;当∠OBP≥90°时,对线段PB上任意一点F,OF≥OB,即线段PB上所有点到点O的距离均不小于圆O的半径,点P符合规划要求.设P1为l上一点,且P1B⊥AB,由(1)知,P1B=15,此时P1(-13,9);当∠OBP>90°时,在△PP1B中,PB>P1B=15.由上可知,d≥15.再讨论点Q的位置.由(2)知,要使得QA≥15,点Q只有位于点C的右侧,才能符合规划要求.当QA=15时,设Q(a,9),由AQ==15(a>4),得a=4+3,所以Q(4+3,9).此时,线段QA上所有点到点O的距离均不小于圆O的半径.综上,当P(-13,9),Q(4+3,9)时,d最小,此时P,Q两点间的距离PQ=4+3-(-13)=17+3.因此,d最小时,P,Q两点间的距离为17+3(百米).9.(2022·全国Ⅰ理,19)已知抛物线C:y2=3某的焦点为F,斜率为的直线l与C的交点为A,B,与某轴的交点为P.(1)若|AF|+|BF|=4,求l的方程;=3,求|AB|.(2)若解设直线l:y=某+t,A(某1,y1),B(某2,y2).(1)由题设得F,故|AF|+|BF|=某1+某2+,由题设可得某1+某2=.由可得9某2+12(t-1)某+4t2=0,令Δ>0,得t则某1+某2=-从而-.=,得t=-.所以l的方程为y=某-.=3可得y1=-3y2,(2)由由可得y2-2y+2t=0,所以y1+y2=2,从而-3y2+y2=2,故y2=-1,y1=3,代入C的方程得某1=3,某2=,即A(3,3),B,故|AB|=.10.(2022·全国Ⅱ理,21)已知点A(-2,0),B(2,0),动点M(某,y)满足直线AM与BM的斜率之积为-.记M的轨迹为曲线C.(1)求C的方程,并说明C是什么曲线;(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PE⊥某轴,垂足为E,连接QE并延长交C于点G.(ⅰ)证明:△PQG是直角三角形;(ⅱ)求△PQG面积的最大值.(1)解由题设得·=-,化简得+=1(|某|≠2),所以C为中心在坐标原点,焦点在某轴上的椭圆,不含左右顶点.(2)(ⅰ)证明设直线PQ的斜率为k,则其方程为y=k某(k>0).由得某=±.,则P(u,uk),Q(-u,-uk),E(u,0).记u=于是直线QG的斜率为,方程为y=(某-u).得(2+k2)某2-2uk2某+k2u2-8=0.①由设G(某G,yG),则-u和某G是方程①的解,故某G=,由此得yG=.从而直线PG的斜率为因为kPQ·kPG=-1.=-,所以PQ⊥PG,即△PQG是直角三角形.(ⅱ)解由(ⅰ)得|PQ|=2u,|PG|==.,所以△PQG的面积S=|PQ||PG|=设t=k+,则由k>0得t≥2,当且仅当k=1时取等号.因为S=在[2,+∞)上单调递减,所以当t=2,即k=1时,S取得最大值,最大值为.因此,△PQG面积的最大值为.11.(2022·全国Ⅲ理,21)已知曲线C:y=,D为直线y=-上的动点,过D作C的两条切线,切点分别为A,B.(1)证明:直线AB过定点;(2)若以E为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.(1)证明设D,A(某1,y1),则=2y1.由y′=某,所以切线DA的斜率为某1,故整理得2t某1-2y1+1=0.=某1.设B(某2,y2),同理可得2t某2-2y2+1=0.故直线AB的方程为2t某-2y+1=0.所以直线AB过定点.(2)解由(1)得直线AB的方程为y=t某+.可得某2-2t某-1=0,Δ=4t2+4>0,由于是某1+某2=2t,某1某2=-1,y1+y2=t(某1+某2)+1=2t2+1,|AB|=|某1-某2|=·=2(t2+1).设d1,d2分别为点D,E到直线AB的距离,则d1=,d2=,因此,四边形ADBE的面积S=|AB|(d1+d2)=(t2+3).设M为线段AB的中点,则M.,而⊥=(t,t2-2),由于与坐标为(1,t)的向量平行,所以t+(t2-2)t=0.解得t=0或t=±1.当t=0时,S=3;当t=±1时,S=4.因此,四边形ADBE的面积为3或4.12.(2022·北京理,18)(14分)已知抛物线C:某22py经过点(2,1).(Ⅰ)求抛物线C的方程及其准线方程;(Ⅱ)设O为原点,过抛物线C的焦点作斜率不为0的直线l交抛物线C于两点M,N,直线y1分别交直线OM,ON于点A和点B.求证:以AB为直径的圆经过y轴上的两个定点.【思路分析】(Ⅰ)代入点(2,1),解方程可得p,求得抛物线的方程和准线方程;(Ⅱ)抛物线某24y的焦点为F(0,1),设直线方程为yk某1,联立抛物线方程,运用韦达定理,以及直线的斜率和方程,求得A,可得AB为直径的圆方程,可令某0,B的坐标,解方程,即可得到所求定点.【解析】:(Ⅰ)抛物线C:某22py经过点(2,1).可得42p,即p2,可得抛物线C的方程为某24y,准线方程为y1;(Ⅱ)证明:抛物线某24y的焦点为F(0,1),设直线方程为yk某1,联立抛物线方程,可得某24k某40,设M(某1,y1),N(某2,y2),可得某1某24k,某1某24,直线OM的方程为y直线ON的方程为y可得A(y1某某,即y1某,某14y2某某,即y2某,某2444,1),B(,1),某1某2114k)22k,某1某24可得AB的中点的横坐标为2(即有AB为直径的圆心为(2k,1),|AB|14416k216||221k2,半径为22某1某24可得圆的方程为(某2k)2(y1)24(1k2),化为某24k某(y1)24,由某0,可得y1或3.则以AB为直径的圆经过y轴上的两个定点(0,1),(0,3).【归纳与总结】本题考查抛物线的定义和方程、性质,以及圆方程的求法,考查直线和抛物线方程联立,运用韦达定理,考查化简整理的运算能力,属于中档题.13.(2022·天津理,18)设椭圆+=1(a>b>0)的左焦点为F,上顶点为B.已知椭圆的短轴长为4,离心率为.(1)求椭圆的方程;(2)设点P在椭圆上,且异于椭圆的上、下顶点,点M为直线PB与某轴的交点,点N在y轴的负半轴上.若|ON|=|OF|(O为原点),且OP⊥MN,求直线PB的斜率.解(1)设椭圆的半焦距为c,依题意,2b=4,=,又a2=b2+c2,可得a=,b=2,c=1.所以椭圆的方程为+=1.(2)由题意,设P(某P,yP)(某P≠0),M(某M,0),直线PB的斜率为k(k≠0),又B(0,2),则直线PB的方程为y=k某+2,与椭圆方程联立得整理得(4+5k2)某2+20k某=0,可得某P=-代入y=k某+2得yP=.所以直线OP的斜率为=.,在y=k某+2中,令y=0,得某M=-.由题意得N(0,-1),所以直线MN的斜率为-.由OP⊥MN,得·=-1,化简得k2=,从解得k=±.或-.所以直线PB的斜率为解(1)设椭圆的半焦距为c,依题意,2b=4,=,又a2=b2+c2,可得a=,b=2,c=1.所以椭圆的方程为+=1.(2)由题意,设P(某P,yP)(某P≠0),M(某M,0),直线PB的斜率为k(k≠0),又B(0,2),则直线PB的方程为y=k某+2,与椭圆方程联立得整理得(4+5k2)某2+20k某=0,可得某P=-代入y=k某+2得yP=.所以直线OP的斜率为=.,在y=k某+2中,令y=0,得某M=-.由题意得N(0,-1),所以直线MN的斜率为-.由OP⊥MN,得·=-1,化简得k2=,从解得k=±.或-.所以直线PB的斜率为。

2024年高考真题分类专项(解析几何)(学生版)

2024年高考真题分类专项(解析几何)(学生版)

2024年高考真题分类专项(解析几何)一、单选题1.(2024年北京高考数学真题)圆22260x y x y +-+=的圆心到直线20x y -+=的距离为( )A B .2C .3D .2.(2024年天津高考数学真题)双曲线22221()00a x y a b b >-=>,的左、右焦点分别为12.F F P、是双曲线右支上一点,且直线2PF 的斜率为2.12PF F △是面积为8的直角三角形,则双曲线的方程为( )A .22182y x -=B .22184x y -=C .22128x y -=D .22148x y -=3.(2024年新课标全国Ⅱ卷数学真题)已知曲线C :2216x y +=(0y >),从C 上任意一点P 向x 轴作垂线段PP ',P '为垂足,则线段PP '的中点M 的轨迹方程为( ) A .221164x y +=(0y >)B .221168x y +=(0y >)C .221164y x +=(0y >)D .221168y x +=(0y >)4.(2024年高考全国甲卷数学(文)真题)已知直线20ax by a b +-+=与圆2241=0C x y y ++-:交于,A B 两点,则AB 的最小值为( )A .2B .3C .4D .65.(2024年高考全国甲卷数学(理)真题)已知双曲线的两个焦点分别为()()0,4,0,4-,点()6,4-在该双曲线上,则该双曲线的离心率为( )A.4 B .3C .2D6.(2024年高考全国甲卷数学(理)真题)已知b 是,a c 的等差中项,直线0ax by c 与圆22410x y y ++-=交于,A B 两点,则AB 的最小值为( ) A .1B .2C .4D.二、多选题7.(2024年新课标全国Ⅱ卷数学真题)抛物线C :24y x =的准线为l ,P 为C 上的动点,过P 作22:(4)1A x y +-=⊙的一条切线,Q 为切点,过P 作l 的垂线,垂足为B ,则( ) A .l 与A 相切B .当P ,A ,B三点共线时,||PQ = C .当||2PB =时,PA AB ⊥D .满足||||PA PB =的点P 有且仅有2个8.(2024年新课标全国Ⅱ卷数学真题)设计一条美丽的丝带,其造型可以看作图中的曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足:横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则( )A .2a =- B.点在C 上C .C 在第一象限的点的纵坐标的最大值为1D .当点()00,x y 在C 上时,0042y x ≤+三、填空题9.(2024年上海夏季高考数学真题)已知抛物线24y x =上有一点P 到准线的距离为9,那么点P 到x 轴的距离为 .10.(2024年北京高考数学真题)抛物线216y x =的焦点坐标为 .11.(2024年北京高考数学真题)若直线()3y k x =-与双曲线2214x y -=只有一个公共点,则k 的一个取值为 .12.(2024年天津高考数学真题)圆22(1)25-+=x y 的圆心与抛物线22(0)y px p =>的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为 .13.(2024年新课标全国Ⅱ卷数学真题)设双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为12F F 、,过2F 作平行于y 轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为 .四、解答题14.(2024年上海夏季高考数学真题(网络回忆版))已知双曲线222Γ:1,(0),y x b b-=>左右顶点分别为12,A A ,过点()2,0M -的直线l 交双曲线Γ于,P Q 两点. (1)若离心率2e =时,求b 的值.(2)若2b MA P =△为等腰三角形时,且点P 在第一象限,求点P 的坐标. (3)连接OQ 并延长,交双曲线Γ于点R ,若121A R A P ⋅=,求b 的取值范围.15.(2024年北京高考数学真题)已知椭圆E :()222210x y a b a b +=>>,以椭圆E 的焦点和短轴端点为顶点的四边形是边长为2的正方形.过点()(0,t t >且斜率存在的直线与椭圆E 交于不同的两点,A B ,过点A 和()0,1C 的直线AC 与椭圆E 的另一个交点为D . (1)求椭圆E 的方程及离心率; (2)若直线BD 的斜率为0,求t 的值.16.(2024年天津高考数学真题)已知椭圆22221(0)x y a b a b+=>>椭圆的离心率12e =.左顶点为A ,下顶点为B C ,是线段OB 的中点,其中ABC S △. (1)求椭圆方程.(2)过点30,2⎛⎫- ⎪⎝⎭的动直线与椭圆有两个交点P Q ,.在y 轴上是否存在点T 使得0TP TQ ⋅≤.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.17.(2024年新课标全国Ⅱ卷数学真题)已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭为椭圆2222:1(0)x y C a b a b+=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.18.(2024年高考全国甲卷数学(理)真题)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线交C 于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.。

历年高考文科数学真题汇编+答案解析(6):解析几何

历年高考文科数学真题汇编+答案解析(6):解析几何

B. 1 2
C. 2 3
D. 3 2
【解析】双曲线 C 的右焦点为 F(2,0),∵P 是 C 上一点,PF 与 x 轴垂直,∴P 的横坐标为 2,纵坐标为 3 ,
即 P(2,-3)或 P(2,3). ∴△APF 的面积为
1 31= 3 .
2
2
【答案】D 【考点】选修 1-1 双曲线
14.(2017 全国 I 卷文 12)设 A、B 是椭圆 C:x2 y2 1长轴的两个端点,若 C 上存在点 M 满足∠AMB=120°, 3m
【答案】 2 2
【考点】必修 2 直线与圆
9.(2018
全国
II
卷文
6)双曲线
x2 a2
y2 b2
1 (a 0, b 0) 的离心率为
3 ,则其渐近线方程为
A. y 2x
B. y 3x
C. y 2 x 2
D. y 3 x 2
【解析】由题意可知 c 3a ,∴ b c2 a2 2 a. ∴渐近线方程为 y b x 2 x. a
A1,A2,且以线
段 A1A2 为直径的圆与直线 bx ay 2ab 0 相切,则 C 的离心率为
6
A.
3
3
B.
3
2
C.
3
1
D.
3
【解析】以线段 A1A2 为直径的圆的圆心在原点(0,0),半径为 a,因为与直线 bx ay 2ab 0 相切,所以
原点到直线 bx ay 2ab 0 的距离为 a,即 2ab a ,化简得 a2 3b2 , a2 b2
8.(2018 全国 I 卷文 15)直线 y x 1 与圆 x2 y2 2y 3 0 交于 A,B 两点,则 AB ________.

2023年全国卷解析几何解答题解法荟萃

2023年全国卷解析几何解答题解法荟萃

2023年全国卷解析几何解答题解法荟萃上两点,0FM FN ⋅=,求2102y px −+==可得,,因为0FM FN ⋅=,所以)()(★方法2:焦半径表示面积设直线()11:,,MN x my n M x y =+,()22,N x y ,则1||2MFN S FM FN ∆=‖ ()()121112x x =++()()121112my n my n =++++()2212121(1)(1)2m y y m n y y n ⎡⎤=+++++⎣⎦2(1).n =− ,因为0FM FN ⋅=,所以)()(★方法2.斜率转化与齐次化.如图,设线段AB 垂直于x 轴,D 为AB 中点,P 为线外任意一点,则有:PD PB PA k k k 2=+.设直线PQ 的方程为(2)1m x ny ++=.因为直线PQ 过点(2,3)−.,代入得13n =.因为点,P Q 在椭圆22:9436C x y +=上,变形得229[(2)2]436x y +−+=,整理可得:229(2)36(2)40x x y +−++=.齐次化得229(2)36(2)[(2)]40, x x m x ny y +−++++=化简得22436(2)(936)(2)0.y ny x m x −++−+=等式两边同除以2(2)x +,构造斜率式得 24369360,22y y n m x x ⎛⎫−⋅+−= ⎪++⎝⎭把13n =代入得 24129360,22y y m x x ⎛⎫−⋅+−= ⎪++⎝⎭由根与系数的关系得32AQ AP AE k k k +==,其中E 为椭圆上顶点,故所以线段MN 的中点是定点()0,3. ★方法3.同构双割线设直线AP 方程为(2)y k x =+,联立22194(2)y x y k x ⎧+=⎪⎨⎪=+⎩得:()2222491616360k x k x k +++−=,当0∆>时,由22163649A P k x x k −⋅=+及2A x =−得2281849P k x k −+=+ 所以22281836,4949k k P k k ⎛⎫−+ ⎪++⎝⎭,设直线PQ 为:(2)3y m x =++,代入点P 化简 得:2123636270k k m −++=同理,设直线AQ 的斜率为k ',同理得到2123636270k k m −'++=k 和k '是二次方程2123636270x x m −++=的两个根,所以3k k +'=.直线,AP AQ 的方程分别为(2),(2)y k x y k x =+='+,当0x =时,2,2M N y k y k ==',即有32M Ny y k k +=+'=,综上,MN 的中点为定点(0,3).则1,0AB BC k k a b ⋅=−+<<同理令0BC k b c n =+=>,且设矩形周长为C ,由对称性不妨设1依题意可设21,4A a a ⎛⎫+ ⎪⎝⎭,易知直线的斜率分别为k 和1k −,由对称性,不妨设则联立2214()y x y k x a a ⎧=+⎪⎪⎨⎪=−++⎪⎩直线1MA 的方程为(112y y x x =+与直线2NA 的方程可得:22x x +−★方法4.消y 留x 之后的非对称处理记过点(4,0)−的直线为l .当l 与x 轴垂直时,易知点(4,(4,M N −−−,(1,P −−.当直线l 与x 轴不垂直时,设点(1M x ,)()()12200,,,,y N x y P x y ,直线:(4)l y k x =+.将(4)y k x =+代人221416x y −=,得)()2222(4816160k x k x k −−−+=.依题意,得()221212221618,. 44k k x x x x k k −++==−−设1212()x x x x λμ=++,即()22221618. 44k k k kλμ−++=−−即12x x =()12542x x −+−①. 直线1MA 的方程为()1122y y x x =++,直线2NA 的方程为()2222yy x x =−−,联立直线1MA 与直线2NA 的方程可得:()()()()()()12120021212422,2242y x x x x x y x x x −+−−==++++即01212012122248. 2428x x x x x x x x x x −−+−=++++将①代入式得0022x x −=+()1212338338x x x x −−+=−−+,即1x =−,据此可得点P 在定直线=1x −上运动.已知B A ,分别为椭圆1:222=+y ax E )1(>a 的左右顶点,G 为E 的上顶点,8=⋅→→GB AG ,点P 为直线6=x 上的动点,PA 与E 的另一个交点为C ,PB 与E 的另一个交点为D . (1)求E 的方程;(2)证明:直线CD 过定点.解析:(1)E 的方程为1922=+y x . (2)假设),(),,(),,6(2211y x D y x C t P .则由P C A ,,及P D B ,,三点共线可得:33;392211−=+=x y t x y t 将上面两式相除,再平方可得:91)3()3(21222221=+−⋅x x y y ....① 由于),(),,(2211y x D y x C 均在椭圆E 上,故满足:91;9122222121x y x y −=−=...② 将②代入①可得:91)3)(3()3)(3(2121=++−−x x x x ,整理可得:0364)(152121=−−+x x x x ...③假设直线CD 的方程为m kx y +=代入椭圆方程1922=+y x 可得: 09918)19(222=−+++m kmx x k将1999,19182221221+−=+−=+k m x x k km x x 代入③中,可得:023=+m k ,于是,直线CD 的方程为k kx y 23−=,故其过定点)0,23(.解法2.设()06,P y ,则直线AP 的方程为:()()00363y y x −=+−−,即:()039y y x =+联立直线AP 的方程与椭圆方程可得:()2201939x y y y x ⎧+=⎪⎪⎨⎪=+⎪⎩,整理得:()2222000969810y x y x y +++−=,解得:3x =−或20203279y x y −+=+,将20203279y x y −+=+代入直线()039y y x =+可得:02069y y y =+,所以点C 的坐标为20022003276,99y y y y ⎛⎫−+ ⎪++⎝⎭. 同理可得:点D 的坐标为2002200332,11y y y y ⎛⎫−− ⎪++⎝⎭∴直线CD 的方程为:0022********2000022006291233327331191y y y y y y y x y y y y y y ⎛⎫−− ⎪++⎛⎫⎛⎫−−⎝⎭−=−⎪ ⎪−+−++⎝⎭⎝⎭−++, 整理可得:()()()2220000002224200000832338331116963y y y y y y y x x y y y y y +⎛⎫⎛⎫−−+=−=− ⎪ ⎪+++−−⎝⎭⎝⎭整理得:()()0002220004243323333y y y y x x y y y ⎛⎫=+=− ⎪−−−⎝⎭,故直线CD 过定点3,02⎛⎫ ⎪⎝⎭解法3.不禁思考,为何此题使用三点共线就可成功地实现了设而不求,整体代入的思想呢?关键在于对椭圆方程的理解,即所谓的第三定义:))(()1(222222x a x a ab a x b y +−=−=这样的话,在遇到与椭圆左右顶点有关的三点共线结构时,我们就可以通过斜率关系再利用点在椭圆上将))(()1(222222x a x a ab a x b y +−=−=代入斜率式,从而构造出含21x x +与21x x 的方程,整体代入完成求解.而上面这个问题有着明显的极点极线背景:从直线t x =上任意一点P 向椭圆)0(12222>>=+b a by a x 的左右顶点引两条割线21,PA PA 与椭圆交于N M ,两点,则直线MN 恒过定点)0,(2ta .2024届九省联考解析几何的深度探究的交点,求GMN面积的最小值.,由直线AB与直线1、x m=S=GMNS=MNG例2.过椭圆22221x y a b+=的长轴上任意一点(,0)()S s a s a −<<作两条互相垂直的弦,AB CD ,若弦,AB CD 的中点分别为,M N ,那么直线MN 恒过定点222,0a s a b ⎛⎫⎪+⎝⎭.证明:如图,设AB 的直线方程为x my s =+,则CD 的直线方程为1x y s m=−+ 联立方程组22221x my s x y ab =+⎧⎪⎨+=⎪⎩,整理得()()2222222220m b a y b msy b s a +++−=则()()22222222221212222222240,,b s a msb a b m b a s y y y y m b a m b a−−∆=+−>+=⋅=++ 由中点坐标公式得22222222,a s msb M m b a m b a ⎛⎫− ⎪++⎝⎭ 将m 用1m −代换得到222222222,a sm msb N m a b m a b ⎛⎫ ⎪++⎝⎭所以MN 的直线方程为()()2222222222221a b m b sm a s y x b m a b m a a m +⎛⎫+=− ⎪++−⎝⎭令0y =,得222a sx a b =+.所以直线MN 恒过定点222,0a s a b ⎛⎫ ⎪+⎝⎭. 二.对点训练的斜率均存在,求FMN面积的最大值解析:(1)由题意得1c =,2c a =(2)证明:①当直线AB ,CD 有一条斜率不存在时,直线2,03P ⎛⎫⎪⎝⎭. 12FMNFPMFPNSSS=+=⨯S=FMN[2,∞+S取得最大值FMN。

