概率论第八章习题课
《概率论与数理统计》第四版-第八章-习题解答
第八章 假设检验 作业解答1. 某批矿砂的5个样品中的镍含量,经测定为(%)3.25 3.27 3.24 3.26 3.24。
设测定值总体服从正态分布,问在α = 0.01下能否接受假设:这批矿砂的含镍量的均值为3.25.解:设测定值总体X ~N (µ,σ 2),µ,σ 2均未知步骤:(1)提出假设检验H 0:µ=3.25; H 1:µ≠3.25(2)选取检验统计量为)1(~25.3−−=n t nS X t (3)H 0的拒绝域为| t |≥).1(2−n t α(4)n=5, α = 0.01,由计算知01304.0)(11,252.3512=−−==∑=i i X Xn S x查表t 0.005(4)=4.6041, )1(343.0501304.025.3252.3||2−<=−=n t t α (5)故在α = 0.01下,接受假设H 02. 如果一个矩形的宽度ω与长度l 的比618.0)15(21≈−=l ω,这样的矩形称为黄金矩形。
这种尺寸的矩形使人们看上去有良好的感觉。
现代建筑构件(如窗架)、 工艺品(如图片镜框)、甚至司机的执照、商业的信用卡等常常都是采用黄金矩型。
下面列出某工艺品工厂随机取的20个矩形的宽度与长度的比值。
设这一工厂生产的矩形的宽度与长短的比值总体服从正态分布,其均值为µ,试检验假设(取α = 0.05) H 0:µ = 0.618 H 1:µ≠0.6180.693 0.749 0.654 0.670 0.662 0.672 0.615 0.606 0.690 0.628 0.668 0.611 0.606 0.609 0.601 0.553 0.570 0.844 0.576 0.933.解:步骤:(1)H 0:µ = 0.618; H 1:µ≠0.618(2)选取检验统计量为)1(~618.0−−=n t nS X t (3)H 0的拒绝域为| t |≥).1(2−n t α(4)n=20 α = 0.05,计算知0925.0)(11,6605.01121=−−===∑∑==n i i n i i x xn S xn x ,)1(055.2200925.0618.06605.0||,0930.2)1(22−<=−==−n t t n t αα (5)故在α = 0.05下,接受H 0,认为这批矩形的宽度和长度的比值为0.6183. 要求一种元件使用寿命不得低于1000小时,今从一批这种元件中随机抽取25件,测得其寿命的平均值为950小时,已知这种元件寿命服从标准差为σ =100小时的正态分布。
概率论与数理统计第八章习题课
第八章 习题课一、 填空题1.设总体),(~2σμN X ,样本容量为n ,X 和2S 分别为样本均值和样本方差, 在显著性水平α下,(1)若2σ已知,检验假设00:μμ≥H 的统计量U = ,拒绝域为 ,(2)若2σ未知,检验假设00:μμ≤H 的统计量T = ,拒绝域为 ;2.设总体),(~2σμN X ,原假设为00:μμ=H(1)若拒绝域为)),1((+∞-n t α,则相应的备择假设为1H :___________,(2)若拒绝域为)),1(())1(,(22+∞-⋃--∞n t n t αα,则相应的备择假设为1H : ;二、 选择题1.在假设检验中,记0H 为待检假设,则称( )为第二类错误.()A 0H 为真,接受0H ()B 0H 不真,接受0H()C 0H 为真,拒绝1H ()D 0H 不真,拒绝0H2.在假设检验中,u 检验和t 检验都是关于总体均值的假设检验,当总体方差未知时,可选用( ))(A t 检验法 )(B u 检验法)(C t 检验法或u 检验法 )(D 其他检验法3.正态总体),(~2σμN X (2σ未知),n X X X ,,, 21是来自总体X 的样本,对假设检验问题1:0≤μH ;1:1>μH ,若取得显著性水平05.0=α,则其拒绝域为( ))(A 0.051X u -> )(B )1(105.0-+>n t n SX)(C0.051(1)X n ->- )(D 0.051()X n >- 三、解答题 1.已知某炼铁厂铁水含碳量服从正态分布()24.55,0.108N .现在测得了9炉铁水,其平均含碳量为4.484,如果估计方差没有变化,可否认为现在生产的铁水平均含碳量仍为4.55(0.05)α=?2. 设某种电池的工作时间),50(~2σN X ,2σ未知,从一批要出厂的电池中随机抽取了10个,观察到它们的工作时间分别为48,51,46,48,47,50,46,49,52 ,51问在显著性水平0.01α=下,可否认为50<μ?。
苏教版高中数学选择性必修第二册课后习题 第八章 概率 8.2.1 随机变量及其分布列
8.2 离散型随机变量及其分布列8.2.1 随机变量及其分布列A 级必备知识基础练1.(多选题)下列表述中,X 表示的是离散型随机变量的是( ) A.某座大桥一天经过的车辆数XB.某无线电寻呼台一天内收到的寻呼次数XC.一天之内的温度XD.一位射击手对目标进行射击,击中目标得1分,未击中目标得0分,用X 表示该射击手在一次射击中的得分2.(多选题)下列问题中的随机变量服从两点分布的是( ) A.抛掷一枚骰子,所得点数为随机变量X B.某射手射击一次,击中目标的次数为随机变量XC.从装有5个红球、3个白球的袋中取1个球,令随机变量X={1,取出白球,0,取出红球D.某医生做一次手术,手术成功的次数为随机变量X 3.随机变量X 的分布列为P(X=k)=c k (k+1),k=1,2,3,4,c 为常数,则P23<X<52的值为( ) A.45B.56C.23D.344.设随机变量X的分布列为则P(|X-3|=1)=( )A.712B.512C.14D.165.一袋中装有10个大小相同的黑球和白球.已知从袋中任意摸出2个球,至少得到1个白球的概率是79.从袋中任意摸出3个球,记得到白球的个数为X,则P(X=2)= .6.某篮球运动员在一次投篮训练中的得分X的分布列如下表,其中a,b,c 成等差数列,且c=ab.则这名运动员得3分的概率是.7.将一枚骰子掷两次,记第一次掷出的点数减去第二次掷出的点数的差为X,求X的分布列.B级关键能力提升练8.(多选题)已知随机变量X的分布列如表所示,其中a,b,c成等差数列,则( )A.a=13B.b=13C.c=13D.P(|X|=1)=239.袋子中装有大小相同的8个小球,其中白球5个,分别编号1,2,3,4,5;红球3个,分别编号1,2,3.现从袋子中任取3个小球,它们的最大编号为随机变量X,则P(X=3)=( )A.528B.17C.1556D.2710.已知随机变量X只能取三个值x1,x2,x3,其概率依次成等差数列,则该等差数列公差的取值范围是( )A.0,13B.-13,13C.[-3,3]D.[0,1]11.若随机变量X 的概率分布为X 0 1 P9c 2-c3-8c则常数c= . 12.随机变量Y 的分布列如下:则x= ;P(Y>3)= . 13.设随机变量X 的分布列为P X=k 5=ak(k=1,2,3,4,5).求:(1)常数a 的值; (2)P X≥35的值;(3)P 110<X<710的值.14.设集合S是不等式+n=0成立的有序数组(m,n)”为事件A,试列举A包含的样本点;(2)设ξ=m2,求ξ的分布列.C级学科素养创新练15.在一次购物抽奖活动中,假设10张奖券中有一等奖奖券1张,可获价值50元的奖品,有二等奖奖券3张,每张可获价值10元的奖品,其余6张没有奖品.(1)顾客甲从10张奖券中任意抽取1张,求中奖次数X的分布列.(2)顾客乙从10张奖券中任意抽取 2张.①求顾客乙中奖的概率;②设顾客乙获得的奖品总价值为Y元,求Y的分布列.参考答案8.2 离散型随机变量及其分布列 8.2.1 随机变量及其分布列1.ABD A,B,D 中的X 可以取的值可以一一列举出来,而C 中的X 可以取某一区间内的一切值,属于连续型随机变量.2.BCD 只有A 中随机变量X 的取值有6个,不服从两点分布.3.B 由分布列性质得c 1×2+c 2×3+c 3×4+c4×5=1,即45c=1,c=54.所以P23<X<52=P(X=1)+P(X=2)=54×11×2+12×3=56.故选B.4.B 根据分布列的性质得出13+m+14+16=1,所以m=14,随机变量X 的分布列为所以P(|X-3|=1)=P(X=4)+P(个,则C 10-m 2C 102=1-79,解得m=5.P(X=2)=C 52C 51C 103=512.6.16由题意得2b=a+c,c=ab,a+b+c=1,且a≥0,b≥0,c≥0,联立得a=12,b=13,c=16,故该名运动员得3分的概率是16.7.解第一次掷出的点数与第二次掷出的点数的差X 的可能取值为-5,-4,-3,-2,-1,0,1,2,3,4,5, 则P(X=-5)=136,P(X=-4)=236=118,…,P(X=5)=136.故X 的分布列为8.BD ∵a,b,c 成等差数列,∴2b=a+c. 由分布列的性质得a+b+c=3b=1,∴b=13.∴P(|X|=1)=P(X=1)+P(X=-1)=1-P(X=0)=1-13=23.9.D X=3共有两种情况,第一种情况表示3个小球中有1个3,P 1=C 21C 42C 83=314,第二种情况表示3个小球中有2个3,P 2=C 22C 41C 83=114,所以P(X=3)=P 1+P 2=314+114=27.故选D.10.B 由题意可设随机变量X 取x 1,x 2,x 3的概率分别为a-d,a,a+d,则由分布列的性质得(a-d)+a+(a+d)=1,故a=13.由{13-d ≥0,13+d ≥0,解得-13≤d ≤13.11.13由随机变量分布列的性质可知{9c 2-c +3-8c =1,0≤9c 2-c ≤1,0≤3-8c ≤1,整理得{9c 2-9c +2=0,0≤9c 2-c ≤1,解得c =13.14≤c ≤38,12.0.1 0.45 由∑i=16p i =1,得x=0.1.P(Y>3)=P(Y=4)+P(Y=5)+P(Y=6)=0.1+0.15+0.2=0.45. 13.解由题意,随机变量X 的分布列为(1)由分布列的性质得a+2a+3a+4a+5a=1,解得a=115. (2)P X ≥35=P X=35+P X=45+P X=1=315+415+515=45,或P X ≥35=1-P X ≤25=1-115+215=45.(3)∵110<X<710,∴X=15,25,35.∴P110<X<710=P X=15+P X=25+P X=35=115+215+315=25.14.解(1)由x 2-x-6≤0,得-2≤+n=0,所以A 包含的样本点为(-2,2),(2,-2),(-1,1),(1,-1),(0,0). (2)由于m 的所有不同取值为-2,-1,0,1,2,3,所以ξ=m 2的所有不同取值为0,1,4,9, 且有P(ξ=0)=16,P(ξ=1)=26=13,P(ξ=4)=26=13,P(ξ=9)=16.故ξ的分布列为15.解(1)抽奖一次,只有中奖和不中奖两种情况,故X 的取值只有0和1两种情况. P(X=1)=C 41C 101=410=25,则P(X=0)=1-P(X=1)=1-25=35.所以X 的分布列为(2)①顾客乙中奖可分为互斥的两类事件:所抽取的2张奖券中有1张中奖或2张都中奖. 故所求概率P=C 41C 61+C 42C 60C 102=3045=23.②Y 的所有可能取值为0,10,20,50,60,则P(Y=0)=C 40C 62C 102=1545=13,P(Y=10)=C 31C 61C 102=1845=25,P(Y=20)=C 32C 60C 102=345=115, P(Y=50)=C 11C 61C 102=645=215, P(Y=60)=C 11C 31C 102=345=115.所以随机变量Y 的分布列为。
概率论与数理统计(经管类)第八章课后习题答案word
习题8.11.某天开工时,需检验自动装包机工作是否正常.根据以往的经验,其装包的重量在正常情况下服从正态分布N(100,1.52)(单位:公斤).现抽测了9包,其重量为:99.3 98.7 100.5 101.2 98.3 99.7 99.5 102.0 100.5问这天包装机工作是否正常?将这一问题化为一个假设检验问题,写出假设检验的步骤,设α=0.05.解: (1)作假设H0:μ=100,H1:μ≠100(2)选取检验统计量u=X−100σ√n⁄(3)查表知μα2=μ0.025=1.96, 拒绝域为|u|=|X−100σ√n⁄|≥1.96(4)由样本观测值有=99.97∴|u|=|X−100σ√n⁄|=|99.97−1001.5√9⁄|=0.06<1.96.不属于拒绝域,所以接受原假设H0,即认为这天包装机工作正常.2.设α,β分别是假设检验中犯第一,第二类错误的概率且H0,H1分别为原假设和备择驾驶,则(1)P{接受H0|H0不真}=β(2)P{拒绝H0|H0真}=α(3)P{拒绝H0|H0不真}=1−β(4)P{接受H0|H0真}=1−α习题8.21.某自动机生产一种铆钉,尺寸误差X~N(μ,1),该机正常工作与否的标志是检验μ=0是否成立.一日抽检容量n=10的样本,测得样本均值X=1.01.试问:在检验水平α=0.05下,该日自动机工作是否正常?解:检验假设H0:μ=μ0=0,H1:μ≠0∵X=1.01,n=10,σ=1∴|u|=|X−μσ√n⁄|=|1.01−01√10⁄|=3.194查表知μα2=μ0.025=1.96,由于|u|=3.194>1.96,故拒绝H0,即该日自动机工作不正常.2.假定考生成绩服从正态分布,在某地一次数学统考中,随机抽取了36位考生的成绩,算的平均成绩为X=66.5分,标准差S=15分,问在显著性水平0.05下,是否可以认为这次考试全体考生的平均成绩为70分?解: 检验假设H0:μ=μ0=70,H1:μ≠70选取检验统计量t =X−μ0S √n⁄−1)拒绝域为|t |=|X−70S √n ⁄≥t α2(n −1)=t 0.025(35)=2.0301将X =66.5,S =15,n =36代入得|t |=1.4<2.0301.故接受H 0.即在显著性水平0.05下, 可以认为这次考试全体考生的平均成绩为70分. 3. 某种产品的重量X~N (12,1)(单位:克).更新设备后,从新生产的产品中,随机地抽取100个,测得样本均值=12.5(克).如果方差没有变化,问设备更新后,产品的平均重量是否有显著变化(α=0.1)? 解: 检验假设H 0:μ=μ0=12,H 1:μ≠12 ∵ =12.5,n =100,σ=1∴|u |=|X −μσ√n⁄|=|12.5−121√100⁄|=5查表知μα2=μ0.05=1.645,由于|u |=5>1.645,故拒绝H 0.即设备更新后,产品的平均重量有显著变化.4. 一种燃料的辛烷等级服从正态分布,其平均等级为98.0,标准差为0.8,现从一批新油中抽25桶,算得样本均值为97.7.假定标准差与原来一样,问新油的辛烷平均等级是否比原燃料平均等级偏低(α=0.05). 解: 检验假设H 0:μ≤μ0=98,H 1:μ>98 ∵ =97.7,n =25,σ=0.8∴|u |=|X −μσ√n⁄|=|97.7−980.8√25⁄|=1.875查表知μα2=μ0.025=1.96,由于|u |=1.875<1.96,故接受H 0.即可以认为新油的辛烷平均等级比原燃料平均等级偏低.5. 从一批灯泡中随机抽取50个,分别测量其寿命,算得其平均值X =1900(小时),标准差S=490(小时).问能否认为这批灯泡的平均寿命为2000(小时)( α=0.01).(用大样本情况下的u 检验) 解: 检验假设H 0:μ=μ0=2000,H 1:μ≠2000 ∵ X =1900,n =50,s =490∴|u |=|X −μs √n⁄|=|1900−2000490√50⁄|=1.44查表知μα2=μ0.005=2.57,由于|u |=1.44<2.57,故接受H 0.