人教版八年级数学下限时训练

合集下载

人教版八级数学下册第二学期 同步课堂补习辅导练习题作业 第十九章 一次函数 第十九章复习1

人教版八级数学下册第二学期 同步课堂补习辅导练习题作业 第十九章 一次函数  第十九章复习1

《一次函数》复习一、相信你一定能填对!(每小题3分,共24分)1.下列函数中,自变量x 的取值范围是x ≥2的是( )A ...D .2.下列函数中,y 是x 的正比例函数的是( ) A .y=2x-1 B .y=3xC .y=2x 2D .y=-2x+1 3.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四4.若函数y=(2m+1)x 2+(1-2m )x (m 为常数)是正比例函数,则m 的值为( ) A .m>12 B .m=12 C .m<12 D .m=-125.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( )A .k>3B .0<k ≤3C .0≤k<3D .0<k<3 6.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为( )A .y=-x-2B .y=-x-6C .y=-x+10D .y=-x-1 7.一次函数y=kx+b 的图象经过点(2,-1)和(0,3),•那么这个一次函数的解析式为( ) A .y=-2x+3 B .y=-3x+2 C .y=3x-2 D .y=12x-3 8.李老师骑自行车上班,最初以某一速度匀速行进,•中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y•(千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是( )二、你能填得又快又对吗?(每小题4分,共40分)9.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________.10.若点(1,3)在正比例函数y=kx 的图象上,则此函数的解析式为________. 11.已知一次函数y=kx+b 的图象经过点A (1,3)和B (-1,-1),则此函数的解析式为_________. 12.若解方程x+2=3x-2得x=2,则当x_________时直线y=x+•2•上的点在直线y=3x-2上相应点的上方.13.已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________.14.若一次函数y=kx+b 交于y•轴的负半轴,•且y•的值随x•的增大而减少,•则k____0,b______0.(填“>”、“<”或“=”)15.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30220x yx y--=⎧⎨-+=⎩的解是________.16.已知一次函数y=-3x+1的图象经过点(a,1)和点(-2,b),则a=________,b=______.17.如果直线y=-2x+k与两坐标轴所围成的三角形面积是9,则k的值为_____.18.如图,一次函数y=kx+b的图象经过A、B两点,与x轴交于点C,则此一次函数的解析式为__________,△AOC的面积为_________.三、认真解答,一定要细心哟!(共36分)23.(12分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?24.(12分)如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.(1)写出y与t•之间的函数关系式.(2)通话2分钟应付通话费多少元?通话7分钟呢?25.(12分)已知雅美服装厂现有A种布料70米,B种布料52米,•现计划用这两种布料生产M、N两种型号的时装共80套.已知做一套M型号的时装需用A种布料1.•1米,B 种布料0.4米,可获利50元;做一套N型号的时装需用A种布料0.6米,B种布料0.•9米,可获利45元.设生产M型号的时装套数为x,用这批布料生产两种型号的时装所获得的总利润为y元.①求y(元)与x(套)的函数关系式,并求出自变量的取值范围;②当M型号的时装为多少套时,能使该厂所获利润最大?最大利润是多?答案:1.D 2.D 3.B 4.C 5.D 6.A 7.C 8.B 9.C 10.A11.2;y=2x 12.y=3x 13.y=2x+1 14.<2 15.1616.<;< 17.58xy=-⎧⎨=-⎩18.0;7 19.±6 20.y=x+2;421.①y=169x;②y=15x+7522.y=x-2;y=8;x=1423.①5元;②0.5元;③45千克24.①当0<t≤3时,y=2.4;当t>3时,y=t-0.6.②2.4元;6.4元25.①y=50x+45(80-x)=5x+3600.∵两种型号的时装共用A种布料[1.1x+0.•6(80-x)]米,共用B种布料[0.4x+0.9(80-x)]米,∴解之得40≤x≤44,而x为整数,∴x=40,41,42,43,44,∴y与x的函数关系式是y=5x+3600(x=40,41,42,43,44);②∵y随x的增大而增大,∴当x=44时,y最大=3820,即生产M型号的时装44套时,该厂所获利润最大,最大利润是3820元.。

人教版八级数学下册第二学期 同步课堂补习辅导练习题作业 第十九章 一次函数周周测9(全章)

人教版八级数学下册第二学期 同步课堂补习辅导练习题作业 第十九章 一次函数周周测9(全章)

人教版八级数学下册第二学期同步课堂补习辅导练习题作业第十九章一次函数周周测9(全章)人教版八级数学下册第二学期同步课堂补习辅导练习题作业第十九章一次函数周周测9(全章)第1九章主要功能的每周测量9题号得分评卷人选择题填空题解答题总分一个选择题1.星期天,小明和小兵租用一艘皮划艇去嘉陵江游玩,他们先从上游顺流划行1小时,再停留0.5小时采集植物标本,然后加速划行0.5小时到下游,最后乘坐公交车1小时回到出发地,那么小明和小兵距离出发点的距离y随时间x变化的大致图象是()2.洗衣服时,洗衣机要经历三个连续的过程:注水、清洗和排水(工作前洗衣机没有水)。

在这三个过程中,洗衣机中的水量y(L)和时间x(min)之间的函数关系,以及相应的图像大致为()3.向最大容量为60升的热水器内注水,每分钟注水10升,注水2分钟后停止注水1分钟,然后继续注水,直至注满.则能反映注水量与注水时间函数关系的图象是()4.主函数y=2x-1的图像大致为()第1页共8页5.在同一直角坐标系中,主函数Y1=K1X+B和正比例函数y2=k2x的图像如图所示,则X的值范围满足Y1≥ Y2是()a.x≤2b、x≥2c.x<2d.x>26.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校.图描述了他上学的情景,下列说法中错误的是()a、维修时间为15分钟。

从学校到家的距离是2000米。

C.到达学校时的共享时间为20分钟d.自行车发生故障时离家距离为1000米7.如果主函数y=ax+B的图像经过第一、第二和第四象限,则以下不等式始终成立:(a.ab>0b.a-B>0C.A2+B>0d.a+B>0)8.在平面直角坐标系中,若直线y=kx+b经过第一、三、四象限,则直线y=bx+k不经过的...象限是()a.第一象限b.第二象限c.第三象限d.第四象限9.已知一次函数y=-0.5x+2,当1≤x≤4时,y的最大值是().a.2b.1.5c.2.5d.-610.在本市举办的“龙舟赛龙舟”比赛中,a队和B队在比赛中的距离s(米)和时间t(分钟)之间的函数关系如图所示。

人教版八年级数学下册专题训练(含参考答案与解析)

人教版八年级数学下册专题训练(含参考答案与解析)