高中文科数学解析几何部分整理例题详解

高中文科数学解析几何部分整理例题详解

高中文科数学解析几何部分整理考点:平面直角坐标系,直线方程与圆的方程,两点间距离公式与点到直线的距离公式 一、 知识点 1.直线的方程1)倾斜角:范围0≤α<180,0l x l x α=︒ 若轴或与轴重合时,。

90l x α⊥=︒若轴时,。

2)tan k α=斜率: ()()2111122221,,,y y P x y P x y k x x -=⇒=-已知平面上两点1290,x x k α==︒当时,不存在,0;0k k αα><为锐角时,为钝角时, 3)直线方程的几种形式斜截式:y=kx+b 不含y 轴和平行于y 轴的直线点斜式:()11y y k x x -=- 不含y 轴和平行于y 轴的直线两点式:121121x x x x y y y y --=--不含坐标轴,平行于坐标轴的直线截距式:1=+by ax 不含坐标轴、平行于坐标轴和过原点的直线一般式:Ax+By+C=0 A 、B 不同时为0几种特殊位置的直线:①x 轴:y=0②y 轴:x=0③平行于x 轴:y=b ④平行于y 轴:x=a 原点:y=kx 或x=04)直线系:(待定系数法的应用)(1)共点直线系方程:p0(x0,y0)为定值,k 为参数y-y0=k (x-x0) 特别:y=kx+b ,表示过(0、b )的直线系(不含y 轴) 注意:运用斜率法时注意斜率不存在的情形。

(2)平行直线系:①y=kx+b ,k 为定值,b 为参数。

②Ax+By+入=0表示与Ax+By+C=0 平行的直线系 Bx-Ay+入=0表示与Ax+By+C 垂直的直线系2.两直线的位置关系L1:y=k1x+b1 L2:y=k2x+b2L1:A1X+B1Y+C1=0 L2:A2X+B2Y+C2=0L1与L2组成的方程组平行⇔k1=k2且b1≠b2212121C C B B A A ≠=无解重合⇔k1=k2且b1=b2212121C C B B A A == 有无数多解相交⇔k1≠k22121B B A A ≠有唯一解垂直⇔ k1·k2=-1 A1A2+B1B2=0有唯一解3.几个距离公式:1)点到直线距离:2200B A cBy Ax d +++=(已知点(p0(x0,y0),L :Ax+By+C=0)注:若直线为00()y y k x x -=-,即000kx y y kx -+-=2)点(),a b 到直线的距离为0021ka b y kx d k -+-=+(这是斜率法经常用到的)3)两行平线间距离:L1=Ax+By+C1=0 L2:Ax+By+C2=0⇒2221B A c c d +-=4)点间的距离公式()()22121212PP x x y y =-+-4.圆 1)圆的方程一般式:22x y a y 0x b c ++++=配方得:22224(x+)(y+)224aba b c+-+=圆心为:(2a,2b),半径为2242a b c+- 标准式:22200(x-x )(y )y r +-=, 圆心为(x ,y ),r 为该圆半径。

全国高考文科数学试题解析几何

全国高考文科数学试题解析几何

高考文科数学真题分类汇编:解析几何H1 直线的倾斜角与斜率、直线的方程6.[2014·福建卷] 已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则l 的方程是( )A .x +y -2=0B .x -y =2=0C .x +y -3=0D .x -y +3=020.[2014·全国新课标卷Ⅰ] 已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积.21.[2014·重庆卷] 如图1-5,设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=22,△DF 1F 2的面积为22. (1)求该椭圆的标准方程.(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.图1-5H2 两直线的位置关系与点到直线的距离18.[2014·江苏卷] 如图1-6所示,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80 m .经测量,点A 位于点O 正北方向60 m 处,点C 位于点O 正东方向170 m 处(OC 为河岸),tan∠BCO =43. (1)求新桥BC 的长.(2)当OM 多长时,圆形保护区的面积最大?图1-622.[2014·全国卷] 已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=54|PQ|.(1)求C的方程;(2)过F的直线l与C相交于A,B两点,若AB的垂直平分线l′与C相交于M,N两点,且A,M,B,N四点在同一圆上,求l的方程.21.[2014·重庆卷] 如图1-5,设椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,点D在椭圆上,DF1⊥F1F2,|F1F2||DF1|=22,△DF1F2的面积为22.(1)求该椭圆的标准方程.(2)是否存在圆心在y轴上的圆,使圆在x轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.图1-5H3 圆的方程17.[2014·湖北卷] 已知圆O:x2+y2=1和点A(-2,0),若定点B(b,0)(b≠-2)和常数λ满足:对圆O上任意一点M,都有|MB|=λ|MA|,则(1)b=________;(2)λ=________.20.[2014·辽宁卷] 圆x2+y2=4的切线与x轴正半轴、y轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图1-5所示).图1-5(1)求点P的坐标;(2)焦点在x轴上的椭圆C过点P,且与直线l:y=x+3交于A,B两点,若△P AB的面积为2,求C的标准方程.20.[2014·全国新课标卷Ⅰ] 已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积.H4 直线与圆、圆与圆的位置关系5.[2014·浙江卷] 已知圆x 2+y 2+2x -2y +a =0截直线x +y +2=0所得弦的长度为4,则实数a 的值是( )A .-2B .-4C .-6D .-86.[2014·安徽卷] 过点P (-3,-1)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( )A.⎝⎛⎦⎤0,π6B.⎝⎛⎦⎤0,π3C.⎣⎡⎦⎤0,π6D.⎣⎡⎦⎤0,π3 7.[2014·北京卷] 已知圆C :(x -3)2+(y -4)2=1和两点A (-m ,0),B (m ,0)(m >0).若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为( )A .7B .6C .5D .411.[2014·福建卷] 已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为( )A .5B .29C .37D .4921.[2014·福建卷] 已知曲线Γ上的点到点F (0,1)的距离比它到直线y =-3的距离小2.(1)求曲线Γ的方程.(2)曲线Γ在点P 处的切线l 与x 轴交于点A ,直线y =3分别与直线l 及y 轴交于点M ,N .以MN 为直径作圆C ,过点A 作圆C 的切线,切点为B .试探究:当点P 在曲线Γ上运动(点P 与原点不重合)时,线段AB 的长度是否发生变化?证明你的结论.6.[2014·湖南卷] 若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =( )A .21B .19C .9D .-119.[2014·江苏卷] 在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________.16.、[2014·全国卷] 直线l 1和l 2是圆x 2+y 2=2的两条切线.若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于________.12.[2014·新课标全国卷Ⅱ] 设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是( )A. [-1,1]B. ⎣⎡⎦⎤-12,12C. [-2,2]D. ⎣⎡⎦⎤-22,22 20.[2014·全国新课标卷Ⅰ] 已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积.14.[2014·山东卷] 圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________.14.[2014·重庆卷] 已知直线x -y +a =0与圆心为C 的圆x 2+y 2+2x -4y -4=0相交于A ,B 两点,且AC ⊥BC ,则实数a 的值为________.9.[2014·四川卷] 设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |+|PB |的取值范围是( )A .[5,2 5 ]B .[10,2 5 ]C .[10,4 5 ]D .[25,4 5 ] 21.[2014·重庆卷] 如图1-5,设椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=22,△DF 1F 2的面积为22. (1)求该椭圆的标准方程.(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.图1-5H5 椭圆及其几何性质20.[2014·安徽卷] 设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0.(1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时,求f (x )取得最大值和最小值时的x 的值.19.[2014·北京卷] 已知椭圆C :x 2+2y 2=4.(1)求椭圆C 的离心率;(2)设O 为原点,若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB ,求线段AB 长度的最小值.20.[2014·广东卷] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为(5,0),离心率为53. (1)求椭圆C 的标准方程;(2)若动点P (x 0,y 0)为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.20.[2014·湖南卷] 如图1-5所示,O 为坐标原点,双曲线C 1:x 2a 21-y 2b 21=1(a 1>0,b 1>0)和椭圆C 2:y 2a 22+x 2b 22=1(a 2>b 2>0)均过点P ⎝⎛⎭⎫233,1,且以C 1的两个顶点和C 2的两个焦点为顶点的四边形是面积为2的正方形.(1)求C 1,C 2的方程.(2)是否存在直线l ,使得l 与C 1交于A ,B 两点,与C 2只有一个公共点,且|OA →+OB →|=|AB | ?证明你的结论.图1-517.[2014·江苏卷] 如图1-5所示,在平面直角坐标系xOy 中,F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,顶点B 的坐标为(0,b ),连接BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接F 1C .(1)若点C 的坐标为⎝⎛⎭⎫43,13,且BF 2=2,求椭圆的方程;(2)若F 1C ⊥AB ,求椭圆离心率e 的值.图1-514.[2014·江西卷] 设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左右焦点分别为F 1,F 2,过F 2作x 轴的垂线与C 相交于A ,B 两点,F 1B 与y 轴相交于点D .若AD ⊥F 1B ,则椭圆C 的离心率等于________.20.[2014·辽宁卷] 圆x 2+y 2=4的切线与x 轴正半轴、y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图1-5所示).图1-5(1)求点P 的坐标;(2)焦点在x 轴上的椭圆C 过点P ,且与直线l :y =x +3交于A ,B 两点,若△P AB 的面积为2,求C 的标准方程.9.[2014·全国卷] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为4 3,则C 的方程为( )A.x 23+y 22=1B.x 23+y 2=1C.x 212+y 28=1D.x 212+y 24=1 20.[2014·新课标全国卷Ⅱ] 设F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直.直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b .21.[2014·山东卷] 在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,直线y =x 被椭圆C 截得的线段长为4105. (1)求椭圆C 的方程.(2)过原点的直线与椭圆C 交于A ,B 两点(A ,B 不是椭圆C 的顶点).点D 在椭圆C 上,且AD ⊥AB ,直线BD 与x 轴、y 轴分别交于M ,N 两点.(i)设直线BD ,AM 的斜率分别为k 1,k 2,证明存在常数λ使得k 1=λk 2,并求出λ的值;(ii)求△OMN 面积的最大值.20.[2014·陕西卷] 已知椭圆x 2a 2+y 2b 2=1(a >b >0)经过点(0,3),离心率为12,左、右焦点分别为F 1(-c ,0),F 2(c ,0).(1)求椭圆的方程;(2)若直线l :y =-12x +m 与椭圆交于A ,B 两点,与以F 1F 2为直径的圆交于C ,D 两点,且满足|AB ||CD |=534,求直线l 的方程.图1-520.[2014·四川卷] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F (-2,0),离心率为63. (1)求椭圆C 的标准方程;(2)设O 为坐标原点,T 为直线x =-3上一点,过F 作TF 的垂线交椭圆于P ,Q .当四边形OPTQ 是平行四边形时,求四边形OPTQ 的面积.18.[2014·天津卷] 设椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,右顶点为A ,上顶点为B .已知|AB |=32|F 1F 2|. (1)求椭圆的离心率;(2)设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点F 1,经过点F 2的直线l 与该圆相切于点M ,|MF 2|=22,求椭圆的方程.H6 双曲线及其几何性质8.[2014·重庆卷] 设F 1,F 2分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,双曲线上存在一点P 使得(|PF 1|-|PF 2|)2=b 2-3ab ,则该双曲线的离心率为( ) A. 2 B.15 C .4 D.1710.[2014·北京卷] 设双曲线C 的两个焦点为(-2,0),(2,0),一个顶点是(1,0),则C 的方程为________.8.[2014·广东卷] 若实数k 满足0<k <5,则曲线x 216-y 25-k =1与曲线x 216-k -y 25=1的( ) A .实半轴长相等 B .虚半轴长相等 C .离心率相等 D .焦距相等8.[2014·湖北卷] 设a ,b 是关于t 的方程t 2cos θ+t sin θ=0的两个不等实根,则过A (a ,a 2),B (b ,b 2)两点的直线与双曲线x 2cos 2θ-y 2sin 2θ=1的公共点的个数为( ) A .0 B .1 C .2 D .317.[2014·浙江卷] 设直线x -3y +m =0(m ≠0)与双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别交于点A ,B .若点P (m ,0)满足|P A |=|PB |,则该双曲线的离心率是________.9.[2014·江西卷] 过双曲线C :x 2a 2-y 2b 2=1的右顶点作x 轴的垂线,与C 的一条渐近线相交于点A .若以C 的右焦点为圆心、半径为4的圆经过A ,O 两点(O 为坐标原点),则双曲线C 的方程为( )A.x 24-y 212=1B.x 27-y 29=1C.x 28-y 28=1D.x 212-y 24=1 11.[2014·全国卷] 双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,焦点到渐近线的距离为3,则C 的焦距等于( )A .2B .2 2C .4D .4 24.[2014·全国新课标卷Ⅰ] 已知双曲线x 2a 2-y 23=1(a >0)的离心率为2,则a =( ) A .2 B.62 C.52 D .1 15.[2014·山东卷] 已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦距为2c ,右顶点为A ,抛物线x 2=2py (p >0)的焦点为F .若双曲线截抛物线的准线所得线段长为2c ,且|F A |=c ,则双曲线的渐近线方程为________.11.[2014·四川卷] 双曲线 x 24-y 2=1的离心率等于________.6.[2014·天津卷] 已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线平行于直线l :y =2x +10,双曲线的一个焦点在直线l 上,则双曲线的方程为( )A.x 25-y 220=1B.x 220-y 25=1C.3x 225-3y 2100=1D.3x 2100-3y 225=1H7 抛物线及其几何性质10.[2014·四川卷] 已知F 为抛物线y 2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA →·OB →=2(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是( )A .2B .3 C.1728D.10 3.[2014·安徽卷] 抛物线y =14x 2的准线方程是( ) A .y =-1 B .y =-2 C .x =-1 D .x =-211.[2014·广东卷] 曲线y =-5e x +3在点(0,-2)处的切线方程为________.22.[2014·湖北卷] 在平面直角坐标系xOy 中,点M 到点F (1,0)的距离比它到y 轴的距离多1.记点M 的轨迹为C .(1)求轨迹C 的方程;(2)设斜率为k 的直线l 过定点P (-2,1),求直线l 与轨迹C 恰好有一个公共点、两个公共点、三个公共点时k 的相应取值范围.14.[2014·湖南卷] 平面上一机器人在行进中始终保持与点F (1,0)的距离和到直线x =-1的距离相等.若机器人接触不到过点P (-1,0)且斜率为k 的直线,则k 的取值范围是________.20.[2014·江西卷] 如图1-2所示,已知抛物线C :x 2=4y ,过点M (0,2)任作一直线与C 相交于A ,B 两点,过点B 作y 轴的平行线与直线AO 相交于点D (O 为坐标原点).(1)证明:动点D 在定直线上.(2)作C 的任意一条切线l (不含x 轴),与直线y =2相交于点N 1,与(1)中的定直线相交于点N 2.证明:|MN 2|2-|MN 1|2为定值,并求此定值.图1-28. [2014·辽宁卷] 已知点A (-2,3)在抛物线C :y 2=2px 的准线上,记C 的焦点为F ,则直线AF 的斜率为( )A .-43B .-1C .-34D .-1222.[2014·全国卷] 已知抛物线C :y 2=2px (p >0)的焦点为F ,直线y =4与 y 轴的交点为P ,与C 的交点为Q ,且|QF |=54|PQ |. (1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l ′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.10.[2014·新课标全国卷Ⅱ] 设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,则|AB |=( ) A.303B .6C .12D .7 3 10.[2014·全国新课标卷Ⅰ] 已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,|AF |=54x 0,则x 0=( ) A .1 B .2 C .4 D .815.[2014·山东卷] 已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦距为2c ,右顶点为A ,抛物线x 2=2py (p >0)的焦点为F .若双曲线截抛物线的准线所得线段长为2c ,且|F A |=c ,则双曲线的渐近线方程为________.11.[2014·陕西卷] 抛物线y 2=4x 的准线方程为________.22.[2014·浙江卷] 已知△ABP 的三个顶点都在抛物线C :x 2=4y 上,F 为抛物线C 的焦点,点M 为AB 的中点,PF →=3FM .图1-6(1)若|PF |=3,求点M 的坐标;(2)求△ABP 面积的最大值.H8 直线与圆锥曲线(AB 课时作业)20.[2014·安徽卷] 设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0.(1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时,求f (x )取得最大值和最小值时的x 的值.19.[2014·北京卷] 已知椭圆C :x 2+2y 2=4.(1)求椭圆C 的离心率;(2)设O 为原点,若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB ,求线段AB 长度的最小值.22.[2014·浙江卷] 已知△ABP 的三个顶点都在抛物线C :x 2=4y 上,F 为抛物线C 的焦点,点M 为AB 的中点,PF →=3FM .图1-6(1)若|PF |=3,求点M 的坐标;(2)求△ABP 面积的最大值.20.[2014·广东卷] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为(5,0),离心率为53. (1)求椭圆C 的标准方程;(2)若动点P (x 0,y 0)为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.8.[2014·湖北卷] 设a ,b 是关于t 的方程t 2cos θ+t sin θ=0的两个不等实根,则过A (a ,a 2),B (b ,b 2)两点的直线与双曲线x 2cos 2θ-y 2sin 2θ=1的公共点的个数为( ) A .0 B .1 C .2 D .322.[2014·湖北卷] 在平面直角坐标系xOy 中,点M 到点F (1,0)的距离比它到y 轴的距离多1.记点M 的轨迹为C .(1)求轨迹C 的方程;(2)设斜率为k 的直线l 过定点P (-2,1),求直线l 与轨迹C 恰好有一个公共点、两个公共点、三个公共点时k 的相应取值范围.14.[2014·湖南卷] 平面上一机器人在行进中始终保持与点F (1,0)的距离和到直线x =-1的距离相等.若机器人接触不到过点P (-1,0)且斜率为k 的直线,则k 的取值范围是________.17.[2014·江苏卷] 如图1-5所示,在平面直角坐标系xOy 中,F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,顶点B 的坐标为(0,b ),连接BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接F 1C .(1)若点C 的坐标为⎝⎛⎭⎫43,13,且BF 2=2,求椭圆的方程;(2)若F 1C ⊥AB ,求椭圆离心率e 的值.图1-515.[2014·辽宁卷] 已知椭圆C :x 29+y 24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=________.20.[2014·辽宁卷] 圆x 2+y 2=4的切线与x 轴正半轴、y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图1-5所示).图1-5(1)求点P 的坐标;(2)焦点在x 轴上的椭圆C 过点P ,且与直线l :y =x +3交于A ,B 两点,若△P AB 的面积为2,求C 的标准方程.22.[2014·全国卷] 已知抛物线C :y 2=2px (p >0)的焦点为F ,直线y =4与 y 轴的交点为P ,与C 的交点为Q ,且|QF |=54|PQ |. (1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l ′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.20.[2014·新课标全国卷Ⅱ] 设F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直.直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b .21.[2014·山东卷] 在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,直线y =x 被椭圆C 截得的线段长为4105. (1)求椭圆C 的方程.(2)过原点的直线与椭圆C 交于A ,B 两点(A ,B 不是椭圆C 的顶点).点D 在椭圆C 上,且AD ⊥AB ,直线BD 与x 轴、y 轴分别交于M ,N 两点.(i)设直线BD ,AM 的斜率分别为k 1,k 2,证明存在常数λ使得k 1=λk 2,并求出λ的值;(ii)求△OMN 面积的最大值.20.[2014·陕西卷] 已知椭圆x 2a 2+y 2b 2=1(a >b >0)经过点(0,3),离心率为12,左、右焦点分别为F 1(-c ,0),F 2(c ,0).(1)求椭圆的方程;(2)若直线l :y =-12x +m 与椭圆交于A ,B 两点,与以F 1F 2为直径的圆交于C ,D 两点,且满足|AB ||CD |=534,求直线l 的方程.图1-520.、[2014·四川卷] 已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F (-2,0),离心率为63. (1)求椭圆C 的标准方程;(2)设O为坐标原点,T为直线x=-3上一点,过F作TF的垂线交椭圆于P,Q.当四边形OPTQ是平行四边形时,求四边形OPTQ的面积.18.[2014·天津卷] 设椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,右顶点为A,上顶点为B.已知|AB|=32|F1F2|.(1)求椭圆的离心率;(2)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过点F2的直线l与该圆相切于点M,|MF2|=22,求椭圆的方程.H9 曲线与方程12.[2014·福建卷] 在平面直角坐标系中,两点P1(x1,y1),P2(x2,y2)间的“L-距离”定义为||P1P2||=|x1-x2|+|y1-y2|,则平面内与x轴上两个不同的定点F1,F2的“L-距离”之和等于定值(大于||F1F2||)的点的轨迹可以是()A BC D图1-4。

平面解析几何(选择题、填空题)—高考真题文科数学分项汇编(解析版)

平面解析几何(选择题、填空题)—高考真题文科数学分项汇编(解析版)