即可以认为这批灯泡的平均寿命为2000(小时).6. 某批矿砂的五个样品中镍含量经测定为(%):3.25 3.27 3.24 3.263.24设测定值服从正态分布,问能否认为这批矿砂的镍含量为3.25%(α=0.05). 解: 检验假设H 0:μ=μ0=3.25,H 1:μ≠3.25 选取检验统计量t =X−μ0S √n⁄−1)经计算=3.252,S =0.013 拒绝域为|t |=|X−3.25S √n⁄|≥t α2(n −1)=t 0.025(4)=2.7764将X =66.5,S =15,n =5代入得|t |=0.344<2.7764.故接受H 0. 即可以认为这批矿砂的镍含量为3.25%.7. 有甲,乙两台机床加工同样产品,从这两台机床中随机抽取若干件,测得产品直径(单位:毫米)为:机床甲20.5 19.8 19.7 20.4 20.1 20.0 19.0 19.9 机床乙19.720.8 20.5 19.8 19.4 20.6 19.2 假定两台机床加工的产品直径都服从正态分布,且总体方差相等.问甲,乙两台车床加工的产品直径有无显著差异(α=0.05). 解:检验假设H 0:μ1=μ2,H 1:μ1≠μ2经计算X =19.925,y =20,S 12=1.5157,S 22=2.386∴|t |=|X −y S w √1m +1n|=||19.925−20√7∗1.5157+6∗2.3868+7−2∗√18+17||=0.265查表知t α2(m +n −2)=t 0.025(13)=2.1604,由于|t |=0.265<2.1604,故接受H 0.即甲,乙两台车床加工的产品直径无显著差异.8. 从甲地发送一个信号到乙地.设乙地接受到的信号值是一个服从正态分布N(μ,0.22)的随机变量,其中μ为甲地发送的真实信号值.现甲地重复发送同一信号5次,乙地接受到的信号值为 8.05 8.15 8.2 8.1 8.25 设接收方有理由猜测甲地发送的信号值为8.问能否接受这一猜测? (α=0.05) 解: 检验假设H 0:μ=μ0=8,H 1:μ≠8∵ =8.15,n =5,σ=0.2∴|u |=|X −μσ√n⁄|=|8.15−80.2√5⁄|=1.677查表知μα2=μ0.025=1.96,由于|u |=1.677<1.96,故接受H 0.即可以接受这一猜测. 习题8.31. 某纺织厂生产的某种产品的纤度用X 表示,在稳定生产时,可假定X~N(μ,σ2),其中标准差σ=0.048.现在随机抽取5跟纤维,测得其纤度为 1.32 1.55 1.36 1.40 1.44 试问总体X 的方差有无显著变化. (α=0.1) 解: 检验假设H 0:σ=0.048,H 1:σ≠0.048 检验统计量χ2=(n−1)S 2σ02~χ2(n −1)由α=0.1查表得χα22(n −1)=χ0.052(4)=9.488,χ1−α22(n −1)=χ0.952(4)=0.711于是得出拒绝域为W =(0,0.711)∪(9.488,+∞) 经计算S 2=0.31124代入χ2=(n−1)S 2σ02=4∗0.311240.048=13.51>9.488,故拒绝H 0.即总体X 的方差有显著变化.2. 设有来自正态总体X~N(μ,σ2),容量为100的样本,样本均值X =2.7,μ,σ2均未知,而∑(x i −x)2ni=1=225在α=0.05下,检验下列假设: (1) H 0:μ=3, H 1:μ≠3; (2) H 0:σ2=2.5, H 1:σ2≠2.5. 解: (1) 检验假设H 0:μ=3, H 1:μ≠3∵ X =2.7,n =100,S =√1n −1∑(x i −x)2ni=1=1.508 因此可用大样本情况的u 检验|u |=|X −μs √n⁄|=|2.7−31.508√100⁄|=1.99查表知μα2=μ0.025=1.96,由于|u |=1.99>1.96,故拒绝H 0.(同课后答案有争议)(2)该题无法查到χ0.0252(99)值故省略.(用χ2检验)3. 甲,乙两台机床加工某种零件,零件的直径服从正态分布,总体方差反映了加工精度.为比较两台机床的加工精度有无差别,现从各自加工的零件中分别抽取7件产品和8件产品,测得其直径为X(机床甲)16.2 16.4 15.8 15.5 16.7 15.6 15.8 Y(机床乙)15.9 16.0 16.4 16.1 16.5 15.8 15.7 15.0 问这两台机床的加工精度是否一致? 解:该题无α值,故省略.(用F 检验)4. 对两批同类电子元件的电阻进行测试,各抽6件,测得结果如下(单位:Ω)A 批0.140 0.138 0.143 0.141 0.144 0.137 B 批 0.135 0.140 0.142 0.136 0.138 0.141 已知元件电阻服从正态分布,设σ=0.05,问:(1) 两批电子元件电阻的方差是否相等; (2) 两批元件的平均电阻是否有差异.解: (1)检验假设H 0:σ12=σ22, H 1:σ12≠σ22经计算S 12=0.00272,S 22=0.00282由α=0.05查表得F α2(n 1−1,n 2−1)=F 0.025(5,5)=无法查F 0.025(5,5)对应值,故无法做. 习题8.4某厂使用两种不同的原料生产同一类产品,随机选取使用原料A 生产的产品22件,测得平均质量为X =2.36(kg),样本标准差S x =0.57(kg).取使用原料B 生产的样品24件,测得平均质量为y =2.55(kg),样本标准差S y =0.48(kg).设产品质量服从正态分布,这两个样本相互独立.问能否认为使用B 原料生产的产品平均质量较使用原料A 显著大?(取显著性水平α=0.05).解:检验假设H 0:μA ≥μB , H 0:μA <μB ; 选取检验统计量t =X −y S w √1m +1n+n −1)|t |=|X −y S w √1m +1n|=|2.36−2.55√21∗0.572+23∗0.48244∗√122+124|=1.226查表知t α2(m +n −2)=t 0.025(44)=2.0154,由于|t |=1.226<2.0154,故接受H 0.即使用B 原料生产的产品平均质量于使用原料A 生产的产品平均质量无显著大.自测题8 一、,选择题在假设检验问题中,显著性水平α的意义是 A . A. 在H 0成立的条件下,经检验H 0被拒绝的概率 B. 在H 0成立的条件下,经检验H 0被接受的概率 C. 在H 0不成立的条件下,经检验H 0被拒绝的概率 D. 在H 0不成立的条件下,经检验H 0被接受的概率 二、,填空题1. 设总体X 服从正态分布N (μ,σ2),其中μ未知,x 1,x 2,⋯,x n 为其样本.若假设检验问题为H 0:σ2=1, H 1:σ2≠1,则采用的检验统计量应为 χ2=(n−1)S 21.2. 设某假设检验问题的拒绝域为W,且当原假设H 0成立时,样本值x 1,x 2,⋯,x n 落入W 的概率为0.15,则犯第一类错误的概率为 0.15 .(参考page 169)3. 设样本,x 1,x 2,⋯,x n 来自正态分布N (μ,1),假设检验问题为H 0:μ=0,H 1:μ≠0,则在H 0成立的条件下,对显著性水平α,拒绝域W 应为 |u |>u α,其中u =X √n .(参考page 181表8-4)三、某型号元件的尺寸X 服从正态分布,其均值为3.278cm,标准差为0.002cm.现用一种新工艺生产此类元件,从中随机取9个元件,测量其尺寸,算得均值X =3.2795cm ,问用新工艺生产的元件尺寸均值与以往有无显著差异.(显著发生性水平α=0.05)(附u 0.025=1.96,u 0.05=1.645) 解: 检验假设H 0:μ=μ0=3.278,H 1:μ≠3.278 ∵ X =3.2795,n =9,σ=0.002∴|u |=|X −μσ√n⁄|=|3.2795−3.2780.002√9⁄|=2.25又因μα2=μ0.025=1.96,|u |=2.25>1.96故拒绝H 0,即用新工艺生产的元件尺寸均值与以往有差异.四、用传统工艺加工的某种水果罐头中,每瓶的平均维生素C的含量为19(单位:mg).现改变了加工工艺,抽查了16瓶罐头,测得维生素C的含量的平均值X=20.8,样本标准差S=1.617.假定水果罐头中维生素C的含量服从正态分布.问在使用新工艺后,维生素C的含量是否有显著变化(显著性水平α=0.01)?(附t0.005(15)=2.9467,t0.005(16)=2.9208)解: 检验假设H0:μ=μ0=19,H1:μ≠19∵=20.8,n=16,S=1.617∴|t|=|X−μS√n⁄|=|20.8−191.617√16⁄|=4.453又因tα2(n−1)=t0.005(15)=2.9467,|t|=4.453>2.9467故拒绝H0,即使用新工艺后,维生素C的含量有显著变化.。
概率论与数理统计习题解答(第8章)
第八章 假 设 检 验三、解答题1. 某种零件的长度服从正态分布,方差σ2 = 1.21,随机抽取6件,记录其长度(毫米)分别为32.46,31.54,30.10,29.76,31.67,31.23在显著性水平α = 0.01下,能否认为这批零件的平均长度为32.50毫米? 解:这是单个正态总体均值比较的问题,若设该种零件的长度),(~2σμN X ,则需要检验的是:00:μμ=H 01:μμ≠H由于2σ已知,选取nX Z σμ0-=为检验统计量,在显著水平α = 0.01下,0H 的拒绝域为:}|{|}|{|005.02Z z Z z ≥=≥α查表得 2.575829005.0=Z ,现由n =6, 31.1266711∑===ni i x n x ,1.1=σ, 50.320=μ计算得:3.0581561.132.5-31.126670==-=nX z σμ005.0Z z >可知,z 落入拒绝域中,故在0.01的显著水平下应拒绝0H ,不能认为这批零件的平均长度为32.50毫米。
EXCEL 实验结果:2. 正常人的脉搏平均每分钟72次,某医生测得10例“四乙基铅中毒”患者的脉搏数如下:54,67,68,78,70,66,67,65,69,70已知人的脉搏次数服从正态分布,问在显著水平α = 0.05下,“四乙基铅中毒”患者的脉搏和正常人的脉搏有无显著差异?解:这是单个正态总体均值比较的问题,若设“四乙基铅中毒”患者的脉搏数),(~2σμN X ,则需要检验的是:00:μμ=H 01:μμ≠H由于方差未知,选取ns X T 0μ-=为检验统计量,在显著水平α = 0.05下,0H 的拒绝域为:)}9(|{|)}1(|{|2/05.02t t n t t ≥=-≥α查表得 2.26215716)9(025.0=t ,现由n =10, 67.411∑===n i i x n x , ()35.155555611122∑==--=n i i x x n s , 计算得2.45335761035.1555556724.670=-=-=nsX t μ)9(025.0t t >可知,t 落入拒绝域中,故在0.05的显著水平下应拒绝0H ,“四乙基铅中毒”患者的脉搏和正常人的脉搏有显著差异。
概率论与数理统计第八章习题答案
第八章 假设检验部分习题解答2~(32.05,1.1)6cm 32.5629.6631.6430.0031.8731.0332.050.050.01.N ξαα==已知某种零件的长度,现从中抽查件,测得它们的长度(单位:)为:,,,,,试问这批零件的平均长度是否就是厘米?检查使用两个不同的显著性水平:,0011:32.05.~(0,1)1,.6,31.03)31.127.H N n U u µµξα==<−=+=解:()提出假设,),计算将以上数据代入得观察值/20.02510/20.005102.056.(5)0.05 1.96,|| 2.056 1.96,0.05;0.01 2.58,|| 2.58,0.01u u u H u u u H αααααα=−====>====<=作出判断。
当时,因而时,拒绝当时,因而时,接受。
0(,1)100 5.32:50.01N H µξµα===从正态总体中抽取个样品,计算得,试检验是否成立(显著性水平)?00/2/201/20.01: 5.(2)(3),(||)1.(4) 5.32.3.250.01H u P U u U u u u αααµµξαµα==<=−=======解:()提出假设,使求观察值。
已知将以上数据代入得观察值()作出判断。
当时,0510 2.58,|| 2.58,0.01u H α=>=因而时,拒绝。
26.~(100,1.2)999.3 98.7 100.5 101.2 98.3 99.7 102.1 100.5 99.5.0.05(1)2N g ξα=某公司用自动灌装机灌装营养液,设自动灌装机的正常灌装量,现测量支灌装样品的灌装量(单位:)为,,,,,,,,问在显著性水平下,灌装量是否符合标准?()灌装精度是否在标准范围内?001/20.0251():100.()~(0,1)()1,.()9,0.05.0.05 1.i H ii N iii iv n u v u u αµµξααα==−<−==−===解:()提出假设,)()作出判断。
《概率论与数理统计》习题及答案第八章
《概率论与数理统计》习题及答案第⼋章《概率论与数理统计》习题及答案第⼋章1. 设x.,x2,,%…是从总体X中抽岀的样本,假设X服从参数为兄的指数分布,⼏未知,给泄⼊〉0和显著性⽔平a(Ovavl),试求假设H o的⼒$检验统计量及否建域.解选统汁量*=2⼈⼯⼄=2如庆则Z2 -Z2(2n) ?对于给宦的显著性⽔平a,査z'分布表求出临界值加⑵",使加⑵2))=Q因z2 > z2 > 所以(F": (2/1)) => (/2 > /; (2n)),从⽽a = P{X2 > 加⑵“} n P{r > Za(2/0)可见仏:2>^的否定域为Z2>Z;(2?).2. 某种零件的尺⼨⽅差为O-2=1.21,对⼀批这类零件检查6件得尺⼨数据(毫⽶):,,,,,。
设零件尺⼨服从正态分布,问这批零件的平均尺⼨能否认为是毫⽶(a = O.O5).解问题是在/已知的条件下检验假设:“ = 32.50Ho的否定域为1“ l> u af2u0(n5 = 1.96 ,因1“ 1=6.77 >1.96,所以否泄弘,即不能认为平均尺⼨是亳⽶。
3. 设某产品的指标服从正态分布,它的标准差为b = 100,今抽了⼀个容量为26的样本,计算平均值1580,问在显著性⽔平a = 0.05下,能否认为这批产品的指标的期望值“不低于1600。
解问题是在b?已知的条件下检验假设://>1600的否定域为u < -u a/2,其中X-1600 r-r 1580-1600 c , “11 = ------------ V26 = ------------------- x 5.1 = —1.02.100 100⼀叫05 =—1.64.因为// =-1.02>-1.64 =-M005,所以接受H(>,即可以认为这批产品的指标的期望值“不低于1600.4. ⼀种元件,要求其使⽤寿命不低于1000⼩时,现在从这批元件中任取25件,测得其寿命平均值为950⼩时,已知该元件寿命服从标准差为o-=100 ⼩时的正态分布,问这批元件是否合格(<7=0.05)解设元件寿命为X,则X~N(“,IO。
高中数学苏教版选择性必修第二册第8章习题课二项分布、超几何分布、正态分布
(2)①由直方图可以认为,速冻水饺的该项质量指标值Z服从正态散布 N(μ,σ2),利用该正态散布,求Z落在(38.45,50.4)内的概率; 附:①计算得所抽查的这 100 包速冻水饺的 质量指标的标准差为 σ= 142.75≈11.95; ② 若 Z ~ N(μ , σ2) , 则 P(μ - σ<Z<μ + σ) = 0.683,P(μ-2σ<Z<μ+2σ)=0.954.