人教版八年级数学下册专题训练(附答案与解析)说明:本套训练习题包含12个专题:类比归纳专题:二次根式求值的常用方法考点综合专题:一次函数与几何图形的综合问题解题技巧专题:利用一次函数解决实际问题解题技巧专题:正方形中特殊的证明(计算)方法思想方法专题:矩形中的折叠问题核心素养专题:四边形中的探究与创新类比归纳专题:有关中点的证明与计算解题技巧专题:特殊平行四边形中的解题方法思想方法专题:勾股定理中的思想方法解题技巧专题:勾股定理与面积问题难点探究专题:特殊四边形中的综合性问题解题技巧专题:函数图象信息题考点综合专题:一次函数与几何图形的综合问题——代几综合,明确中考风向标◆类型一一次函数与面积问题1.如图,把Rt△ABC放在平面直角坐标系内,其中∠CAB=90°,BC=5,点A,B的坐标分别为(1,0),(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为________.2.如图,直线y =-2x +3与x 轴相交于点A ,与y 轴相交于点B.【易错7】(1)求A ,B 两点的坐标;(2)过B 点作直线BP 与x 轴相交于点P ,且使OP =2OA ,求△ABP 的面积.3.如图,直线y =-x +10与x 轴、y 轴分别交于点B ,C ,点A 的坐标为(8,0),点P(x ,y)是在第一象限内直线y =-x +10上的一个动点.(1)求△OPA 的面积S 与x 的函数解析式,并写出自变量x 的取值范围;(2)当△OPA 的面积为10时,求点P 的坐标.◆类型二 一次函数与三角形、四边形的综合4.(2016·长春中考)如图,在平面直角坐标系中,正方形ABCD 的对称中心与原点重合,顶点A 的坐标为(-1,1),顶点B 在第一象限,若点B 在直线y =kx +3上,则k 的值为________.第4题图 第5题图5.(2016·温州中考)如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数解析式是()A.y=x+5 B.y=x+10C.y=-x+5 D.y=-x+10◆类型三一次函数与几何图形中的规律探究问题6.(2017·安顺中考)如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形A n B n-1B n顶点B n的横坐标为________.第6题图第7题图7.★(2016·潍坊中考)在平面直角坐标系中,直线l:y=x-1与x轴交于点A1,如图所示依次作正方形A1B1C1O,正方形A2B2C2C1,…,正方形A n B n C n C n-1,使得点A1,A2,A3,…在直线l上,点C1,C2,C3,…在y轴正半轴上,则点B n的坐标是________.参考答案与解析1.16解析:如图,∵点A,B的坐标分别为(1,0),(4,0),∴AB=3.∵∠CAB =90°,BC=5,∴在Rt△ABC中,由勾股定理得AC=BC2-AB2=4,∴A′C′=4.∵点C′在直线y=2x-6上,∴2x-6=4,解得x=5.即OA′=5,∴CC′=AA′=5-1=4.∴S▱BCC′B′=CC′·CA=4×4=16.即线段BC扫过的面积为16.2.解:(1)令y=0,则-2x+3=0,解得x=32;令x=0,则y=3,∴点A的坐标为⎝ ⎛⎭⎪⎫32,0,点B 的坐标为(0,3). (2)由(1)得点A ⎝ ⎛⎭⎪⎫32,0,∴OA =32,∴OP =2OA =3,∴点P 的坐标为(3,0)或(-3,0),∴AP =OP -OA =32或AP =OP +OA =92,∴S △ABP =12AP ·OB =12×92×3=274或S △ABP =12AP ·OB =12×32×3=94.综上所述,△ABP 的面积为274或94.3.解:(1)∵点P 在直线y =-x +10上,且点P 在第一象限内,∴x >0且y >0,即-x +10>0,解得0<x <10.∵点A (8,0),∴OA =8,∴S =12OA ·|y P |=12×8×(-x +10)=-4x +40(0<x <10).(2)当S =10时,即-4x +40=10,解得x =152.当x =152时,y =-152+10=52,∴当△OP A 的面积为10时,点P 的坐标为⎝ ⎛⎭⎪⎫152,52. 4.-2 5.C6.2n +1-2 解析:由题意得OA =OA 1=2,∴OB 1=OA 1=2,B 1B 2=B 1A 2=4,B 2A 3=B 2B 3=8,∴B 1(2,0),B 2(6,0),B 3(14,0)….∵2=22-2,6=23-2,14=24-2,…∴B n 的横坐标为2n +1-2.故答案为2n +1-2.7.(2n -1,2n -1) 解析:∵y =x -1与x 轴交于点A 1,∴点A 1的坐标为(1,0).∵四边形A 1B 1C 1O 是正方形,∴A 1B 1=OA 1=1,∴点B 1的坐标为(1,1).∵C 1A 2∥x 轴,点A 2在直线y =x -1上,∴点A 2的坐标为(2,1).∵四边形A 2B 2C 2C 1是正方形,∴A 2B 2=A 2C 1=2,∴点B 2的坐标为(2,3),同理可得点B 3的坐标为(4,7).∵B 1(20,21-1),B 2(21,22-1),B 3(22,23-1),…,∴点B n 的坐标为(2n -1,2n -1).难点探究专题(选做):特殊四边形中的综合性问题◆类型一特殊平行四边形的动态探究问题一、动点问题1.(2016·枣庄中考)如图,把△EFP放置在菱形ABCD中,使得顶点E,F,P分别在线段AB,AD,AC上,已知EP=FP=6,EF=63,∠BAD=60°,且AB>6 3.(1)求∠EPF的大小;(2)若AP=10,求AE+AF的值;(3)若△EFP的三个顶点E,F,P分别在线段AB,AD,AC上运动,请直接写出AP的最大值和最小值.二、图形的变换问题2.如图①,点O是正方形ABCD两条对角线的交点.分别延长OD到点G,OC 到点E,使OG=2OD,OE=2OC,然后以OG,OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图②.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′的最大值和此时α的度数,直接写出结果不必说明理由.◆类型二四边形间的综合性问题3.(2016·德州中考)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图①,四边形ABCD 中,点E ,F ,G ,H 分别为边AB ,BC ,CD ,DA 的中点.求证:中点四边形EFGH 是平行四边形;(2)如图②,点P 是四边形ABCD 内一点,且满足P A =PB ,PC =PD ,∠APB =∠CPD ,点E ,F ,G ,H 分别为边AB ,BC ,CD ,DA 的中点,猜想中点四边形EFGH 的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB =∠CPD =90°,其他条件不变,直接写出中点四边形EFGH 的形状.(不必证明)参考答案与解析1.解:(1)如图①,过点P 作PG ⊥EF 于点G ,H 为PE 的中点,连接GH ,∴∠PGE =90°,GH =PH =HE =12PE =3.∵PF =PE ,∴∠FPG =∠EPG ,FG =GE =12EEF =3 3 .在Rt △PGE 中,由勾股定理得PG =PE 2-GE 2=62-(33)2=3.∴PG =GH =PH ,即△GPH 为等边三角形,∴∠GPH =60°,∴∠FPE =∠FPG +∠GPE =2∠GPE =2×60°=120°.(2)如图①,过点P 作PM ⊥AB 于点M ,作PN ⊥AD 于点N ,∴∠ANP =∠AMP=90°.∵AC 为菱形ABCD 的对角线,∴∠DAC =∠BAC =12∠DAB =30°,PM =PN .在Rt △PME 和Rt △PNF 中,PM =PN ,PE =PF ,∴Rt △PME ≌Rt △PNF ,∴ME =NF .∵∠P AM =30°,AP =10,∴PM =12E AP =5.由勾股定理得AM =P A 2-PM 2=5 3 .在△ANP 和△AMP 中,⎩⎨⎧∠NAP =∠MAP ,∠ANP =∠AMP =90°,AP =AP ,∴△ANP ≌△AMP ,∴AN =AM =5 3 .∴AE +AF =(AM +ME )+(AN -NF )=AM +AN +ME -NF=10 3.(3)如图②,△EFP 的三个顶点分别在AB ,AD ,AC 上运动,点P 在P 1,P 之间运动.P 1O =PO =12PE =3,AE =EF =63,AO =AE 2-EO 2=9.∴AP 的最大值为AO +OP =12,AP 的最小值为AO -OP 1=6.2.(1)证明:如图,延长ED 交AG 于点H .∵四边形ABCD 与OEFG 均为正方形,∴OA =OD ,OG =OE ,∠AOG =∠DOE =90°,∴Rt △AOG ≌Rt △DOE ,∴∠AGO =∠DEO .∵∠AGO +∠GAO =90°,∴∠DEO +∠GAO =90°,∴∠AHE =90°,即DE ⊥AG ;(2)解:①在旋转过程中,∠OAG ′成为直角有以下两种情况:a .α由0°增大到90°过程中,当∠OAG ′为直角时,∵OA =OD =12OG =12OG ′,∴∠AG ′O =30°,∠AOG ′=60°.∵OA ⊥OD ,∴∠DOG ′=90°-∠AOG ′=30°,即α=30°;b .α由90°增大到180°过程中,当∠OAG ′为直角时,同理可求的∠AOG ′=60°,∴α=90°+∠AOG ′=150°.综上,当∠OAG ′为直角时,α=30°或150°;②AF ′长的最大值是2+22,此时α=315°.3.(1)证明:如图①中,连接BD .∵点E ,H 分别为边AB ,DA 的中点,∴EH ∥BD ,EH =12BD .∵点F ,G 分别为边BC ,CD 的中点,∴FG ∥BD ,FG =12BD ,∴EH ∥FG ,EH =GF ,∴中点四边形EFGH 是平行四边形.(2)解:四边形EFGH 是菱形.理由如下:如图②中,连接AC ,BD .∵∠APB =∠CPD ,∴∠APB +∠APD =∠CPD +∠APD ,即∠APC =∠BPD .在△APC 和△BPD 中,⎩⎨⎧AP =PB ,∠APC =∠BPD ,PC =PD ,∴△APC ≌△BPD ,∴AC =BD .∵点E ,F ,G 分别为边AB ,BC ,CD 的中点,∴EF =12AC ,FG =12BD ,∴EF =FG .∵四边形EFGH 是平行四边形,∴四边形EFGH 是菱形.(3)解:四边形EFGH 是正方形.理由如下:如图②中,设AC 与BD 交于点O .AC 与PD 交于点M ,AC 与EH 交于点N .∵△APC ≌△BPD ,∴∠ACP =∠BDP .∵∠DMO =∠CMP ,∴∠COD =∠CPD =90°.∵EH ∥BD ,AC ∥HG ,∴∠EHG =∠ENO =∠BOC =∠DOC =90°.∵四边形EFGH是菱形,∴四边形EFGH 是正方形.解题技巧专题:利用一次函数解决实际问题——明确不同类型的图象的端点、折点、交点等的意义◆类型一费用类问题一、建立一次函数模型解决问题1.(2016·攀枝花中考)某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价;(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数解析式;(3)小明家5月份用水26吨,则他家应交水费多少元?二、分段函数问题2.(2016·荆州中考)为更新果树品种,某果园计划新购进A,B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种树苗的单价为7元/棵,购买B种树苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数解析式;(2)若在购买计划中,B种树苗的数量不超过35棵,但不少于A种树苗的数量,请设计购买方案,使总费用最低,并求出最低费用.三、两个一次函数图象结合的问题3.随着互联网的发展,互联网消费逐渐深入人们生活,如图是“滴滴顺风车”与“滴滴快车”的行驶里程x(公里)与计费y(元)之间的函数关系图象,下列说法:①“快车”行驶里程不超过5公里计费8元;②“顺风车”行驶里程超过2公里的部分,每公里计费1.2元;③A 点的坐标为(6.5,10.4);④从哈尔滨西站到会展中心的里程是15公里,则“顺风车”要比“快车”少用3.4元.其中正确的个数有( )A .1个B .2个C .3个D .4个四、分类讨论思想4.(2017·天门中考)江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾,“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y 甲,y 乙(单位:元)与原价x(单位:元)之间的函数关系如图所示:(1)直接写出y 甲,y 乙关于x 的函数关系式;(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?◆类型二路程类问题一、两个一次函数图象结合的问题5.(2017·青岛中考)A,B两地相距60km,甲、乙两人从两地出发相向而行,甲先出发,图中l1,l2表示两人离A地的距离s(km)与时间t(h)的关系,请结合图象解答下列问题:(1)表示乙离A地的距离与时间关系的图象是________(填l1或l2);甲的速度是________km/h,乙的速度是________km/h;(2)甲出发多长时间两人恰好相距5km?二、分段函数问题6.(2016·新疆中考)暑假期间,小刚一家乘车去离家380km的某景区旅游,他们离家的距离y(km)与汽车行驶的时间x(h)之间的函数图象如图所示.