专题07平面解析几何(选择题、填空题)1.【2020年高考全国Ⅰ卷文数】已知圆 x 2 y 26x 0,过点(1,2)的直线被该圆所截得的弦的长度的最小值为A .1B .2D .4C .3【答案】B 【解析】圆 x2y 2 6x 0化为(x 3)2 y 29,所以圆心C 坐标为C (3,0),半径为3,设 P (1,2),当过点 P 的直线和直线CP 垂直时,圆心到过点 P 的直线的距离最大,所求的弦长最短,此时|CP | (3 1) ( 2) 2 22 2根据弦长公式得最小值为2 9 |CP |22 9 8 2 .故选:B .【点睛】本题考查圆的简单几何性质,以及几何法求弦长,属于基础题.2.【2020年高考全国Ⅲ卷文数】在平面内,A ,B 是两个定点,C 是动点,若 AC BC =1,则点 C 的轨迹为A .圆B .椭圆C .抛物线D .直线【答案】A 【解析】设AB 2a a 0 ,以 AB 中点为坐标原点建立如图所示的平面直角坐标系,,设则: A a ,0 ,B a ,0C x , y,可得: AC x a , y ,BC x a , y ,从而: AC BC x a x a y 2,结合题意可得: x a xa y 21,整理可得: x y a2 2 21,即点 C 的轨迹是以 AB 中点为圆心, a 1为半径的圆.2故选:A .【点睛】本题主要考查平面向量及其数量积的坐标运算,轨迹方程的求解等知识,意在考查学生的转化能力和计算求解能力.3.【2020年高考全国Ⅲ卷文数】点(0, 1)到直线 y k x 1 距离的最大值为A .1【答案】BB . 2C . 3D .2【解析】由 y k (x 1)可知直线过定点 P ( 1,0),设 A (0, 1),当直线 y k (x 1)与 AP 垂直时,点 A 到直线 y k (x 1)距离最大,即为| AP | 2 .故选:B .【点睛】该题考查的是有关解析几何初步的问题,涉及到的知识点有直线过定点问题,利用几何性质是解题的关键,属于基础题.4.【2020年高考全国Ⅱ卷文数】若过点(2,1)的圆与两坐标轴都相切,则圆心到直线 2x −y −3=0的距离为5B . 2 55C . 3 55D . 4 55A .5【答案】B【解析】由于圆上的点 2,1 在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限,a设圆心的坐标为 a ,a ,则圆的半径为,圆的标准方程为 x a y a 2 a2. 2由题意可得 2 a 1 a 2 a2,2可得a26a 5 0,解得 a 1或a 5,所以圆心的坐标为 1,1 或 5,5 ,的距离均为d 1 2 1 1 3 2 5;5圆心到直线5的距离均为d 2 2 5 5 32 55圆心到直线5圆心到直线2x y 3 0的距离均为d 252 5;5所以,圆心到直线2x y 3 0的距离为 2 5 .5故选:B .【点睛】本题考查圆心到直线距离的计算,求出圆的方程是解题的关键,考查计算能力,属于中等题.5.【2020年高考全国Ⅲ卷文数】设 O 为坐标原点,直线 x =2与抛物线 C : y 2若 OD ⊥OE ,则 C 的焦点坐标为2px p 0交于 D ,E 两点,A .( 14,0)【答案】BB .( 12,0)C .(1,0)D .(2,0)【解析】因为直线 x 2与抛物线 y22px (p 0)交于 E ,D 两点,且OD OE ,根据抛物线的对称性可以确定 DOx EOx ,所以D 2,2 ,4代入抛物线方程4 4p ,求得 p 1,所以其焦点坐标为(1 ,0),2故选:B .【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目.y 126.【2020年高考全国Ⅰ卷文数】设 F 1,F 2是双曲线C : x 2O的两个焦点,为坐标原点,点 P 在C 上3且|OP | 2,则△PF 1F 2的面积为A . 72B .3C . 52D .2【答案】B【解析】由已知,不妨设 F 1( 2,0),F 2(2,0),则 a 1,c 2,因为|OP | 1 1 | F 1F 2 |,2所以点 P 在以 F 1F 2为直径的圆上,即 F 1F 2P 是以 P 为直角顶点的直角三角形,故| PF 1 | | PF 2 | | F 1F 2 |2 2 2,即| PF 1 | | PF 2 | 16,又| PF 1 | | PF 2 | 2a 2,2 2所以4 | PF 1 | | PF 2 | 2 | PF 1 |2 | PF 2 |2 2 | PF 1 || PF 2 | 16 2 | PF 1 || PF 2 |,解得| PF 1 || PF 2 | 6,所以S △F 1F 2P 1 | PF 1 || PF 2 | 32故选:B【点晴】本题考查双曲线中焦点三角形面积的计算问题,涉及到双曲线的定义,考查学生的数学运算能力,是一道中档题.7.【2020年高考全国Ⅱ卷文数】设 O 为坐标原点,直线 x =a 与双曲线 C : x 22 b 2y 2 =l(a >0,b >0)的两条渐近a线分别交于 D ,E 两点.若△ODE 的面积为 8,则 C 的焦距的最小值为A .4 B .8 C .16 D .32【答案】B【解析】 C : x a 22 by 22 1(a 0,b 0), 双曲线的渐近线方程是 y b x ,a直线 x a 与双曲线C : xa22 by 2 1(a 0,b 0)的两条渐近线分别交于 D , E 两点2不妨设 D 为在第一象限, E 在第四象限,x ax a联立 b ,解得 ,y x y ba 故 D (a ,b ),x a联立 x ab ,解得y b ,y xa 故 E (a ,b ),| ED | 2b ,ODE 面积为:S △ODE 1 a 2b ab 8,2双曲线C : x 22 by 2 1(a 0,b 0),2a其焦距为2c 2 a 2 b 2 2 2ab 2 16 8,当且仅当a b 2 2取等号,C 的焦距的最小值:8.故选:B .【点睛】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了分析能力和计算能力,属于中档题.8.【2020年高考天津】设双曲线C 的方程为 x22 by 2 1(a 0,b 0),过抛物线2y24x 的焦点和点(0,b )a的直线为l .若C 的一条渐近线与l 平行,另一条渐近线与l 垂直,则双曲线C 的方程为A . x 2y2y 12C . x2y41B . x221D . x y 12 2444【答案】Dx y 1,即直线的斜率为 b ,【解析】由题可知,抛物线的焦点为 1,0 ,所以直线的方程为lb 又双曲线的渐近线的方程为 y b x ,所以 b b , b b 1,因为a 0,b 0,解得a 1,b 1.a a a故选: D .【点睛】本题主要考查抛物线的简单几何性质,双曲线的几何性质,以及直线与直线的位置关系的应用,属于基础题.9.【2020年高考北京】已知半径为 1的圆经过点(3,4),则其圆心到原点的距离的最小值为A . 4B . 5D . 7C . 6【答案】A【解析】设圆心C x , y ,则 x 3 2 y 4 2 1,化简得 x 3 2 y 4 2 1,所以圆心C 的轨迹是以M (3,4)为圆心,1为半径的圆,|OC | 1 |OM | 3 42 5,所以|OC | 5 1 4,所以2当且仅当C在线段OM上时取得等号,故选:A.【点睛】本题考查了圆的标准方程,属于基础题.10.【2020年高考北京】设抛物线的顶点为O,焦点为F,准线为l.P是抛物线上异于O的一点,过P作PQ l于Q,则线段FQ的垂直平分线A.经过点OB.经过点 PD.垂直于直线OPC.平行于直线OP【答案】B因为线段FQ的垂直平分线上的点到F,Q的距离相等,又点P在抛物线上,根据定义可知,PQ PF,所以线段FQ的垂直平分线经过点P .故选:B.【点睛】本题主要考查抛物线的定义的应用,属于基础题.11.【2020年高考浙江】已知点O(0,0),A(–2,0),B(2,0).设点P满足|PA|–|PB|=2,且P为函数y 3 4 x2图象上的点,则|OP|=222B . 4 105A .C . 7D . 10【答案】D【解析】因为| PA | | PB | 2 4,所以点 P 在以 A ,B 为焦点,实轴长为2,焦距为4的双曲线的右支4 1 3,即双曲线的右支方程为 x 2 y 1 x 0,而点 P 还在2c 2,a 1可得, b 2 c 2 a上,由23函数 y 3 4 x 的图象上,所以,2132 y 3 4 x 2 x 13 27 ,即 OP 10.由 x,解得 y 3 1 x 0 223 3244 y故选:D.【点睛】本题主要考查双曲线的定义的应用,以及二次曲线的位置关系的应用,意在考查学生的数学运算能力,属于基础题.12.【2020年新高考全国Ⅰ卷】已知曲线C :mx ny 1.2 2A .若 m >n >0,则 C 是椭圆,其焦点在 y 轴上B .若 m =n >0,则C 是圆,其半径为 nmC .若 mn <0,则 C 是双曲线,其渐近线方程为 y x nD .若 m =0,n >0,则 C 是两条直线【答案】ACDx 2y2 1可化为 1 11【解析】对于 A ,若m n 0,则mx ,ny 2 2mn因为m n 0,所以 m 1 1n,y即曲线C 表示焦点在轴上的椭圆,故 A 正确;对于 B ,若m n 0,则mx2ny21可化为 x 2 y21,n此时曲线C 表示圆心在原点,半径为n 的圆,故 B 不正确;nx 1可化为 1 11,对于 C ,若mn 0,则mx ny 2 22y2m n此时曲线C 表示双曲线,m由mx ny2 20可得 y x ,故 C 正确;n对于 D ,若m 0,n 0,则mx 2 ny 2 1可化为y 2 1,nn ,此时曲线C 表示平行于轴的两条直线,故 D 正确;xyn 故选:ACD.【点睛】本题主要考查曲线方程的特征,熟知常见曲线方程之间的区别是求解的关键,侧重考查数学运算的核心素养.13.【2019年高考浙江卷】渐近线方程为 x ±y =0的双曲线的离心率是2A .B .1D .22C . 2【答案】C【解析】因为双曲线的渐近线方程为 x y 0,所以a b ,则c a 2 b22a ,所以双曲线的离心率e c 2 .故选 C.a【名师点睛】本题根据双曲线的渐近线方程可求得 a b ,进一步可得离心率,属于容易题,注重了双曲线基础知识、基本计算能力的考查.理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.14.【2019年高考全国Ⅰ卷文数】双曲线 C : x a22 by 2 1(a 0,b 0)的一条渐近线的倾斜角为 130°,则 C2的离心率为A .2sin40°B .2cos40°11C .D .sin50cos50【答案】D【解析】由已知可得 b tan130 , b tan50 ,a a1 b 250 sin 50 cos2 250501 e c 1 tan 50 1 sin 22, a a cos 2cos 250 cos50故选 D .【名师点睛】对于双曲线: x2y 21 b 22 1 a 0 , b 0 ,有e c ;a 2 ba a 2对于椭圆 x2y 22 1 a b 0 ,有e c 1 b ,防止记混.a 2 ba a 15.【2019年高考全国Ⅰ卷文数】已知椭圆 C 的焦点为 F 1( 1,0),F 2(1,0),过 F 的直线与 C 交于 A ,B 两2点.若| AF 2 | 2| F 2B |,| AB | | BF 1 |,则 C 的方程为A . x2B . x 2 y 12y 12232C . x 2y 12D . x 2y 124354【答案】B【解析】法一:如图,由已知可设 F 2B n ,则 AF 2 2n , BF 1 AB 3n ,由椭圆的定义有2a BF 1 BF 2 4n , AF 1 2a AF 2 2n .中,由余弦定理推论得cos F 1AB 4n 29n 29n 21.在△AF 1B2 2n 3n33.2在△AF 1F 2中,由余弦定理得4n 24n 22 2n 2n 1 4,解得n 323 1 2 , 所求椭圆方程为 x 2a 4n 2 3 , a 3 , b a c 2 22 y 1,故选 B .232法二:由已知可设 F 2B n ,则 AF 2 2n , BF 1 AB 3n ,由椭圆的定义有2a BF 1 BF 2 4n , AF 1 2a AF 2 2n .4n4 2 2n 2 cos AF 2F 14n2 2在△AF 1F 2和△BF 1F 2中,由余弦定理得,n 2 4 2 n 2 cos BF 2F 1 9n 2又 AF 2F 1 , BF 2F 1互补, cos AF 2F 1 cos BF 2F 1 0,两式消去cos AF 2F 1,cos BF 2F 1,得3. 2a 4n 2 3 , a 3 , ba c2 23 1 2 , 所求椭圆3n 6 11n2 2,解得n22方程为 x 2y 1,故选 B .232【名师点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好地落实了直观想象、逻辑推理等数学素养.x 2 y 1的一个焦点,则 p =216.【2019年高考全国Ⅱ卷文数】若抛物线 y 2=2px (p >0)的焦点是椭圆3p pA .2B .3D .8C .4【答案】D2px (p 0)的焦点( p ,0)是椭圆 x y 23p221的一个焦点,所以3p p ( p )2【解析】因为抛物线 y ,2p 2解得 p 8,故选 D .【名师点睛】本题主要考查抛物线与椭圆的几何性质,渗透逻辑推理、运算能力素养.解答时,利用抛物线与椭圆有共同的焦点即可列出关于 p 的方程,从而解出 p ,或者利用检验排除的方法,如 p 2时,抛物线焦点为(1,0),椭圆焦点为(±2,0),排除 A ,同样可排除 B ,C ,从而得到选 D .17.【2019年高考全国Ⅱ卷文数】设 F 为双曲线 C : x 22 b 22 1(a >0,b >0)的右焦点,O 为坐标原点,y a以 OF 为直径的圆与圆x 2+y 2=a 2交于 P ,Q 两点.若|PQ |=|OF |,则 C 的离心率为A . 2B . 3D . 5C .2【答案】Ax【解析】设 PQ 与轴交于点A ,由对称性可知 PQ x 轴,又 PQ |OF | c , | PA | c , PA 为以OF 为直径的圆的半径,2∴|OA | c ,c c ,,P 2 22a 上, c2c a ,即 c 22 ca 2 2.2又 P 点在圆 x 2y222 a 2, e2442e 2,故选 A .【名师点睛】本题为圆锥曲线离心率的求解,难度适中,审题时注意半径还是直径,优先考虑几何法,避免代数法从头至尾运算繁琐,准确率大大降低,双曲线离心率问题是圆锥曲线中的重点问题,需强化练习,才能在解决此类问题时事半功倍,信手拈来.解答本题时,准确画图,由图形对称性得出 P 点坐标,代入圆的方程得到 c 与 a 的关系,可求双曲线的离心率.18.【2019年高考全国Ⅲ卷文数】已知 F 是双曲线 C : x2y 1的一个焦点,点 P 在 C 上,O 为坐标原245点,若 OP = OF ,则△OPF 的面积为3252A .C .B .D .7292【答案】B,则 x 0 y 1①.22【解析】设点 P x 0, y045又 OP OF 4 5 3, x 02y 0 9②.225,即 y 0 5,由①②得 y 0293S △OPF 1 OF y 0 1 3 5 5,2223故选 B .【名师点睛】本题易错在忽视圆锥曲线方程和两点间的距离公式的联系导致求解不畅.设P x 0, y 0 ,由OP = OF ,再结合双曲线方程可解出19.【2019年高考北京卷文数】已知双曲线A . 6y 0,利用三角形面积公式可求出结果.x 22 y 21(a >0)的离心率是 5,则 a =a B .41C .2D .2【答案】D【解析】∵双曲线的离心率e c 5,c a21,a2 1 5,解得a 1a ∴,2a故选 D.【名师点睛】本题主要考查双曲线的离心率的定义,双曲线中 a ,b ,c 的关系,方程的数学思想等知识,意在考查学生的转化能力和计算求解能力.20.【 2019年高考天津卷文数】已知抛物线 y 24x 的焦点为 F ,准线为 l .若 l 与双曲线x 22 by 2 1(a 0,b 0)的两条渐近线分别交于点 A 和点 B ,且|AB | 4|OF |(O 为原点),则双曲2a线的离心率为A . 2B . 3D . 5C .2【答案】D 【解析】抛物线 y24x 的准线l 的方程为 x 1,双曲线的渐近线方程为 y b x ,a则有 A ( 1, b ),B ( 1, b ),a a ∴ AB 2b 2b, a 4,b 2a ,a∴e c a b2 25 .aa故选 D.【名师点睛】本题考查抛物线和双曲线的性质以及离心率的求解,解题关键是求出 AB 的长度.解答时,只需把 AB 4 OF 用a ,b ,c 表示出来,即可根据双曲线离心率的定义求得离心率.21.【2018年高考全国Ⅰ卷文数】已知椭圆C : xa22y 2 1的一个焦点为(2,0),则C 的离心率为41A .312B .2D . 2 23C .2【答案】Cb c【解析】由题可得c 2,因为b 4,所以a 8,即a 2 2,2 2 2 222,故选 C .所以椭圆C 的离心率e22 2【名师点睛】本题主要考查椭圆的方程及离心率,考查考生的运算求解能力,考查的数学核心素养是数学运算.在求解的过程中,一定要注意离心率的公式,再者就是要学会从题的条件中判断与之相关的量,结合椭圆中a ,b ,c 的关系求得结果.22.【2018年高考全国Ⅱ卷文数】已知 F 1,F 2是椭圆C 的两个焦点, P 是C 上的一点,若 PF 1 PF 2,且PF 2F 1 60 ,则C 的离心率为3A .1B .2 3D . 3 123 1C .2【答案】D【解析】在△F 1PF 2中, F 1PF 2 90设 PF 2 m ,, PF 2F 1 60 ,则2c F 1F 2 2m , PF 1 3m ,又由椭圆定义可知2a PF 1 PF 2 ( 3 1)m ,则e c 2c2m 3 1,故选 D .a2a ( 3 1)m【名师点睛】本题主要考查椭圆的定义和简单的几何性质,考查考生的数形结合能力、运算求解能力,考查的数学核心素养是直观想象、数学运算.结合有关平面几何的知识以及椭圆的定义、性质加以灵活分析,关键是寻找椭圆中 a ,c 满足的关系式.椭圆定义的应用主要有两个方面:一是判断平面内动点与两定点的轨迹是否为椭圆,二是利用定义求焦点三角形的周长、面积、椭圆的弦长及最值和离心率问题等;“焦点三角形”是椭圆问题中的常考知识点,在解决这类问题时经常会用到正弦定理,余弦定理以及椭圆的定义.23.【2018年高考全国Ⅱ卷文数】双曲线 x a22 by 2 1(a 0,b 0)的离心率为 3,则其渐近线方程为2A . y 2xB . y 3xC . y 2 xD . y 3 x22【答案】A【解析】因为 e c 3,所以 b22c 2 a 2b 2,因为渐近线方程为 e 2 1 3 1 2,所以 aaa a 2y b x ,所以渐近线方程为 y 2x ,故选 A .a【名师点睛】本题主要考查双曲线的简单几何性质,考查考生的运算求解能力,考查的数学核心素养是数学运算.(1)焦点在 x 轴上的双曲线的标准方程为 x a22 by 2 1(a 0,b 0),焦点坐标为(±c ,0),实轴长为 2a ,2虚轴长为 2b ,渐近线方程为 y b x ;a(2)焦点在 y 轴上的双曲线的标准方程为 2 bx 2 1(a 0,b 0),焦点坐标为(0,±c ),实轴长为 2a ,y 22a虚轴长为 2b ,渐近线方程为 y a x .b24.【2018年高考全国Ⅲ卷文数】直线 x y 2 0分别与 x 轴, y 轴交于 A , B 两点,点 P 在圆(x 2)2 y 2 2上,则△ABP 面积的取值范围是B . 4,8 A . 2,6C . 2,3 2 2 2,3 2D .【答案】A【解析】直线 x y 2 0分别与轴,轴交于 A ,B 两点, A 2,0 ,B 0, 2 ,则 AB 2 2 .x y 点 P 在圆(x 2)2 y22上, 圆心为(2,0),则圆心到直线的距离d 1 2 0 2 2 2 .22,3 2,则S △ABP 1 AB d 2 2d 2 2,6 .故点 P 到直线 x y 2 0的距离d 2的范围为2故答案为 A.【名师点睛】本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题 .先求出 A ,B 两点坐标得到 AB ,再计算圆心到直线的距离,得到点 P 到直线距离的范围,由面积公式计算即可.25.【2018年高考全国Ⅲ卷文数】已知双曲线C : x 22 by2 21(a 0,b 0)的离心率为 2,则点(4,0)到Ca的渐近线的距离为A . 2B .2C . 3 22D .2 2【答案】D【解析】 e c 1 (b )2, b 1,所以双曲线C 的渐近线方程为 x y 0,所以点(4,0)2aaa4到渐近线的距离d2 2,故选 D .1 1【名师点睛】本题主要考查双曲线的性质、点到直线的距离公式,考查考生的运算求解能力、化归与转化能力、逻辑思维能力,考查的数学核心素养是逻辑推理、数学运算、直观想象.熟记结论:若双曲线 x a22 by 2 1(a 0,b 0)是等轴双曲线,则 a =b ,离心率 e = 2,渐近线方程为2y =±x ,且两条渐近线互相垂直.26.【2018年高考浙江卷】双曲线 x2y21的焦点坐标是3A .(− 2,0),( 2,0)B .(−2,0),(2,0)C .(0,− 2 ),(0, 2 )D .(0,−2),(0,2)【答案】B 【解析】设 x22 1的焦点坐标为( c ,0),因为c 2 a 2 b 23 1 4,c 2, y3所以焦点坐标为( 2,0),故选 B .【名师点睛】本题主要考查双曲线基本量之间的关系,考查考生的运算求解能力,考查的数学核心素养是数学运算.解答本题时,先根据所给的双曲线方程确定焦点所在的坐标轴,然后根据基本量之间的关系进行运算.27.【2018年高考天津卷文数】已知双曲线 x a22 by 2 1(a 0, b 0)的离心率为2,过右焦点且垂直于轴2x的直线与双曲线交于 A ,B 两点.设 A ,B 到双曲线同一条渐近线的距离分别为d1和d 2,且d 1 d 2 6,则双曲线的方程为A . x 2y 12B . x 2y 123993C . x 2y 12D .x 2 y 12412124【答案】A【解析】设双曲线的右焦点坐标为 F (c ,0)(c 0),则 x A x B c ,由 c 2a 2 by 2 1可得 ya ,2b 2不妨设 A (c , b), B (c , b2 2),a a 双曲线的一条渐近线方程为bx ay 0,据此可得d 1 |bc b 2| bc b 2,d 2 |bc b| bc b2 2,cb2a 2b 2ca 2则d 1 d 2 2bc 2b 6,则b 3,b29,c21 a 92 2,据此可得a23,则双曲线的方程为 x 2 y 1.2双曲线的离心率e c 1 b aa 239故选 A .【名师点睛】求双曲线的标准方程的基本方法是待定系数法.具体过程是先定形,再定量,即先确定双曲线标准方程的形式,然后再根据 a ,b ,c ,e 及渐近线之间的关系,求出 a ,b 的值.如果已知双曲线的渐近线方程,求双曲线的标准方程,可利用有公共渐近线的双曲线方程为 x a22 by 2 0 ,2再由条件求出λ的值即可.解答本题时,由题意首先求得 A ,B 的坐标,然后利用点到直线距离公式求得b 的值,之后求解 a 的值即可确定双曲线方程.28.【2020年高考全国Ⅲ卷文数】设双曲线 C : x a22 by 2 1 (a >0,b >0)的一条渐近线为 y = 2 x ,则 C 的离心2率为_________.【答案】3【解析】由双曲线方程 xa 22 by2 1可得其焦点在轴上,2x因为其一条渐近线为y 2x,b a 2,e ac 1 ba2 3 .2所以故答案为:3【点睛】本题考查的是有关双曲线性质,利用渐近线方程与离心率关系是解题的关键,要注意判断焦点所在位置,属于基础题.29.【2020年高考天津】已知直线x 3y 8 0和圆 x2 y2 r2(r 0)相交于A,B两点.若| AB| 6,则r的值为_________.【答案】58【解析】因为圆心 0,0 到直线x 3y 8 0的距离d 4,1 3由| AB | 2 r d 2可得6 2 r2 42,解得r = 5.2故答案为:5.【点睛】本题主要考查圆的弦长问题,涉及圆的标准方程和点到直线的距离公式,属于基础题.30.【2020年高考北京】已知双曲线C : x2 y 1,则C的右焦点的坐标为_________;C的焦点到其渐263近线的距离是_________.【答案】 3,0 ;3【解析】在双曲线C中,a 6,b 3,则c a22 3,则双曲线C的右焦点坐标为 3,0 ,b双曲线C的渐近线方程为y2 x,即x 2y 0,23所以,双曲线C的焦点到其渐近线的距离为 3 .1 22故答案为: 3,0 ; 3 .【点睛】本题考查根据双曲线的标准方程求双曲线的焦点坐标以及焦点到渐近线的距离,考查计算能力,属于基础题.31.【2020年高考浙江】已知直线 y kx b (k 0)与圆 x 2 y 2 1和圆(x 4)2 y 2 1均相切,则k _______,b =_______.3; 2 3【答案】33|b | 1|4k b |1,【解析】由题意,C 1,C 2到直线的距离等于半径,即1,k 12 2k22所以|b | 4k b ,所以k 0(舍)或者b 2k ,解得k 3 ,b 2 3 .333 ; 2 33故答案为:3【点晴】本题主要考查直线与圆的位置关系,考查学生的数学运算能力,是一道基础题.32.【2020年高考江苏】在平面直角坐标系 xOy 中,若双曲线 x 22 y 1(a 0)的一条渐近线方程为 y 5 x ,2a 52则该双曲线的离心率是▲.3【答案】2【解析】双曲线 x a22 y 1,故 b 5 .由于双曲线的一条渐近线方程为 y 25 x ,即52b 5 a 2,所以c a b 2 c 4 5 3,所以双曲线的离心率为 a 3222.a32故答案为:【点睛】本小题主要考查双曲线的渐近线,考查双曲线离心率的求法,属于基础题.33.【2020年新高考全国Ⅰ卷】斜率为 3的直线过抛物线 C :y AB =________.2=4x 的焦点,且与 C 交于 A ,B 两点,则163【答案】【解析】∵抛物线的方程为 y24x ,∴抛物线的焦点 F 坐标为 F (1,0),又∵直线 AB 过焦点 F 且斜率为 3,∴直线 AB 的方程为: y 3(x 1)代入抛物线方程消去 y 并化简得3x 2 10x 3 0,解法一:解得 x 1 1,x 2 33| x 1 x 2 | 1 3 |3 1 | 16所以| AB | 1 k233解法二: 100 36 64 0设 A (x 1, y 1),B (x 2, y 2),则 x 1 x 2 103,过 A ,B 分别作准线 x 1的垂线,设垂足分别为C ,D 如图所示.| AB | | AF | | BF | | AC | | BD | x 1 1 x 2 1 x 1 x 2+2=16316故答案为:3【点睛】本题考查抛物线焦点弦长,涉及利用抛物线的定义进行转化,弦长公式,属基础题.3,0),A ,B 是圆 C : x (y 1) 36上的两2234.【2020年高考江苏】在平面直角坐标系 xOy 中,已知 P (22个动点,满足 PA PB ,则△PAB 面积的最大值是【答案】10 5▲.【解析】Q PA PB PC AB3 1 14 4设圆心C 到直线 AB 距离为d ,则|AB |=2 36 d 2,| PC | 所以 S V PAB 1 2 36 d(d 1) (36 d (0 d 6) y 2(d 1)( 2d 当0 d 4时,y 0;当4 d 6时,故答案为:10 5)(d 1)2 222令 y (36 d 2)(d 1)22d 36) 0 d 4(负值舍去)y y 0,因此当 d 4时,取最大值,即S PAB 取最大值为10 5,【点睛】本题考查垂径定理、利用导数求最值,考查综合分析求解能力,属中档题.35.【2019年高考北京卷文数】设抛物线 y =4x 的焦点为 F ,准线为 l .则以 F 为圆心,且与 l 相切的圆的2方程为__________.【答案】(x 1) y 42 2【解析】抛物线 y =4x 中,2p =4,p =2,2焦点 F (1,0),准线 l 的方程为 x =−1,以 F 为圆心,且与 l 相切的圆的方程为(x −1)+y =22,即为(x 1)22y24 .2【名师点睛】本题可采用数形结合法,只要画出图形,即可很容易求出结果.36.【2019年高考全国Ⅲ卷文数】设 F 1,F 2为椭圆 C : x2y21的两个焦点,M 为 C 上一点且在第一象限.若+36 20△MF 1F 2为等腰三角形,则 M 的坐标为___________.【答案】 3, 15【解析】由已知可得a236 ,b 2 20 , c 2 a 2b 2 16 ,c 4,MF 1 F 1F 2 2c 8,∴ MF 2 4.1 F 1F2 y 0 4y 0,△MF 1F 2设点M 的坐标为 x 0 , y x0, y 0 00 ,则S 02又 S △MF 1F 2 1 4 8 2 4 15 , 4y 0 4 15,解得 y 0 15,222215 1,解得 x 0 3( x 0 3舍去),20 x 236\ M 的坐标为 3, 15.【名师点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好地落实了直观想象、逻辑推理等数学素养.解答本题时,根据椭圆的定义分别求出 MF 1、MF2,设出M 的坐标,结合三角形面积可求出M 的坐标.y237.【2019年高考江苏卷】在平面直角坐标系 xOy 中,若双曲线 x 2 2 1(b 0)经过点(3,4),则该双b曲线的渐近线方程是▲.【答案】 y 2x4【解析】由已知得3221,解得b 2或b 2,b2因为b 0,所以b 2 .因为 a 1,所以双曲线的渐近线方程为 y 2x .【名师点睛】双曲线的标准方程与几何性质,往往以小题的形式考查,其难度一般较小,是高考必得分题.双曲线渐近线与双曲线标准方程中的 a ,b 密切相关,事实上,标准方程中化 1为 0,即得渐近线方程.438.【2019年高考江苏卷】在平面直角坐标系 xOy 中,P 是曲线 y x (x 0)上的一个动点,则点 P 到x直线 x +y =0的距离的最小值是【答案】4▲.【解析】当直线 x +y =0平移到与曲线 y x 4相切位置时,切点 Q 即为点 P ,此时到直线 x +y =0的距x离最小.由 y 1 42 1,得 x 2(x 2舍), y 3 2,即切点Q ( 2,3 2),x2 3 2则切点 Q 到直线 x +y =0的距离为 4,1 12 2故答案为4.【名师点睛】本题考查曲线上任意一点到已知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法和公式法,利用数形结合和转化与化归思想解题.39.【2019年高考浙江卷】已知圆C 的圆心坐标是(0,m )r,半径长是 .若直线2x y 3 0与圆 C 相切于点 A ( 2, 1),则mr=___________, =___________.【答案】 2, 5【解析】由题意可知k AC 1 AC : y 1 1 (x 2),把(0,m )代入直线 AC 的方程得m 2,22此时r | AC | 4 1 5 .【名师点睛】本题主要考查圆的方程、直线与圆的位置关系.首先通过确定直线 AC 的斜率,进一步得到其方程,将(0,m )代入后求得m ,计算得解.解答直线与圆的位置关系问题,往往要借助于数与形的结合,特别是要注意应用圆的几何性质.40.【2019年高考浙江卷】已知椭圆 x 2y 1的左焦点为 F ,点 P 在椭圆上且在轴的上方,若线段 PF2x95的中点在以原点O 为圆心, OF 为半径的圆上,则直线 PF 的斜率是___________.【答案】 15【解析】方法 1:如图,设 F 1为椭圆右焦点.由题意可知|OF |=|OM |= c= 2,由中位线定理可得 PF 1 2|OM | 4,设 P (x , y ),可得(x 2)y2 216,与方程 x 2y 1联立,可解得 x 3,x 2212(舍),9521515 P3 ,21x 又点 P 在椭圆上且在轴的上方,求得 ,所以k PF15 . 222方法 2:(焦半径公式应用)由题意可知|OF |=|OM |= c= 2,32由中位线定理可得PF1 2|OM | 4,即a ex p 4 x p ,1515,所以P 3 ,21从而可求得 k PF 15 .222【名师点睛】本题主要考查椭圆的标准方程、椭圆的几何性质、圆的方程与性质的应用,利用数形结合思想,是解答解析几何问题的重要途径.结合图形可以发现,利用三角形中位线定理,将线段长度用圆的方程表示,与椭圆方程联立可进一步求解.也可利用焦半径及三角形中位线定理解决,则更为简洁. 41.【2018年高考全国I卷文数】直线y x 1与圆x y2 22y 3 0交于A,B两点,则AB ________.【答案】2 2y 1 2 4,所以圆的圆心为0, 1,且半径是2,【解析】根据题意,圆的方程可化为 x20 1 1根据点到直线的距离公式可以求得d 1 2 2,12结合圆中的特殊三角形,可知AB 2 4 2 2 2,故答案为2 2 .【名师点睛】该题考查的是有关直线被圆截得的弦长问题,在解题的过程中,熟练应用圆中的特殊三角形,即半弦长、弦心距和圆的半径构成的直角三角形,借助于勾股定理求得结果.首先将圆的一般方程转化为标准方程,得到圆心坐标和圆的半径的大小,之后应用点到直线的距离求得弦心距,借助于圆中特殊三角形,利用勾股定理求得弦长.42.【2018年高考天津卷文数】在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________.【答案】x y 2x 02 2【解析】设圆的方程为 x2 y2 Dx Ey F 0,圆经过三点(0,0),(1,1),(2,0),F 0 D 2则 1 1 D E F 0,解得 E 0,则圆的方程为 x2 y22x 0.F 04 0 2D F 0【名师点睛】求圆的方程,主要有两种方法:(1)几何法:具体过程中要用到初中有关圆的一些常用性质和定理.如:①圆心在过切点且与切线垂直的直线上;②圆心在任意弦的中垂线上;③两圆相切时,切点与两圆心三点共线.(2)待定系数法:根据条件设出圆的方程,再由题目给出的条件,列出等式,求出相关量.一般地,与圆心和半径有关,选择标准式,否则,选择一般式.不论是哪种形式,都要确定三个独立参数,所以应该有三个独立等式.43.【2018年高考浙江卷】已知点 P (0,1),椭圆 x2+y =m (m >1)上两点 A ,B 满足 AP 2PB ,则当24m =___________时,点 B 横坐标的绝对值最大.【答案】5【解析】设 A (x 1, y 1), B (x 2, y 2),x 1 2x 2,1 y 1 2(y 2 1),由 AP 2PB 得所以 y 1 2y 2 3,x 12x 22因为 A , B 在椭圆上,所以 4 y 12m , 4 y 22 m ,4x 22(2y 2 3)2 m ,所以4所以 x 22(y 2 3)m 2,424与 x 22m 对应相减得 y 3 m 1 (m y 22, x 22210m 9) 4,2444当且仅当m 5时取最大值.【名师点睛】解析几何中的最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的探求来使问题得以解决.44.【2018年高考北京卷文数】若双曲线 x a22 y 1(a 0)的离心率为25,则a ________________.24【答案】4【解析】在双曲线中c a2b 2a 2 4,且e ac 5,2a 2 4 5,即a 2 16,2所以a因为a 0,所以a 4.数学运算.在求解有关离心率的问题时,一般不直接求出 c 和 a 的值,而是根据题目给出的条件,建立关于参数 c ,a ,b 的方程或不等式,通过解方程或不等式求得离心率的值或取值范围.45.【2018年高考北京卷文数】已知直线 l 过点(1,0)且垂直于轴,若 l 被抛物线 y 4ax 截得的线段2长为 4,则抛物线的焦点坐标为_________.【答案】 1,0 【解析】由题意可得,点 P 1,2 在抛物线上,将 P 1,2 代入 y 2 4ax 中,解得a 1, y 4x ,由2抛物线方程可得:2p 4, p 2, p 1, 焦点坐标为 1,0 .2【名师点睛】此题考查抛物线的相关知识,属于易得分题,关键在于能够结合抛物线的对称性质,得到抛物线上点的坐标,再者熟练准确记忆抛物线的焦点坐标公式也是保证本题能够得分的关键.根据题干描述画出相应图形,分析可得抛物线经过点 1,2 ,将点 1,2 坐标代入可求参数的值,进而可求焦点坐a标.x 22 by 22 1(a 0,b 0)的右焦点F (c ,0)46.【2018年高考江苏卷】在平面直角坐标系 xOy 中,若双曲线a到一条渐近线的距离为 3 c ,则其离心率的值是________________.2【答案】2bc 0bcc【解析】因为双曲线的焦点 F (c ,0)到渐近线 y b x ,即bx ay 0的距离为a b2 2b ,a所以b3 c ,2因此a 2c 2b 2c23 c 2 1 c 2,a 1 c ,e 2.442。