解 由表格中的数据可估算出这批生蚝质量的平均数为 6×10+10×20+124×0 30+8×40+50×4=28.5(g), 所以购进生蚝500 kg, 这批生蚝的数量为5002×8.5103≈17544(只).
(2)以频率视为概率,若在本次购买的生蚝中随机挑选4个,记质量在 [5,25)间的生蚝的个数为X,求X的概率散布及均值.
解 根据频率散布直方图可得各组的频率为 (0,10]的频率为0.010×10=0.1, (10,20]的频率为0.020×10=0.2, (20,30]的频率为0.030×10=0.3, (30,40]的频率为0.025×10=0.25, (40,50]的频率为0.015×10=0.15, 所以所抽取的 100 包速冻水饺该项质量指标值的样本平均数 x 为 x =5×0.1+15×0.2+25×0.3+35×0.25+45×0.15=26.5.
用户 1 2 3 4 5 6 7 8 9 10
编号
年用 电量 1 000 1 260 1 400 1 824 2 180 2 423 2 815 3 325 4 411 4 600 (度)
(1)试计算表中编号为10的用电户本年度应交电费多少元?
解 因为第二档电价比第一档电价多0.05元/度,第三档电价比第一 档电价多0.3元/度,编号为10的用电户一年的用电量是4 600度,则该 户本年度应交电费为4 600×0.565 3+(4 200-2 160)×0.05+(4 600-4 200)×0.3=2 822.38(元).
概率论与数理统计(经管类)第八章课后习题答案word-推荐下载
| | |������| =
拒绝域为
������ ‒ 70 ������ ������
≥ ������������(������ ‒ 1) = ������0.025(35) = 2.0301
| | ������������ = ������0.025 = 1.96
(3)查表知 2
,
拒绝域为|������| =
������ ‒ 100 ������ ������
≥ 1.96
(4)由样本观测值有������ = 99.97
| | | | ������ ‒ 100 99.97 ‒ 100
∴ |������| =
将这一问题化为一个假设检验问题,写出假设检验的步骤,设������ = 0.05. 解: (1)作假设������0:������ = 100,������1:������ ≠ 100
(2)选取检验统计量������
=
������ ‒ ������
100~������(0,1)
������
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术0艺料不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试22下卷,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看2度并22工且22作尽22下可22都能2可地护1以缩关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编5试要写、卷求重电保技要气护术设设装交备备4置底高调、动。中试电作管资高气,线料中课并3敷试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
概率论与数理统计课后习题答案第八章习题详解
习题八1. 已知某炼铁厂的铁水含碳量在正常情况下服从正态分布N(4.55,0.1082).现在测了5炉铁水,其含碳量(%)分别为4.28 4.40 4.42 4.35 4.37问若标准差不改变,总体平均值有无显著性变化(α=0.05)?【解】0010/20.0250.025: 4.55;: 4.55.5,0.05, 1.96,0.1084.364,(4.364 4.55)3.851,0.108.H Hn Z ZxxZZZαμμμμασ==≠=======-===->所以拒绝H0,认为总体平均值有显著性变化.2. 某种矿砂的5个样品中的含镍量(%)经测定为:3.24 3.26 3.24 3.27 3.25设含镍量服从正态分布,问在α=0.01下能否接收假设:这批矿砂的含镍量为3.25.【解】设0010/20.0050.005: 3.25;: 3.25.5,0.01,(1)(4) 4.60413.252,0.013,(3.252 3.25)0.344,0.013(4).H Hn t n tx sxtttαμμμμα==≠===-====-===<所以接受H0,认为这批矿砂的含镍量为3.25.3. 在正常状态下,某种牌子的香烟一支平均1.1克,若从这种香烟堆中任取36支作为样本;测得样本均值为1.008(克),样本方差s2=0.1(g2).问这堆香烟是否处于正常状态.已知香烟(支)的重量(克)近似服从正态分布(取α=0.05).【解】设0010/20.02520.025: 1.1;: 1.1.36,0.05,(1)(35) 2.0301,36,1.008,0.1,6 1.7456,1.7456(35)2.0301.H Hn t n t nx sxtttαμμμμα==≠===-=========<=所以接受H0,认为这堆香烟(支)的重要(克)正常.4.某公司宣称由他们生产的某种型号的电池其平均寿命为21.5小时,标准差为2.9小时.在实验室测试了该公司生产的6只电池,得到它们的寿命(以小时计)为19,18,20,22,16,25,问这些结果是否表明这种电池的平均寿命比该公司宣称的平均寿命要短?设电池寿命近似地服从正态分布(取α=0.05). 【解】0100.050.05:21.5;:21.5.21.5,6,0.05, 1.65, 2.9,20,(2021.5)1.267,2.91.65.H Hn z xxzz zμμμασ≥<======-===->-=-所以接受H0,认为电池的寿命不比该公司宣称的短.5.测量某种溶液中的水分,从它的10个测定值得出x=0.452(%),s=0.037(%).设测定值总体为正态,μ为总体均值,σ为总体标准差,试在水平α=0.05下检验.(1)H0:μ=0.5(%);H1:μ<0.5(%).(2):Hσ'=0.04(%);1:Hσ'<0.04(%).【解】(1)00.050.050.5;10,0.05,(1)(9) 1.8331,0.452,0.037,(0.4520.5)4.10241,0.037(9) 1.8331.n t n tx sxtt tαμα===-====-===-<-=-所以拒绝H0,接受H1.(2)2222010.9522222220.95(0.04),10,0.05,(9) 3.325,0.452,0.037,(1)90.0377.7006,0.04(9).nx sn sασαχχχσχχ-=======-⨯===>所以接受H0,拒绝H1.6.某种导线的电阻服从正态分布N(μ,0.0052).今从新生产的一批导线中抽取9根,测其电阻,得s=0.008欧.对于α=0.05,能否认为这批导线电阻的标准差仍为0.005?【解】00102222/20.0251/20.975222220.02522:0.005;:0.005.9,0.05,0.008,(8)(8)17.535,(8)(8) 2.088,(1)80.00820.48,(8).(0.005)H Hn sn sαασσσσαχχχχχχχσ-===≠=======-⨯===>故应拒绝H0,不能认为这批导线的电阻标准差仍为0.005.7.有两批棉纱,为比较其断裂强度,从中各取一个样本,测试得到:第一批棉纱样本:n1=200,x=0.532kg, s1=0.218kg;第二批棉纱样本:n2=200,y=0.57kg, s2=0.176kg.设两强度总体服从正态分布,方差未知但相等,两批强度均值有无显著差异?(α=0.05) 【解】01211212/2120.0250.0250.025:;:.200,0.05,(2)(398) 1.96,0.1981,1.918;(398).w H H n n t n n t z s x y t t t αμμμμα=≠===+-=≈=======-< 所以接受H 0,认为两批强度均值无显著差别.8.两位化验员A ,B 对一种矿砂的含铁量各自独立地用同一方法做了5次分析,得到样本方差分别为0.4322(%2)与0.5006(%2).若A ,B 所得的测定值的总体都是正态分布,其方差分别为σA 2,σB 2,试在水平α=0.05下检验方差齐性的假设222201:;:.A B A B H H σσσσ=≠【解】221212/2120.0250.9750.02521225,0.05,0.4322,0.5006,(1,1)(4,4)9.6,11(4,4)0.1042,(4.4)9.60.43220.8634.0.5006n n s s F n n F F F s F s αα=====--========那么0.9750.025(4,4)(4,4).F F F << 所以接受H 0,拒绝H 1. 9~12. 略。
概率论与数理统计练习题第八章答案
第八章 假设检验(一)一、选择题:1.假设检验中,显著性水平为α,则 [ B ](A) 犯第二类错误的概率不超过α (B) 犯第一类错误的概率不超过α (C) α是小于等于%10的一个数,无具体意义 (D) 可信度为α-1.2.设某产品使用寿命X 服从正态分布,要求平均寿命不低于1000小时,现从一批这种产品中随机抽出25只,测得平均寿命为950小时,方差为100小时,检验这批产品是否合格可用 [ A ](A )t 检验法 (B )2χ检验法 (C )Z 检验法 (U 检验法) (D )F 检验法 3.从一批零件中随机抽出100个测量其直径,测得的平均直径为5.2cm ,标准方差为1.6cm ,若这批零件的直径是符合标准5cm ,采用了t 检验法,在显著性水平α下,接受域为 [ A ](A )2||(99)<t t α (B )2||(100)<t t α (C )2||(99)≥t t α (D )2||(100)≥t t α4.设样本12,,,n X X X 来自正态分布2~(,)X N μσ,在进行假设检验时,采用统计量t =是对于[ C ](A )μ未知,检验220σσ= (B )μ已知,检验220σσ=(C )2σ未知,检验0μμ= (D )2σ已知,检验0μμ= 二、计算题:1.已知某炼铁厂铁水含碳量在正常情况下,服从正态分布2(4.52,0.108)N ,现在测定了5炉铁水,其含碳量分别为4.29 4.33 4.77 4.35 4.36 若标准差不变,给定显著性水平05.0=α,问 (1)现在所炼铁水总体均值μ有无显著性变化?(2)若有显著性变化,可否认为现在生产的铁水总体均值 4.52μ<?010.02522: 4.52,: 4.52~(0,1)0.05 1.964.421,0.108|| 2.07 1.96H H x Z N z x Z μμασμ=≠======>提出假设: 选统计量 在给定显著性水平下,取临界值为,由于 计算 所以,现在所炼铁水总体均值有显、.二著性变化。
第八章试题答案概率论与数理统计
第八章试题答案概率论与数理统计第八章试题一、单项选择题(本大题共l0小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设总体X 服从正态分布N (μ,1),x 1,x 2,…,x n 为来自该总体的样本,x为样本均值,s 为样本标准差,欲检验假设H 0∶μ=μ0,H 1∶μ≠μ0,则检验用的统计量是()A.n/s x 0μ- B.)(0μ-x n C.10-μ-n /s xD.)(10μ--x n答案:B2.设总体X~N (μ,σ2),X 1,X 2,…,X n 为来自该总体的一个样本,X为样本均值,S 2为样本方差.对假设检验问题:H 0:μ=μ0?H 1:μ≠μ0,在σ2未知的情况下,应该选用的检验统计量为() A .nμ0- B .1--n X σμ C .nSX 0μ-D .1--n SX μ答案:C3.在假设检验问题中,犯第一类错误的概率α的意义是() A .在H 0不成立的条件下,经检验H 0被拒绝的概率B .在H 0不成立的条件下,经检验H 0被接受的概率C .在H 0成立的条件下,经检验H 0被拒绝的概率D .在H 0成立的条件下,经检验H 0被接受的概率答案:C4.设总体X~N (μ,σ2),σ2未知,X为样本均值,S n 2=n1∑=-ni iXX()2,S 2=1n 1-∑=-n1i iXX()2,检验假设H 0:μ=μ0时采用的统计量是() A .Z=n/X 0σμ- B .T=n/S X n 0μ- C .T=n/S X 0μ-D .T=n/X 0σμ-答案:C4. .对正态总体的数学期望μ进行假设检验,如果在显著水平0.05下接受H0:μ=μ0,那么在显著水平0.01下,下列结论中正确的是( )A.必接受H0B.可能接受H0,也可能拒绝H0C.必拒绝H0D.不接受,也不拒绝H0答案:A二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格中填上正确答案。
苏科版数学八下第8章认识概率(习题讲评课)课件
练习巩固
4.为了解某地区九年级男生的身高情况,随机抽取了该地 区100名九年级男生,他们的身高x(cm)统计如表:
组别 人数
x<160 5
160≤x<170 170≤x<180
38
42
x≥180 15
根据以上结果,抽查该地区一名九年级男生,估计他的身高 不低于170cm的概率是 0.57 .
课堂小结
频率
古典概型
几何概型 用稳定的频 率估计概率
如掷骰子 如转转盘 如抛图钉
要点梳理——知识导练
知识点1:事件
1.判断下列事件是必然事件、不可能事件,还是随机事件:
(1)如果a、b都是实数,那么a+b=b+a; 必然事件
(2)10张相同的小标签分别标有数字1~10,
从中任意抽取1张,抽到8号签;
随机事件
(2)设计一个转盘,使转盘停止 转动时,“指针落在红色区域”与 “指针落在白色区域”出现的可能 性一样大.
5个1,1个3
4个1,2个3 ……
典型例题
例3 某批乒乓球的质量检验结果如下:
0.960 0.950 0.940 0.942 0.946 0.951 0.949
(1)填写表中的空格; (2)画出优等品频率的折线统计图; (3)从这批乒乓球中,任意抽取的一只乒乓球是优等品的概率的估计值是 多少?
(1)能事先确定摸到的这个球的颜色吗? 不能
(2)你认为摸到哪种颜色的球的概率最大? 红球
(3)怎样改变袋子中白球、黄球、红球的个数,使摸到这三种颜色
的球的概率相等?