(1)从小刚家到该景区乘车一共用了多少时间?(2)求线段AB对应的函数解析式;(3)小刚一家出发2.5h后离目的地有多远?◆类型三工程类问题一、两个一次函数图象结合的问题7.甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中:①甲队每天挖100米;②乙队开挖2天后,每天挖50米;③甲队比乙队提前3天完成任务;④当x =2或6时,甲、乙两队所挖管道长度都相差100米.正确的有________(填序号).二、分段函数问题8.(2016·绍兴中考)根据卫生防疫部门的要求,游泳池必须定期换水、清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m 3)和开始排水后的时间t(h )之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔的排水速度是多少? (2)当2≤t ≤3.5时,求Q 关于t 的函数解析式.参考答案与解析1.解:(1)设每吨水的政府补贴优惠价为m 元,市场价为n 元.由题意得⎩⎨⎧14m +(20-14)n =49,14m +(18-14)n =42,解得⎩⎨⎧m =2,n =3.5.答:每吨水的政府补贴优惠价为2元,市场价为3.5元.(2)当0≤x ≤14时,y =2x ;当x >14时,y =14×2+(x -14)×3.5=3.5x -21.综上所述,y =⎩⎨⎧2x (0≤x ≤14),3.5x -21(x >14).(3)∵26>14,∴小明家5月份水费为3.5×26-21=70(元).答:小明家5月份应交水费70元.2.解:(1)当0≤x ≤20时,设y 与x 的函数解析式为y =ax ,把(20,160)代入y =ax 中,得a =8.即y 与x 的函数解析式为y =8x ;当x >20时,设y 与x 的函数解析式为y =kx +b ,把(20,160),(40,288)代入y =kx +b 中,得⎩⎨⎧20k +b =160,40k +b =288,解得⎩⎨⎧k =6.4,b =32,即y 与x 的函数解析式为y =6.4x +32.综上所述,y 与x 的函数解析式为y =⎩⎨⎧8x (0≤x ≤20),6.4x +32(x >20).(2)∵B 种树苗的数量不超过35棵,但不少于A 种树苗的数量,∴⎩⎨⎧x ≤35,x ≥45-x ,∴22.5≤x ≤35.设总费用为W 元,则W =6.4x +32+7(45-x )=-0.6x +347.∵k =-0.6<0,∴y 随x 的增大而减小,∴当x =35,45-x =10时,总费用最低,即购买B 种树苗35棵,A 种树苗10棵时,总费用最低,W 最低=-0.6×35+347=326(元). 3.D4.解:(1)设y 甲=kx ,把(2000,1600)代入,得2000k =1600,解得k =0.8,所以y 甲=0.8x .当0<x <2000时,设y 乙=ax ,把(2000,2000)代入,得2000k =2000,解得k =1,所以y 乙=x .当x ≥2000时,设y 乙=mx +n ,把(2000,2000),(4000,3400)代入,得⎩⎨⎧2000m +n =2000,4000m +n =3400,解得⎩⎨⎧m =0.7,n =600,所以y乙=⎩⎨⎧x (0<x <2000),0.7x +600(x ≥2000).(2)当0<x <2000时,0.8x <x ,到甲商店购买更省钱;当x ≥2000时,若到甲商店购买更省钱,则0.8x <0.7x +600,解得x <6000;若到乙商店购买更省钱,则0.8x >0.7x +600,解得x >6000;若到甲、乙两商店购买一样省钱,则0.8x =0.7x +600,解得x =6000;故当购买金额按原价小于6000元时,到甲商店购买更省钱;当购买金额按原价大于6000元时,到乙商店购买更省钱;当购买金额按原价等于6000元时,到甲、乙两商店购买花钱一样.5.解:(1)l 2 30 20 解析:由题意可知,乙的函数图象是l 2,甲的速度是602=30(km/h),乙的速度是603=20(km/h).故答案为l 2,30,20.(2)设甲出发x h 两人恰好相距5km.由题意30x +20(x -0.5)+5=60或30x +20(x -0.5)-5=60,解得x =1.3或1.5.答:甲出发1.3h 或1.5h 两人恰好相距5km. 6.解:(1)从小刚家到该景区乘车一共用了4h.(2)设线段AB 对应的函数解析式为y =kx +b .把点A (1,80),B (3,320)代入得⎩⎨⎧k +b =80,3k +b =320,解得⎩⎨⎧k =120,b =-40.∴y =120x -40(1≤x ≤3). (3)当x =2.5时,y =120×2.5-40=260,380-260=120(km).故小刚一家出发2.5h 后离目的地120km. 7.①②④ 8.解:(1)暂停排水需要的时间为2-1.5=0.5(h).∵排水时间为3.5-0.5=3(h),一共排水900m 3,∴排水孔的排水速度是900÷3=300(m 3/h).(2)当2≤t ≤3.5时,设Q 关于t 的函数解析式为Q =kt +b ,易知图象过点(3.5,0).∵当t =1.5时,排水300×1.5=450(m 3),此时Q =900-450=450,∴点(2,450)在直线Q =kt +b 上.把(2,450),(3.5,0)代入Q =kt +b ,得⎩⎨⎧2k +b =450,3.5k +b =0,解得⎩⎨⎧k =-300,b =1050,∴Q 关于t 的函数解析式为Q =-300t +1050.类比归纳专题:二次根式求值的常用方法——明确计算便捷渠道◆类型一 利用二次根式的非负性求值1.若a ,b 为实数,且|a +1|+b -1=0,则(ab )2018的值是( ) A .0 B .1 C .-1 D .±12.已知a +1+b 2-2b +1=0,则a 2018+b 2017的值是________.3.若a 2-3a +1+b 2-2b +1=0,则a 2+1a 2-|b |=________. 4.若y =x -3+3-x +2,求x y 的值.【方法1②】◆类型二利用乘法公式进行计算5.计算:(1)(5+3)2; (2)(25-2)2;(3)(3+2)2-(3-2)2.6.已知x+1x=5,求x2x4+x2+1的值.◆类型三整体代入求值7.已知x=2-10,则代数式x2-4x-6的值为()A.-1 B.0 C.1 D.28.(2017·安顺中考)已知x+y=3,xy=6,则x2y+xy2的值为________.9.已知x=1-2,y=1+2,求x2+y2-xy-2x+2y的值.10.已知x=13-22,y=13+22,求xy+yx-4的值.参考答案与解析: 1.B 2.23.6 解析:∵a 2-3a +1+b 2-2b +1=0,∴a 2-3a +1+(b -1)2=0,∴a 2-3a +1=0,b =1,∴a -3+1a =0,∴a +1a =3,∴⎝ ⎛⎭⎪⎫a +1a 2=32,∴a 2+1a 2=7.∴a 2+1a2-|b |=6. 4.解:由题意有x -3≥0,3-x ≥0,∴x =3,∴y =2,∴x y =32=9. 5.解:(1)原式=8+215.(2)原式=22-410. (3)原式=4 6.6.解:原式取倒数得x 4+x 2+1x 2=x 2+1x 2+1=⎝ ⎛⎭⎪⎫x +1x 2-1=(5)2-1=4.∴原式=14.7.B 8.329.解:∵x =1-2,y =1+2,∴x -y =(1-2)-(1+2)=-22,xy =(1-2 )(1+ 2 )=-1.∴x 2+y 2-xy -2x +2y =(x -y )2-2(x -y )+xy =(-2 2 )2-2×(-22)+(-1)=7+4 2.方法点拨:根据原式以及字母取值的特点,将原式配方、整合成含有x -y 和xy 的形式,利用整体思想代入求值.10.解:由已知得x =3+22,y =3-2 2.∴x +y =6,xy =1,∴原式=x 2+y 2xy -4=(x +y )2-6xy xy=62-6×1=30.思想方法专题:矩形中的折叠问题——体会折叠中的方程思想及数形结合思想◆类型一 折叠中求角度1.如图,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在点C ′处,折痕为EF .若∠EFC ′=125°,那么∠ABE 的度数为( )A .15°B .20°C .25°D .30°第1题图 第2题图2.如图,某数学兴趣小组开展以下折纸活动:(1)对折矩形纸片ABCD ,使AD 和BC 重合,得到折痕EF ,把纸片展平;(2)再一次折叠纸片,使点A 落在EF 上,并使折痕经过点B ,得到折痕BM ,同时得到线段BN .观察探究可以得到∠ABM 的度数是( )A .25°B .30°C .36°D .45° ◆类型二 折叠中求线段长3.(2017·安顺中考)如图,在矩形纸片ABCD 中,AD =4cm ,把纸片沿直线AC 折叠,点B 落在E 处,AE 交DC 于点O ,若AO =5cm ,则AB 的长为( ) A .6cm B .7cm C .8cm D .9cm第3题图 第4题图4.(2017·宜宾中考)如图,在矩形ABCD 中,BC =8,CD =6,将△ABE 沿BE 折叠,使点A 恰好落在对角线BD 上的F 处,则DE 的长是( )A .3 B.245 C .5 D.89165.★(2016·威海中考)如图,在矩形ABCD 中,AB =4,BC =6,点E 为BC 的中点,将△ABE 沿AE 折叠,使点B 落在矩形内的点F 处,连接CF ,则CF的长为________.◆类型三折叠中求面积6.(2017·鄂州中考)如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于E.(1)求证:△AFE≌△CDE;(2)若AB=4,BC=8,求图中阴影部分的面积.7.★(2016·福州中考)如图,矩形ABCD中,AB=4,AD=3,M是边CD上的一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积.参考答案与解析1.B 解析:由折叠可知∠EFC =∠EFC ′=125°.∵在矩形ABCD 中,AD ∥BC ,∴∠DEF =180°-125°=55°.根据折叠可知∠BEF =∠DEF =55°,∴∠BED =110°.∵四边形ABCD 为矩形,∠A =90°,∴∠ABE =110°-90°=20°.故选B. 2.B 3.C 4.C5. 185 解析:如图,连接BF 交AE 于H ,由折叠的性质可知BE =FE ,AB =AF ,∠BAE =∠F AE ,∴AH ⊥BF ,BH =FH .∵BC =6,点E 为BC 的中点,∴BE =12E B C =3.又∵AB =4,∴在Rt △ABE 中,由勾股定理得AE =AB 2+BE 2=5.∵S △ABE =12AB ·BE =12AE ·BH ,∴BH =125,则BF =2BH =245.∵E 是BC 的中点,∴FE =BE =EC ,∴∠BFC =90°.在Rt △BFC 中,由勾股定理得CF =BC 2-BF 2=62-⎝ ⎛⎭⎪⎫2452=185.6.(1)证明:∵四边形ABCD 是矩形,∴AB =CD ,∠B =∠D =90°.∵将矩形ABCD 沿对角线AC 翻折,点B 落在点F 处,∴∠F =∠B ,AB =AF ,∴AF =CD ,∠F=∠D .在△AFE 与△CDE 中,⎩⎨⎧∠F =∠D ,∠AEF =∠CED ,AF =CD ,∴△AFE ≌△CDE .(2)解:∵AB =4,BC =8,∴CF =AD =8,AF =CD =AB =4.∵△AFE ≌△CDE ,∴EF =DE .在Rt △CED 中,由勾股定理得DE 2+CD 2=CE 2,即DE 2+42=(8-DE )2,∴DE =3,∴AE =8-3=5,∴S 阴影=12×4×5=10.7.解:(1)由折叠性质得△ANM ≌△ADM ,∴∠MAN =∠DAM .∵AN 平分∠MAB ,∴∠MAN =∠NAB ,∴∠DAM =∠MAN =∠NAB .∵四边形ABCD 是矩形,∴∠DAB =90°,∴∠DAM =30°,∴AM =2DM .在Rt △ADM 中,∵AD =3,∴由勾股定理得AM 2-DM 2=AD 2,即(2DM )2-DM 2=32,解得DM = 3.(2)延长MN 交AB 的延长线于点Q ,如图所示.∵四边形ABCD 是矩形,∴AB ∥DC ,∴∠DMA=∠MAQ,由折叠性质得△ANM≌△ADM,∴∠ANM=∠D=90°,∠DMA=∠AMQ,AN=AD=3,MN=MD=1,∴∠MAQ=∠AMQ,∴MQ=AQ.设NQ=x,则AQ=MQ=MN+NQ=1+x.∵∠ANM=90°,∴∠ANQ=90°.在Rt△ANQ中,由勾股定理得AQ2=AN2+NQ2,即(x+1)2=32+x2,解得x=4,∴NQ=4,AQ=5.∵△NAB和△NAQ在AB边上的高相等,AB=4,AQ=5,∴S△NAB =45S△NAQ=45×12×AN·NQ=45×12×3×4=245.解题技巧专题:正方形中特殊的证明(计算)方法——解决正方形中的最值及旋转变化模型问题◆类型一利用正方形的旋转性质解题1.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P,若四边形ABCD的面积是18,则DP的长是__________.2.如图,在正方形ABCD中,点E,F分别在BC,CD上,∠EAF=45°.求证:S△AEF =S△ABE+S△ADF.3.如图,在正方形ABCD 中,对角线AC ,BD 交于点O ,P 为正方形ABCD 外一点,且BP ⊥CP . 求证:BP +CP =2OP .◆类型二 利用正方形的对称性解题4.