2020年高考试题:解析几何

2020年高考试题:解析几何
A、 B、 C、 D、
本题解析:双曲线 : 渐近线: 。
与 联立得到: ; 与 联立得到: 。
, , 的方程: 。
到直线 的距离: 。 。
焦距的最小值是 。
训练八:2020年高考数学新课标Ⅱ卷文科第19题理科第19题:已知椭圆 : ( )的右焦点 与抛物线 的焦点重合, 的中心与 的顶点重合。过 且与 轴垂直的直线交 于 , 两点,交 于 , 两点,且 。

。联立 和圆 得到: 。
, ,
的方程:

训练六:2020年高考数学新课标Ⅱ卷文科第8题理科第5题:若过点 的圆与两坐标轴都相切,则圆心到直线 的距离为( )
A、 B、 C、 D、
本题解析:假设:圆的方程为: ,圆心 ,半径 。
圆与两个坐标轴相切 整个圆只能在一个象限,圆过点 整个圆在第一象限
, 。

(Ⅱ)文科: 。
椭圆 的四个顶点 , , , , ,
, , , 。
抛物线 : 的准线 。
到准线 的距离: ;
到准线 的距离: ;
到准线 的距离: ;
到准线 的距离: ;
的四个顶点到 的准线距离之和为

椭圆 的方程为 。抛物线 的方程为 。
(Ⅱ)理科: 椭圆 。
联立椭圆 和抛物线 得到:
十字相乘法计算。
(Ⅰ)求 的离心率;
(Ⅱ)文科:若 的四个顶点到 的准线距离之和为 ,求 和 的标准方程。
理科:设 是 和 的公共点,若 ,求 和 的标准方程。
本题解析:(Ⅰ)椭圆 : 的右焦点 与抛物线 的焦点重合,
方程为 。过 且与 轴垂直的直线: 。
与 联立得到:
, 。
与 联立得到: ,
, ,

高中数学全国Ⅰ卷文科解析几何近三年高考题

高中数学全国Ⅰ卷文科解析几何近三年高考题
4.(2018全国Ⅰ文)已知椭圆 的一个焦点为 ,则 的离心率为( )
A. B. C. D.
【答案】C
【解析】知 ,∴ , ,∴离心率 .
14.(2018全国Ⅰ文)若 满足约束条件 ,则 的最大值为__________.
【答案】
【解析】 画出可行域如图所示,可知目标函数过点 时取得最大值, .
15.(2018全国Ⅰ文)直线 与圆 交于 两点,则 __________.
A.0B.1C.2D.3
【答案】D
【解析】如图,目标函数 经过 时最大,故 ,故选D.
12.(2017全国Ⅰ文)设A、B是椭圆C: 长轴的两个端点,若C上存在点M满足 ,则m的取值范围是
A. B. C. D.
【答案】A
【解析】当 ,焦点在 轴上,要使C上存在点M满足 ,则 ,即 ,得 ;当 ,焦点在 轴上,要使C上存在点M满足 ,则 ,即 ,得 ,故m的取值范围为 ,选A.
【答案】(1) 或 ; (2)见解析.设圆的方程为 ,又 ,根据 得 ;∵ 与直线 相切,
∴ ,联解方程得 或 . (2)设 的坐标为 ,根据条件 即 化简得 ,即 的轨迹是以 为焦点,以 为准线的抛物线,所以存在定点 ,使 .
2018年文科解析几何
∴ .
2017年文科解析几何
5.(2017全国Ⅰ文)已知 是双曲线 : 的右焦点, 是 上一点,且 与 轴垂直,点 的坐标是 .则 的面积为( )
A. B. C. D.
【答案】D
【解析】由 得 ,所以 ,将 代入 ,得 ,所以 ,又 的坐标是 ,故 的面积为 ,选D.
7.(2017全国Ⅰ文)设 满足约束条件 则 的最大值为( )
2019年文科解析几何
10.(2019全国Ⅰ文)双曲线 的一条渐近线的倾斜角为 ,则 的离心率为( )

2022年全国高考甲卷数学(文)试题(解析版)

2022年全国高考甲卷数学(文)试题(解析版)