调整至三种颜色的球的数量一样多
典型例题
变式:(设计)
(1)在一个小立方体的6个面上分 别写上数字1或3、抛掷这个小立方 体 , 使 “ 向 上 一 面 的 数 字 为 1” 比 “向上一面的数字为3”出现的可能 性大;
概率论与数理统计(茆诗松)第二版课后第八章习题参考答案
第八章 方差分析与回归分析本章前三节研究方差分析,讨论多个正态总体的比较,后两节研究回归分析.讨论两个变量之间的相关关系.§8.1 方差分析8.1.1问题的提出上一章讨论了单个或两个正态总体的假设检验,这里讨论多个正态总体的均值比较问题.通常为了研究某一因素对某项指标的影响情况,将该因素在多种情形下进行抽样检验,作出比较.一般将该因素称为一个因子,所检验的每种情形称为水平.在每个水平下需要考察的指标都分别构成一个总体,比较它们的总体均值是否相等.对每一个总体都分别抽取一个样本,样本容量称为重复数.如果只对一个因子中的多个水平进行比较,称为单因子方差分析,对多个因子的水平进行比较,称为多因子方差分析.本章只进行单因子方差分析.例 在饲料养鸡增肥的研究中,现有三种饲料配方:A 1 , A 2 , A 3 ,为比较三种饲料的效果,特选24只相似的雏鸡随机均分为三组,每组各喂一种饲料,60天后观察它们的重量.实验结果如下表所示: 饲料鸡重/gA 1 1073 1009 1060 1001 1002 1012 1009 1028 A 2 1107 1092 990 1109 1090 1074 1122 1001 A 3 1093 1029 1080 1021 1022 1032 1029 1048 在此例中,就是要考察饲料对鸡增重的影响,需要比较三种饲料对鸡增肥的作用是否相同.这里,饲料就是一个因子,三种饲料配方就是该因子的三个水平,每种饲料喂养的雏鸡60天后的重量分别构成一个总体,这里共有3个总体,每一个总体抽取样本的重复数都是8,比较这3个总体的均值是否相等. 8.1.2单因子方差分析的统计模型设因子A 有r 个水平A 1 , A 2 , …, A r ,在每个水平下需要考察的指标都构成一个总体,即有r 个总体,分别记为Y 1 , Y 2 , …, Y r ,对每一个总体都分别抽取一个样本,首先考虑重复数相等的情形,设重复数都是m ,总体Y i 的样本Y i 1 , Y i 2 , …, Y im ,i = 1, 2, …, r .作出以下假定:(1)每一个总体都服从正态分布,即r i N Y i i i ,,2,1),,(~2L =σµ;(2)各个总体的方差都相等,即22221r σσσ===L ,都记为σ 2;(3)各个总体及抽取的样本相互独立,即Y ij 相互独立,i = 1, 2, …, r ,j = 1, 2, …, m . 需要比较它们的总体均值是否相等,即检验的原假设与备择假设为H 0:µ 1 = µ 2 = … = µ r vs H 1:µ 1 , µ 2 , …, µ r 不全相等,如果H 0成立,就可以认为这r 个水平下的总体均值相同,称为因子A 不显著;反之,如果H 0不成立,就称为因子A 显著.在水平A i 下的样品Y ij 与该水平下的总体均值µ i 之差ε ij = Y ij − µ i 为随机误差.由于Y ij ~ N (µ i , σ 2 ),因此随机误差ε ij ~ N (0 , σ 2 ).对所有r 个水平下的总体均值求平均,即∑==+++=ri i r r r 1211)(1µµµµµL称为总均值.每个水平A i 下的总体均值µ i 与总均值µ 之差a i = µ i − µ 称为该水平A i 下主效应.显然所有主效应a i 之和等于0,即01=∑=ri ia,检验所有水平下的总体均值是否相等,也就是检验所有主效应a i 是否全等于0.这样单因子方差分析在重复数相等的情形下,统计模型为⎪⎪⎩⎪⎪⎨⎧===++=∑=).,0(;0;,,2,1,,,2,1,21σεεµN a m j r i a Y ij r i i ij i ij 相互独立,且都服从L L 检验的原假设与备择假设为H 0:a 1 = a 2 = … = a r = 0 vs H 1:a 1 , a 2 , …, a r 不全等于0. 8.1.3平方和分解一.试验数据对于r 个总体下的试验数据Y ij , i = 1, 2, …, r ,j = 1, 2, …, m ,记T i 表示第i 个总体下试验数据总和,⋅i Y 表示第i 个总体下样本均值,n = rm 表示总的样本容量,T 表示总的试验数据总和,Y 表示总的样本均值,即∑==mj ij i Y T 1,∑=⋅==mj ij i i Y m m T Y 11, i = 1, 2, …, r ,∑∑∑=====r i mj ij r i i Y T T 111,∑∑∑=⋅=====ri i r i m j ij Y r Y rm T n Y 111111, 用⋅i Y 作为µ i 的点估计,Y 作为µ 的点估计.又记⋅i ε表示第i 个总体下随机误差平均值,ε表示总的随机误差平均值,即∑=⋅=mj ij i m 11εε, i = 1, 2, …, r ,∑∑∑=⋅====ri i r i m j ij r n 11111εεε.显然有⋅⋅+=i i i Y εµ,εµ+=Y .在单因子方差分析中通常将试验数据及基本计算结果写成表格形式 因子水平试验数据和 和的平方平方和A 1 Y 11 Y 12 … Y 1m T 1 21T∑21jY A 2 Y 21 Y 22 … Y 2m T 2 22T∑22jY┆ ┆ ┆ ┆ ┆ ┆ ┆┆A rY r 1Y r 2…Y rmT r2r T ∑2rjYΣ T∑=ri i T 12∑∑==ri mj ijY112二.组内偏差与组间偏差数据Y ij 与样本总均值Y 之差Y Y ij −称为样本总偏差,可以分成两部分之和:)()(Y Y Y Y Y Y i i ij ij −+−=−⋅⋅,其中⋅⋅⋅−=+−+=−i ij i i ij i i ij Y Y εεεµεµ)()(是第i 个总体内数据与该总体内样本均值的偏差,称为组内偏差,反映第i 个总体内的随机误差;εεεµεµ−+=+−+=−⋅⋅⋅i i i i i a Y Y )()(是第i 个总体内样本均值与总样本均值的偏差,称为组间偏差,反映第i 个总体的主效应. 三.偏差平方和及其自由度在统计学中,对于k 个独立数据Y 1 , Y 2 , …, Y k ,平均值∑==ki i Y k Y 11,称Y i 与Y 之差为偏差,所有偏差的平方和∑=−=ki i Y Y Q 12)(称为这k 个数据的偏差平方和,反映这k 个数据的分散程度.由于所有偏差之和0)(11=−=−∑∑==Y k Y Y Y ki i k i i , 即这k 个偏差由k 个独立数据受到一个约束条件形成,可以证明它们与k − 1个独立(随机)变量可以相互线性表示,称之为等价于k − 1个独立(随机)变量.一般地,若k 个独立数据受到r 个不相关的约束条件,则它们等价于k − r 个独立(随机)变量.在统计学中,把形成平方和的变量所等价的独立变量个数,称为该平方和的自由度,通常记为f .如上述偏差平方和Q 的自由度为k − 1,即f Q = k − 1.由于平方和的大小与变量个数(或自由度)有关,为了对偏差进行比较,通常考虑偏差平方和与其自由度之商,称为均方和,记为MS ,反映一组数据的平均分散程度,如样本方差∑=−−=ni i X X n S 122)(11就是样本数据偏差的均方和. 四.总平方和分解公式总偏差平方和记为S T 或SST ,其自由度记为f T ,有∑∑==−=r i mj ij T Y Y S 112)(,f T = rm − 1 = n − 1;组内偏差平方和记为S e 或SSE ,其自由度记为f e ,有∑∑==⋅−=r i mj i ij e Y Y S 112)(,f e = r (m − 1) = n − r ;组间偏差平方和记为S A 或SSA ,其自由度记为f A ,有∑∑∑=⋅==⋅−=−=ri i r i m j i A Y Y m Y Y S 12112()(,f A = r − 1.组内偏差平方和反映所有总体内的随机误差,组间偏差平方和反映所有总体的主效应.定理 总偏差平方和S T 可以分解为组内偏差平方和S e 与组间偏差平方和S A 之和,其自由度也可作相应的分解,即S T = S e + S A ,f T = f e + f A ,称之为平方和分解公式. 证:∑∑∑∑==⋅⋅==−+−=−=ri mj i i ij ri mj ij T Y Y Y Y Y Y S 112112()[()(∑∑∑∑∑∑==⋅⋅==⋅==⋅−−+−+−=ri mj i i ij ri mj i ri mj i ij Y Y Y Y Y Y Y Y 11112112))((2)()(A e A e ri i A e ri mj i ij i A e S S S S Y Y S S Y Y Y Y S S +=++=×−++=−−++=∑∑∑=⋅==⋅⋅0]0[(2])()[(2111,且显然有f T = n − 1 = (n − r ) + (r − 1) = f e + f A . 8.1.4检验方法由于组内偏差平方和反映所有总体内的随机误差,组间偏差平方和反映所有总体的主效应,通过比较组内偏差平方和与组间偏差平方和检验因子的显著性.下面将证明在假设所有主效应都等于0成立的条件下,它们的均方和之商服从F 分布.定理 在单因子方差分析模型中,组内偏差平方和S e 与组间偏差平方和S A 满足(1)E(S e ) = (n − r )σ 2,且)(~22r n Se −χσ; (2)∑=+−=ri i A a m r S 122)1()E(σ,且当H 0:a 1 = a 2 = … = a r = 0成立时,)1(~22−r S Aχσ;(3)S e 与S A 相互独立. 证:根据第五章的定理结论知:设X 1 , X 2 , …, X n 相互独立且都服从正态分布N (µ , σ 2),记∑==ni i X n X 11,∑=−=ni i X X S 120)(,则X 与S 0相互独立,且)1(~22−n S χσ.(1)∑∑==⋅−=ri mj i ij e Y Y S 112)(,Y i 1 , Y i 2 , …, Y im 相互独立且都服从正态分布N(µ i , σ 2),∑=⋅=mi ij i Y m Y 11,则∑=⋅−mj i ij Y Y 12)(与⋅i Y 相互独立,且)1(~)(12122−−∑=⋅m Y Y mj i ijχσ,因在不同水平下的样本都相互独立,则∑∑==⋅−ri mj i ij Y Y 112)(与⋅⋅⋅r Y Y Y ,,,21L 也相互独立,且根据独立χ 2变量的可加性知)(~)(121122r rm Y Y r i mj i ij−−∑∑==⋅χσ,故)(~)(1211222r n Y Y S r i mj i ije−−=∑∑==⋅χσσ,即得E(S e ) = (n − r )σ 2;(2)∑∑∑∑∑=⋅=⋅==⋅=⋅−+−+=−+=−=ri i i r i i r i ir i i i r i i A a m m a m a m Y Y m S 112121212(2)()()(εεεεεε,因ε ij (i = 1, 2, …, r , j = 1, 2, …, m ) 相互独立且都服从正态分布N (0, σ 2 ),有∑=⋅=m j ij i m 11εε (i = 1, 2, …, r ) 相互独立且都服从正态分布,0(2m N σ,∑=⋅=ri i r 11εε,则0)E()E()E(=−=−⋅⋅εεεεi i 且)1(~)(2212−−∑=⋅r mri i χσεε,即m r r i i 212)1()(E σεε−=⎥⎦⎤⎢⎣⎡−∑=⋅, 故21211212)1()E(2)(E )E(σεεεε−+=−+⎥⎦⎤⎢⎣⎡−+=∑∑∑∑==⋅=⋅=r a m a m m a m S ri i r i i i r i i ri iA ,当H 0:a 1 = a 2 = … = a r = 0成立时,∑∑=⋅=⋅−=−=ri i r i i A m Y Y m S 1212)()(εε,故)1(~)(22122−−=∑=⋅r mS ri i Aχσεεσ;(3)因∑∑==⋅−=ri mj i ij e Y Y S 112)(与⋅⋅⋅r Y Y Y ,,,21L 相互独立,有S e 与∑=⋅=ri i Y r Y 11相互独立,且∑=⋅−=ri i A Y Y m S 12(,故S e 与S A 相互独立.由于)(~22r n S e −χσ,当H 0:a 1 = a 2 = … = a r = 0成立时,)1(~22−r S A χσ,且S e 与S A 相互独立,则根据F 分布的定义可知:当H 0成立时,有),1(~)()1(22r n r F MS MS f S f S r n S r S F eAe e A A eA−−==−−=σσ.由于∑=+−=ri i A a m r S 122)1()E(σ,则F 越大,即S A 越大时,越有可能发生a i ≠ 0,则检验的拒绝域为右侧.步骤:假设H 0:a 1 = a 2 = … = a r = 0 vs H 1:a 1 , a 2 , …, a r 不全等于0,统计量),1(~r n r F MS MS f S f S F eAe e A A −−==, 显著水平α ,右侧拒绝域W = {f ≥ f 1 − α (r − 1, n − r )},计算f ,并作出判断. 这是F 检验法.通常列成方差分析表: 来源 平方和 自由度 均方和 F 比 因子 S A f A = r − 1 MS A = S A / f A F = MS A / MS e误差 S e f e = n − r MS e = S e / f A总和S Tf T = n − 1为了计算方便,可给出三个偏差平方和的计算公式.对于一组数据X 1 , X 2 , …, X n ,记∑==ni i X n X 11,则有2112212121)(⎟⎟⎠⎞⎜⎜⎝⎛−=−=−∑∑∑∑====n i i ni i n i i n i i X n X X n X X X , 记∑==m j ij i Y T 1,∑∑∑=====r i mj ij r i i Y T T 111,可得2112211112211211211)(T n Y Y n Y Y n Y Y Y S r i mj ij r i m j ij ri mj ij ri mj ij ri mj ij T −=⎟⎟⎠⎞⎜⎜⎝⎛−=−=−=∑∑∑∑∑∑∑∑∑∑==========, 212211121212121111)(T n T m Y n mr Y m m Y r Y m Y Y m S r i i r i m j ij r i m j ij r i i ri i A −=⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛=⎥⎦⎤⎢⎣⎡−=−=∑∑∑∑∑∑∑======⋅=⋅, ∑∑∑===−=−=r i i r i mj ijA T e T m Y S S S 121121.例 在饲料养鸡增肥的研究中,现有三种饲料配方:A 1 , A 2 , A 3 ,为比较三种饲料的效果,特选24只相似的雏鸡随机均分为三组,每组各喂一种饲料,60天后观察它们的重量.实验结果如下表所示: 饲料鸡重/gA 1 1073 1009 1060 1001 1002 1012 1009 1028 A 2 1107 1092 990 1109 1090 1074 1122 1001 A 3 1093 1029 1080 1021 1022 1032 1029 1048 在显著水平α = 0.05下检验这三种饲料对雏鸡增重是否有显著差别. 解:假设H 0:a 1 = a 2 = a 3 = 0 vs H 1:a 1 , a 2 , a 3不全等于0,统计量),1(~r n r F MS MS f S f S F eAe e A A −−==,平方和显著水平α = 0.05,n = 24,r = 3,m = 8,右侧拒绝域W = { f ≥ f 0.95 (2, 21)} = { f ≥ 3.47},试验数据计算表 因子水平试验数据Y ijT i2i T∑=mj ijY 12A 1 1073 1009 1060 1001 10021012100910288194 67141636 8398024 A 2 1107 1092 990 1109 10901074112210018585 73702225 9230355 A 31093 1029 1080 1021 10221032102910488354 69789316 8728984总和 25133 210633177 26357363计算可得0833.96602513324121063317781112212=×−×=−=∑=T n T m S r i i A ,875.282152106331778126357363112112=×−=−=∑∑∑===r i i r i mj ije T m Y S ,方差分析表来源平方和自由度均方和F 比因子 9660.0833 2 4830.0417 3.5948 误差 28215.875 21 1343.6131 总和 37875.958323有F 比f = 3.5948 ∈ W ,故拒绝H 0 ,接受H 1 ,可以认为这三种饲料对雏鸡增重有显著差别, 并且检验的p 值p = P {F ≥ 3.5948} = 1 − 0.9546 = 0.0454 < α = 0.05. 