如图,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 最小,则这个最小值为( ) A. 3 B .23 C .2 6 D.6第4题图 第5题图5.如图,正方形ABCD 的边长为4,E 为BC 上一点,BE =1,F 为AB 上一点,AF =2,P 为AC 上一点,则PF +PE 的最小值为________.6.如图,在正方形ABCD 中,点E 是CD 的中点,AC ,BE 交于点F ,MF ∥AE 交AB 于M . 求证:DF =MF .参考答案与解析1.322.证明:延长CB到点H,使得HB=DF,连接AH.∵四边形ABCD是正方形,∴∠ABH=∠D=90°,AB=AD.∴△ADF绕点A顺时针旋转90°后能和△ABH重合.∴AH=AF,∠BAH=∠DAF.∵∠HAE=∠HAB+∠BAE=∠DAF+∠BAE=90°-∠EAF=90°-45°=45°,∴∠HAE=∠EAF=45°.又∵AE=AE,∴△AEF与△AEH关于直线AE对称,∴S△AEF =S△AEH=S△ABE+S△ABH=S△ABE+S△ADF.3.证明:∵四边形ABCD是正方形,∴OB=OC,∠BOC=90°.将△OCP顺时针旋转90°至△OBE(如图所示),∴OE=OP,BE=CP,∠OBE=∠OCP,∠BOE=∠COP.∵BP⊥CP,∴∠BPC=90°.∵∠BOC+∠OBP+∠BPC+∠OCP=360°,∴∠OBP+∠OCP=180°,∴∠OBP+∠OBE=180°,∴E,B,P在同一直线上.∵∠POC+∠POB=∠BOC=90°,∠BOE=∠COP,∴∠BOE+∠POB=90°,即∠EOP=90°.在Rt△EOP中,由勾股定理得PE=OE2+OP2=OP2+OP2=2OP.∵PE=BE+BP,BE=CP,∴BP+CP=2OP.4.B解析:连接PB.∵点P在正方形ABCD的对角线AC上,∴PD=PB,∴PD +PE的最小值就是PB+PE的最小值,∴PD+PE的最小值就是BE.∵△ABE是等边三角形,∴BE=AB.∵S正方形ABCD=12,∴BE2=AB2=12,即BE=23,故选B.5.176.证明:∵B,D关于AC对称,点F在AC上,∴BF=DF.∵四边形ABCD是正方形,∴AD=BC,∠ADE=∠BCE.∵点E是CD的中点,∴DE=CE.在△ADE 和△BCE中,∵AD=BC,∠ADE=∠BCE,DE=CE,∴△ADE≌△BCE,∴AE =BE,∴∠BAE=∠ABE.∵MF∥AE,∴∠BAE=∠BMF,∴∠BMF=∠ABE,∴MF=BF.∵BF=DF,∴DF=MF.解题技巧专题:函数图象信息题——数形结合,快准解题◆类型一 根据实际问题判断函数图象1.为了加强爱国主义教育,每周一学校都要举行庄严的升旗仪式,同学们凝视着冉冉上升的国旗.下列哪个函数图象能近似地刻画上升的国旗离旗杆顶端的距离与时间的关系( )2.(2017·牡丹江中考)下列图象中,能反映等腰三角形顶角度数y(度)与底角度数x(度)之间的函数关系的是( )◆类型二 获取实际问题中图象的信息3.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(m 2)与工作时间t(h )之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是【方法12】( )A .300m 2B .150m 2C .330m 2D .450m 2第3题图 第4题图4.(2017·河南中考)如图①,点P 从△ABC 的顶点B 出发,沿B →C →A 匀速运动到点A ,图②是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是________.5.(2017·西宁中考)首条贯通丝绸之路经济带的高铁线——宝兰客专进入全线拉通试验阶段,宝兰客专的通车对加快西北地区与“一带一路”沿线国家和地区的经贸合作、人文交流具有十分重要的意义,试运行期间,一列动车从西安开往西宁,一列普通列车从西宁开往西安,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示y 与x 之间的函数关系,根据图象进行一下探究:【方法12】 【信息读取】(1)西宁到西安两地相距________千米,两车出发后________小时相遇;(2)普通列车到达终点共需________小时,普通列车的速度是________千米/时. 【解决问题】(3)求动车的速度;(4)普通列车行驶t 小时后,动车到达终点西宁,求此时普通列车还需行驶多少千米到达西安.◆类型三 一次函数图象与字母系数的关系6.若实数a 、b 满足ab <0,则一次函数y =ax +b 的图象可能是( )7.在一次函数y =12ax -a 中,y 随x 的增大而减小,则其图象可能是( )参考答案与解析 1.A 2.C3.B 解析:设点A (4,1200),点B (5,1650),直线AB 的解析式为y =kx +b,则⎩⎨⎧4k +b =1200,5k +b =1650,解得⎩⎨⎧k =450,b =-600,故直线AB 的解析式为y =450x -600.当x =2时,y =450×2-600=300,300÷2=150(m 2).故选B.4.12 解析:根据图象可知点P 在BC 上运动时,此时BP 不断增大,由图象可知:点P 从B 运动到C 的过程中,BP 的最大值为5,即BC =5.点P 运动到点A 时,BP =AB =5.∴△ABC 是等腰三角形.∵M 是曲线部分的最低点,∴此时BP 最小,即BP ⊥AC 时,BP =4,∴由勾股定理得PC =3,∴AC =6,∴△ABC 的面积为12×4×6=12,故答案为12. 5.解:(1)1000 3(2)12 2503(3)设动车的速度为x 千米/时,根据题意,得3x +3×2503=1000,解得x =250. 答:动车的速度为250千米/时.(4)∵t =1000250=4(小时),∴4×2503=10003(千米),∴1000-10003=20003(千米),∴此时普通列车还需行驶20003千米到达西安. 6.B 7.B思想方法专题:勾股定理中的思想方法◆类型一 分类讨论思想一、直角边与斜边不明需分类讨论1.一直角三角形的三边长分别为2,3,x ,那么以x 为边长的正方形的面积为【易错3】( ) A .13 B .5C .13或5D .42.直角三角形的两边长是6和8,则这个三角形的面积是____________. 二、锐角或钝角三角形形状不明需分类讨论3.★(2016·东营中考)在△ABC 中,AB =10,AC =210,BC 边上的高AD =6,则BC 的长为【易错4】( ) A .10 B .8C .6或10D .8或104.在等腰△ABC中,已知AB=AC=5,△ABC的面积为10,则BC=____________.【易错4】◆类型二方程思想一、实际问题中结合勾股定理列方程求线段长5.如图,小华将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度为________.二、折叠问题中结合勾股定理列方程求线段长6.如图,将长方形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC=9,求BF的长.【方法4】三、利用公共边相等结合勾股定理列方程求线段长7.(2016·益阳中考)如图,在△ABC中,AB=15,BC=14,AC=13,求△ABC 的面积.◆类型三 利用转化思想求最值8.(2017·涪陵区期末)一只蚂蚁从棱长为4cm 的正方体纸箱的A 点沿纸箱外表面爬到B 点,那么它的最短路线的长是________cm .【方法5】9.如图,A ,B 两个村在河CD 的同侧,且AB =13km ,A ,B 两村到河的距离分别为AC =1km ,BD =3km .现要在河边CD 上建一水厂分别向A ,B 两村输送自来水,铺设水管的工程费每千米需3000元.请你在河岸CD 上选择水厂位置O ,使铺设水管的费用最省,并求出铺设水管的总费用W(元).【方法5】参考答案与解析 1.C 2.24或673.C 解析:根据题意画出图形,如图所示,图①中,AB =10,AC =210,AD =6.在Rt △ABD 和Rt △ACD 中,根据勾股定理得BD =AB 2-AD 2=102-62=8,CD =AC 2-AD 2=(210)2-62=2,此时BC =BD +CD =8+2=10;图②中,同理可得BD =8,CD =2,此时BC =BD -CD =8-2=6.综上所述,BC 的长为6或10.故选C.4.25或45 解析:如图①,△ABC 为锐角三角形,过点C 作CD ⊥AB ,交AB 于点D .∵S △ABC =10,AB =5,∴12AB ·CD =10,解得CD =4.在Rt△ACD 中,由勾股定理得AD=AC2-CD2=52-42=3,∴BD=AB-AD=5-3=2.在Rt△CBD中,由勾股定理得BC=BD2+CD2=22+42=25;如图②,△ABC为钝角三角形,过点C作CD⊥AB,交BA的延长线于点D.同上可得CD=4.在Rt△ACD中,AC=5,由勾股定理得AD=AC2-CD2=52-42=3.∴BD=BA+AD=5+3=8.在Rt△BDC中,由勾股定理得BC=BD2+CD2=82+42=4 5.综上所述,BC的长度为25或4 5.5.17m6.解:∵折叠前后两个图形的对应线段相等,∴CF=C′F.设BF=x.∵BC=9,∴C′F=CF=BC-BF=9-x.∵C′是AB的中点,AB=6,∴BC′=12E A B=3.在Rt△C′BF中,由勾股定理得C′F2=BF2+C′B2,即(9-x)2=x2+32,解得x=4,即BF的长为4.7.解:过A作AD⊥BC交BC于点D.在△ABC中,AB=15,BC=14,AC=13,设BD=x,则CD=BC-BD=14-x.在Rt△ABD和Rt△ACD中,由勾股定理得AD2=AB2-BD2=152-x2,AD2=AC2-CD2=132-(14-x)2,即152-x2=132-(14-x)2,解得x=9.在Rt△ABD中,由勾股定理得AD=AB2-BD2=152-92=12.∴S△ABC =12BC·AD=12×14×12=84.8.459.解:如图,作点A关于CD的对称点A′,连接BA′交CD于O,点O即为水厂的位置.过点A′作A′E∥CD交BD的延长线于点E,过点A作AF⊥BD于点F,则AF=A′E,DF=AC=1km,DE=A′C=1km.∴BF=BD-FD=3-1=2(km).在Rt△ABF中,AF2=AB2-BF2=13-22=9,∴AF=3km.∴A′E=3km.在Rt△A′BE中,BE=BD+DE=4km,由勾股定理得A′B=A′E2+BE2=32+42=5(km).∴W=3000×5=15000(元).故铺设水管的总费用为15000元.解题技巧专题:勾股定理与面积问题——全方位求面积,一网搜罗◆类型一 三角形中利用面积法求高1.直角三角形的两条直角边的长分别为5cm ,12cm ,则斜边上的高线的长为( ) A.8013cm B .13cm C.132cm D.6013cm2.(2017·乐山中考)点A 、B 、C 在格点图中的位置如图所示,格点小正方形的边长为1,则点C 到线段AB 所在直线的距离是________. ◆类型二 结合乘法公式巧求面积或长度3.已知Rt △ABC 中,∠C =90°,若a +b =12cm ,c =10cm ,则Rt △ABC 的面积是( )A .48cm 2B .24cm 2C .16cm 2D .11cm 24.若一个直角三角形的面积为6cm 2,斜边长为5cm ,则该直角三角形的周长是( )A .7cmB .10cmC .(5+37)cmD .12cm5.(2017·襄阳中考)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为()A.3 B.4 C.5 D.6◆类型三巧妙利用割补法求面积6.如图,已知AB=5,BC=12,CD=13,DA=10,AB⊥BC,求四边形ABCD 的面积.7.如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2,求四边形ABCD的面积.【方法6】◆类型四利用“勾股树”或“勾股弦图”求面积8.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为9cm,则正方形A,B,C,D的面积之和为________cm2.9.在我国古算书《周髀算经》中记载周公与商高的谈话,其中就有勾股定理的最早文字记录,即“勾三股四弦五”,亦被称作商高定理.如图①是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图②是将图①放入长方形内得到的,∠BAC =90°,AB =3,AC =4,则D ,E ,F ,G ,H ,I 都在长方形KLMJ 的边上,那么长方形KLMJ 的面积为________.参考答案与解析 1.D2. 355 解析:如图,连接AC ,BC ,设点C 到线段AB 所在直线的距离是h .∵S △ABC =3×3-12×2×1-12×2×1-12×3×3-1=9-1-1-92-1=32,AB =12+22=5,∴12×5h =32,∴h =355.故答案为355.3.D 4.D 5.C6.解:连接AC ,过点C 作CE ⊥AD 交AD 于点E .∵AB ⊥BC ,∴∠CBA =90°.在Rt △ABC 中,由勾股定理得AC =AB 2+BC 2=52+122=13.∵CD =13,∴AC =CD .∵CE ⊥AD ,∴AE =12AD =12×10=5.在Rt △ACE 中,由勾股定理得CE =AC 2-AE 2=132-52=12.∴S 四边形ABCD =S △ABC +S △CAD =12E A B ·BC +12E A D ·CE =12×5×12+12×10×12=90.7.解:延长AD ,BC 交于点E .∵∠B =90°,∠A =60°,∴∠E=30°.∴AE =2AB。