2022年普通高等学校招生全国统一考试(全国甲卷文科)注意事项:1.答卷前,考生务必用黑色碳素笔将自己的姓名、准考证号、考场号、座位号填写在答题卡上,并认真核准条形码上的准考证号、姓名、考场号、座位号及科目,在规定的位置贴好条形码.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上、写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合5{2,1,0,1,2},02A B xx ⎧⎫=--=≤<⎨⎩⎭∣,则A B = ()A.{}0,1,2 B.{2,1,0}-- C.{0,1}D.{1,2}【答案】A 【解析】【分析】根据集合的交集运算即可解出.【详解】因为{}2,1,0,1,2A =--,502B xx ⎧⎫=≤<⎨⎬⎩⎭∣,所以{}0,1,2A B = .故选:A.2.某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则()A.讲座前问卷答题的正确率的中位数小于70%B.讲座后问卷答题的正确率的平均数大于85%C.讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D.讲座后问卷答题的正确率的极差大于讲座前正确率的极差【答案】B 【解析】【分析】由图表信息,结合中位数、平均数、标准差、极差的概念,逐项判断即可得解.【详解】讲座前中位数为70%75%70%2+>,所以A 错;讲座后问卷答题的正确率只有一个是80%,4个85%,剩下全部大于等于90%,所以讲座后问卷答题的正确率的平均数大于85%,所以B 对;讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,所以C 错;讲座后问卷答题的正确率的极差为100%80%20%-=,讲座前问卷答题的正确率的极差为95%60%35%20%-=>,所以D 错.故选:B.3.若1i z =+.则|i 3|z z +=()A. B. C. D.【答案】D 【解析】【分析】根据复数代数形式的运算法则,共轭复数的概念以及复数模的计算公式即可求出.【详解】因为1i z =+,所以()()i 3i 1i 31i 22i z z +=++-=-,所以i 3z z +==故选:D.4.如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为()A.8B.12C.16D.20【答案】B 【解析】【分析】由三视图还原几何体,再由棱柱的体积公式即可得解.【详解】由三视图还原几何体,如图,则该直四棱柱的体积2422122V +=⨯⨯=.故选:B.5.将函数π()sin (0)3f x x ωω⎛⎫=+> ⎪⎝⎭的图像向左平移π2个单位长度后得到曲线C ,若C 关于y 轴对称,则ω的最小值是()A.16B.14C.13D.12【答案】C 【解析】【分析】先由平移求出曲线C 的解析式,再结合对称性得,232k k ωππππ+=+∈Z ,即可求出ω的最小值.【详解】由题意知:曲线C 为sin sin()2323y x x ππωππωω⎡⎤⎛⎫=++=++ ⎪⎢⎝⎭⎣⎦,又C 关于y 轴对称,则,232k k ωππππ+=+∈Z ,解得12,3k k ω=+∈Z ,又0>ω,故当0k =时,ω的最小值为13.故选:C.6.从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为()A.15 B.13C.25D.23【答案】C 【解析】【分析】先列举出所有情况,再从中挑出数字之积是4的倍数的情况,由古典概型求概率即可.【详解】从6张卡片中无放回抽取2张,共有()()()()()()()()()()()()()()()1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,2,6,3,4,3,5,3,6,4,5,4,6,5,615种情况,其中数字之积为4的倍数的有()()()()()()1,4,2,4,2,6,3,4,4,5,4,66种情况,故概率为62155=.故选:C.7.函数()33cos x xy x -=-在区间ππ,22⎡⎤-⎢⎥⎣⎦的图象大致为()A. B.C. D.【答案】A 【解析】【分析】由函数的奇偶性结合指数函数、三角函数的性质逐项排除即可得解.【详解】令()()33cos ,,22xxf x x x ππ-⎡⎤=-∈-⎢⎣⎦,则()()()()()33cos 33cos xx x x f x x x f x ---=--=--=-,所以()f x 为奇函数,排除BD ;又当0,2x π⎛⎫∈ ⎪⎝⎭时,330,cos 0x xx -->>,所以()0f x >,排除C.故选:A.8.当1x =时,函数()ln bf x a x x=+取得最大值2-,则(2)f '=()A.1-B.12-C.12D.1【答案】B 【解析】【分析】根据题意可知()12f =-,()10f '=即可解得,a b ,再根据()f x '即可解出.【详解】因为函数()f x 定义域为()0,∞+,所以依题可知,()12f =-,()10f '=,而()2a b f x x x '=-,所以2,0b a b =--=,即2,2a b =-=-,所以()222f x x x'=-+,因此函数()f x 在()0,1上递增,在()1,+∞上递减,1x =时取最大值,满足题意,即有()112122f '=-+=-.故选:B.9.在长方体1111ABCD A B C D -中,已知1B D 与平面ABCD 和平面11AA B B 所成的角均为30°,则()A.2AB AD =B.AB 与平面11AB C D 所成的角为30°C.1AC CB =D.1B D 与平面11BB C C 所成的角为45︒【答案】D 【解析】【分析】根据线面角的定义以及长方体的结构特征即可求出.【详解】如图所示:不妨设1,,AB a AD b AA c ===,依题以及长方体的结构特征可知,1B D 与平面ABCD 所成角为1B DB ∠,1B D 与平面11AA B B 所成角为1DB A ∠,所以11sin 30c b B D B D== ,即b c =,12B D c ==,解得a =.对于A ,AB a =,AD b =,AB =,A 错误;对于B ,过B 作1BE AB ⊥于E ,易知BE ⊥平面11AB C D ,所以AB 与平面11AB C D 所成角为BAE ∠,因为2tan 2c BAE a ∠==,所以30BAE ∠≠ ,B 错误;对于C,AC ==,1CB ==,1AC CB ≠,C 错误;对于D ,1B D 与平面11BB C C 所成角为1DB C ∠,112sin 22CD a DB C B D c ∠===,而1090DB C <∠<,所以145DB C ∠=.D 正确.故选:D .10.甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若=2S S 甲乙,则=VV 甲乙()A.B.C.D.5104【答案】C 【解析】【分析】设母线长为l ,甲圆锥底面半径为1r ,乙圆锥底面圆半径为2r ,根据圆锥的侧面积公式可得122r r =,再结合圆心角之和可将12,r r 分别用l 表示,再利用勾股定理分别求出两圆锥的高,再根据圆锥的体积公式即可得解.【详解】解:设母线长为l ,甲圆锥底面半径为1r ,乙圆锥底面圆半径为2r ,则11222S rl r S r l r ππ===甲乙,所以122r r =,又12222r r l l πππ+=,则121r r l+=,所以1221,33r l r l ==,所以甲圆锥的高13h ==,乙圆锥的高23h ==,所以22112221453931122393r h l V V r h ππ⨯==甲乙.故选:C.11.已知椭圆2222:1(0)x y C a a b+=>的离心率为13,12,A A 分别为C 的左、右顶点,B 为C 的上顶点.若121BA BA ⋅=-,则C 的方程为()A.2211816x y += B.22198x y += C.22132x y += D.2212x y +=【答案】B 【解析】【分析】根据离心率及12=1⋅-BA BA ,解得关于22,a b 的等量关系式,即可得解.【详解】解:因为离心率13c e a ===,解得2289b a =,2289=b a ,12,A A 分别为C 的左右顶点,则()()12,0,,0A a A a -,B 为上顶点,所以(0,)B b .所以12(,),(,)=--=- BA a b BA a b ,因为121BA BA ⋅=-所以221-+=-a b ,将2289=b a 代入,解得229,8a b ==,故椭圆的方程为22198x y +=.故选:B.12.已知910,1011,89m m m a b ==-=-,则()A.0a b >>B.0a b >> C.0b a >> D.0b a>>【答案】A 【解析】【分析】根据指对互化以及对数函数的单调性即可知9log 101m =>,再利用基本不等式,换底公式可得lg11m >,8log 9m >,然后由指数函数的单调性即可解出.【详解】由910m =可得9lg10log 101lg 9m ==>,而()222lg 9lg11lg 99lg 9lg111lg1022+⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭,所以lg10lg11lg 9lg10>,即lg11m >,所以lg11101110110m a =->-=.又()222lg8lg10lg80lg8lg10lg 922+⎛⎫⎛⎫<=< ⎪ ⎪⎝⎭⎝⎭,所以lg 9lg10lg8lg 9>,即8log 9m >,所以8log 989890m b =-<-=.综上,0a b >>.故选:A.二、填空题:本题共4小题,每小题5分,共20分.13.已知向量(,3),(1,1)a m b m ==+.若a b ⊥ ,则m =______________.【答案】34-##0.75-【解析】【分析】直接由向量垂直的坐标表示求解即可.【详解】由题意知:3(1)0a b m m ⋅=++=,解得34m =-.故答案为:34-.14.设点M 在直线210x y +-=上,点(3,0)和(0,1)均在M 上,则M 的方程为______________.【答案】22(1)(1)5x y -++=【解析】【分析】设出点M 的坐标,利用(3,0)和(0,1)均在M 上,求得圆心及半径,即可得圆的方程.【详解】解:∵点M 在直线210x y +-=上,∴设点M 为(,12)-a a ,又因为点(3,0)和(0,1)均在M 上,∴点M 到两点的距离相等且为半径R ,==R ,222694415-++-+=a a a a a ,解得1a =,∴(1,1)M -,R =M 的方程为22(1)(1)5x y -++=.故答案为:22(1)(1)5x y -++=15.记双曲线2222:1(0,0)x y C a b a b-=>>的离心率为e ,写出满足条件“直线2y x =与C 无公共点”的e 的一个值______________.【答案】2(满足1e <≤皆可)【解析】【分析】根据题干信息,只需双曲线渐近线by x a =±中02b a<≤即可求得满足要求的e 值.【详解】解:2222:1(0,0)x y C a b a b -=>>,所以C 的渐近线方程为b y x a =±,结合渐近线的特点,只需02b a <≤,即224b a≤,可满足条件“直线2y x =与C 无公共点”所以==≤c e a又因为1e >,所以1e <≤,故答案为:2(满足1e <≤皆可)16.已知ABC 中,点D 在边BC 上,120,2,2ADB AD CD BD ∠=︒==.当ACAB取得最小值时,BD =________.【答案】1-##-【解析】【分析】设220CD BD m ==>,利用余弦定理表示出22AC AB后,结合基本不等式即可得解.【详解】设220CD BD m ==>,则在ABD △中,22222cos 42AB BD AD BD AD ADB m m =+-⋅∠=++,在ACD △中,22222cos 444AC CD AD CD AD ADC m m =+-⋅∠=+-,所以()()()2222224421214441243424211m m m AC m m AB m m m mm m ++-++-===-+++++++44≥--,当且仅当311mm +=+即1m =-时,等号成立,所以当ACAB取最小值时,1m=.1-.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22题为选考题,考生根据要求作答.(一)必考题:共60分.17.甲、乙两城之间的长途客车均由A 和B 两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:准点班次数未准点班次数A 24020B21030(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?附:22()()()()()n ad bc K a b c d a c b d -=++++,()2P K k 0.1000.0500.010k2.7063.8416.635【答案】(1)A ,B 两家公司长途客车准点的概率分别为1213,78(2)有【解析】【分析】(1)根据表格中数据以及古典概型的概率公式可求得结果;(2)根据表格中数据及公式计算2K ,再利用临界值表比较即可得结论.【小问1详解】根据表中数据,A 共有班次260次,准点班次有240次,设A 家公司长途客车准点事件为M ,则24012()26013==P M ;B 共有班次240次,准点班次有210次,设B 家公司长途客车准点事件为N ,则210()27840==P N .A 家公司长途客车准点的概率为1213;B 家公司长途客车准点的概率为78.【小问2详解】列联表准点班次数未准点班次数合计A 24020260B 21030240合计4505050022()()()()()n ad bc K a b c d a c b d -=++++=2500(2403021020) 3.205 2.70626024045050⨯⨯-⨯≈>⨯⨯⨯,根据临界值表可知,有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关.18.记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+.(1)证明:{}n a 是等差数列;(2)若479,,a a a 成等比数列,求n S 的最小值.【答案】(1)证明见解析;(2)78-.【解析】【分析】(1)依题意可得222n n S n na n +=+,根据11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,作差即可得到11n n a a --=,从而得证;(2)由(1)及等比中项的性质求出1a ,即可得到{}n a 的通项公式与前n 项和,再根据二次函数的性质计算可得.【小问1详解】解:因为221nn S n a n+=+,即222n n S n na n +=+①,当2n ≥时,()()()21121211n n S n n a n --+-=-+-②,①-②得,()()()22112212211n n n n S n S n na n n a n --+---=+----,即()12212211n n n a n na n +-=--+,即()()()1212121n n n a n a n ----=-,所以11n n a a --=,2n ≥且N*n ∈,所以{}n a 是以1为公差的等差数列.【小问2详解】解:由(1)可得413a a =+,716a a =+,918a a =+,又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,所以()22112512562512222228n n n S n n n n -⎛⎫=-+=-=--⎪⎝⎭,所以,当12n =或13n =时()min 78n S =-.19.小明同学参加综合实践活动,设计了一个封闭的包装盒,包装盒如图所示:底面ABCD 是边长为8(单位:cm )的正方形,,,,EAB FBC GCD HDA 均为正三角形,且它们所在的平面都与平面ABCD 垂直.(1)证明://EF 平面ABCD ;(2)求该包装盒的容积(不计包装盒材料的厚度).【答案】(1)证明见解析;(2【解析】【分析】(1)分别取,AB BC 的中点,M N ,连接MN ,由平面知识可知,EM AB FN BC ⊥⊥,EM FN =,依题从而可证EM ⊥平面ABCD ,FN ⊥平面ABCD ,根据线面垂直的性质定理可知//EM FN ,即可知四边形EMNF //EF MN ,最后根据线面平行的判定定理即可证出;(2)再分别取,AD DC 中点,K L ,由(1)知,该几何体的体积等于长方体KMNL EFGH -的体积加上四棱锥B MNFE -体积的4倍,即可解出.【小问1详解】如图所示:,分别取,AB BC 的中点,M N ,连接MN ,因为,EAB FBC 为全等的正三角形,所以,EM AB FN BC ⊥⊥,EM FN =,又平面EAB ⊥平面ABCD ,平面EAB ⋂平面ABCD AB =,EM ⊂平面EAB ,所以EM ⊥平面ABCD ,同理可得FN ⊥平面ABCD ,根据线面垂直的性质定理可知//EM FN ,而EM FN =,所以四边形EMNF 为平行四边形,所以//EF MN ,又EF ⊄平面ABCD ,MN ⊂平面ABCD ,所以//EF 平面ABCD .【小问2详解】如图所示:,分别取,AD DC 中点,K L ,由(1)知,//EF MN 且EF MN =,同理有,//,HE KM HE KM =,//,HG KL HG KL =,//,GF LN GF LN =,由平面知识可知,BD MN ⊥,MN MK ⊥,KM MN NL LK ===,所以该几何体的体积等于长方体KMNL EFGH -的体积加上四棱锥B MNFE -体积的4倍.因为MN NL LK KM ====,8sin 60EM == B 到平面MNFE 的距离即为点B 到直线MN 的距离d ,d =(2143V =⨯⨯⨯==.20.已知函数32(),()f x x x g x x a =-=+,曲线()y f x =在点()()11,x f x 处的切线也是曲线()y g x =的切线.(1)若11x =-,求a ;(2)求a 的取值范围.【答案】(1)3(2)[)1,-+∞【解析】【分析】(1)先由()f x 上的切点求出切线方程,设出()g x 上的切点坐标,由斜率求出切点坐标,再由函数值求出a 即可;(2)设出()g x 上的切点坐标,分别由()f x 和()g x 及切点表示出切线方程,由切线重合表示出a ,构造函数,求导求出函数值域,即可求得a 的取值范围.【小问1详解】由题意知,(1)1(1)0f -=---=,2()31x f x '=-,(1)312f '-=-=,则()y f x =在点()1,0-处的切线方程为2(1)y x =+,即22y x =+,设该切线与()g x 切于点()22,()x g x ,()2g x x '=,则22()22g x x '==,解得21x =,则(1)122g a =+=+,解得3a =;【小问2详解】2()31x f x '=-,则()y f x =在点()11(),x f x 处的切线方程为()()32111131()y x x x x x --=--,整理得()2311312y x x x =--,设该切线与()g x 切于点()22,()x g x ,()2g x x '=,则22()2g x x '=,则切线方程为()22222()y x a x x x -+=-,整理得2222y x x x a =-+,则21232123122x x x x a ⎧-=⎨-=-+⎩,整理得2223343212111113193122222424x a x x x x x x ⎛⎫=-=--=--+ ⎪⎝⎭,令432931()2424h x x x x =--+,则32()9633(31)(1)h x x x x x x x '=--=+-,令()0h x '>,解得103x -<<或1x >,令()0h x '<,解得13x <-或01x <<,则x 变化时,(),()h x h x '的变化情况如下表:x1,3⎛⎫-∞- ⎪⎝⎭13-1,03⎛⎫- ⎪⎝⎭0()0,11()1,+∞()h x '-+0-+()h x527141-则()h x 的值域为[)1,-+∞,故a 的取值范围为[)1,-+∞.21.设抛物线2:2(0)C y px p =>的焦点为F ,点(),0D p ,过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,3MF =.(1)求C 的方程;(2)设直线,MD ND 与C 的另一个交点分别为A ,B ,记直线,MN AB 的倾斜角分别为,αβ.当αβ-取得最大值时,求直线AB 的方程.【答案】(1)24y x =;(2):4AB x =+.【解析】【分析】(1)由抛物线的定义可得=2pMF p +,即可得解;(2)设点的坐标及直线:1MN x my =+,由韦达定理及斜率公式可得2MN AB k k =,再由差角的正切公式及基本不等式可得2AB k =,设直线:AB x n =+,结合韦达定理可解.【小问1详解】抛物线的准线为2px =-,当MD 与x 轴垂直时,点M 的横坐标为p ,此时=32pMF p +=,所以2p =,所以抛物线C 的方程为24y x =;【小问2详解】设222231241234,,,,,,,4444y y y y M y N y A y B y ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,直线:1MN x my =+,由214x my y x=+⎧⎨=⎩可得2440y my --=,120,4y y ∆>=-,由斜率公式可得12221212444MN y y k y y y y -==+-,34223434444AB y y k y y y y -==+-,直线112:2x MD x y y -=⋅+,代入抛物线方程可得()1214280x y y y --⋅-=,130,8y y ∆>=-,所以322y y =,同理可得412y y =,所以()34124422MNAB k k y y y y ===++又因为直线MN 、AB 的倾斜角分别为,αβ,所以tan tan 22MN AB k k αβ===,若要使αβ-最大,则0,2πβ⎛⎫∈ ⎪⎝⎭,设220MN AB k k k ==>,则()2tan tan 12tan 11tan tan 1242k k k k αβαβαβ--===≤+++,当且仅当12k k =即2k =时,等号成立,所以当αβ-最大时,2AB k =,设直线:AB x n =+,代入抛物线方程可得240y n --=,34120,4416y y n y y ∆>=-==-,所以4n =,所以直线:4AB x =+.【点睛】关键点点睛:解决本题的关键是利用抛物线方程对斜率进行化简,利用韦达定理得出坐标间的关系.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,曲线1C的参数方程为26t x y +⎧=⎪⎨⎪=⎩(t 为参数),曲线2C的参数方程为26s x y +⎧=-⎪⎨⎪=⎩(s 为参数).(1)写出1C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线3C 的极坐标方程为2cos sin 0θθ-=,求3C 与1C 交点的直角坐标,及3C 与2C 交点的直角坐标.【答案】(1)()2620y x y =-≥;(2)31,C C 的交点坐标为1,12⎛⎫⎪⎝⎭,()1,2,32,C C 的交点坐标为1,12⎛⎫-- ⎪⎝⎭,()1,2--.【解析】【分析】(1)消去t ,即可得到1C 的普通方程;(2)将曲线23,C C 的方程化成普通方程,联立求解即解出.【小问1详解】因为26t x +=,y =,所以226y x +=,即1C 的普通方程为()2620y x y =-≥.【小问2详解】因为2,6sx y +=-=,所以262x y =--,即2C 的普通方程为()2620y x y =--≤,由2cos sin 02cos sin 0θθρθρθ-=⇒-=,即3C 的普通方程为20x y -=.联立()262020y x y x y ⎧=-≥⎨-=⎩,解得:121x y ⎧=⎪⎨⎪=⎩或12x y =⎧⎨=⎩,即交点坐标为1,12⎛⎫ ⎪⎝⎭,()1,2;联立()262020y x y x y ⎧=--≤⎨-=⎩,解得:121x y ⎧=-⎪⎨⎪=-⎩或12x y =-⎧⎨=-⎩,即交点坐标为1,12⎛⎫-- ⎪⎝⎭,()1,2--.[选修4-5:不等式选讲]23.已知a ,b ,c 均为正数,且22243a b c ++=,证明:(1)23a b c ++≤;(2)若2b c =,则113a c+≥.【答案】(1)见解析(2)见解析【解析】【分析】(1)根据()22222242a b c a b c ++=++,利用柯西不等式即可得证;(2)由(1)结合已知可得043a c <+≤,即可得到1143a c ≥+,再根据权方和不等式即可得证.【小问1详解】证明:由柯西不等式有()()()222222221112a b c a b c ⎡⎤++++≥++⎣⎦,所以23a b c ++≤,当且仅当21a b c ===时,取等号,所以23a b c ++≤;【小问2详解】证明:因为2b c =,0a >,0b >,0c >,由(1)得243a b c a c ++=+≤,即043a c <+≤,所以1143a c ≥+,由权方和不等式知()22212111293444a c a c a c a c++=+≥=≥++,当且仅当124a c =,即1a =,12c =时取等号,所以113a c+≥.。

高三文科数学(解析几何)练习

高三文科数学(解析几何)练习

高三文科数学(解析几何)练习1.已知椭圆C :22221x y a b+=(0)a b >>的离心率2e =,原点到过点(,0)A a ,(0,)B b -的直线的距离是5. (Ⅰ)求椭圆C 的方程;(Ⅱ)若直线1y kx =+(0)k ≠交椭圆C 于不同的两点E ,F ,且E ,F 都在以B 为圆心的圆上,求k 的值.解(Ⅰ)因为2c a =,222a b c -=, 所以2a b =. ………………………………………………2分因为原点到直线AB :1x y a b -=的距离5d ==, 解得4a =,2b =. ………………………………………………5分故所求椭圆C 的方程为221164x y +=. ………………………………………………6分 (Ⅱ) 由题意 221,1164y kx x y =+⎧⎪⎨+=⎪⎩消去y ,整理得 22(14)8120k x kx ++-=. ………………………………………………7分可知0∆>. ………………………………………………8分设11(,)E x y ,22(,)F x y ,EF 的中点是(,)M M M x y , 则1224214M x x k x k +-==+,21114M M y kx k =+=+.……………………………10分 所以21M BM M y k x k +==-. ………………………………………………11分 所以20M M x ky k ++=. 即224201414k k k k k-++=++. 又因为0k ≠, 所以218k =.所以4k =±. ………………………………13分2.已知椭圆:C 22221(0)x y a b a b+=>>的四个顶点恰好是边长为2,一内角为60 的菱形的四个顶点. (I )求椭圆C 的方程;(II )若直线y kx =交椭圆C 于,A B 两点,且在直线:30l x y +-=上存在点P ,使得PAB ∆为等边三角形,求k 的值.解:(I)因为椭圆:C 22221(0)x y a b a b+=>>的四个顶点恰好是一边长为2, 一内角为60 的菱形的四个顶点,所以1a b ==,椭圆C 的方程为2213x y +=………………4分 (II)设11(,),A x y 则11(,),B x y --当直线AB 的斜率为0时,AB 的垂直平分线就是y 轴,y 轴与直线:30l x y +-=的交点为(0,3)P ,又因为|||3AB PO ==,所以60PAO ∠= ,所以PAB ∆是等边三角形,所以直线AB 的方程为0y =………………6分当直线AB 的斜率存在且不为0时,设AB 的方程为y kx = 所以2213x y y kx ⎧+=⎪⎨⎪=⎩,化简得22(31)3k x += 所以1||x =||AO ==8分 设AB 的垂直平分线为1y x k=-,它与直线:30l x y +-=的交点记为00(,)P x y 所以31y x y x k =-+⎧⎪⎨=-⎪⎩,解得003131k x k y k ⎧=⎪⎪-⎨-⎪=⎪-⎩,则||PO =10分 因为PAB ∆为等边三角形,所以应有|||PO AO =代入得到0k =(舍),1k =-……………13分 综上,0k =或1k =-………………14分3.已知椭圆2222:1x y C a b+=()0a b >>的右焦点F (1,0),长轴的左、右端点分别为12,A A ,且121FA FA ⋅=- . (Ⅰ)求椭圆C 的方程;(Ⅱ)过焦点F 斜率为k (0)k ≠的直线l 交椭圆C 于,A B 两点,弦AB 的垂直平分线与x 轴相交于点D .试问椭圆C 上是否存在点E 使得四边形ADBE 为菱形?若存在,试求点E 到y 轴的距离;若不存在,请说明理由.解:(Ⅰ)依题设1(,0)A a -,2(,0)A a ,则1(1,0)FA a =-- ,2(1,0)FA a =- .由121FA FA ⋅=- ,解得22a =,所以21b =.所以椭圆C 的方程为2212x y +=.…………………………………………4分 (Ⅱ)依题直线l 的方程为(1)y k x =-.由22(1),22y k x x y =-⎧⎨+=⎩得()2222214220k x k x k +-+-=. 设11(,)A x y ,22(,)B x y ,弦AB 的中点为00(,)M x y , 则2122421k x x k +=+,21222(1)21k x x k -=+,202221k x k =+,0221k y k -=+, 所以2222(,)2121k k M k k -++. 直线MD 的方程为22212()2121kk y x k k k +=--++, 令0y =,得2221D k x k =+,则22(,0)21k D k +. 若四边形ADBE 为菱形,则02E D x x x +=,02E D y y y +=. 所以22232(,)2121k k E k k -++. 若点E 在椭圆C 上,则2222232()2()22121k k k k -+=++.整理得42k =,解得2k =所以椭圆C 上存在点E 使得四边形ADBE 为菱形.此时点E 到y 的距离为127-.………………………………………………14分4.已知椭圆C :22221(0)x y a b a b+=>>的右焦点为(1,0)F ,且点(1,2-在椭圆C 上. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)已知点5(,0)4Q ,动直线l 过点F ,且直线l 与椭圆C 交于A ,B 两点,证明:QA QB ⋅ 为定值.(Ⅰ)解:由题意知:1c =.根据椭圆的定义得:22a =,即a =……………………………………3分所以2211b =-=. 所以椭圆C 的标准方程为2212x y +=. ……………………………………4分 (Ⅱ)证明:当直线l 的斜率为0时,(A B .则557,0)(,0)4416QA QB ⋅=⋅=- . ……………………………………6分当直线l 的斜率不为0时,设直线l 的方程为:1x ty =+,()()1122,,,A x y B x y .由221,21x y x ty ìïï+=ïíïï=+ïî可得:22(2)210t y ty ++-=. 显然0∆>.1221222,21.2t y y t y y t ìïï+=-ïï+ïíïï=-ïï+ïî……………………………………9分 因为 111x ty =+,221x ty =+,所以 112212125511(,)(,)()()4444x y x y ty ty y y -?=--+ 2121211(1)()416t y y t y y =+-++ 2221121(1)24216t t t t t =-+++++ 22222172(2)1616t t t --+=+=-+. 即716QA QB ⋅=- .……………………………………13分。