8.1.5参数估计在方差分析问题中,可对总均值µ ,误差的方差σ 2作参数估计.当检验结果为因子不显著时,各水平下指标的总体均值与总体方差都相同,可将所有水平的指标看作一个统一的总体,全部试验数据是来自正态总体Y ~ N (µ , σ 2 ) 的一个容量为n = rm 的样本,因此样本均值nT Y n Y r i m j ij ==∑∑==111,样本方差1)(111122−=−−=∑∑==n S Y Y n S T r i m j ij.这样总均值µ 和误差的方差σ 2的点估计分别为Y =µˆ,22S =∧σ,置信度为1 − α 的置信区间分别是 ])1([2/1nSn t Y −±∈−αµ,])1()1(,)1()1([22/222/122−−−−∈−n S n n S n ααχχσ.当检验结果为因子显著时,还可进一步对主效应a i 作参数估计. 一.点估计由于试验数据Y ij , (i = 1, 2, …, r , j = 1, 2, …, m ) 相互独立且都服从正态分布N (µ + a i , σ 2 ),根据最大似然估计法,得到总均值µ ,误差的方差σ 2及主效应a i 的点估计.似然函数∏∏∏∏====⎪⎭⎪⎫⎪⎩⎪⎨⎧−−−==r i mj i ij r i m j ij r a y y p a a a L 11222112212)(exp π21)(),,,,,(σµσσµL ⎭⎬⎫⎩⎨⎧−−−=∑∑==ri mj iij na y 112222)(21exp )π2(1µσσ, 取对数,得∑∑==−−−−−=r i mj i ija yn n L 11222)(21)ln(2π)2ln(2ln µσσ.令关于µ 的偏导数等于0,有⎟⎟⎠⎞⎜⎜⎝⎛−−=−⋅−−−=∂∂∑∑∑∑∑=====r i i r i mj ijri mj i ij a m n y a y L 11121121)1()(221ln µσµσµ0101112112=⎟⎟⎠⎞⎜⎜⎝⎛−=⎟⎟⎠⎞⎜⎜⎝⎛−−=∑∑∑∑====µσµσn y n y r i m j ij r i mj ij , 得y y n r i mj ij ==∑∑==111µ,故总均值µ 的最大似然估计为Y =µˆ. 令关于a k 的偏导数等于0,有01)1()(221ln 1212=⎟⎟⎠⎞⎜⎜⎝⎛−−=−⋅−−−=∂∂∑∑==k mj kj mj k kj k ma m y a y a L µσµσ, k = 1, 2, …, r , 得µµ−=−=⋅=∑k mj kj k y y m a 11,故主效应a i 的最大似然估计为Y Y Y a i i i −=−=⋅⋅µˆˆ, i = 1, 2, …, r ,相应,第i 个水平下的总体均值µ i 的最大似然估计为⋅=+=i i i Y a ˆˆˆµµ. 令关于σ 2的偏导数等于0,有0)(2112)(ln 112422=−−+⋅−=∂∂∑∑==r i mj i ija yn L µσσσ,得∑∑==−−=r i m j i ij a y n 1122)(1µσ,故误差的方差σ 2的最大似然估计为nS Y Y n e r i m j i ij M =−=∑∑==⋅∧1122)(1σ.由于E(S e ) = (n − r )σ 2,可知∧2Mσ不是σ 2的无偏估计,修偏得σ 2的无偏估计e eMS rn S =−=∧2σ. 二.置信区间对总均值µ ,误差的方差σ 2及第i 个水平下的总体均值µ i 给出置信区间.第i 个水平下总体均值µ i 的点估计为∑=⋅==mj ij i i Y m Y 11ˆµ,因试验数据Y ij , (i = 1, 2, …, r , j = 1, 2, …, m )相互独立且都服从正态分布N(µ i , σ 2),则有),(~2mN Y i i σµ⋅,即)1,0(~N mY ii σµ−⋅,但σ 未知,用r n S e −=σˆ替换.由于)(~22r n S e −χσ且S e 与⋅i Y 相互独立,则根据χ 2分布的定义可得 )(~ˆ)(2r n t mY r n S m Y i i eii −−=−−⋅⋅σµσσµ,故第i 个水平下总体均值µ i 的置信度为1 − α 的置信区间是]ˆ)([2/1mr n t Y i i σµα−±∈−⋅.总均值µ 的点估计为∑∑====r i mj ij Y n Y 111ˆµ,因数据Y ij , (i = 1, 2, …, r , j = 1, 2, …, m ) 相互独立且都服从正态分布N (µ i , σ 2 ),有Y 服从正态分布,且µµµ====∑∑∑∑∑=====r i i r i mj i r i m j ij n m n Y n Y 111111)E(1)E(,n n n n Y nY ri mj r i mj ij 222112211211)Var(1)Var(σσσ=⋅===∑∑∑∑====, 得,(~2nN Y σµ,即)1,0(~N nY σµ−,但σ 未知,用r n S e −=σˆ替换.由于)(~22r n S e −χσ且S e 与Y 相互独立,则根据t 分布的定义可得 )(~ˆ)(2r n t nY r n S n Y e−−=−−σµσσµ, 故总均值µ 的置信度为1 − α 的置信区间是ˆ)([2/1nr n t Y σµα−±∈−.误差的方差σ 2的点估计为r n S e −=∧2σ,且)(~22r n Se −χσ,故误差的方差σ 2的置信度为1 − α 的置信区间是⎥⎦⎤⎢⎢⎢⎣⎡−−−−=⎥⎦⎤⎢⎣⎡−−∈∧−∧−)()(,)()()(,)(22/222/1222/22/12r n r n r n r n r n S r n S e e ααααχσχσχχσ. 例 由前面的鸡饲料对鸡增重问题的数据给出总均值µ ,误差的方差σ 2及三个水平下总体均值µ1 , µ 2 , µ 3的点估计和置信区间(α = 0.05).解:前面已检验知因子显著,则三个水平下总体均值µ1 , µ 2 , µ 3的点估计为25.102488194ˆ111====⋅m T Y µ, 125.107388585ˆ222====⋅m T Y µ,25.104488354ˆ333====⋅m T Y µ,总均值µ 的点估计为2083.10472425133ˆ====n T Y µ,误差的方差σ 2的点估计为6131.13432==−=∧e eMS rn S σ, 置信度为0.95的置信区间是]2008.1051,2992.997[86131.13430796.225.1024[]ˆ)21([975.011=×±=±∈⋅m t Y σµ,]0758.1100,1742.1046[86131.13430796.2125.1073[]ˆ)21([975.022=×±=±∈⋅m t Y σµ,]2008.1071,2992.1017[]86131.13430796.225.1044[]ˆ)21([975.033=×±=±∈⋅mt Y σµ,]7684.1062,6482.1031[]246131.13430796.22083.1047[]ˆ)21([975.0=×±=±∈nt Y σµ,[]9608.2743,2861.7952829.10875.28215,4789.35875.28215)21(,)21(2025.02975.02=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡∈χχσe e S S . 8.1.6重复数不等的情形如果每个水平下试验次数不全相等,称为重复数不等的情形,其检验方法与在重复数相等的情形下类似,只是在对数据的表述和处理上有几点区别. 一.数据设第i 个水平A i 下的重复数为m i ,所取得的样本为i im i i Y Y Y ,,,21L ,i = 1, 2, …, r .显然重复数总数为n ,即m 1 + m 2 + … + m r = n . 二.总均值总均值µ 是各水平下总体均值µ i 的以频率nm i为权数的加权平均,即 ∑==+++=r i i i r r m n n m n m n m 122111µµµµµL .三.主效应约束条件第i 个水平下主效应a i = µ i − µ ,则满足011=−=∑∑==µµn m a m ri iir i ii .四.模型单因子方差分析在重复数不等的情形下,统计模型为⎪⎪⎩⎪⎪⎨⎧===++=∑=).,0(;0;,,2,1,,,2,1,21σεεµN a m m j r i a Y ij r i i i i ij i ij 相互独立,且都服从L L 检验H 0:a 1 = a 2 = … = a r = 0 vs H 1:a 1 , a 2 , …, a r 不全等于0.五.平方和的计算记∑==im j ij i Y T 1,∑=⋅==im j ij i i i i Y m m T Y 11,∑∑∑=====ri i ri m j ij T Y T i111,∑∑∑=⋅=====ri i i r i m j ij Y m n Y n n T Y i 11111, 则各平方和的计算公式为n T Y Y n Y Y Y S ri m j ijri m j ijri m j ij T iii21122112112)(−=−=−=∑∑∑∑∑∑======, n T m T Y n Y m Y Y m Y Y S ri ii ri i i ri i i ri m j i A i21221212112)()(−=−=−=−=∑∑∑∑∑==⋅=⋅==⋅, ∑∑∑===−=−=ri ii ri m j ijA T e m T Y S S S i12112. 例 某食品公司对一种食品设计了四种新包装,为了考察哪种包装最受顾客欢迎,选了10个地段繁华程度相似、规模相近的商店做试验,其中两种包装各指定两个商店销售,另两种包装各指定三个商店销售.在试验期内各店货架排放的位置、空间都相同,营业员的促销方法也基本相同,经过一段时间,记录其销售量数据,见下表包装类型销售量数据A 1 12 18 A 2 14 12 13 A 3 19 17 21 A 4 24 30在显著水平α = 0.01下检验这四种包装对销售量是否有显著影响. 解:假设H 0:a 1 = a 2 = a 3 = a 4 = 0 vs H 1:a 1 , a 2 , a 3 , a 4不全等于0,统计量),1(~r n r F MS MS f S f S F eAe e A A −−==,显著水平α = 0.01,n = 10,r = 4,右侧拒绝域W = { f ≥ f 0.99 (3, 6)} = { f ≥ 9.78},销售量数据计算表计算可得258180101349812212=×−=−=∑=T n m T S ri ii A ,463498354412112=−=−=∑∑∑===ri i i ri mj ije m T Y S ,方差分析表来源平方和自由度均方和F 比因子 258 3 86 11.2174 误差 46 6 7.6667 总和 3049有F 比f = 11.2174 ∈ W ,故拒绝H 0 ,接受H 1 ,可以认为这四种包装对销售量有显著影响, 并且检验的p 值p = P {F ≥ 11.2174} = 1 − 0.9929 = 0.0071 < α = 0.01. 由于因子显著,则四个水平下总体均值µ1 , µ 2 , µ 3 , µ 4的点估计为15230ˆ1111====⋅m T Y µ, 13339ˆ2222====⋅m T Y µ, 19357ˆ3333====⋅m T Y µ, 27254ˆ4444====⋅m T Y µ, 总均值µ 的点估计为1810180ˆ====n T Y µ, 误差的方差σ 2的点估计为6667.72==−=∧e eMS rn S σ, 置信度为0.99的置信区间是]2587.22,7413.7[]26667.77074.315[]ˆ)6([1995.011=×±=±∈⋅m t Y σµ,]9267.18,0733.7[]36667.77074.313[]ˆ)6([2995.022=×±=±∈⋅m t Y σµ,]9267.24,0733.13[]36667.77074.319[]ˆ)6([3995.033=×±=±∈⋅m t Y σµ,]2587.34,7413.19[]26667.77074.327[]ˆ)6([4995.044=×±=±∈⋅m t Y σµ,]2462.21,7538.14[106667.77074.318[]ˆ)6([995.0=×±=±∈nt Y σµ,[]0775.68,4801.26757.046,5476.1846)6(,)6(2005.02995.02=⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡∈χχσeeS S .§8.2 多重比较上一节是将多个总体作为一个整体进行检验.如果检验结果是因子A 显著,则可以认为各水平下的均值µ i 不全相等,但却不能直接说明µ i 中哪些可以认为相等,哪些可以认为不等.这一节是对各个µ i 两两之间进行比较,对µ i − µ j ,也就是效应差a i − a j 作出估计、检验. 8.2.1效应差的置信区间效应差a i − a j = µ i − µ j 的点估计为⋅⋅−j i Y Y .因Y ik ~ N (µ i , σ 2 ), (i = 1, 2, …, r , k = 1, 2, …, m i ),则),(~121i i m k ik i i m N Y m Y iσµ∑=⋅=,,(~121jj m k jkj j m N Ym Y jσµ∑=⋅=,且当i ≠ j 时,⋅i Y 与⋅j Y 相互独立,可得))11(,(~2σµµji j i j i m m N Y Y +−−⋅⋅, 即)1,0(~11)()(N m m Y Y ji j i j i +−−−⋅⋅σµµ,但σ 未知,用r n S e −=σˆ替换.由于)(~22r n S e −χσ且S e 与⋅⋅j i Y Y ,相互独立,则根据t 分布的定义可得 )(~11ˆ)()()(11)()(2r n t m m Y Y r n S m m Y Y ji j i j i ej i j i j i −+−−−=−+−−−⋅⋅⋅⋅σµµσσµµ,故效应差a i − a j = µ i − µ j 的置信度为1 − α 的置信区间是]11ˆ)([2/1ji j i j i m m r n t Y Y +⋅−±−∈−−⋅⋅σµµα. 例 由前面的鸡饲料对鸡增重问题的数据给出各效应差µ i − µ j 的点估计和置信区间(α = 0.05). 解:因m 1 = m 2 = m 3 = 8,n = 24,r = 3,有25.102488194111===⋅m T Y ,125.107388585222===⋅m T Y ,25.104488354333===⋅m T Y , 则各效应差µ i − µ j 的点估计分别为875.48125.107325.10242121−=−=−=−⋅⋅∧Y Y µµ, 2025.104425.10243131−=−=−=−⋅⋅∧Y Y µµ, 875.2825.1044125.10733232=−=−=−⋅⋅∧Y Y µµ;因6553.3621875.28215ˆ==−=r n S e σ,有1142.385.06553.360796.211ˆ)21(975.0=××=+⋅j i m m t σ,则各效应差µ i − µ j 的置信度为0.95的置信区间分别是]7608.10,9892.86[]1142.38875.48[]8181ˆ)21([975.02121−−=±−=+⋅±−∈−⋅⋅σµµt Y Y , ]1142.18,1142.58[]1142.3820[]8181ˆ)21([975.03131−=±−=+⋅±−∈−⋅⋅σµµt Y Y , ]9892.66,2392.9[]1142.38875.28[]8181ˆ)21([975.03232−=±=+⋅±−∈−⋅⋅σµµt Y Y . 例 由前面的食品包装对销售量影响问题的数据给出各效应差µ i − µ j 的点估计和置信区间(α = 0.01). 