八年级第二学期数学限时训练16

八年级第二学期数学限时训练16

八年级第二学期数学限时训练(16)1. (2012浙江杭州3分)已知平行四边形ABCD 中,∠B=4∠A,则∠C=【 】A .18°B .36°C .72°D .144°2. (2012四川自贡3分)如图,在平行四边形ABCD 中,AD=5,AB=3,AE 平分∠BAD 交BC 边于点E ,则线段BE ,EC 的长度分别为【 】A .2和3B .3和2C .4和1D .1和43. (2012山东泰安3分)如图,在平行四边形ABCD 中,过点C 的直线CE⊥AB,垂足为E ,若∠EAD=53°,则∠BCE 的度数为【 】A .53°B .37°C .47°D .123°4. (2012广西南宁3分)如图,在平行四边形ABCD 中,AB=3cm ,BC=5cm ,对角线AC ,BD 相交于点O ,则OA 的取值范围是【 】A .2cm <OA <5cmB .2cm <OA <8cmC .1cm <OA <4cmD .3cm <OA <8cm5. (2013湖南益阳,6,4分)如图2,在平行四边形ABCD 中,下列结论中错误..的是( ) A .∠1=∠2 B .∠ BAD =∠BCD C .AB =CDD . AC ⊥BDX k B 1 . c o m 6. (2012湖南永州3分)如图,平行四边形ABCD 的对角线相交于点O ,且AB≠AD,过O 作OE⊥BD 交BC 于点E .若△CDE 的周长为10,则平行四边形ABCD 的周长为 .12ABC D 图27.(2013黑龙江省哈尔滨市,7)如图,在ABCD中,AD=2AB,CE平分∠BCD交AD边于点E,且AE=3,则AB的长为().8.(2012山东烟台3分)ABCD中,已知点A(﹣1,0),B(2,0),D(0,1).则点C 的坐标为.9、(2010青海西宁)在□ABCD中,对角线AC、BD相交于点O,如果AC=14,BD=8,AB=x,那么x的取值范围是.10、(2010辽宁铁岭).如图所示,平行四边形ABCD的周长是18 cm,对角线AC、BD相交于点O,若△AOD与△AOB的周长差是5 cm,则边AB的长是________ cm.(A)4 (B)3 (C) 5 2(D)2。

人教版八级数学下册第二学期 同步课堂补习辅导练习题作业 第十九章 一次函数周周测9(全章)

人教版八级数学下册第二学期 同步课堂补习辅导练习题作业  第十九章 一次函数周周测9(全章)