专题6-解析几何-数学(文科)-全国卷地区专用

专题6-解析几何-数学(文科)-全国卷地区专用

[答案] 3x+y- 3=0
[解析] 由点斜式方程得 y-0= - 3(x-1),整理得 3x+y- 3=0.
主干知识
⇒直线方程 关键词:点斜 式如①、一般式.Biblioteka 返回目录第14讲 直线与圆
核 心
体验高考
知 识
2.[2014·福建卷改编] 已知
聚 直线 l 过点(0,3),且
焦 与直线x+y+1=0平行② ,则 l 的
3.[2013·江西卷] 若圆 C 经过
聚 坐标原点和点(4,0),且与直线 y=
焦 1 相切,则 圆C的 方程③ 是______.
主干知识
⇒ 圆的方程 关键词:标准 方程如③、一般方 程.
[答案] (x-2)2+y+322=245 [解析] r2=4+(r-1)2,得 r=52,圆心为2,-23.故圆 C 的方程是(x-2)2+y+232=245.
方程是________.
主干知识
⇒ 两直线平行 与垂直
关键词:平行 关系、垂直关系如 ②.
[答案] x+y-3=0
[解析] 由直线 l 与直线 x+y+1=0 平行,可知直线 l 的斜率为-1,又过点(0, 3),所以直线 l 的方程为 x+y-3=0.
返回目录
第14讲 直线与圆
核 心
体验高考
知 识
专题六 解析几何
第14讲 直线与圆 第15讲 椭圆、双曲线、抛物线 第16讲 圆锥曲线中的热点问题
核 心 知 识 聚 焦
考 点
第14讲 直线与圆




返回目录
第14讲 直线与圆
核 心
体验高考
知 识
1.[2014·新课标全国卷Ⅱ改编]

2012-2017全国卷文科解析几何解答题

2012-2017全国卷文科解析几何解答题

解析几何高考真题(解答题)1.【全国卷】设,为曲线C:上两点,A与B的横坐标之和为4.求直线AB的斜率;设M为曲线C上一点,C在M处的切线与直线AB平行,且,求直线AB的方程.2.【全国卷】设O为坐标原点,动点M在椭圆C:上,过M做x轴的垂线,垂足为N,点P满足.求点P的轨迹方程;设点Q在直线上,且证明:过点P且垂直于OQ的直线l过C的左焦点F.3.【全国卷】在直角坐标系xOy中,曲线与x轴交于A、B两点,点C的坐标为,,当m变化时,解答下列问题:能否出现的情况?说明理由;证明过A、B、C三点的圆在y轴上截得的弦长为定值.4.【全国卷】在直角坐标系xOy中,直线l:交y轴于点M,交抛物线C:于点,关于点P的对称点为N,连结ON并延长交C于点H.Ⅰ求;Ⅱ除H以外,直线MH与C是否有其它公共点?说明理由.5.【全国卷】已知A是椭圆E:的左顶点,斜率为的直线交E与,两点,点N在E上,.当时,求的面积当时,证明:.6.【全国卷】已知抛物线C:的焦点为F,平行于x轴的两条直线,分别交C于,两点,交C的准线于,两点.Ⅰ若F在线段AB上,R是PQ的中点,证明;Ⅱ若的面积是的面积的两倍,求AB中点的轨迹方程.7.【全国卷】已知过点,且斜率为k的直线l与圆交于,两点.Ⅰ求k的取值范围Ⅱ若,其中O为坐标原点,求.8.【全国卷】已知椭圆的离心率为,点,在C上.Ⅰ求C的方程Ⅱ直线l不过原点O且不平行于坐标轴,l与C有两个交点,,线段AB的中点为证明:直线OM的斜率与直线l的斜率的乘积为定值.9.【全国卷】已知点,,圆C:,过点P的动直线l与圆C交于,两点,线段AB的中点为,为坐标原点.求M的轨迹方程;当时,求l的方程及的面积.10.【全国卷】设,分别是椭圆的左、右焦点,M是C上一点且与x轴垂直,直线与C的另一个交点为N.(1)若直线MN的斜率为,求C的离心率.(2)若直线MN在y轴上的截距为2且,求,.11.【全国卷】已知双曲线C:a,b的左、右焦点分别为F1,F2,离心率为3,直线y与C的两个交点间的距离为求a,b;设过F2的直线l与C的左、右两支分别交于A,B两点,且AF1BF1,证明:AF2,AB,BF2成等比数列.12.【新课标卷】已知圆M:x,圆N:x,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C求C的方程;l是与圆P,圆M都相切的一条直线,l与曲线C交于A,B两点,当圆P的半径最长时,求AB13.【新课标卷】在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为在y轴上截得线段长为求圆心P的轨迹方程;若P点到直线y x的距离为,求圆P的方程.14.【全国卷】已知抛物线C:y x与圆M:x y r2r有一个公共点A,且在A处两曲线的切线为同一直线l求r;设m,n是异于l且与C及M都相切的两条直线,m,n的交点为D,求D到l的距离.15.【新课标卷】设抛物线C:x py p的焦点为F,准线为l,A为C上一点,已知以F为圆心,FA为半径的圆F交l于B,D两点若BFD,ABD的面积为,求p的值及圆F的方程;。

2024年高考数学试题分类汇编07:解析几何

2024年高考数学试题分类汇编07:解析几何

解析几何一、单选题1.(2024·全国)已知曲线C :2216x y +=(0y >),从C 上任意一点P 向x 轴作垂线段PP ',P '为垂足,则线段PP '的中点M 的轨迹方程为()A .221164x y +=(0y >)B .221168x y +=(0y >)C .221164y x +=(0y >)D .221168y x +=(0y >)2.(2024·全国)已知双曲线2222:1(0,0)y x C a b a b-=>>的上、下焦点分别为()()120,4,0,4F F -,点()6,4P -在该双曲线上,则该双曲线的离心率为()A .4B .3C .2D 23.(2024·全国)已知b 是,a c 的等差中项,直线0ax by c ++=与圆22410x y y ++-=交于,A B 两点,则AB 的最小值为()A .2B .3C .4D .254.(2024·北京)求圆22260x y x y +-+=的圆心到20x y -+=的距离()A .23B .2C .32D 65.(2024·天津)双曲线22221()00a x y a bb >-=>,的左、右焦点分别为12.F F P 、是双曲线右支上一点,且直线2PF 的斜率为2.12PF F △是面积为8的直角三角形,则双曲线的方程为()A .22182y x -=B .22184x y -=C .22128x y -=D .22148x y -=二、多选题6.(2024·全国)造型可以做成美丽的丝带,将其看作图中曲线C 的一部分.已知C 过坐标原点O .且C 上的点满足横坐标大于2-,到点(2,0)F 的距离与到定直线(0)x a a =<的距离之积为4,则()A .2a =-B .点(22,0)在C 上C .C 在第一象限的点的纵坐标的最大值为1D .当点()00,x y 在C 上时,0042y x ≤+7.(2024·全国)抛物线C :24y x =的准线为l ,P 为C 上的动点,过P 作22:(4)1A x y +-=⊙的一条切线,Q 为切点,过P 作l 的垂线,垂足为B ,则()A .l 与A 相切B .当P ,A ,B 三点共线时,||15PQ =C .当||2PB =时,PA AB⊥D .满足||||PA PB =的点P 有且仅有2个三、填空题8.(2024·全国)设双曲线2222:1(0,0)x y C a b a b-=>>的左右焦点分别为12F F 、,过2F 作平行于y轴的直线交C 于A ,B 两点,若1||13,||10F A AB ==,则C 的离心率为.9.(2024·北京)已知双曲线2214x y -=,则过()3,0且和双曲线只有一个交点的直线的斜率为.10.(2024·北京)已知抛物线216y x =,则焦点坐标为.11.(2024·天津)22(1)25-+=x y 的圆心与抛物线22(0)y px p =>的焦点F 重合,A 为两曲线的交点,则原点到直线AF 的距离为.12.(2024·上海)已知抛物线24y x =上有一点P 到准线的距离为9,那么点P 到x 轴的距离为.四、解答题13.(2024·全国)已知(0,3)A 和33,2P ⎛⎫ ⎪⎝⎭为椭圆2222:1(0)x y C a b a b+=>>上两点.(1)求C 的离心率;(2)若过P 的直线l 交C 于另一点B ,且ABP 的面积为9,求l 的方程.14.(2024·全国)已知双曲线()22:0C x y m m -=>,点()15,4P 在C 上,k 为常数,01k <<.按照如下方式依次构造点()2,3,...n P n =,过1n P -作斜率为k 的直线与C 的左支交于点1n Q -,令n P 为1n Q -关于y 轴的对称点,记n P 的坐标为(),n n x y .(1)若12k =,求22,x y ;(2)证明:数列{}n n x y -是公比为11kk+-的等比数列;(3)设n S 为12n n n P P P ++ 的面积,证明:对任意的正整数n ,1n n S S +=.15.(2024·全国)设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.16.(2024·北京)已知椭圆方程C :()222210x y a b a b+=>>,焦点和短轴端点构成边长为2的正方形,过()0,t (t >的直线l 与椭圆交于A ,B ,()0,1C ,连接AC 交椭圆于D .(1)求椭圆方程和离心率;(2)若直线BD 的斜率为0,求t .17.(2024·天津)已知椭圆22221(0)x y a b a b+=>>椭圆的离心率12e =.左顶点为A ,下顶点为B C ,是线段OB 的中点,其中ABC S =△.(1)求椭圆方程.(2)过点30,2⎛⎫- ⎪⎝⎭的动直线与椭圆有两个交点P Q ,.在y 轴上是否存在点T 使得0TP TQ ⋅≤ 恒成立.若存在求出这个T 点纵坐标的取值范围,若不存在请说明理由.18.(2024·上海)已知双曲线222Γ:1,(0),y x b b-=>左右顶点分别为12,A A ,过点()2,0M -的直线l 交双曲线Γ于,P Q 两点.(1)若离心率2e =时,求b 的值.(2)若2,3b MA P =△为等腰三角形时,且点P 在第一象限,求点P 的坐标.(3)连接OQ 并延长,交双曲线Γ于点R ,若121A R A P ⋅=,求b 的取值范围.参考答案:1.A【分析】设点(,)M x y ,由题意,根据中点的坐标表示可得(,2)P x y ,代入圆的方程即可求解.【解析】设点(,)M x y ,则0(,),(,0)P x y P x ',因为M 为PP '的中点,所以02y y =,即(,2)P x y ,又P 在圆2216(0)x y y +=>上,所以22416(0)x y y +=>,即221(0)164x y y +=>,即点M 的轨迹方程为221(0)164x y y +=>.故选:A 2.C【分析】由焦点坐标可得焦距2c ,结合双曲线定义计算可得2a ,即可得离心率.【解析】由题意,()10,4F -、()20,4F 、()6,4P -,则1228F F c ==,110PF ==,26PF ==,则1221064a PF PF =-=-=,则28224c e a ===.故选:C.3.C【分析】结合等差数列性质将c 代换,求出直线恒过的定点,采用数形结合法即可求解.【解析】因为,,a b c 成等差数列,所以2b a c =+,2c b a =-,代入直线方程0ax by c ++=得20ax by b a ++-=,即()()120a x b y -++=,令1020x y -=⎧⎨+=⎩得12x y =⎧⎨=-⎩,故直线恒过()1,2-,设()1,2P -,圆化为标准方程得:()22:25C x y ++=,设圆心为C ,画出直线与圆的图形,由图可知,当PC AB ⊥时,AB 最小,1,PC AC r ===,此时24AB AP ====.故选:C 4.C【分析】求出圆心坐标,再利用点到直线距离公式即可.【解析】由题意得22260x y x y +-+=,即()()221310x y -++=,则其圆心坐标为()1,3-,则圆心到直线20x y -+=221323211++=+,故选:C.5.C【分析】可利用12PF F △三边斜率问题与正弦定理,转化出三边比例,设2PF m =,由面积公式求出m ,由勾股定理得出c ,结合第一定义再求出a .【解析】如下图:由题可知,点P 必落在第四象限,1290F PF ∠=︒,设2PF m =,211122,PF F PF F θθ∠=∠=,由21tan 2PF k θ==,求得1sin 5θ=因为1290F PF ∠=︒,所以121PF PF k k ⋅=-,求得112PF k =-,即21tan 2θ=,2sin 5θ=121212::sin :sin :sin 902:1:5PF PF F F θθ=︒=则由2PF m =得1122,25PF m F F c m ===,由1212112822PF F S PF PF m m =⋅=⋅= 得22m =则211222PF PF F F c =====由双曲线第一定义可得:122PF PF a -==a b ==所以双曲线的方程为22128x y -=.故选:C 6.ABD【分析】根据题设将原点代入曲线方程后可求a ,故可判断A 的正误,结合曲线方程可判断B 的正误,利用特例法可判断C 的正误,将曲线方程化简后结合不等式的性质可判断D 的正误.【解析】对于A :设曲线上的动点(),P x y ,则2x >-4x a -=,04a ⨯-=,解得2a =-,故A 正确.对于B 24x +=,而2x >-,()24x+=.当0x y ==()2844=-=,故()在曲线上,故B 正确.对于C :由曲线的方程可得()()2221622y x x =--+,取32x =,则2641494y =-,而64164525624510494494494---=-=>⨯,故此时21y >,故C 在第一象限内点的纵坐标的最大值大于1,故C 错误.对于D :当点()00,x y 在曲线上时,由C 的分析可得()()()220022001616222y x x x =--≤++,故0004422y x x -≤≤++,故D 正确.故选:ABD.【点睛】思路点睛:根据曲线方程讨论曲线的性质,一般需要将曲线方程变形化简后结合不等式的性质等来处理.7.ABD【分析】A 选项,抛物线准线为=1x -,根据圆心到准线的距离来判断;B 选项,,,P A B 三点共线时,先求出P 的坐标,进而得出切线长;C 选项,根据2PB =先算出P 的坐标,然后验证1PA AB k k =-是否成立;D 选项,根据抛物线的定义,PB PF =,于是问题转化成PA PF =的P 点的存在性问题,此时考察AF 的中垂线和抛物线的交点个数即可,亦可直接设P 点坐标进行求解.【解析】A 选项,抛物线24y x =的准线为=1x -,A 的圆心(0,4)到直线=1x -的距离显然是1,等于圆的半径,故准线l 和A 相切,A 选项正确;B 选项,,,P A B 三点共线时,即PA l ⊥,则P 的纵坐标4P y =,由24P P y x =,得到4P x =,故(4,4)P ,此时切线长PQ ===,B 选项正确;C 选项,当2PB =时,1P x =,此时244P P y x ==,故(1,2)P 或(1,2)P -,当(1,2)P 时,(0,4),(1,2)A B -,42201PA k -==--,4220(1)AB k -==--,不满足1PA AB k k =-;当(1,2)P -时,(0,4),(1,2)A B -,4(2)601PA k --==--,4(2)60(1)AB k --==--,不满足1PA AB k k =-;于是PA AB ⊥不成立,C 选项错误;D 选项,方法一:利用抛物线定义转化根据抛物线的定义,PB PF =,这里(1,0)F ,于是PA PB =时P 点的存在性问题转化成PA PF =时P 点的存在性问题,(0,4),(1,0)A F ,AF 中点1,22⎛⎫ ⎪⎝⎭,AF 中垂线的斜率为114AF k -=,于是AF 的中垂线方程为:2158x y +=,与抛物线24y x =联立可得216300y y -+=,2164301360∆=-⨯=>,即AF 的中垂线和抛物线有两个交点,即存在两个P 点,使得PA PF =,D 选项正确.方法二:(设点直接求解)设2,4t P t ⎛⎫⎪⎝⎭,由PB l ⊥可得()1,B t -,又(0,4)A ,又PA PB =,214t =+,整理得216300t t -+=,2164301360∆=-⨯=>,则关于t 的方程有两个解,即存在两个这样的P 点,D 选项正确.故选:ABD8.32【分析】由题意画出双曲线大致图象,求出2AF ,结合双曲线第一定义求出1AF ,即可得到,,a b c 的值,从而求出离心率.【解析】由题可知2,,A B F 三点横坐标相等,设A 在第一象限,将x c =代入22221x y a b -=得2b y a =±,即22,,,b b A c B c a a ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭,故2210b AB a ==,225b AF a ==,又122AF AF a -=,得1222513AF AF a a =+=+=,解得4a =,代入25ba=得220b =,故22236,c a b =+=,即6c =,所以6342c e a ===.故答案为:329.12±【分析】首先说明直线斜率存在,然后设出方程,联立双曲线方程,根据交点个数与方程根的情况列式即可求解.【解析】联立3x =与2214x y -=,解得52y =,这表明满足题意的直线斜率一定存在,设所求直线斜率为k ,则过点()3,0且斜率为k 的直线方程为()3y k x =-,联立()22143x y y k x ⎧-=⎪⎨⎪=-⎩,化简并整理得:()222214243640k x k x k -+--=,由题意得2140k -=或()()()2222Δ244364140k k k =++-=,解得12k =±或无解,即12k =±,经检验,符合题意.故答案为:12±.10.()4,0【分析】形如()22,0y px p =≠的抛物线的焦点坐标为,02p ⎛⎫ ⎪⎝⎭,由此即可得解.【解析】由题意抛物线的标准方程为216y x =,所以其焦点坐标为()4,0.故答案为:()4,0.11.45/0.8【分析】先求出圆心坐标,从而可求焦准距,再联立圆和抛物线方程,求A 及AF 的方程,从而可求原点到直线AF 的距离.【解析】圆22(1)25-+=x y 的圆心为()1,0F ,故12p=即2p =,由()2221254x y y x⎧-+=⎪⎨=⎪⎩可得22240x x +-=,故4x =或6x =-(舍),。