解:因m 1 = 2,m 2 = 3,m 3 = 3,m 4 = 2,n = 10,r = 4,有15230111===⋅m T Y ,13339222===⋅m T Y ,19357333===⋅m T Y ,27254444===⋅m T Y , 则各效应差µ i − µ j 的点估计分别为213152121=−=−=−⋅⋅∧Y Y µµ,419153131−=−=−=−⋅⋅∧Y Y µµ, 1227154141−=−=−=−⋅⋅∧Y Y µµ,619133232−=−=−=−⋅⋅∧Y Y µµ, 1427134242−=−=−=−⋅⋅∧Y Y µµ,827194343−=−=−=−⋅⋅∧Y Y µµ;因7689.2646ˆ==−=r n S e σ,有2653.107689.27074.3ˆ)6(995.0=×=⋅σt ,则各效应差µ i − µ j 的置信度为0.99的置信区间分别是]3709.11,3709.7[]9129.02653.102[]3121ˆ)6([995.02121−=×±=+⋅±−∈−⋅⋅σµµt Y Y , ]3709.5,3709.13[]9129.02653.104[]3121ˆ)6([995.03131−=×±−=+⋅±−∈−⋅⋅σµµt Y Y , ]7347.1,2653.22[]12653.1012[]2121ˆ)6([995.04141−−=×±−=+⋅±−∈−⋅⋅σµµt Y Y , ]3816.2,3816.14[]8165.02653.106[]3131ˆ)6([995.03232−=×±−=+⋅±−∈−⋅⋅σµµt Y Y , ]6291.4,3709.23[]9129.02653.1014[]2131ˆ)6([995.04242−−=×±−=+⋅±−∈−⋅⋅σµµt Y Y , ]3709.1,3709.17[]9129.02653.108[]2131ˆ)6([995.04343−=×±−=+⋅±−∈−⋅⋅σµµt Y Y .8.2.2 多重比较问题对各个µ i 两两之间进行比较,也就是检验任意两个水平A i 与A j 下的总体均值是否相等,即检验假设j i ij H µµ=:0 vs j i ij H µµ≠:1, i , j = 1, 2, …, r .对于每一个假设ijH 0可以采取上一章两个正态总体的均值比较方法进行检验,但这里需要同时检验2)1(2−=r r C r 个这种假设. 设需要同时检验k 个假设k i H i ,,2,1,0L =,每一个假设的显著水平是α ,即在iH 0成立的条件下,接受i H 0的概率为1 − α ,但在所有k 个假设i H 0都成立的条件下,要同时接受所有假设iH 0的概率就可能远小于1 − α .事实上,此时对每一个假设i H 0,拒绝i H 0的概率为α ,而对所有k 个假设k i H i ,,2,1,0L =,至少拒绝其中一个i H 0的概率最大时可能达到k α ,即同时接受所有假设i H 0的概率就可能只有1 − k α .可见,需要同时检验多个假设时,一般不应逐个检验每一个假设,而是采用多重比较方法同时检验多个假设.多重比较方法,就是针对所有假设,构造一个统一的拒绝域,再逐个进行比较.这里,需要检验假设j i ijH µµ=:0 vs j i ij H µµ≠:1, 1≤ i < j ≤ r , 在ij H 0成立的条件下,⋅i Y 与⋅j Y 不应相差太大.对每一个假设ijH 0,拒绝域可以取为}|{|ij j i ij c Y Y W ≥−=⋅⋅,其中c ij 是常数.对所有的假设ijH 0,统一的拒绝域取为U U rj i ij j i rj i ijc Y YWW ≤<≤⋅⋅≤<≤≥−==11}|{|.分成重复数相等与不等两种场合进行讨论. 8.2.3重复数相等场合的T 法重复数相等时,各水平是平等的,由对称性,可以要求所有的c ij 相等,记为c ,即统一的拒绝域为}min max {}||max {}|{|1111c Y Y c Y Y c Y YW i ri i ri j i rj i rj i j i ≥−=≥−=≥−=⋅≤≤⋅≤≤⋅⋅≤<≤≤<≤⋅⋅U .因Y ij , (i = 1, 2, …, r , j = 1, 2, …, m ) 相互独立且都服从正态分布N (µ i , σ 2),有,(~2mN Y i i σµ⋅.当所有的假设ijH 0都成立时,即µ 1 = µ 2 = … = µ r = µ ,有,(~2mN Y i σµ⋅,则)1,0(~N mY i σµ−⋅.但σ 未知,用r n S e−=σˆ替换.由于)(~22r n S e −χσ且S e 与⋅i Y 相互独立,则根据t 分布的定义可得 )()(~ˆ)(2e i ei f t r n t mY r n S m Y =−−=−−⋅⋅σµσσµ.统一的拒绝域W 的形式可改写为⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≥−−−=≥−=⋅≤≤⋅≤≤⋅≤≤⋅≤≤m c m Y m Y c Y Y W i r i i r i i r i i r i σσµσµˆˆmin ˆmax }min max {1111, 其中mY Y mY mY Q i ri i ri i ri i ri σσµσµˆmin max ˆminˆmax1111⋅≤≤⋅≤≤⋅≤≤⋅≤≤−=−−−=是从分布为t ( f e )的总体中抽取容量为r 的样本所得的最大与最小顺序统计量之差(极差),称之为t 化极差统计量,其分布记为q (r , f e ).显然,t 化极差统计量Q 的分布q (r , f e ) 只与水平个数r 以及t 分布的自由度f e 有关,而与参数µ , σ 2及重复数m 无关.分布q (r , f e )的准确形式比较复杂,通常采用随机模拟方法得到其分位数q 1 − α (r , f e ).对于给定的容量r 及自由度f e ,随机模拟方法是(1)随机生成r 个标准正态分布N (0, 1) 随机数x 1 , x 2 , …, x r ,将这r 个随机数按由小到大的顺序排列,得到其最小随机数x (1) 和最大随机数x (r ) ;(2)随机生成1个自由度为f e 的χ 2分布χ 2 ( f e ) 随机数y ; (3)计算er f y x x q )1()(−=;(4)重复(1)至(3)步N 次,得到t 化极差统计量Q 的N 个观测值,只要N 非常大(如10 4或10 5次),就可得q (r , f e )的各种分位数q 1 − α (r , f e )的近似值.当显著水平为α 时,拒绝域{}),(ˆ1ef r q Q m c Q W ασ−≥=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≥=,有m c f r q e σαˆ),(1=−,可得 mf r q c e σαˆ),(1⋅=−,再逐个将||⋅⋅−j i Y Y 与c 比较,得出每一对µ i 与µ j 是否有显著差异的结论.步骤:假设j i ijH µµ=:0 vs j i ij H µµ≠:1, 1≤ i < j ≤ r , 统计量mY Y mY mY Q i ri i ri i ri i ri σσµσµˆmin max ˆminˆmax1111⋅≤≤⋅≤≤⋅≤≤⋅≤≤−=−−−=,显著水平α ,右侧拒绝域{}),(ˆ1e f r q Q m c Q W ασ−≥=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≥=,计算mf r q c e σαˆ),(1⋅=−,逐个将||⋅⋅−j i Y Y 与c 比较,得出结论.例 由前面的鸡饲料对鸡增重影响问题的数据对各因子作多重比较(α = 0.05).解:假设j i ijH µµ=:0 vs j i ij H µµ≠:1, 1≤ i < j ≤ 3, 统计量mY Y mY mY Q i ri i ri i ri i ri σσµσµˆmin max ˆminˆmax1111⋅≤≤⋅≤≤⋅≤≤⋅≤≤−=−−−=,显著水平α = 0.05,r = 3,f e = n − r = 21,右侧拒绝域W = {Q ≥ q 0.95 (3, 21)} = {Q ≥ 3.57},因m = 8,6553.3621875.28215ˆ==−=r n S e σ,有2658.4686553.3657.3=×=c , 由于c Y Y >=−=−⋅⋅875.48|125.107325.1024|||21,故µ 1与µ 2有显著差异;c Y Y <=−=−⋅⋅20|25.104425.1024|||31,故µ 1与µ 3没有显著差异; c Y Y <=−=−⋅⋅875.28|25.1044125.1073|||32,故µ 2与µ 3没有显著差异;8.2.4重复数不等场合的S 法重复数不等时,因)1,0(~11)()(N m m Y Y ji j i j i +−−−⋅⋅σµµ,但σ 未知,用r n S e−=σˆ替换.由于)(~22r n S e −χσ且S e 与⋅⋅j i Y Y ,相互独立,则根据t 分布的定义可得 )()(~11ˆ)()(e ji j i j i f t r n t m m Y Y =−+−−−⋅⋅σµµ,当所有的假设ijH 0都成立时,即µ 1 = µ 2 = … = µ r = µ ,有)(~11ˆe ji j i ij f t m m Y Y T +−=⋅⋅σ,得),1(~11ˆ)(222e j i j i ijij f F m m Y Y T F ⎟⎟⎠⎞⎜⎜⎝⎛+−==⋅⋅σ,从而统一的拒绝域可以取为U U r j i ji j i r j i ji j i c m m Y Y m m c Y Y W ≤<≤⋅⋅≤<≤⋅⋅≥+−=+≥−=11}11||{}11|{| }ˆmax {}ˆ11ˆ)(max {}ˆ11ˆ||max {221222211σσσσσc F c m m Y Y cm m Y Y ij r j i j i j i r j i ji j i r j i ≥=≥⎟⎟⎠⎞⎜⎜⎝⎛+−=≥+−=≤<≤⋅⋅≤<≤⋅⋅≤<≤,可以证明,),1(~1max 1e ij rj i f r F r F −−≤<≤&.当显著水平为α 时,拒绝域{}),1(ˆ)1(122e f r f F r c F W −≥=⎭⎬⎫⎩⎨⎧−≥=−ασ,有221ˆ)1(),1(σα−=−−r c f r f e ,可得),1()1(ˆ1e f r f r c −−=−ασ,因此⎟⎟⎠⎞⎜⎜⎝⎛+−−=+=−j i e ji ij m m f r f r m m c c 11),1()1(ˆ111ασ, 再逐个将||⋅⋅−j i Y Y 与ji ij m m cc 11+=比较,得出每一对µ i 与µ j 是否有显著差异的结论. 步骤:假设j i ijH µµ=:0 vs j i ij H µµ≠:1, 1≤ i < j ≤ r , 统计量),1(~11ˆ)1()(max1max 2211e j i j i rj i ijrj i f r F m m r Y Y r F F −⎟⎟⎠⎞⎜⎜⎝⎛+−−=−=⋅⋅≤<≤≤<≤&σ,显著水平α ,右侧拒绝域{}),1(ˆ)1(122e f r f F r c F W −≥=⎭⎬⎫⎩⎨⎧−≥=−ασ, 计算⎟⎟⎠⎞⎜⎜⎝⎛+−−=+=−j i e ji ij m m f r f r m m cc 11),1()1(ˆ111ασ, 逐个将||⋅⋅−j i Y Y 与c ij 比较,得出结论.例 由前面的食品包装对销售量影响问题的数据对各因子作多重比较(α = 0.01). 解:假设j i ijH µµ=:0 vs j i ij H µµ≠:1, 1≤ i < j ≤ 4, 统计量),1(~11ˆ)1()(max)1(max 224141e j i j i j i ij j i f r F m m r Y Y r F F −⎟⎟⎠⎞⎜⎜⎝⎛+−−=−=⋅⋅≤<≤≤<≤&σ,显著水平α = 0.01,r = 4,f e = n − r = 6,右侧拒绝域W = {F ≥ f 0.99 (3, 6)} = {F ≥ 9.78},因m 1 = m 4 = 2,m 2 = m 3 = 3,7689.2646ˆ==−=r n S e σ,有9981.1478.937689.2=××=c , 则6914.13312134241312=+====cc c c c ,9981.14212114=+=c c ,2459.12313123=+=c c , 由于12212|1315|||c Y Y <=−=−⋅⋅,故µ 1与µ 2没有显著差异;13314|1915|||c Y Y <=−=−⋅⋅,故µ 1与µ 3没有显著差异; 144112|2715|||c Y Y <=−=−⋅⋅,故µ 1与µ 4没有显著差异; 23326|1913|||c Y Y <=−=−⋅⋅,故µ 2与µ 3没有显著差异; 244214|2713|||c Y Y >=−=−⋅⋅,故µ 2与µ 4有显著差异; 34438|2719|||c Y Y <=−=−⋅⋅,故µ 3与µ 4没有显著差异.§8.3 方差齐性检验在单因子方差分析统计模型中,总是假设各个水平下的总体方差都相等,即222221σσσσ====r L ,称之为方差齐性.但方差齐性不一定自然成立,需要对其进行检验,检验的原假设与备择假设为H 0:22221r σσσ===L vs H 1:22221,,,r σσσL 不全相等,称为方差齐性检验.各水平下的总体方差2i σ分别是以该水平下的样本方差2i S 作为点估计,以由22221,,,r S S S L 构成的函数作为检验的统计量.分成重复数相等与不等两种场合进行讨论. 8.3.1重复数相等场合的Hartley 检验法重复数相等时,样本方差⎥⎦⎤⎢⎣⎡−−=⎥⎦⎤⎢⎣⎡−−=−−=∑∑∑=⋅==⋅m T Y m Y m Y m Y Y m S i m j ij i m j ij m j i ij i2122121221111)(11,i = 1, 2, …, r , 各水平是平等的,以r 个水平下样本方差),,2,1(,2r i S i L =的最大值与最小值之比作为检验的统计量H ,即},,,min{},,,max{2222122221r r S S S S S S H L L =.在方差齐性成立的条件下,统计量H 的分布只与水平个数r 及样本方差2i S 的自由度f = m − 1有关,记为H (r , f ).分布H (r , f )的准确形式比较复杂,通常采用随机模拟方法得到其分位数H 1 − α (r , f ).显然有H ≥ 1,且H 的观测值越接近1,方差齐性越应该成立,因此拒绝域取为W = {H ≥ H 1 − α (r , f )}.步骤:假设H 0:22221r σσσ===L vs H 1:22221,,,r σσσL 不全相等,统计量},,,min{},,,max{2222122221rr S S S S S S H L L =,显著水平α ,右侧拒绝域W = {H ≥ H 1 − α (r , f )}, 计算H ,并作出判断. 这称之为Hartley 检验法.例 由前面的鸡饲料对鸡增重影响问题的数据采用Hartley 检验法进行方差齐性检验(α = 0.05).解:假设H 0:232221σσσ== vs H 1:232221,,σσσ不全相等,统计量},,min{},,max{232221232221S S S S S S H =, 显著水平α = 0.05,且r = 3,f = m − 1,右侧拒绝域W = {H ≥ H 0.95 (3, 7)} = {H ≥ 6.94},根据试验数据计算表,可得T 1 = 8194,T 2 = 8585,T 3 = 8354,8398024121=∑=mj j Y ,9230355122=∑=mj jY,8728984123=∑=mj j Y ,则9286.759)881948398024(71221=−=S ,9821.2510885859230355(71222=−=S ,9286.759)883548728984(71223=−=S ,可得W H ∉==3042.39286.7599821.2510,故拒绝H 0 ,接受H 1 ,可以认为三个水平下的总体方差满足方差齐性.8.3.2 重复数不等场合大样本情形的Bartlett 检验法重复数不等时,样本方差⎥⎦⎤⎢⎣⎡−−=⎥⎦⎤⎢⎣⎡−−=−−=∑∑∑=⋅==⋅i i m j ij i i i m j ij i m j i ij i im T Y m Y m Y m Y Y m S i i i 2122121221111)(11,i = 1, 2, …, r , 记i i m j ijm j i ij i m T Y Y Y Q ii21212)(−=−=∑∑==⋅为第i 个水平下的偏差平方和,f i = m i − 1为其自由度,有i i i f Q S =2,且e r i m j i ijr i i S Y YQ i=−=∑∑∑==⋅=1121)(,e ri ir i i f r n r mf =−=−=∑∑==11,则组内偏差均方和∑∑∑=======ri i ei ri ii e ri ie e e e Sf f S f f Q f f S MS 1212111, 即MS e 等于样本方差22221,,,r S S S L 以各自自由度所占比例为权数的加权算术平均,而相应的加权几何平均记为GMS e ,即∏==ri f f i e eiS GMS 12)(.以MS e 与GMS e 之商的一个函数作为检验统计量.可以证明,大样本情形,在方差齐性成立的条件下,)1(~])ln()ln([1ln 212−−==∑=r S f MS f C GMS MS C f B ri i i e e e e e χ&,其中常数⎟⎟⎠⎞⎜⎜⎝⎛−−+=∑=e r i i f f r C 11)1(3111. 由于算术平均必大于等于几何平均,即MS e ≥ GMS e ,当且仅当所有2i S 都相等时等号成立,即B 的观测值越小,方差齐性越应该成立,因此拒绝域取为)}1({21−≥=−r B W αχ.。
苏科版八年级下册第八章认识概率习题课课件
P5(抽到的数大于16)=________,
P6(抽到的数小于16)=_______ P7(抽到的数是2的倍数)=________,
P8(抽到的数是3的倍数)=________.