第十九章 一次函数周周测9一 选择题1.星期天,小明和小兵租用一艘皮划艇去嘉陵江游玩,他们先从上游顺流划行1小时,再停留0.5小时采集植物标本,然后加速划行0.5小时到下游,最后乘坐公交车1小时回到出发地,那么小明和小兵距离出发点的距离y 随时间x 变化的大致图象是( )2.某洗衣机在洗涤衣服时经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水),在这三个过程中洗衣机内水量y(升)与时间x(分)之间的函数关系对应的图象大致为( )3.向最大容量为60升的热水器内注水,每分钟注水10升,注水2分钟后停止注水1分钟,然后继续注水,直至注满.则能反映注水量与注水时间函数关系的图象是( )4.一次函数y=2x-1的图象大致是( )5.同一直角坐标系中,一次函数y=k1x+b与正比例函数y2=k2x的图象如图,则满足y1≥y2的x取1值范围是()A.x≤﹣2 B.x≥﹣2 C.x<﹣2 D.x>﹣26.某天小明骑自行车上学,途中因自行车发生故障,修车耽误了一段时间后继续骑行,按时赶到了学校. 图描述了他上学的情景,下列说法中错误的是( )A.修车时间为15分钟B.学校离家的距离为2000米C.到达学校时共用时间20分钟D.自行车发生故障时离家距离为1000米7.若一次函数y=ax+b的图象经过第一、二、四象限,则下列不等式中总是成立的是( ) A.ab>0 B.a-b>0 C.a2+b>0 D.a+b>08.在平面直角坐标系中,若直线y=kx+b经过第一、三、四象限,则直线y=bx+k不经过...的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限9.已知一次函数y=-0.5x+2,当1≤x≤4时,y的最大值是().A.2 B.1.5 C.2.5 D.-610.在市举办的“划龙舟,庆端午”比赛中,甲、乙两队在比赛时的路程s(米)与时间t(分钟)之间的函数关系图象如图所示,根据图象得到下列结论,其中错误的是()A.这次比赛的全程是500米B.乙队先到达终点C.比赛中两队从出发到1.1分钟时间段,乙队的速度比甲队的速度快D.乙与甲相遇时乙的速度是375米/分钟11.如图,在平面直角坐标系中,△ABC 的顶点坐标分别为A(1,1),B(3,1),C(2,2)当直线y=0.5x+b与△ABC有交点时,b的取值范围是( )A.-1≤b≤1B.-1≤b≤0.5C.-0.5≤b≤0.5D.-0.5≤b≤112.如图,在平面直角坐标系中,直线y=-3x+3与坐标轴分别交于A,B两点,以线段AB为边,在第一象限内作正方形ABCD,将正方形ABCD沿x轴负方向平移a个单位长度,使点D恰好落在直线y=3x-2上,则a的值为()A.1 B.2 C.﹣1 D.﹣1.5二填空题13.3x﹣y=7中,变量是,常量是.把它写成用x的式子表示y的形式是.14.已知y-2与x成正比,且当x=1时, y=-6,则y与x的关系式是____________。

人教版 八年级下数学 19.2 一次函数 课时训练(含答案)

人教版 八年级下数学 19.2 一次函数 课时训练(含答案)

人教版 八年级数学 19.2 一次函数 课时训练一、选择题1. 在直角坐标系中,点M ,N 在同一个正比例函数图象上的是( )A. M (2,-3),N (-4,6)B. M (-2,3),N (4,6)C. M (-2,-3),N (4,-6)D. M (2,3),N (-4,6)2. 下列函数中,满足y 的值随x 的值增大而增大的是( )A. y =-2xB. y =3x -1C. y =1xD. y =x 23. 已知函数y =kx +b 的图象如图,则y =2kx +b 的图象可能是( )4. 如果(0)y kx k =≠的自变量增加4,函数值相应地减少16,则k 的值为( )A .4B .- 4C .14 D . 14-5. 已知直线(32)2y m x =++和36y x =-+交于x 轴上同一点,m 的值为( )A .2-B .2C .1-D .0一次函数y kx b =+的图象如图所示,当0y <时,x 的取值范围是( )A .0x >B .0x <C .2x >D .2x <7. 下面哪个正比例函数的图象经过一、三象限 ( )A .()23y x =-B .()3.14πy x =-C .π22y x ⎛⎫=- ⎪⎝⎭D .()526y x =-8. 把一个二元一次方程组中的两个方程化为一次函数画图象,所得的两条直线平行,则此方程组( )A.无解B.有唯一解C.有无数个解D.以上都有可能二、填空题9. 的图像是;过象限;过象限;过象限;过象限.轴的交点分别为、;其中、分别叫做该一次函数在10. 若函数y=(m-1)x|m|是正比例函数,则该函数的图象经过第________象限.11. 3个单位,再向下平移2个单位,所得到的直线的解析式是.12.________.13. 二、三象限,、).14. 已知一次函数的图象如图所示,则的取值范围是.15. 若点M(k-1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k-1)x +k的图象不经过...第________象限.16. 已知,并且,则直线一定通过象限.三、解答题17. (2019•淮安)快车从甲地驶向乙地,慢车从乙地驶向甲地,两车同时出发并且在同一条公路上匀速行驶,途中快车休息1.5小时,慢车没有休息.设慢车行驶的时间为x 小时,快车行驶的路程为1y 千米,慢车行驶的路程为2y 千米.如图中折线OAEC 表示1y 与x 之间的函数关系,线段OD 表示2y 与x 之间的函数关系.请解答下列问题:(1)求快车和慢车的速度;(2)求图中线段EC 所表示的1y 与x 之间的函数表达式;(3)线段OD 与线段EC 相交于点F ,直接写出点F 的坐标,并解释点F 的实际意义.18. 作函数31y x x =-+-的图象,并根据图象求出函数的最小值.人教版 八年级数学 19.2 一次函数 课时训练-答案一、选择题1. 【答案】A 【解析】判断两个点是否在同一个正比例函数图象上,只需看它们的横、纵坐标比值是否相等.∵-32=6-4,∴只有A 选项的两个点的纵坐标与横坐标的比值相等,因此选A.2. 【答案】B 【解析】一次函数y =-2x 中,y 随x 增大而减小;一次函数y =3x -1中,y 随x 的增大而增大;反比例函数y =1x 中,在每一个分支上,y 随x的增大而减小;二次函数y =x 2中,当x >0时,y 随x 增大而增大,当x <0时,y 随x 的增大而减小,故答案为B .3. 【答案】C 【解析】由已知一次函数经过(0,1),可求得k >0,b =1,则画出图象草图,故选C.4. 【答案】B5. 【答案】C【解析】分别求出两个直线与x交与x6. 【答案】Cx7. 【答案】D8. 【答案】A【解析】二元一次方程组的解就是两条直线的交点坐标,若两条直线平行,则说明这两条直线无交点,则此二元一次方程组无解二、填空题10. 【答案】二、四 【解析】∵函数y =(m -1)x |m|是正比例函数,则⎩⎨⎧|m|=1m -1≠0,∴m =-1.则这个正比例函数为y =-2x ,其图象经过第二、四象限.11.12.13.14.15. 【答案】一【解析】依据题意,M关于y轴对称点在第四象限,则M点在第三象限,即k-1<0,k+1<0, 解得k<-1.∴一次函数y=(k-1)x+k的图象过第二、三、四象限,故不经过第一象限.三、解答题17. 【答案】(1)/小时,/小时,答:快车的速度为90千米/小时,慢车的速度为60千米/小时.(2)由题意可得,点E则点E快车从点E到点C小时),则点C设线段EC x即线段EC x(3)设点F的横坐标为a,即点FF代表的实际意义是在4.5小时时,甲车与乙车行驶的路程相等.。

2020-2021学年 八年级数学人教版 下册 19.2 一次函数 课时训练(含答案)

2020-2021学年 八年级数学人教版 下册  19.2 一次函数 课时训练(含答案)