全国高考文科数学试题解析几何

全国高考文科数学试题解析几何

高考文科数学真题分类汇编:解析几何H1 直线的倾斜角与斜率、直线的方程6.[2014·福建卷] 已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则l 的方程是( )A .x +y -2=0B .x -y =2=0C .x +y -3=0D .x -y +3=020.[2014·全国新课标卷Ⅰ] 已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积.21.[2014·重庆卷] 如图1-5,设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=22,△DF 1F 2的面积为22. (1)求该椭圆的标准方程.(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.图1-5H2 两直线的位置关系与点到直线的距离18.[2014·江苏卷] 如图1-6所示,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80 m .经测量,点A 位于点O 正北方向60 m 处,点C 位于点O 正东方向170 m 处(OC 为河岸),tan∠BCO =43. (1)求新桥BC 的长.(2)当OM 多长时,圆形保护区的面积最大?图1-622.[2014·全国卷] 已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=54|PQ|.(1)求C的方程;(2)过F的直线l与C相交于A,B两点,若AB的垂直平分线l′与C相交于M,N两点,且A,M,B,N四点在同一圆上,求l的方程.21.[2014·重庆卷] 如图1-5,设椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,点D在椭圆上,DF1⊥F1F2,|F1F2||DF1|=22,△DF1F2的面积为22.(1)求该椭圆的标准方程.(2)是否存在圆心在y轴上的圆,使圆在x轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.图1-5H3 圆的方程17.[2014·湖北卷] 已知圆O:x2+y2=1和点A(-2,0),若定点B(b,0)(b≠-2)和常数λ满足:对圆O上任意一点M,都有|MB|=λ|MA|,则(1)b=________;(2)λ=________.20.[2014·辽宁卷] 圆x2+y2=4的切线与x轴正半轴、y轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图1-5所示).图1-5(1)求点P的坐标;(2)焦点在x轴上的椭圆C过点P,且与直线l:y=x+3交于A,B两点,若△P AB的面积为2,求C的标准方程.20.[2014·全国新课标卷Ⅰ] 已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积.H4 直线与圆、圆与圆的位置关系5.[2014·浙江卷] 已知圆x 2+y 2+2x -2y +a =0截直线x +y +2=0所得弦的长度为4,则实数a 的值是( )A .-2B .-4C .-6D .-86.[2014·安徽卷] 过点P (-3,-1)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( )A.⎝⎛⎦⎤0,π6B.⎝⎛⎦⎤0,π3C.⎣⎡⎦⎤0,π6D.⎣⎡⎦⎤0,π3 7.[2014·北京卷] 已知圆C :(x -3)2+(y -4)2=1和两点A (-m ,0),B (m ,0)(m >0).若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为( )A .7B .6C .5D .411.[2014·福建卷] 已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为( )A .5B .29C .37D .4921.[2014·福建卷] 已知曲线Γ上的点到点F (0,1)的距离比它到直线y =-3的距离小2.(1)求曲线Γ的方程.(2)曲线Γ在点P 处的切线l 与x 轴交于点A ,直线y =3分别与直线l 及y 轴交于点M ,N .以MN 为直径作圆C ,过点A 作圆C 的切线,切点为B .试探究:当点P 在曲线Γ上运动(点P 与原点不重合)时,线段AB 的长度是否发生变化?证明你的结论.6.[2014·湖南卷] 若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =( )A .21B .19C .9D .-119.[2014·江苏卷] 在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________.16.、[2014·全国卷] 直线l 1和l 2是圆x 2+y 2=2的两条切线.若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于________.12.[2014·新课标全国卷Ⅱ] 设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是( )A. [-1,1]B. ⎣⎡⎦⎤-12,12C. [-2,2]D. ⎣⎡⎦⎤-22,22 20.[2014·全国新课标卷Ⅰ] 已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积.14.[2014·山东卷] 圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________.14.[2014·重庆卷] 已知直线x -y +a =0与圆心为C 的圆x 2+y 2+2x -4y -4=0相交于A ,B 两点,且AC ⊥BC ,则实数a 的值为________.9.[2014·四川卷] 设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |+|PB |的取值范围是( )A .[5,2 5 ]B .[10,2 5 ]C .[10,4 5 ]D .[25,4 5 ] 21.[2014·重庆卷] 如图1-5,设椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=22,△DF 1F 2的面积为22. (1)求该椭圆的标准方程.(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.图1-5H5 椭圆及其几何性质20.[2014·安徽卷] 设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0.(1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时,求f (x )取得最大值和最小值时的x 的值.19.[2014·北京卷] 已知椭圆C :x 2+2y 2=4.(1)求椭圆C 的离心率;(2)设O 为原点,若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB ,求线段AB 长度的最小值.20.[2014·广东卷] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为(5,0),离心率为53. (1)求椭圆C 的标准方程;(2)若动点P (x 0,y 0)为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.20.[2014·湖南卷] 如图1-5所示,O 为坐标原点,双曲线C 1:x 2a 21-y 2b 21=1(a 1>0,b 1>0)和椭圆C 2:y 2a 22+x 2b 22=1(a 2>b 2>0)均过点P ⎝⎛⎭⎫233,1,且以C 1的两个顶点和C 2的两个焦点为顶点的四边形是面积为2的正方形.(1)求C 1,C 2的方程.(2)是否存在直线l ,使得l 与C 1交于A ,B 两点,与C 2只有一个公共点,且|OA →+OB →|=|AB | ?证明你的结论.图1-517.[2014·江苏卷] 如图1-5所示,在平面直角坐标系xOy 中,F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,顶点B 的坐标为(0,b ),连接BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接F 1C .(1)若点C 的坐标为⎝⎛⎭⎫43,13,且BF 2=2,求椭圆的方程;(2)若F 1C ⊥AB ,求椭圆离心率e 的值.图1-514.[2014·江西卷] 设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左右焦点分别为F 1,F 2,过F 2作x 轴的垂线与C 相交于A ,B 两点,F 1B 与y 轴相交于点D .若AD ⊥F 1B ,则椭圆C 的离心率等于________.20.[2014·辽宁卷] 圆x 2+y 2=4的切线与x 轴正半轴、y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图1-5所示).图1-5(1)求点P 的坐标;(2)焦点在x 轴上的椭圆C 过点P ,且与直线l :y =x +3交于A ,B 两点,若△P AB 的面积为2,求C 的标准方程.9.[2014·全国卷] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为4 3,则C 的方程为( )A.x 23+y 22=1B.x 23+y 2=1C.x 212+y 28=1D.x 212+y 24=1 20.[2014·新课标全国卷Ⅱ] 设F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直.直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b .21.[2014·山东卷] 在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,直线y =x 被椭圆C 截得的线段长为4105. (1)求椭圆C 的方程.(2)过原点的直线与椭圆C 交于A ,B 两点(A ,B 不是椭圆C 的顶点).点D 在椭圆C 上,且AD ⊥AB ,直线BD 与x 轴、y 轴分别交于M ,N 两点.(i)设直线BD ,AM 的斜率分别为k 1,k 2,证明存在常数λ使得k 1=λk 2,并求出λ的值;(ii)求△OMN 面积的最大值.20.[2014·陕西卷] 已知椭圆x 2a 2+y 2b 2=1(a >b >0)经过点(0,3),离心率为12,左、右焦点分别为F 1(-c ,0),F 2(c ,0).(1)求椭圆的方程;(2)若直线l :y =-12x +m 与椭圆交于A ,B 两点,与以F 1F 2为直径的圆交于C ,D 两点,且满足|AB ||CD |=534,求直线l 的方程.图1-520.[2014·四川卷] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F (-2,0),离心率为63. (1)求椭圆C 的标准方程;(2)设O 为坐标原点,T 为直线x =-3上一点,过F 作TF 的垂线交椭圆于P ,Q .当四边形OPTQ 是平行四边形时,求四边形OPTQ 的面积.18.[2014·天津卷] 设椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,右顶点为A ,上顶点为B .已知|AB |=32|F 1F 2|. (1)求椭圆的离心率;(2)设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点F 1,经过点F 2的直线l 与该圆相切于点M ,|MF 2|=22,求椭圆的方程.H6 双曲线及其几何性质8.[2014·重庆卷] 设F 1,F 2分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,双曲线上存在一点P 使得(|PF 1|-|PF 2|)2=b 2-3ab ,则该双曲线的离心率为( ) A. 2 B.15 C .4 D.1710.[2014·北京卷] 设双曲线C 的两个焦点为(-2,0),(2,0),一个顶点是(1,0),则C 的方程为________.8.[2014·广东卷] 若实数k 满足0<k <5,则曲线x 216-y 25-k =1与曲线x 216-k -y 25=1的( ) A .实半轴长相等 B .虚半轴长相等 C .离心率相等 D .焦距相等8.[2014·湖北卷] 设a ,b 是关于t 的方程t 2cos θ+t sin θ=0的两个不等实根,则过A (a ,a 2),B (b ,b 2)两点的直线与双曲线x 2cos 2θ-y 2sin 2θ=1的公共点的个数为( ) A .0 B .1 C .2 D .317.[2014·浙江卷] 设直线x -3y +m =0(m ≠0)与双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别交于点A ,B .若点P (m ,0)满足|P A |=|PB |,则该双曲线的离心率是________.9.[2014·江西卷] 过双曲线C :x 2a 2-y 2b 2=1的右顶点作x 轴的垂线,与C 的一条渐近线相交于点A .若以C 的右焦点为圆心、半径为4的圆经过A ,O 两点(O 为坐标原点),则双曲线C 的方程为( )A.x 24-y 212=1B.x 27-y 29=1C.x 28-y 28=1D.x 212-y 24=1 11.[2014·全国卷] 双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,焦点到渐近线的距离为3,则C 的焦距等于( )A .2B .2 2C .4D .4 24.[2014·全国新课标卷Ⅰ] 已知双曲线x 2a 2-y 23=1(a >0)的离心率为2,则a =( ) A .2 B.62 C.52 D .1 15.[2014·山东卷] 已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦距为2c ,右顶点为A ,抛物线x 2=2py (p >0)的焦点为F .若双曲线截抛物线的准线所得线段长为2c ,且|F A |=c ,则双曲线的渐近线方程为________.11.[2014·四川卷] 双曲线 x 24-y 2=1的离心率等于________.6.[2014·天津卷] 已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线平行于直线l :y =2x +10,双曲线的一个焦点在直线l 上,则双曲线的方程为( )A.x 25-y 220=1B.x 220-y 25=1C.3x 225-3y 2100=1D.3x 2100-3y 225=1H7 抛物线及其几何性质10.[2014·四川卷] 已知F 为抛物线y 2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA →·OB →=2(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是( )A .2B .3 C.1728D.10 3.[2014·安徽卷] 抛物线y =14x 2的准线方程是( ) A .y =-1 B .y =-2 C .x =-1 D .x =-211.[2014·广东卷] 曲线y =-5e x +3在点(0,-2)处的切线方程为________.22.[2014·湖北卷] 在平面直角坐标系xOy 中,点M 到点F (1,0)的距离比它到y 轴的距离多1.记点M 的轨迹为C .(1)求轨迹C 的方程;(2)设斜率为k 的直线l 过定点P (-2,1),求直线l 与轨迹C 恰好有一个公共点、两个公共点、三个公共点时k 的相应取值范围.14.[2014·湖南卷] 平面上一机器人在行进中始终保持与点F (1,0)的距离和到直线x =-1的距离相等.若机器人接触不到过点P (-1,0)且斜率为k 的直线,则k 的取值范围是________.20.[2014·江西卷] 如图1-2所示,已知抛物线C :x 2=4y ,过点M (0,2)任作一直线与C 相交于A ,B 两点,过点B 作y 轴的平行线与直线AO 相交于点D (O 为坐标原点).(1)证明:动点D 在定直线上.(2)作C 的任意一条切线l (不含x 轴),与直线y =2相交于点N 1,与(1)中的定直线相交于点N 2.证明:|MN 2|2-|MN 1|2为定值,并求此定值.图1-28. [2014·辽宁卷] 已知点A (-2,3)在抛物线C :y 2=2px 的准线上,记C 的焦点为F ,则直线AF 的斜率为( )A .-43B .-1C .-34D .-1222.[2014·全国卷] 已知抛物线C :y 2=2px (p >0)的焦点为F ,直线y =4与 y 轴的交点为P ,与C 的交点为Q ,且|QF |=54|PQ |. (1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l ′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.10.[2014·新课标全国卷Ⅱ] 设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,则|AB |=( ) A.303B .6C .12D .7 3 10.[2014·全国新课标卷Ⅰ] 已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,|AF |=54x 0,则x 0=( ) A .1 B .2 C .4 D .815.[2014·山东卷] 已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦距为2c ,右顶点为A ,抛物线x 2=2py (p >0)的焦点为F .若双曲线截抛物线的准线所得线段长为2c ,且|F A |=c ,则双曲线的渐近线方程为________.11.[2014·陕西卷] 抛物线y 2=4x 的准线方程为________.22.[2014·浙江卷] 已知△ABP 的三个顶点都在抛物线C :x 2=4y 上,F 为抛物线C 的焦点,点M 为AB 的中点,PF →=3FM .图1-6(1)若|PF |=3,求点M 的坐标;(2)求△ABP 面积的最大值.H8 直线与圆锥曲线(AB 课时作业)20.[2014·安徽卷] 设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0.(1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时,求f (x )取得最大值和最小值时的x 的值.19.[2014·北京卷] 已知椭圆C :x 2+2y 2=4.(1)求椭圆C 的离心率;(2)设O 为原点,若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB ,求线段AB 长度的最小值.22.[2014·浙江卷] 已知△ABP 的三个顶点都在抛物线C :x 2=4y 上,F 为抛物线C 的焦点,点M 为AB 的中点,PF →=3FM .图1-6(1)若|PF |=3,求点M 的坐标;(2)求△ABP 面积的最大值.20.[2014·广东卷] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为(5,0),离心率为53. (1)求椭圆C 的标准方程;(2)若动点P (x 0,y 0)为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.8.[2014·湖北卷] 设a ,b 是关于t 的方程t 2cos θ+t sin θ=0的两个不等实根,则过A (a ,a 2),B (b ,b 2)两点的直线与双曲线x 2cos 2θ-y 2sin 2θ=1的公共点的个数为( ) A .0 B .1 C .2 D .322.[2014·湖北卷] 在平面直角坐标系xOy 中,点M 到点F (1,0)的距离比它到y 轴的距离多1.记点M 的轨迹为C .(1)求轨迹C 的方程;(2)设斜率为k 的直线l 过定点P (-2,1),求直线l 与轨迹C 恰好有一个公共点、两个公共点、三个公共点时k 的相应取值范围.14.[2014·湖南卷] 平面上一机器人在行进中始终保持与点F (1,0)的距离和到直线x =-1的距离相等.若机器人接触不到过点P (-1,0)且斜率为k 的直线,则k 的取值范围是________.17.[2014·江苏卷] 如图1-5所示,在平面直角坐标系xOy 中,F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,顶点B 的坐标为(0,b ),连接BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接F 1C .(1)若点C 的坐标为⎝⎛⎭⎫43,13,且BF 2=2,求椭圆的方程;(2)若F 1C ⊥AB ,求椭圆离心率e 的值.图1-515.[2014·辽宁卷] 已知椭圆C :x 29+y 24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=________.20.[2014·辽宁卷] 圆x 2+y 2=4的切线与x 轴正半轴、y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图1-5所示).图1-5(1)求点P 的坐标;(2)焦点在x 轴上的椭圆C 过点P ,且与直线l :y =x +3交于A ,B 两点,若△P AB 的面积为2,求C 的标准方程.22.[2014·全国卷] 已知抛物线C :y 2=2px (p >0)的焦点为F ,直线y =4与 y 轴的交点为P ,与C 的交点为Q ,且|QF |=54|PQ |. (1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l ′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.20.[2014·新课标全国卷Ⅱ] 设F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直.直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b .21.[2014·山东卷] 在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,直线y =x 被椭圆C 截得的线段长为4105. (1)求椭圆C 的方程.(2)过原点的直线与椭圆C 交于A ,B 两点(A ,B 不是椭圆C 的顶点).点D 在椭圆C 上,且AD ⊥AB ,直线BD 与x 轴、y 轴分别交于M ,N 两点.(i)设直线BD ,AM 的斜率分别为k 1,k 2,证明存在常数λ使得k 1=λk 2,并求出λ的值;(ii)求△OMN 面积的最大值.20.[2014·陕西卷] 已知椭圆x 2a 2+y 2b 2=1(a >b >0)经过点(0,3),离心率为12,左、右焦点分别为F 1(-c ,0),F 2(c ,0).(1)求椭圆的方程;(2)若直线l :y =-12x +m 与椭圆交于A ,B 两点,与以F 1F 2为直径的圆交于C ,D 两点,且满足|AB ||CD |=534,求直线l 的方程.图1-520.、[2014·四川卷] 已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F (-2,0),离心率为63. (1)求椭圆C 的标准方程;(2)设O为坐标原点,T为直线x=-3上一点,过F作TF的垂线交椭圆于P,Q.当四边形OPTQ是平行四边形时,求四边形OPTQ的面积.18.[2014·天津卷] 设椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,右顶点为A,上顶点为B.已知|AB|=32|F1F2|.(1)求椭圆的离心率;(2)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过点F2的直线l与该圆相切于点M,|MF2|=22,求椭圆的方程.H9 曲线与方程12.[2014·福建卷] 在平面直角坐标系中,两点P1(x1,y1),P2(x2,y2)间的“L-距离”定义为||P1P2||=|x1-x2|+|y1-y2|,则平面内与x轴上两个不同的定点F1,F2的“L-距离”之和等于定值(大于||F1F2||)的点的轨迹可以是()A BC D图1-4。

高考全国卷解析几何试题文科精编版

高考全国卷解析几何试题文科精编版

……………………………………………………………最新资料推荐…………………………………………………2011年-2015年高考全国课标卷解析几何试题(文科)2y21?x?APFxP1.201715FCC轴垂直,点与【的右焦点,全国:,文上一点,且】已知是是双曲线3(13)APF ),的面积为(,则的坐标是△1231 D A CB ....22332x21a??y1?( 5 )2.2017II的离心率的取值范围是】若课标,则双曲线,文【2a(1,2)2)(1,(2,2))??(2, D. C. B. A.x2C x?C:y4MFM12II4.20173轴上,且斜率为(,文的直线交】过抛物线【在的焦点课标于点CNMN?lNFll M( , ) 的距离为为上且的准线,点则方),在到直线D. C. A. B. 325332222yx??1=120°MAMB112AC5.BC2017长轴的两个端点,,文满足∠】设上存在点是椭圆、:【若课标,3m m( ) 的取值范围是则)[4,??)??(0,1](0,1][9,(0,3][4,(0,3][9,??)??) D B AC....22yx??1,(a>b>0)的左、右顶点分别为A,A,且以线段6.【2017课标3,文11】已知椭圆C:AA212122abbx?ay?2ab?0相切,则C的离心率为(为直径的圆与直线)1362 D... C A.B 3333223yx y?x??1】双曲线14课标3,文. 11.a(>0)的一条渐近线方程为【2017a,则= 259a2x14.2017120ABCy=AB4 .,与为曲线】设:上两点,【的横坐标之和为课标,文41AB 的斜率;()求直线?BMAB AMC2MCMAB的方程.()设,求直线为曲线上一点,平行,且在处的切线与直线15.2017II20OMC Mx轴的垂【课标,文】设为坐标原点,动点在椭圆错误!未找到引用源。

文科高考数学重难点04 解析几何(原卷版)

文科高考数学重难点04  解析几何(原卷版)