频率与概率
下列叙述中正确的是( )
A、“明天降雨的概率是80%”表示明天有80%的时 间降雨 B、“抛一枚硬币正面朝上的概率是0.5”表示每抛硬 币2次就有1次出现正面朝上 C、“彩票中奖的概率是1%”表示买100张彩票一定 会中奖 D、“抛一枚正方体骰子,向上一面的点数为奇数的 概率是0.5”表示如果大量重复抛这个骰子,那么平 均每抛2次就有1次向上一面的点数为奇数
确定事件与随机事件
下列说法正确的是
(D )
A、一颗质地均匀的骰子已连续抛掷了2000次,其中
抛掷出5点的次数最少,则第2001次一定抛掷出5点;
B、某种彩票中奖的概率是1%,因此买100张该种
彩票一定会中奖;
C、天气预报说明天下雨概率是50%,所以明天将有
一半时间在下雨;
D、抛掷一枚硬币,正面朝上和反面朝上的概率相等。
确定事件与随机事件
下列事件:
(1)在足球赛中,弱队战胜强队 (2)抛掷一枚硬币,硬币落地时正面朝上 (3)在取两个正整数,其和大于1 (4)长为3㎝,5㎝,9㎝的三条线段能围成一个三角 形
其中确定事件有___3____个。
确定事件与随机事件
下列事件中,是必然事件的是(C )
A、在一个等式两边同时除以同一个数,结果仍为等 式 B、有两边及一角对应相等的三角形全等 C、平移后的图形与本来图形对应线段相等 D、随机抛掷一枚质地均匀的硬币,落地后正面一定 朝上
2、抛一枚普通的点数为1至6的正方体骰子,将下列事件出现的可能性大小排序。(从小 到大)
概率论与数理统计习题及答案第八章
《概率论与数理统计》习题及答案第 八 章1.设12,,,n X X X L 是从总体X 中抽出的样本,假设X 服从参数为λ的指数分布,λ未知,给定00λ>和显著性水平(01)αα<<,试求假设00:H λλ≥的2χ检验统计量及否定域.解 00:H λλ≥ 选统计量 200122nii XnX χλλ===∑记212nii Xχλ==∑%则22~(2)n χχ%,对于给定的显著性水平α,查2χ分布表求出临界值2(2)n αχ,使22((2))P n αχχα≥=% 因 22χχ>%,所以2222((2))((2))n n ααχχχχ≥⊃≥%,从而 2222{(2)}{(2)}P n P n αααχχχχ=≥≥≥% 可见00:H λλ≥的否定域为22(2)n αχχ≥.2.某种零件的尺寸方差为21.21σ=,对一批这类零件检查6件得尺寸数据(毫米):, , , , , 。
设零件尺寸服从正态分布,问这批零件的平均尺寸能否认为是毫米(0.05α=).解 问题是在2σ已知的条件下检验假设0:32.50H μ= 0H 的否定域为/2||u u α≥ 其中29.4632.502.45 6.771.1X u -==⨯=-0.0251.96u =,因|| 6.77 1.96u =>,所以否定0H ,即不能认为平均尺寸是毫米。
3.设某产品的指标服从正态分布,它的标准差为100σ=,今抽了一个容量为26的样本,计算平均值1580,问在显著性水平0.05α=下,能否认为这批产品的指标的期望值μ不低于1600。
解 问题是在2σ已知的条件下检验假设0:1600H μ≥0H 的否定域为/2u u α<-,其中 158016005.1 1.02100X u -==⨯=-.0.051.64u -=-.因为0.051.02 1.64u u =->-=-,所以接受0H ,即可以认为这批产品的指标的期望值μ不低于1600.4.一种元件,要求其使用寿命不低于1000小时,现在从这批元件中任取25件,测得其寿命平均值为950小时,已知该元件寿命服从标准差为100σ=小时的正态分布,问这批元件是否合格(0.05α=)解 设元件寿命为X ,则2~(,100)X N μ,问题是检验假设0:1000H μ≥. 0H 的否定域为0.05u u ≤-,其中95010005 2.5100X u -==⨯=-0.05 1.64u = 因为0.052.5 1.64u u =-<-= 所以否定0H ,即元件不合格.5.某批矿砂的5个样品中镍含量经测定为(%)X : 3.25,3.27,3.24,3.26,3.24设测定值服从正态分布,问能否认为这批矿砂的镍含量为3.25(0.01)α=解 问题是在2σ未知的条件下检验假设0: 3.25H μ=0H 的否定域为 /2||(4)t t α>522113.252,(5)0.00017,0.0134i i X S X X S ===-⨯==∑0.005(4) 4.6041t =3.252 3.252.240.3450.013X t -==⨯=因为0.005||0.345 4.6041(4)t t =<= 所以接受0H ,即可以认为这批矿砂的镍含量为.6.糖厂用自动打包机打包,每包标准重量为100公斤,每天开工后要检验一次打包机工作是否正常,某日开工后测得9包重量(单位:公斤)如下:99.3,98.7,100.5,101.2,98.3,99.7,99.5,102.1,100.5 问该日打包机工作是否正常(0.05α=;已知包重服从正态分布)解 99.98X =,92211(()) 1.478i i S X X ==-=∑, 1.21S =,问题是检验假设0:100H μ=0H 的否定域为/2||(8)t t α≥. 其中99.9810030.051.21X t -==⨯=-0.025(8) 2.306t =因为0.025||0.05 2.306(8)t t =<= 所以接受0H ,即该日打包机工作正常.7.按照规定,每100克罐头番茄汁中,维生素C 的含量不得少于21毫克,现从某厂生产的一批罐头中抽取17个,测得维生素C 的含量(单位:毫克)如下22,21,20,23,21,19,15,13,16, 23,17,20,29,18,22,16,25.已知维生素C 的含量服从正态分布,试检验这批罐头的维生素含量是否合格。
《概率论与数理统计》习题及答案 第八章
《概率论与数理统计》习题及答案第 八 章1.设12,,,n X X X 是从总体X 中抽出的样本,假设X 服从参数为λ的指数分布,λ未知,给定00λ>和显著性水平(01)αα<<,试求假设00:H λλ≥的2χ检验统计量及否定域. 解 00:H λλ≥选统计量 200122nii XnX χλλ===∑记212nii Xχλ==∑则22~(2)n χχ,对于给定的显著性水平α,查2χ分布表求出临界值2(2)n αχ,使22((2))P n αχχα≥=因 22χχ>,所以2222((2))((2))n n ααχχχχ≥⊃≥,从而 2222{(2)}{(2)}P n P n αααχχχχ=≥≥≥ 可见00:H λλ≥的否定域为22(2)n αχχ≥.2.某种零件的尺寸方差为21.21σ=,对一批这类零件检查6件得尺寸数据(毫米):32.56, 29.66, 31.64, 30.00, 21.87, 31.03。
设零件尺寸服从正态分布,问这批零件的平均尺寸能否认为是32.50毫米(0.05α=).解 问题是在2σ已知的条件下检验假设0:32.50H μ= 0H 的否定域为/2||u u α≥ 其中29.4632.502.45 6.771.1X u -==⨯=-0.0251.96u =,因|| 6.77 1.96u =>,所以否定0H ,即不能认为平均尺寸是32.5毫米。
3.设某产品的指标服从正态分布,它的标准差为100σ=,今抽了一个容量为26的样本,计算平均值1580,问在显著性水平0.05α=下,能否认为这批产品的指标的期望值μ不低于1600。
解 问题是在2σ已知的条件下检验假设0:1600H μ≥0H 的否定域为/2u u α<-,其中 158016005.1 1.02100X u -==⨯=-.0.051.64u -=-.因为0.051.02 1.64u u =->-=-,所以接受0H ,即可以认为这批产品的指标的期望值μ不低于1600.4.一种元件,要求其使用寿命不低于1000小时,现在从这批元件中任取25件,测得其寿命平均值为950小时,已知该元件寿命服从标准差为100σ=小时的正态分布,问这批元件是否合格?(0.05α=)解 设元件寿命为X ,则2~(,100)X N μ,问题是检验假设0:1000H μ≥. 0H 的否定域为0.05u u ≤-,其中95010005 2.5100X u -==⨯=-0.05 1.64u = 因为0.052.5 1.64u u =-<-= 所以否定0H ,即元件不合格.5.某批矿砂的5个样品中镍含量经测定为(%)X : 3.25,3.27,3.24,3.26,3.24设测定值服从正态分布,问能否认为这批矿砂的镍含量为3.25(0.01)α=?解 问题是在2σ未知的条件下检验假设0: 3.25H μ=0H 的否定域为 /2||(4)t t α>522113.252,(5)0.00017,0.0134i i X S X X S ===-⨯==∑0.005(4) 4.6041t =3.252 3.252.240.3450.013X t -==⨯=因为0.005||0.345 4.6041(4)t t =<=所以接受0H ,即可以认为这批矿砂的镍含量为3.25.6.糖厂用自动打包机打包,每包标准重量为100公斤,每天开工后要检验一次打包机工作是否正常,某日开工后测得9包重量(单位:公斤)如下: 99.3,98.7,100.5,101.2,98.3,99.7,99.5,102.1,100.5 问该日打包机工作是否正常(0.05α=;已知包重服从正态分布)?解 99.98X =,92211(()) 1.478i i S X X ==-=∑, 1.21S =,问题是检验假设0:100H μ=0H 的否定域为/2||(8)t t α≥. 其中99.9810030.051.21X t -==⨯=-0.025(8) 2.306t =因为0.025||0.05 2.306(8)t t =<= 所以接受0H ,即该日打包机工作正常.7.按照规定,每100克罐头番茄汁中,维生素C 的含量不得少于21毫克,现从某厂生产的一批罐头中抽取17个,测得维生素C 的含量(单位:毫克)如下 22,21,20,23,21,19,15,13,16, 23,17,20,29,18,22,16,25.已知维生素C 的含量服从正态分布,试检验这批罐头的维生素含量是否合格。
概率论与数理统计第八章课后习题及参考答案
概率论与数理统计第八章课后习题及参考答案1.设某产品指标服从正态分布,它的均方差σ已知为150h ,今从一批产品中随机抽查26个,测得指标的平均值为1637h .问在5%的显著性水平,能否认为这批产品的指标为1600h ?解:总体X ~)150,(2μN ,检验假设为0H :1600=μ,1H :1600≠μ.采用U 检验法,选取统计量nX U /00σμ-=,当0H 成立时,U ~)1,0(N ,由已知,有1637=x ,26=n ,05.0=α,查正态分布表得96.1025.0=u ,该检验法的拒绝域为}96.1{>u .将观测值代入检验统计量得2577.142.293726/150********==-=u ,显然96.12577.1<=u ,故接受0H ,即可认为这批产品的指标为1600h .2.正常人的脉搏平均为72次/min ,现某医生从铅中毒患者中抽取10个人,测得其脉搏(单位:次/min)如下:54,67,68,78,70,66,67,70,65,69设脉搏服从正态分布,问在显著性水平05.0=α下,铅中毒患者与正常人的脉搏是否有显著性差异?解:本题是在未知方差2σ的条件下,检验总体均值72=μ.取检验统计量为nS X T /0μ-=,检验假设为0H :720==μμ,1H :72≠μ.当0H 成立时,T ~)1(-n t ,由已知,有4.67=x ,93.5=s ,05.0=α,查t 分布表得262.2)9(025.0=t ,将观测值代入检验统计量得45.288.16.410/93.5724.67/0-=-=-=-=n s x t μ,显然)9(262.2447.2025.0t t =>=,故拒绝0H ,即铅中毒患者与正常人的脉搏有显著性差异.3.测定某溶液中的水分,得到10个测定值,经统计%452.0=x ,22037.0=s ,该溶液中的水分含量X ~),(2σμN ,μ与2σ未知,试问在显著性水平05.0=α下该溶液水分含量均值μ是否超过5%?解:这是在总体方差2σ未知的情况下,关于均值μ的单侧检验.检验假设为0H :%5.0≤μ,1H :%5.0>μ.此假设等价于检验假设0H :%5.0=μ,1H :%5.0>μ.由于2σ未知,取检验统计量为nS X T /0μ-=.当0H 成立时,T ~)1(-n t ,拒绝域为)}1(/{0-≤-n t n s x αμ,将观测值代入检验统计量得709.1)5.052.0(10/0=-=-=ns x t μ,由05.0=α,查t 分布表得833.1)9(05.0=t ,显然)9(833.1709.105.0t t =<=,所以接受0H ,即该溶液水分含量均值μ是否超过5%.4.甲、乙两个品种作物,分别用10块地试种,产量结果97.30=x ,79.21=y ,7.2621=s ,1.1222=s .设甲、乙品种产量分别服从正态分布),(21σμN 和),(22σμN ,试问在01.0=α下,这两种品种的产量是否有显著性差异?解:这是在方差相等但未知的情况下检验两正态总体的均值是否相等的问题.检验假设为0H :21μμ=,1H :21μμ≠.由题可知,22221σσσ==未知,因此取检验统计量nm n m mn S n S m YX T +-+-+--=)2()1()1(2221,当0H 为真时,T ~)2(-+n m t ,该检验法的拒绝域为)}2({2/-+>n m t t α.由题设,10==n m ,97.30=x ,79.21=y ,7.2621=s ,1.1222=s .将其代入检验统计量得n m n m mn S n S m yx t +-+-+--=)2()1()1(222166.4201810101.1297.26979.2197.30=⨯⨯⨯+⨯-=,由01.0=α,查t 分布表得878.2)18()2(005.02/==-+t n m t α.显然)18(878.266.4005.0t t t =>=,因此,拒绝0H ,即这两种品种的产量有显著性差异.5.某纯净水生产厂用自动灌装机装纯净水,该自动灌装机正常罐装量X ~)4.0,18(2N ,现测量某厂9个罐装样品的灌装量(单位:L)如下:0.18,6.17,3.17,2.18,1.18,5.18,9.17,1.18,3.18在显著性水平05.0=α下,试问:(1)该天罐装是否合格?