人教版 八年级||数学 19.2 一次函数 课时训练一、选择题1. 如果每盒羽毛球有20个 ,每盒售价为24元 ,那么羽毛球的售价y (元 )与羽毛球个数x (个 )之间的关系式为 ( ) A .24y x =B .20y x = C .65y x =D .56y x =2. 函数y =kx +b 的图象如图 ,那么当y <0时 ,x 的取值范围是( )A .x <-2B .x >-2C .x <-1D .x >-13. (2021•辽阳)假设0ab <且a b > ,那么函数y ax b =+的图象可能是A .B .C .D .4. 函数y =kx +b 的图象如图 ,那么y =2kx +b 的图象可能是( )5. 假设函数y =2x +( -3 -m )是关于x 的正比例函数 ,那么m 的值是 ()A . -3B .1C . -7D .36. 正比例函数y=2(m -1)x 的图象上两点A (x 1 ,y 1) ,B (x 2 ,y 2) ,当x 1<x 2时 ,有y1>y 2,那么m 的取值范围是 ()A .m<1B .m>1C .m<2D .m>07. 甲、乙两车同时从A 地出发 ,沿同一路线各自匀速向B 地行驶 ,甲到达B 地停留1小时后按原路以另一个速度匀速返回 ,直到与乙车相遇.乙车的速度为每小时60千米 ,两车之间的距离y (千米)与乙车行驶时间x (时)之间的函数图象如下列图 ,那么以下结论错误的选项是 () A .行驶3小时后 ,两车相距120千米 B .甲车从A 地到B 地的速度为100千米/时 C .甲车返回时行驶的速度为95千米/时 D .A ,B 两地之间的距离为300千米8. (2021•辽阳)一条公路旁依次有,,A B C 三个村庄,甲乙两人骑自行车分别从A村、B 村同时出发前往C 村 ,甲乙之间的距离(km)s 与骑行时间t(h)之间的函数关系如下列图 ,以下结论:①A B ,两村相距10km ;②出发1.25 h 后两人相遇;③甲每小时比乙多骑行8 km ;④相遇后 ,乙又骑行了15min 或65min 时两人相距2 km .其中正确的个数是 A .1个 B .2个 C .3个D .4个二、填空题9. 函数()2211m y m x mn -=-+在条件下 ,y 是x 的一次函数;在条件下 ,y 与x 成正比例函数.10. y 是x 一次函数,11. 假设一次函数y =-2x +b ,那么b 的值可以是________(写出一个即可).12. 如果直线y ax b =+经过第|一、二、三象限 ,那么ab 0 (填 ">〞、 "<〞、 "=〞 ).13. 如图,直线()0y kx b k =+<经过点()3,1A ,当13kx b x +<时 ,x 的取值范围为__________.14. 如图,在x 轴上有五个点 ,它们的横坐标依次为12345,,,,.分别过这些点作x 轴的垂线与三条直线y ax = ,()1y a x =+ ,()2y a x =+相交 ,其中0a > ,那么图中阴影局部的面积是_________.15. 将函数y =2x +b (b 为常数)的图象位于x 轴下方的局部沿x 轴翻折至||其上方后 ,所得的折线是函数y =|2x +b |(b 为常数)的图象 ,假设该图象在直线y =2下方的点的横坐标x 满足0<x <3 ,那么b 的取值范围为____________.16. 一个一次函数的图象与直线59544y x =+平行 ,与x 轴 ,y 轴分别交于A ,B 两点 ,并且通过()125--, ,那么在线段AB 上 (包括端点A ,B 两点 ) ,横纵坐标都是整数的点有_______个.三、解答题17. 一次函数y =kx +b (k ≠0)的图象交x 轴于点A (2 ,0) ,交y 轴于点B ,且△AO B 的面积为3 ,求此一次函数的解析式.18. 如图,直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1 ,b ).(1)求b 的值.(2)不解关于x ,y 的方程组1,,y x y mx n =+⎧⎨=+⎩请你直接写出它的解.(3)直线l 3:y =nx +m 是否也经过点P ?请说明理由.19. (2021•徐州)如图① ,将南北向的中山路与东西向的北京路看成两条直线 ,十字路口记作点A .甲从中山路上点B 出发 ,骑车向北匀速直行;与此同时 ,乙从点A 出发 ,沿北京路步行向东匀速直行.设出发min x 时 ,甲、乙两人与点A 的距离分别为1m y 、2m y .1y 、2y 与x 之间的函数关系如图②所示. (1)求甲、乙两人的速度;(2)当x 取何值时 ,甲、乙两人之间的距离最||短 ?20. 作函数31y x x =-+-的图象,并根据图象求出函数的最||小值.人教版 八年级||数学 19.2 一次函数 课时训练-答案一、选择题 1. 【答案】C【解析】624205÷= ,确定函数解析式2. 【答案】B3. 【答案】A【解析】∵0ab < ,且a b > , ∴a>0 ,b<0. ∴函数y ax b =+的图象经过第|一、三、四象限.应选A .4. 【答案】C【解析】由一次函数经过(0 ,1) ,可求得k >0 ,b =1 ,那么画出图象草图 ,应选C. 5. 【答案】A6. 【答案】A7. 【答案】C[解析]由图象可得行驶3小时后 ,两车相距120千米 ,∴甲车从A 地到B 地的速度 ==100(千米/时).∴A ,B 两地的距离为3×100 =300(千米).甲车在B 地停留1小时后 ,两车相距120 -60×1 =60(千米).∴甲车返回的速度 = =90(千米/时).应选C .8. 【答案】D【解析】由图象可知A 村、B 村相离10 km ,故①正确; 当1.25 h 时 ,甲、乙相距为0 km ,故在此时相遇 ,故②正确;当0 1.25t ≤≤时 ,易得一次函数的解析式为810s t =-+ ,故甲的速度比乙的速度快8 km/h .故③正确;当1.252t ≤≤时 ,函数图象经过点(1.25,0)(2,6)设一次函数的解析式为s kt b =+ ,代入得0 1.2562k b k b =+⎧⎨=+⎩ ,解得810k b =⎧⎨=-⎩ , ∴810s t =+ ,当2s =时.得2810t =- ,解得 1.5h t = , 由1.5 1.250.25h 15min -== ,同理当2 2.5t ≤≤时 ,设函数解析式为s kt b =+ , 将点(2,6)(2.5,0)代入得 ,0 2.562k b k b =+⎧⎨=+⎩ ,解得1230k b =-⎧⎨=⎩ , ∴1230s t =-+ ,当2s =时 ,得21230t =-+ ,解得73t =, 由7131.25h 65min 312-== , 故相遇后 ,乙又骑行了15min 或65min 时两人相距2 km ,④正确. 应选D . 二、填空题9. 【答案】1m =-;1m =-且0n =【解析】1m =-时该函数为一次函数;1m =-且0n =时该函数为正比例函数; 10. 【答案】1m =11. 【答案】-1(答案不唯一 ,满足b <0即可) 【解析】∵一次函数y =-2x +b 的图象经过第二、三、四象限 ,∴b <0 ,故b 的值可以是-1. 12. 【答案】>【解析】先画草图 ,根据得y 随x 的增大而增大 ,可知0a >;图象与y 轴交点在x 轴上方 ,知0b > ,故0ab >. 13. 【答案】3x >【解析】∵正比例函数13y x =也经过点A ,∴13kx b x +<的解集为3x > ,故答案为:3x >.14. 【答案】12.515. 【答案】-4<b<-2 【解析】先求出直线y =2与y =|2x +b|的交点的横坐标 ,再由条件列出关于b 的不等式组 ,便可求出结果.由⎩⎨⎧y =2y =|2x +b| ,得⎩⎨⎧y =2y =2x +b 或⎩⎨⎧y =2y =-2x -b,解得x =2-b 2或x =-2+b2 ,∵0<x<3 ,∴⎩⎪⎨⎪⎧2-b 2<3-b +22>0 ,解得-4<b<-2.16. 【答案】5【解析】依题意可求出这个一次函数的解析式为:59544y x =-,于是可求得()190A , ,9504B ⎛⎫- ⎪⎝⎭,. ∴x 的取值范围为019x ≤≤的整数 ,y 的取值范围为:9504y -≤≤的整数. ∴求线段AB 上的整点坐标可转化为方程()5194x y -=在上述条件下的整数解. ∴当19x =时 ,0y =;当15x =时 ,5y =-;当11x =时 ,10y =-;当7x =时 ,15y =-;当3x =时 ,20y =- ,故可知线段AB 上有5个整点.三、解答题17. 【答案】解:因为A (2 ,0) ,S △AOB =3 , 所以OB =3 , 所以B (0 ,3)或(0 , -3).①当B (0 ,3)时 ,把A (2 ,0) ,B (0 ,3)代入y =kx +b 中 ,得解得所以一次函数的解析式为y = -x +3.②当B (0 , -3)时 ,把A (2 ,0) ,B (0 , -3)代入y =kx +b 中 ,得解得所以y =x -3.综上所述 ,该一次函数的解析式为y = -x +3或y =x -3.18. 【答案】解:(1)当x =1时 ,y =1+1=2 ,∴b =2. (2)⎩⎪⎨⎪⎧x =1 y =2.(3)∵直线l 1:y =x +1与直线l 2:y =mx +n 相交于点P (1 ,b ) ,∴当x =1时 ,y =m +n =b =2.∴ 当x =1时 ,y =n +m =2 ,∴直线l 3:y =nx +m 也经过点P .19. 【答案】(1)设甲、乙两人的速度分别为m /min a ,m /min b ,甲从B 到A 用时为p 分钟 ,那么:11200(0)1200()ax x p y ax x p -≤≤⎧=⎨->⎩ ,2y bx = ,由图②知: 3.75x =或7.5时 ,12y y = ,那么有1200 3.75 3.757.512007.5a b a b -=⎧⎨-=⎩ ,解得24080a b =⎧⎨=⎩ , p =1200÷240 =5 ,答:甲的速度为240m /min ,乙的速度为80m /min . (2)设甲、乙之间距离为d ,那么222(1200240)(80)d x x =-+2964000()1440002x =-+ ,∴当92x =时 ,2d 的最||小值为144000 ,即d 的最||小值为12010, 答:当92x =时 ,甲、乙两人之间的距离最||短. 20. 【答案】如图 ,函数的最||小值为2.【解析】24(3)2(13)24(1)x x y x x x -≥⎧⎪=≤≤⎨⎪-+<⎩,,,根据表达式作图如下:由图象可知 ,当13x ≤≤时 ,函数的最||小值为2.。

2020-2021学年人教版 八年级数学下册 19.2 一次函数 同步课时训练(含答案)

2020-2021学年人教版 八年级数学下册 19.2 一次函数 同步课时训练(含答案)
知,甲行驶完全程需要 0.6 h,乙行驶完全程需要 0.5 h, 所以乙摩托车的速度较快,A 选项正确; ∵甲摩托车匀速行驶,且行驶完全程需要 0.6 h,∴经过 0.3 h 甲摩托车行驶到 A, B 两地的中点,B 选项正确;

y ①
y ②
y


y ①
O
x

A.
O
x
① B.
O
x
C.
O
x

D.
8. 若 A(x1, y1), B(x2, y2 ) 为一次函数, y 3x 1的图象上的两个不同点,且 x1x2 0 ,
设 M y1 1 , N y2 1 ,则(

x1
x2
A. M N
B. M N
C. M N
D. 以上都不对
三、解答题
16. 当自变量 x 满足什么条件时,函数 y 2x 3 的图象在:
(1) x 轴下方;
(2) y 轴左侧;
(3)第一象限.
17. 如图,直线 l1:y=2x+1 与直线 l2:y=mx+4 相交于点 P(1,b). (1)求 b,m 的值; (2)垂直于 x 轴的直线 x=a 与直线 l1,l2 分别交于点 C,D,若线段 CD 长为 2.求
A.乙摩托车的速度较快 两地的中点 C.经过 0.25 h 两摩托车相遇 车距离 A 地 km
B.经过 0.3 h 甲摩托车行驶到 A,B D.当乙摩托车到达 A 地时,甲摩托
5. 明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时 间后,提高了工作效率.该绿化组完成的绿化面积 S(单位:m2)与工作时间 t(单位:h) 之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是