重难点04 解析几何【命题趋势】解析几何一直是高考数学中的计算量代名词,在高考中所占的比例一直是2+1+1模式.即两道选择,一道填空,一道解答题.高考中选择部分,一道圆锥曲线相关的简单概念以及简单性质,另外一道是圆锥曲线的性质会与直线、圆等结合考查一道综合题目,一般难度诶中等.填空题目也是综合题目,难度中等.大题部分一般是以椭圆抛物线性质为主,加之直线与圆的相关性子相结合,常见题型为定值、定点、对应变量的取值范围问题、面积问题等.双曲线一般不出现在解答题中,一般出现在小题中.即复习解答题时也应是以椭圆、抛物线为主.本专题主要通过对高考中解析几何的知识点的统计,整理了高考中常见的解析几何的题型进行详细的分析与总结,通过本专题的学习,能够掌握高考中解析几何出题的脉略,从而能够对于高考中这一重难点有一个比较详细的认知,对于解析几何的题目的做法能够有一定的理解与应用.【满分技巧】定值问题:采用逆推方法,先计算出结果.即一般会求直线过定点,或者是其他曲线过定点.对于此类题目一般采用特殊点求出两组直线,或者是曲线然后求出两组直线或者是曲线的交点即是所要求的的定点.算出结果以后,再去写出一般情况下的步骤.定值问题:一般也是采用利用结果写过程的形式.先求结果一般会也是采用满足条件的特殊点进行带入求值(最好是原点或是(1,0)此类的点).所得答案即是要求的定值.然后再利用答案,写出一般情况下的过程即可.注:过程中比较复杂的解答过程可以不求,因为已经知道答案,直接往答案上凑即可.关于取值范围问题:一般也是采用利用结果写过程的形式.对于答案的求解,一般利用边界点进行求解,答案即是在边界点范围内.知道答案以后再写出一般情况下的步骤比较好写.一般情况下的步骤对于复杂的计算可以不算.方法点睛:求解椭圆或双曲线的离心率的方法如下:a c(1)定义法:通过已知条件列出方程组,求得、的值,根据离心率的定义求解离心率e的值;a c e(2)齐次式法:由已知条件得出关于、的齐次方程,然后转化为关于的方程求解;(3)特殊值法:通过取特殊位置或特殊值,求得离心率.【考查题型】选择,填空,解答题【限时检测】(建议用时:45分钟)一、单选题一、单选题1.(2020·贵州贵阳一中高三月考(文))已知圆C :(x +3)2+(y +4)2=4上一动点B ,则点B 到直线l :3x +4y +5=0的距离的最小值为()A .6B .4C .2D.2.(2020·河南开封市·高三一模(文))已知双曲线的离心率与椭圆221(0)x y m m -=>的离心率互为倒数,则该双曲线的渐近线方程为( )2213x y m m +=A .B .C .D.y =y x =y x =y =3.(2020·四川成都市·高三一模(文))已知平行于轴的一条直线与双曲线x 相交于,两点,,(为坐标原()222210,0x y a b a b -=>>P Q 4PQ a=π3PQO ∠=O 点),则该双曲线的离心率为().A BC D 4.(2020·河南周口市·高三月考(文))已知直线:与圆:l 340x y m -+=C 有公共点,则实数的取值范围为( )226430x y x y +-+-=mA .B .C .D .()3,37[]37,3-[]3,4[]4,4-5.(2020·全国福建省漳州市教师进修学校高三三模(文))已知直线:210l kx y k --+=与椭圆交于A 、B 两点,与圆交于C 、D22122:1(0)x y C a b a b +=>>222:(2)(1)1C x y -+-=两点.若存在,使得,则椭圆的离心率的取值范围是( )[2,1]k ∈--AC DB =1C A .B .C .D .10,2⎛⎤⎥⎝⎦1,12⎡⎫⎪⎢⎣⎭⎛ ⎝⎫⎪⎪⎭6.(2020·全国高三其他模拟(文))已知,为的两个顶点,点()1,0A ()3,0B ABC A C在抛物线上,且到焦点的距离为13,则的面积为( )24x y =ABC A A .12B .13C .14D .157.(2020·四川成都市·高三一模(文))已知抛物线的焦点为,过的直线24x y =F F l 与抛物线相交于,两点,.若,则( ).A B 70,2P ⎛-⎫ ⎪⎝⎭PB AB ⊥AF =A .B .C .D .3225238.(2020·四川高三一模(文))已知直线与双曲线:y kx =C ()222210,0x y a b ab -=>>相交于不同的两点,,为双曲线的左焦点,且满足,(A B F C 3AF BF=OA b=为坐标原点),则双曲线的离心率为()O C AB C .2D 9.(2020·河南新乡市·高三一模(文))已知双曲线的左、()2222:10,0x y C a ba b -=>>右焦点分别为、,过原点的右支于点,若1F 2F O C A,则双曲线的离心率为( )1223F AF π∠=AB1CD10.(2020·全国高三专题练习(文))已知圆,则在轴和轴上22:(2)2C x y ++=x y 的截距相等且与圆相切的直线有几条( )C A .1条B .2条C .3条D .4条二、解答题11.(2020·四川成都市·高三一模(文))已知椭圆的离心率()2222:10x y Ca b a b +=>>,且直线与圆相切.1x ya b +=222x y +=(1)求椭圆的方程;C (2)设直线与椭圆相交于不同的两点﹐,为线段的中点,为坐标原l C A B M AB O 点,射线与椭圆相交于点,且,求的面积.OM C P OP OM=ABO A 12.(2020·云南高三其他模拟(文))已知椭圆的左右焦点分2222:1(0)x y C a b a b +=>>别为,离心率为,椭圆上的点到点的距离之和等于4.12,F F 12C 31,2M ⎛⎫ ⎪⎝⎭12,F F (1)求椭圆的标准方程;C(2)是否存在过点的直线与椭圆相交于不同的两点,,满足()2,1P l C A B 若存在,求出直线的方程;若不存在,请说明理由.2PA PB PM ⋅= l 13.(2020·广西北海市·高三一模(文))已知抛物线的准线为2:2(0)C x py p =>,焦点为F .1y =-(1)求抛物线C 的方程;(2)设过焦点F 的直线l 与抛物线C 交于A ,B 两点,且抛物线在A ,B 两点处的切线分别交x 轴于P ,Q 两点,求的最小值.||||AP BQ ⋅14.(2020·广东东莞市·高三其他模拟(文))在平面直角坐标系中,已知两定点xOy ,,动点满足.()2,2A -()0,2B P PAPB=(1)求动点的轨迹的方程;P C (2)轨迹上有两点,,它们关于直线:对称,且满足C E F l 40kx y +-=,求的面积.4OE OF ⋅=OEF ∆15.(2020·全国高三专题练习)在平面直角坐标系中,已知椭圆xOy 的长轴长为6,且经过点,为左顶点,为下顶点,椭22221(0)x y a b a b +=>>3(2Q A B 圆上的点在第一象限,交轴于点,交轴于点.P PA y C PB x D (1)求椭圆的标准方程(2)若,求线段的长20OB OC +=PA (3)试问:四边形的面积是否为定值?若是,求出该定值,若不是,请说明理由ABCD16.(2020·江西南昌市·南昌二中高三其他模拟(文))已知抛物线的()220y px p =->焦点为,轴上方的点在抛物线上,且,直线与抛物线交于,F x ()2,M m -52MF =l A 两点(点,与不重合),设直线,的斜率分别为,.B A B M MA MB 1k 2k (Ⅰ)求抛物线的方程;(Ⅱ)当时,求证:直线恒过定点并求出该定点的坐标.122k k +=-l。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考文科数学真题分类汇编:解析几何H1 直线的倾斜角与斜率、直线的方程6.[2014·福建卷] 已知直线l 过圆x 2+(y -3)2=4的圆心,且与直线x +y +1=0垂直,则l 的方程是( )A .x +y -2=0B .x -y =2=0C .x +y -3=0D .x -y +3=020.[2014·全国新课标卷Ⅰ] 已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积.21.[2014·重庆卷] 如图1-5,设椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1,F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=22,△DF 1F 2的面积为22. (1)求该椭圆的标准方程.(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.图1-5H2 两直线的位置关系与点到直线的距离18.[2014·江苏卷] 如图1-6所示,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80 m .经测量,点A 位于点O 正北方向60 m 处,点C 位于点O 正东方向170 m 处(OC 为河岸),tan∠BCO =43. (1)求新桥BC 的长.(2)当OM 多长时,圆形保护区的面积最大?图1-622.[2014·全国卷] 已知抛物线C:y2=2px(p>0)的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且|QF|=54|PQ|.(1)求C的方程;(2)过F的直线l与C相交于A,B两点,若AB的垂直平分线l′与C相交于M,N两点,且A,M,B,N四点在同一圆上,求l的方程.21.[2014·重庆卷] 如图1-5,设椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,点D在椭圆上,DF1⊥F1F2,|F1F2||DF1|=22,△DF1F2的面积为22.(1)求该椭圆的标准方程.(2)是否存在圆心在y轴上的圆,使圆在x轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.图1-5H3 圆的方程17.[2014·湖北卷] 已知圆O:x2+y2=1和点A(-2,0),若定点B(b,0)(b≠-2)和常数λ满足:对圆O上任意一点M,都有|MB|=λ|MA|,则(1)b=________;(2)λ=________.20.[2014·辽宁卷] 圆x2+y2=4的切线与x轴正半轴、y轴正半轴围成一个三角形,当该三角形面积最小时,切点为P(如图1-5所示).图1-5(1)求点P的坐标;(2)焦点在x轴上的椭圆C过点P,且与直线l:y=x+3交于A,B两点,若△P AB的面积为2,求C的标准方程.20.[2014·全国新课标卷Ⅰ] 已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l3 / 14与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积.H4 直线与圆、圆与圆的位置关系5.[2014·浙江卷] 已知圆x 2+y 2+2x -2y +a =0截直线x +y +2=0所得弦的长度为4,则实数a 的值是( )A .-2B .-4C .-6D .-86.[2014·安徽卷] 过点P (-3,-1)的直线l 与圆x 2+y 2=1有公共点,则直线l 的倾斜角的取值范围是( )A.⎝⎛⎦⎤0,π6B.⎝⎛⎦⎤0,π3C.⎣⎡⎦⎤0,π6D.⎣⎡⎦⎤0,π3 7.[2014·北京卷] 已知圆C :(x -3)2+(y -4)2=1和两点A (-m ,0),B (m ,0)(m >0).若圆C 上存在点P ,使得∠APB =90°,则m 的最大值为( )A .7B .6C .5D .411.[2014·福建卷] 已知圆C :(x -a )2+(y -b )2=1,平面区域Ω:⎩⎪⎨⎪⎧x +y -7≤0,x -y +3≥0,y ≥0.若圆心C ∈Ω,且圆C 与x 轴相切,则a 2+b 2的最大值为( )A .5B .29C .37D .4921.[2014·福建卷] 已知曲线Γ上的点到点F (0,1)的距离比它到直线y =-3的距离小2.(1)求曲线Γ的方程.(2)曲线Γ在点P 处的切线l 与x 轴交于点A ,直线y =3分别与直线l 及y 轴交于点M ,N .以MN 为直径作圆C ,过点A 作圆C 的切线,切点为B .试探究:当点P 在曲线Γ上运动(点P 与原点不重合)时,线段AB 的长度是否发生变化?证明你的结论.6.[2014·湖南卷] 若圆C 1:x 2+y 2=1与圆C 2:x 2+y 2-6x -8y +m =0外切,则m =( )A .21B .19C .9D .-119.[2014·江苏卷] 在平面直角坐标系xOy 中,直线x +2y -3=0被圆(x -2)2+(y +1)2=4截得的弦长为________.16.、[2014·全国卷] 直线l 1和l 2是圆x 2+y 2=2的两条切线.若l 1与l 2的交点为(1,3),则l 1与l 2的夹角的正切值等于________.12.[2014·新课标全国卷Ⅱ] 设点M (x 0,1),若在圆O :x 2+y 2=1上存在点N ,使得∠OMN =45°,则x 0的取值范围是( )A. [-1,1]B. ⎣⎡⎦⎤-12,12C. [-2,2]D. ⎣⎡⎦⎤-22,22 20.[2014·全国新课标卷Ⅰ] 已知点P (2,2),圆C :x 2+y 2-8y =0,过点P 的动直线l 与圆C 交于A ,B 两点,线段AB 的中点为M ,O 为坐标原点.(1)求M 的轨迹方程;(2)当|OP |=|OM |时,求l 的方程及△POM 的面积.14.[2014·山东卷] 圆心在直线x -2y =0上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为23,则圆C 的标准方程为________.14.[2014·重庆卷] 已知直线x -y +a =0与圆心为C 的圆x 2+y 2+2x -4y -4=0相交于A ,B 两点,且AC ⊥BC ,则实数a 的值为________.9.[2014·四川卷] 设m ∈R ,过定点A 的动直线x +my =0和过定点B 的动直线mx -y -m +3=0交于点P (x ,y ),则|P A |+|PB |的取值范围是( )A .[5,2 5 ]B .[10,2 5 ]C .[10,4 5 ]D .[25,4 5 ] 21.[2014·重庆卷] 如图1-5,设椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,点D 在椭圆上,DF 1⊥F 1F 2,|F 1F 2||DF 1|=22,△DF 1F 2的面积为22. (1)求该椭圆的标准方程.(2)是否存在圆心在y 轴上的圆,使圆在x 轴的上方与椭圆有两个交点,且圆在这两个交点处的两条切线相互垂直并分别过不同的焦点?若存在,求出圆的方程;若不存在,请说明理由.图1-55 / 14H5 椭圆及其几何性质20.[2014·安徽卷] 设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0.(1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时,求f (x )取得最大值和最小值时的x 的值.19.[2014·北京卷] 已知椭圆C :x 2+2y 2=4.(1)求椭圆C 的离心率;(2)设O 为原点,若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB ,求线段AB 长度的最小值.20.[2014·广东卷] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为(5,0),离心率为53. (1)求椭圆C 的标准方程;(2)若动点P (x 0,y 0)为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.20.[2014·湖南卷] 如图1-5所示,O 为坐标原点,双曲线C 1:x 2a 21-y 2b 21=1(a 1>0,b 1>0)和椭圆C 2:y 2a 22+x 2b 22=1(a 2>b 2>0)均过点P ⎝⎛⎭⎫233,1,且以C 1的两个顶点和C 2的两个焦点为顶点的四边形是面积为2的正方形.(1)求C 1,C 2的方程.(2)是否存在直线l ,使得l 与C 1交于A ,B 两点,与C 2只有一个公共点,且|OA →+OB →|=|AB | ?证明你的结论.图1-517.[2014·江苏卷] 如图1-5所示,在平面直角坐标系xOy 中,F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,顶点B 的坐标为(0,b ),连接BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接F 1C .(1)若点C 的坐标为⎝⎛⎭⎫43,13,且BF 2=2,求椭圆的方程;(2)若F 1C ⊥AB ,求椭圆离心率e 的值.图1-514.[2014·江西卷] 设椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左右焦点分别为F 1,F 2,过F 2作x 轴的垂线与C 相交于A ,B 两点,F 1B 与y 轴相交于点D .若AD ⊥F 1B ,则椭圆C 的离心率等于________.20.[2014·辽宁卷] 圆x 2+y 2=4的切线与x 轴正半轴、y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图1-5所示).图1-5(1)求点P 的坐标;(2)焦点在x 轴上的椭圆C 过点P ,且与直线l :y =x +3交于A ,B 两点,若△P AB 的面积为2,求C 的标准方程.9.[2014·全国卷] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点为F 1,F 2,离心率为33,过F 2的直线l 交C 于A ,B 两点.若△AF 1B 的周长为4 3,则C 的方程为( )A.x 23+y 22=1B.x 23+y 2=1C.x 212+y 28=1D.x 212+y 24=1 20.[2014·新课标全国卷Ⅱ] 设F 1,F 2分别是椭圆C :x 2a 2+y 2b2=1(a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直.直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b .7 / 1421.[2014·山东卷] 在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,直线y =x 被椭圆C 截得的线段长为4105. (1)求椭圆C 的方程.(2)过原点的直线与椭圆C 交于A ,B 两点(A ,B 不是椭圆C 的顶点).点D 在椭圆C 上,且AD ⊥AB ,直线BD 与x 轴、y 轴分别交于M ,N 两点.(i)设直线BD ,AM 的斜率分别为k 1,k 2,证明存在常数λ使得k 1=λk 2,并求出λ的值;(ii)求△OMN 面积的最大值.20.[2014·陕西卷] 已知椭圆x 2a 2+y 2b 2=1(a >b >0)经过点(0,3),离心率为12,左、右焦点分别为F 1(-c ,0),F 2(c ,0).(1)求椭圆的方程;(2)若直线l :y =-12x +m 与椭圆交于A ,B 两点,与以F 1F 2为直径的圆交于C ,D 两点,且满足|AB ||CD |=534,求直线l 的方程.图1-520.[2014·四川卷] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左焦点为F (-2,0),离心率为63. (1)求椭圆C 的标准方程;(2)设O 为坐标原点,T 为直线x =-3上一点,过F 作TF 的垂线交椭圆于P ,Q .当四边形OPTQ 是平行四边形时,求四边形OPTQ 的面积.18.[2014·天津卷] 设椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1,F 2,右顶点为A ,上顶点为B .已知|AB |=32|F 1F 2|. (1)求椭圆的离心率;(2)设P 为椭圆上异于其顶点的一点,以线段PB 为直径的圆经过点F 1,经过点F 2的直线l 与该圆相切于点M ,|MF 2|=22,求椭圆的方程.H6 双曲线及其几何性质8.[2014·重庆卷] 设F 1,F 2分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左、右焦点,双曲线上存在一点P 使得(|PF 1|-|PF 2|)2=b 2-3ab ,则该双曲线的离心率为( ) A. 2 B.15 C .4 D.1710.[2014·北京卷] 设双曲线C 的两个焦点为(-2,0),(2,0),一个顶点是(1,0),则C 的方程为________.8.[2014·广东卷] 若实数k 满足0<k <5,则曲线x 216-y 25-k =1与曲线x 216-k -y 25=1的( ) A .实半轴长相等 B .虚半轴长相等 C .离心率相等 D .焦距相等8.[2014·湖北卷] 设a ,b 是关于t 的方程t 2cos θ+t sin θ=0的两个不等实根,则过A (a ,a 2),B (b ,b 2)两点的直线与双曲线x 2cos 2θ-y 2sin 2θ=1的公共点的个数为( ) A .0 B .1 C .2 D .317.[2014·浙江卷] 设直线x -3y +m =0(m ≠0)与双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线分别交于点A ,B .若点P (m ,0)满足|P A |=|PB |,则该双曲线的离心率是________.9.[2014·江西卷] 过双曲线C :x 2a 2-y 2b 2=1的右顶点作x 轴的垂线,与C 的一条渐近线相交于点A .若以C 的右焦点为圆心、半径为4的圆经过A ,O 两点(O 为坐标原点),则双曲线C 的方程为( )A.x 24-y 212=1B.x 27-y 29=1C.x 28-y 28=1D.x 212-y 24=1 11.[2014·全国卷] 双曲线C :x 2a 2-y 2b 2=1(a >0,b >0)的离心率为2,焦点到渐近线的距离为3,则C 的焦距等于( )A .2B .2 2C .4D .4 24.[2014·全国新课标卷Ⅰ] 已知双曲线x 2a 2-y 23=1(a >0)的离心率为2,则a =( ) A .2 B.62 C.52 D .1 15.[2014·山东卷] 已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦距为2c ,右顶点为A ,抛物线x 2=2py (p >0)的焦点为F .若双曲线截抛物线的准线所得线段长为2c ,且|F A |=c ,则双曲线的渐近线方程为________.11.[2014·四川卷] 双曲线 x 24-y 2=1的离心率等于________.9 / 146.[2014·天津卷] 已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线平行于直线l :y =2x +10,双曲线的一个焦点在直线l 上,则双曲线的方程为( )A.x 25-y 220=1B.x 220-y 25=1C.3x 225-3y 2100=1D.3x 2100-3y 225=1H7 抛物线及其几何性质10.[2014·四川卷] 已知F 为抛物线y 2=x 的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,OA →·OB →=2(其中O 为坐标原点),则△ABO 与△AFO 面积之和的最小值是( )A .2B .3 C.1728D.10 3.[2014·安徽卷] 抛物线y =14x 2的准线方程是( ) A .y =-1 B .y =-2 C .x =-1 D .x =-211.[2014·广东卷] 曲线y =-5e x +3在点(0,-2)处的切线方程为________.22.[2014·湖北卷] 在平面直角坐标系xOy 中,点M 到点F (1,0)的距离比它到y 轴的距离多1.记点M 的轨迹为C .(1)求轨迹C 的方程;(2)设斜率为k 的直线l 过定点P (-2,1),求直线l 与轨迹C 恰好有一个公共点、两个公共点、三个公共点时k 的相应取值范围.14.[2014·湖南卷] 平面上一机器人在行进中始终保持与点F (1,0)的距离和到直线x =-1的距离相等.若机器人接触不到过点P (-1,0)且斜率为k 的直线,则k 的取值范围是________.20.[2014·江西卷] 如图1-2所示,已知抛物线C :x 2=4y ,过点M (0,2)任作一直线与C 相交于A ,B 两点,过点B 作y 轴的平行线与直线AO 相交于点D (O 为坐标原点).(1)证明:动点D 在定直线上.(2)作C 的任意一条切线l (不含x 轴),与直线y =2相交于点N 1,与(1)中的定直线相交于点N 2.证明:|MN 2|2-|MN 1|2为定值,并求此定值.图1-28. [2014·辽宁卷] 已知点A (-2,3)在抛物线C :y 2=2px 的准线上,记C 的焦点为F ,则直线AF 的斜率为( )A .-43B .-1C .-34D .-1222.[2014·全国卷] 已知抛物线C :y 2=2px (p >0)的焦点为F ,直线y =4与 y 轴的交点为P ,与C 的交点为Q ,且|QF |=54|PQ |. (1)求C 的方程;(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l ′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.10.[2014·新课标全国卷Ⅱ] 设F 为抛物线C :y 2=3x 的焦点,过F 且倾斜角为30°的直线交C 于A ,B 两点,则|AB |=( ) A.303B .6C .12D .7 3 10.[2014·全国新课标卷Ⅰ] 已知抛物线C :y 2=x 的焦点为F ,A (x 0,y 0)是C 上一点,|AF |=54x 0,则x 0=( ) A .1 B .2 C .4 D .815.[2014·山东卷] 已知双曲线x 2a 2-y 2b2=1(a >0,b >0)的焦距为2c ,右顶点为A ,抛物线x 2=2py (p >0)的焦点为F .若双曲线截抛物线的准线所得线段长为2c ,且|F A |=c ,则双曲线的渐近线方程为________.11.[2014·陕西卷] 抛物线y 2=4x 的准线方程为________.22.[2014·浙江卷] 已知△ABP 的三个顶点都在抛物线C :x 2=4y 上,F 为抛物线C 的焦点,点M 为AB 的中点,PF →=3FM .图1-6(1)若|PF |=3,求点M 的坐标;(2)求△ABP 面积的最大值.11 / 14 H8 直线与圆锥曲线(AB 课时作业)20.[2014·安徽卷] 设函数f (x )=1+(1+a )x -x 2-x 3,其中a >0.(1)讨论f (x )在其定义域上的单调性;(2)当x ∈[0,1]时,求f (x )取得最大值和最小值时的x 的值.19.[2014·北京卷] 已知椭圆C :x 2+2y 2=4.(1)求椭圆C 的离心率;(2)设O 为原点,若点A 在直线y =2上,点B 在椭圆C 上,且OA ⊥OB ,求线段AB 长度的最小值.22.[2014·浙江卷] 已知△ABP 的三个顶点都在抛物线C :x 2=4y 上,F 为抛物线C 的焦点,点M 为AB 的中点,PF →=3FM.图1-6(1)若|PF |=3,求点M 的坐标;(2)求△ABP 面积的最大值.20.[2014·广东卷] 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个焦点为(5,0),离心率为53. (1)求椭圆C 的标准方程;(2)若动点P (x 0,y 0)为椭圆C 外一点,且点P 到椭圆C 的两条切线相互垂直,求点P 的轨迹方程.8.[2014·湖北卷] 设a ,b 是关于t 的方程t 2cos θ+t sin θ=0的两个不等实根,则过A (a ,a 2),B (b ,b 2)两点的直线与双曲线x 2cos 2θ-y 2sin 2θ=1的公共点的个数为( ) A .0 B .1 C .2 D .322.[2014·湖北卷] 在平面直角坐标系xOy 中,点M 到点F (1,0)的距离比它到y 轴的距离多1.记点M 的轨迹为C .(1)求轨迹C 的方程;(2)设斜率为k 的直线l 过定点P (-2,1),求直线l 与轨迹C 恰好有一个公共点、两个公共点、三个公共点时k 的相应取值范围.14.[2014·湖南卷] 平面上一机器人在行进中始终保持与点F (1,0)的距离和到直线x =-1的距离相等.若机器人接触不到过点P (-1,0)且斜率为k 的直线,则k 的取值范围是________.17.[2014·江苏卷] 如图1-5所示,在平面直角坐标系xOy 中,F 1,F 2分别是椭圆x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,顶点B 的坐标为(0,b ),连接BF 2并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接F 1C .(1)若点C 的坐标为⎝⎛⎭⎫43,13,且BF 2=2,求椭圆的方程;(2)若F 1C ⊥AB ,求椭圆离心率e 的值.图1-515.[2014·辽宁卷] 已知椭圆C :x 29+y 24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则|AN |+|BN |=________.20.[2014·辽宁卷] 圆x 2+y 2=4的切线与x 轴正半轴、y 轴正半轴围成一个三角形,当该三角形面积最小时,切点为P (如图1-5所示).图1-5(1)求点P 的坐标;(2)焦点在x 轴上的椭圆C 过点P ,且与直线l :y =x +3交于A ,B 两点,若△P AB 的面积为2,求C 的标准方程.22.[2014·全国卷] 已知抛物线C :y 2=2px (p >0)的焦点为F ,直线y =4与 y 轴的交点为P ,与C 的交点为Q ,且|QF |=54|PQ |. (1)求C 的方程;13 / 14(2)过F 的直线l 与C 相交于A ,B 两点,若AB 的垂直平分线l ′与C 相交于M ,N 两点,且A ,M ,B ,N 四点在同一圆上,求l 的方程.20.[2014·新课标全国卷Ⅱ] 设F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,M 是C 上一点且MF 2与x 轴垂直.直线MF 1与C 的另一个交点为N .(1)若直线MN 的斜率为34,求C 的离心率; (2)若直线MN 在y 轴上的截距为2,且|MN |=5|F 1N |,求a ,b .21.[2014·山东卷] 在平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,直线y =x 被椭圆C 截得的线段长为4105. (1)求椭圆C 的方程.(2)过原点的直线与椭圆C 交于A ,B 两点(A ,B 不是椭圆C 的顶点).点D 在椭圆C 上,且AD ⊥AB ,直线BD 与x 轴、y 轴分别交于M ,N 两点.(i)设直线BD ,AM 的斜率分别为k 1,k 2,证明存在常数λ使得k 1=λk 2,并求出λ的值;(ii)求△OMN 面积的最大值.20.[2014·陕西卷] 已知椭圆x 2a 2+y 2b 2=1(a >b >0)经过点(0,3),离心率为12,左、右焦点分别为F 1(-c ,0),F 2(c ,0).(1)求椭圆的方程;(2)若直线l :y =-12x +m 与椭圆交于A ,B 两点,与以F 1F 2为直径的圆交于C ,D 两点,且满足|AB ||CD |=534,求直线l 的方程.图1-520.、[2014·四川卷] 已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的左焦点为F (-2,0),离心率为63. (1)求椭圆C 的标准方程;(2)设O为坐标原点,T为直线x=-3上一点,过F作TF的垂线交椭圆于P,Q.当四边形OPTQ是平行四边形时,求四边形OPTQ的面积.18.[2014·天津卷] 设椭圆x2a2+y2b2=1(a>b>0)的左、右焦点分别为F1,F2,右顶点为A,上顶点为B.已知|AB|=32|F1F2|.(1)求椭圆的离心率;(2)设P为椭圆上异于其顶点的一点,以线段PB为直径的圆经过点F1,经过点F2的直线l与该圆相切于点M,|MF2|=22,求椭圆的方程.H9 曲线与方程12.[2014·福建卷] 在平面直角坐标系中,两点P1(x1,y1),P2(x2,y2)间的“L-距离”定义为||P1P2||=|x1-x2|+|y1-y2|,则平面内与x轴上两个不同的定点F1,F2的“L-距离”之和等于定值(大于||F1F2||)的点的轨迹可以是()A BC D图1-4。

相关文档
最新文档