(2)罐装量精度是否在标准范围内?解:(1)检验罐装是否合格,即检验均值是否为18,故提出假设0H :18=μ,1H :18≠μ,由于方差224.0=σ已知,取检验统计量为nX U /00σμ-=,当0H 为真时,U ~)1,0(N ,该检验法的拒绝域为}{2/αu u ≥.由题可知,9=n ,18=x ,将其代入检验统计量得09/4.01818/00=-=-=n x u σμ,由05.0=α,查标准正态分布表得96.1025.0=u ,显然,025.096.10u u =<=,故接受0H ,即该天罐装合格.(2)检验罐装量精度是否在标准范围内,即检验假设0H :224.0≤σ,1H :224.0>σ,此假设等价于0H :224.0=σ,1H :224.0>σ.由于18=μ已知,选取检验统计量为∑=-=n i i X12202)18(1σχ,当0H 为真时,2χ~)(2n χ,该检验法的拒绝域为)}({22n αχχ≥.由已知计算得625.6)18(112202=-=∑=n i i x σχ,查2χ分布表得307.18)10(205.0=χ,由此知)10(307.18625.6205.02χχ=<=,故接受0H ,即罐装量精度在标准范围内.6.某厂生产某型号电池,其寿命长期以来服从方差221600h =σ的正态分布,现从中抽取25只进行测量,得222500h s =,问在显著性水平05.0=α下,这批电池的波动性较以往有无显著变化?解:这是在均值未知的条件下,对正态总体方差的检验问题.检验假设为0H :202σσ=,1H :202σσ≠,其中160020=σ,取检验统计量为222)1(σχS n -=.当0H 为真时,2χ~)(2n χ,对于给定的显著性水平,该检验法的拒绝域为)}1({22/12-≤-n αχχ或)}1({22/2-≥n αχχ.将观测值25002=s 代入检验统计量得5.371600250024)1(222=⨯=-=σχs n .对于05.0=α,查2χ分布表得401.12)24()1(2975.022/1==--χχαn ,364.39)24()1(2025.022/==-χχαn ,由于)24(364.395.37401.12)24(2025.022975.0χχχ=<=<=,故接受0H ,即这批电池的波动性较以往无显著变化.7.某工厂生产一批保险丝,从中任取10根试验熔化时间,得60=x ,8.1202=s ,设熔化时间服从正态分布),(2σμN ,在01.0=α下,试问熔化时间的方差是否大于100?解:本题是在均值未知的条件下,检验2σ是否大于100,是关于2σ的单侧检验问题.检验假设为0H :1002≥σ,1H :1002<σ,此假设等价于0H :1002=σ,1H :1002<σ,这是左侧检验问题,取检验统计量为2022)1(σχS n -=,当0H 为真时,2χ~)(2n χ,该检验法的拒绝域为)}1({212-≤-n αχχ.将10=n ,10020=σ,8.1202=s ,代入上述统计量得87.101008.1209)1(2022=⨯=-=σχs n .对于01.0=α,查2χ分布表得0879.2)9(299.0=χ,显然)9(0879.287.10299.02χχ=>=,接受0H ,即熔化时间的方差大于100.本题如果将检验假设设为0H :1002≤σ,1H :1002>σ,即进行右侧检验,统计量得选取如上,则该检验法的拒绝域为)}1({22-≥n αχχ.对于01.0=α,查2χ分布表得666.21)9(201.0=χ,显然)9(666.2187.10201.02χχ=<=,接受0H ,即熔化时间的方差不大于100.注:若选取的显著性水平为3.0=α,用MATLAB 计算得6564.10)9(23.0=χ,从而有)9(6564.1087.1023.02χχ=<=,则应拒绝原假设,即熔化时间的方差大于100.上述结果说明了在观测值接近临界值时,原假设不同的取法会导致检验结果的不一样,如果用-p 值检验法则可避免上述矛盾.8.设有两个来自不同正态总体的样本,4=m ,5=n ,60.0=x ,25.2=y ,07.1521=s ,81.1022=s .在显著性水平05.0=α下,试检验两个样本是否来自相同方差的总体?解:记两正态总体为),(211σμN 和),(222σμN ,其中1μ和2μ未知.检验假设为0H :2221σσ=,1H :2221σσ≠.取检验统计量为2221S S F =,当0H 为真时,F ~)1,1(--n m F ,该检验法的拒绝域为)}1,1({2/1--≤-n m F F α或)}1,1({2/--≥n m F F α.由题可知,05.0=α,4=m ,5=n ,将观测值代入检验统计量得39.181.1007.152221===s s F ,查F 分布表得98.9)4,3()1,1(025.02/1==---F n m F α,066.010.151)3,4(1)4,3()1,1(025.0975.02/====--F F n m F α.由此知)4,3(98.939.1066.0)4,3(025.0975.0F F =<<=,观测值没有落入拒绝域内,接受0H ,即两个样本来自相同方差的总体.9.某厂的生产管理员认为该厂第一道工序加工完的产品送到第二道工序进行加工之前的平均等待时间超过90min .现对100件产品的随机抽样结果的平均等待时间为96min ,样本标准差为30min .问抽样的结果是否支持该管理员的看法?(05.0=α).解:这是非正态总体均值的检验问题,用X 表示第一道工序加工完的产品送到第二道工序进行加工之前的等待时间,设其均值为μ,依题意,检验假设为0H :90≤μ,1H :90>μ.由于100=n 为大样本,故用U 检验法.总体标准差σ未知,用样本标准差S 代替.取检验统计量为100/90S X U -=,当0H 为真时,近似地有U ~)1,0(N ,该检验法的拒绝域为}{αu u >.由题可知,96=x ,30=s ,100=n .对于05.0=α,查标准正态分布表得645.105.0==u u α.将观测值代入检验统计量得2100/309096100/90=-=-=s x u ,显然,05.0645.12u u =>=,故拒绝0H ,即平均等待时间超过90分钟,也即支持该管理员的看法.10.一位中学校长在报纸上看到这样的报道:“这一城市的初中学生平均每周看8h 电视.”她认为她所领导的学校,学生看电视时间明显小于该数字.为此,她向学校的100名初中学生作了调查,得知平均每周看电视的时间5.6=x h ,样本标准差为2=s h ,问是否可以认为校长的看法是对的?(05.0=α)解:初中生每周看电视的时间不服从正态分布,这是非正态总体均值的假设检验问题.检验假设为0H :8=μ,1H :8<μ.由于100=n 为大样本,故用U 检验法,取检验统计量为nS X U /μ-=,当0H 为真时,近似地有U ~)1,0(N ,该检验法的拒绝域为}{αu u -<.由题可知,5.6=x ,2=s ,100=n .对于05.0=α,查标准正态分布表得645.105.0==u u α.将观测值代入检验算统计量得5.7100/285.6-=-=u ,显然,05.0645.15.7u u -=-<-=,故拒绝0H ,即初中生平均每周看电视的时间少于8小时,这位校长的看法是对的.11.已知某种电子元件的使用寿命X (单位:h)服从指数分布)(λE .抽查100个元件,得样本均值950=x h .能否认为参数001.0=λ?(05.0=α)解:X ~)(λE ,λ1)(=X E ,21)(λ=X D ,由中心极限定理知,当n 充分大时,近似地有n X n X U )1(/1/1-=-=λλλ~)1,0(N .由题可知001.00=λ,检验假设可设为0H :0λλ=,1H :0λλ≠.取检验统计量为n X n X U )1(/1/1000-=-=λλλ,当0H 为真时,近似地有U ~)1,0(N ,该检验法的拒绝域为}{2/αu u ≤.由题知,100=n ,950=x ,05.0=α,查标准正态分布表知96.1025.02/==u u α.将观测值代入检验统计量得5.0-=u ,显然,025.096.15.0u u =<=,故接受0H ,即可以认为参数001.0=λ.12.某地区主管工业的负责人收到一份报告,该报告中说他主管的工厂中执行环境保护条例的厂家不足60%,这位负责人认为应不低于60%,于是他在该地区众多的工厂中随机抽查了60个厂家,结果发现有33家执行了环境保护条例,那么由他本人的调查结果能否证明那份报告中的说法有问题?(05.0=α)解:设执行环境保护条例的厂家所占的比率为p ,则检验假设为0H :6.0≥p ,1H :6.0<p ,上述假设等价于0H :6.0=p ,1H :6.0<p .引入随机变量⎩⎨⎧=.,0,,1条例抽到的厂家为执行环保例抽到的厂家执行环保条X 则X ~),1(p B ,p X E =)(,)1()(p p X D -=,由中心极限定理,当0H 为真时,统计量60/)6.01(6.06.0/)1(000--=--=X n p p p X U 近似地服从)1,0(N .对于显著性水平05.0=α,查标准正态分布表得645.105.0==u u α,由此可知05.0}645.160/)6.01(6.06.0{≈-<--X P .以U 作为检验统计量,该检验法的拒绝域为}645.1{05.0-=-<u u .将55.06033==x 代入上述检验统计量,得791.060/)6.01(6.06.055.0/)1(000-=--=--=n p p p x u ,显然,05.0645.1791.0u u -=->-=,故接受0H ,即执行环保条例的厂家不低于60%,也即由他本人的调查结果证明那份报告中的说法有问题.13.从选取A 中抽取300名选民的选票,从选取B 中抽取200名选民的选票,在这两组选票中,分别有168票和96票支持所选候选人,试在显著性水平05.0=α下,检验两个选区之间对候选人的支持是否存在差异.解:这是检验两个比率是否相等的问题,检验假设为0H :21p p =,1H :21p p ≠.取检验统计量为⎪⎭⎫ ⎝⎛+--=m n p p p pU 11)ˆ1(ˆˆˆ21,其中)(1ˆ2121m n Y Y Y X X X mn p ++++++++= 是21p p p ==的点估计.当0H 为真时,近似地有U ~)1,0(N .由题可知300=n ,168=n μ,200=m ,96=m μ,又56.0300168ˆ1==p ,48.020096ˆ2==p ,528.0500264ˆ==++=m n p m n μμ.由此得统计量的观测值为755.11201472.0528.048.056.0=⨯⨯-=u ,由05.0)96.1(==>αU P ,得拒绝域为}96.1{>u ,因为96.1755.1<=u ,故接受0H ,即两个选区之间对候选人的支持无显著性差异.。
概率论习题答案第8章答案
=
(n −1)s 2
σ
2 0
(其中σ 0
= 0.04% ),拒绝域为
{χ 2
≤
χ2 1−α
2
(n
−1)} ∪{χ 2
≥
χα2 (n 2
− 1)}
查表得
χ
2 0.025
(9)
= 19.023,
χ
2 0.975
(9)
=
2.7 ,算得 χ 2
=
7.701 ,它没有落在拒绝域中,故接受
原假设 H 0 .
5.本题是在显著性水平α = 0.05 下检验假设:
计算结果列表如下
i
vi
pi
np i
vi − npˆ i
(vi − npˆ i )2 / npˆ i
1
9
1/6
10.5
-1.5
0.2143
2
10
1/6
10.5
-0.5
0.02381
3
11
1/6
10.5
0.5
0.02381
4
8
1/6
10.5
-2.5
0.5952
5
13
1/6
10.5
2.5
0.5952
6
12
⎭
由于 n1, n2 很大,故有 t0.025 (218) ≈ z0.025 = 1.96 将 x = 2805, y = 2680, 以上数据代入上式
计算可得 | t |= 8.206 > 1.96 ,故拒绝原假设 H 0 ,可以认为两个总体的平均值有显著差异,即
两种枪弹在速度方面有显著差异. 综上所述,两种枪弹在速度方面有显著差异但在均匀性方面没有显著差异.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4)x0=90时,y0的95%的预测区间为 时 的预测区间为 (151.1697,185.2614).
备用例题
(1)回归方程为 y = 0.4322 x + 129.3211. 回归方程为 ˆ (2)回归方程显著 回归方程显著. 回归方程显著
(3)a,b的置信度为 的置信度为0.95的置信区间分别为 的置信区间分别为 的置信度为 (0.2748,0.5895), (116.0709,142.5712).
(4)x0=90时,y0的预测值为 时 的预测值为168.2156.
(1) 求 y 对 x 的线性回归方程 ax+b; (2) 检验回验水平为 (3) 求回归系数的 95% 置信区间 置信区间; (4) 取 x0=90 , 求 y0 的预测值及 95% 的预测区间 的预测区间.
在MATLAB中求解 中求解 x=[40,42,48,55,65,79,88,100,120,140]; y=[150,140,152,160,150,162,175,165,190,185]; polytool(x,y,1,0.05)
第八章
习 题 课
一、重点与难点 二、主要内容 三、典型例题
一、重点与难点
1.重点 重点
一元线性回归的数学模型
2.难点 难点
数学模型的应用
二、主要内容
回归分析
一 元 线 性 回 归 分 析 多 元 线 性 回 归 分 析
一 元 非 线 性 回 归 分 析
某工厂在分析产量与成本关系时,选取十个生 例1 某工厂在分析产量与成本关系时 选取十个生 产小组作样本,收集到如下数据 收集到如下数据: 产小组作样本 收集到如下数据 产量x(千件 产量 千件) 千件 成本y(千元 成本 千元) 千元 产量x(千件 产量 千件) 千件 成本y(千元 成本 千元) 千元 40 150 79 162 42 140 88 175 48 152 100 165 55 160 120 190 65 150 140 185