2020-2021学年人教版 八年级下册数学 课时训练 19.2 一次函数(含答案)

2020-2021学年人教版 八年级下册数学 课时训练 19.2 一次函数(含答案)

人教版八年级下册数学课时训练19.2 一次函数一、选择题1. 某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)的关系由如图所示的一次函数图象确定,那么旅客可免费携带的行李的最大质量为()A.20 kgB.25 kgC.28 kgD.30 kg2. 甲、乙两辆摩托车同时分别从相距20 km的A,B两地出发,相向而行.图中l1,l2分别表示甲、乙两辆摩托车到A地的距离s(km)与行驶时间t(h)之间的函数关系.则下列说法错误的是 ()A.乙摩托车的速度较快B.经过0.3 h甲摩托车行驶到A,B 两地的中点C.经过0.25 h两摩托车相遇D.当乙摩托车到达A地时,甲摩托车距离A地km3. 已知正比例函数y=2(m-1)x的图象上两点A(x1,y1),B(x2,y2),当x1<x2时,有y1>y2,那么m的取值范围是 ()A.m<1B.m>1C.m<2D.m>04. (2019•威海)甲、乙施工队分别从两端修一段长度为380米的公路.在施工过程中,乙队曾因技术改进而停工一天,之后加快了施工进度并与甲队共同按期完成了修路任务.下表是根据每天工程进度绘制而成的.施工时间/天 1 23 4 5 6 7 8累计完成施工量/米 3570 105 140 160 215 270 325下列说法错误的是 A .甲队每天修路20米 B .乙队第一天修路15米 C .乙队技术改进后每天修路35米 D .前七天甲、乙两队修路长度相等5. 一次函数y kx b =+(k b ,是常数,0k ≠)的图象如图所示,则不等式0kx b +>的解集是( )A .2x >-B .0x >C .2x <-D .0x <y=kx+b2-2Oy x6. (2019•遵义)如图所示,直线l1:y 32=x+6与直线l2:y 52=-x-2交于点P(-2,3),不等式32x+652>-x-2的解集是A .x>-2B .x≥-2C .x<-2D .x≤-27.在同一平面直角坐标系中,函数y=kx 与y=-k 的图象大致是 ( )8. (2019•枣庄)如图,一直线与两坐标轴的正半轴分别交于A ,B 两点,P 是线段AB 上任意一点(不包括端点),过点P 分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为8,则该直线的函数表达式是A .4y x =-+B .4y x =+C .8y x =+D .8y x =-+二、填空题9. 如图,将直线OA 向上平移1个单位,得到一个一次函数的图像,那么这个一次函数的解析式是 .yxO3214321A10.若一次函数12(1)12y k x k =-+-的图像不过第一象限,则k 的取值范围是___________.11.已知一次函数(5)1y a x a =-+-的图象如图所示,则a 的取值范围是 .yx O12. 如图,直线y kx b=+经过()21A,,()12B--,两点,则不等式122x kx b>+>-的解集为______.BAOyx13. 如果直线y ax b=+经过第一、二、三象限,那么ab0(填“>”、“<”、“=”).14. 甲、乙两人在直线道路上同起点、同终点、同方向,分别以不同的速度匀速跑步1500米,先到终点的人原地休息,已知甲先出发30秒后,乙才出发.在跑步的整个过程中,甲、乙两人的距离y(米)与甲出发的时间x(秒)之间的关系如图所示.则乙到终点时,甲距终点的距离是________米.15. (2019•河池)如图,在平面直角坐标系中,2,0,()()0,1A B,AC由AB绕点A顺时针旋转90︒而得,则AC所在直线的解析式是__________.16. 一条直线l经过不同的三点A(a,b),B(b,a),C(a b-,b a-),那么直线l经过象限.三、解答题17. 已知正比例函数y x=。

八年级数学下册 分式综合特训(压轴30题)(原卷版)

八年级数学下册  分式综合特训(压轴30题)(原卷版)

专题07分式综合特训(压轴30题)一.选择题(共2小题)1.如果关于x 的不等式组有且仅有四个整数解,且关于y 的分式方程﹣=1有非负数解,则符合条件的所有整数m 的和是()A .13B .15C .20D .222.已知方程﹣a =,且关于x 的不等式组只有4个整数解,那么b 的取值范围是()A .﹣1<b ≤3B .2<b ≤3C .8≤b <9D .3≤b <4二.填空题(共10小题)3.已知a ,b ,c 是不为0的实数,且,那么的值是.4.(1)已知,则=;(2)已知,则=.5.有正整数x <y <z ,且k 为整数,,则(y +z )x =.6.已知abc ≠0,且,则的值是或.7.某校在“3.12”植树节来临之际,特从初一、初二、高一、高二四个年级中抽调若干学生去植树.已知初一、初二抽调的人数之比为5:3,高一、高二抽调的人数之比为4:3.上午,初一、高一年级平均每人植树的棵数相同且大于3棵小于10棵,高二年级平均每人植树的棵数为初一、初二平均每人植树的棵数之和的2倍,上午四个年级平均每人植树的棵数总和大于30棵小于40棵,上午四个年级一共植树714棵.下午,初二年级因为要回校参加活动不再参与植树活动,高一、高二年级平均每人植树的棵数都有所降低,高一年级平均每人植树的棵数降低50%,高二年级平均每人植树的棵数降为原来的.若初一年级人数及人均植树的棵数不变,高一高二年级人数不变,且四个年级平均每人植树的棵数为整数,则四个年级全天一共植树棵.8.已知a2﹣3a﹣1=0,求a6+120a﹣2=.9.一个容器装有1升水,按照如下要求把水倒出:第1次倒出升水,第2次倒出的水量是升的,第3次倒出的水量是升的,第4次倒出的水量是升的,…按照这种倒水的方法,倒了10次后容器内剩余的水量是.10.式子“1+2+3+4+5+…+100”表示从1开始的100个连续自然数的和,由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“1+2+3+4+5+…+100”表示为,这里的符号“”是求和的符号,如“1+3+5+7+…+99”即从1开始的100以内的连续奇数的和,可表示为.通过对以上材料的阅读,请计算:=(填写最后的计算结果).11.a是不为1的有理数,我们把称为a的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是.已知a1=3,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,以此类推,则a2012=.12.对于正数x,规定,例如:,,则=.三.解答题(共18小题)13.先化简,再求值:+÷,其中x=3.14.巴西世界杯正在激战中,周六晚上小明打算和朋友乘出租车去某大型酒吧观看世界杯,有两条路线可供选择:路线一的全程25千米,但交通比较拥堵,路线二的全程是30千米,平均速度比走路线一时的平均速度能提高80%,因此能比走路线一少用10分钟到达.求小明走路线一时的平均速度.15.如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这个分式为“和谐分式”.(1)下列分式:①;②;③;④.其中是“和谐分式”是(填写序号即可);(2)若a为正整数,且为“和谐分式”,请写出a的值;(3)在化简时,小东和小强分别进行了如下三步变形:小东:==小强:==显然,小强利用了其中的和谐分式,第三步所得结果比小东的结果简单,原因是:,请你接着小强的方法完成化简.15.解关于x的方程﹣=时产生了增根,请求出所有满足条件的k 的值.17.某服装店购进一批甲、乙两种款型时尚T恤衫,甲种款型共用了9200元,乙种款型共用了6400元,甲种款型的件数是乙种款型件数的2倍,甲种款型每件的进价比乙种款型每件的进价少30元.(1)甲、乙两种款型的T恤衫各购进多少件?(2)商店按照进价提高m%标价,要使利润不低于10920,请问m最少是多少?18.定义:如果一个分式能化成一个整式与一个分子为常数的分式的和的形式,则称这个分式为“和谐分式”.如:==+=1+,==+=2+,则和都是“和谐分式”.(1)下列式子中,属于“和谐分式”的是(填序号);①;②;③;④(2)将“和谐分式”化成一个整式与一个分子为常数的分式的和的形式为:=+;(3)应用:先化简﹣÷,并求x取什么整数时,该式的值为整数.19.为改善南宁市的交通现状,市政府决定修建地铁,甲、乙两工程队承包地铁1号线的某段修建工作,从投标书中得知:甲队单独完成这项工程所需天数是乙队单独完成这项工程所需天数的3倍;若由甲队先做20天,剩下的工程再由甲、乙两队合作10天完成.(1)求甲、乙两队单独完成这项工程各需多少天?(2)已知甲队每天的施工费用为15.6万元,乙队每天的施工费用为18.4万元,工程预算的施工费用为500万元,为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,那么工程预算的施工费用是否够用?若不够用,需增加多少万元?20.已知=++,试求A+B+2C的值.21.某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降.今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B 款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a值应是多少?22.先阅读下列解法,再解答后面的问题.已知=+,求A、B的值.解法一:将等号右边通分,再去分母,得:3x﹣4=A(x﹣2)+B(x﹣1),即:3x﹣4=(A+B)x﹣(2A+B),∴.解得.解法二:在已知等式中取x=0,有﹣A+=﹣2,整理得2A+B=4;取x=3,有+B=,整理得A+2B=5.解,得:.(1)已知,用上面的解法一或解法二求A、B的值.(2)计算:[](x+11),并求x取何整数时,这个式子的值为正整数.23.已知a+a﹣1=3,求a4+的值.24.对于正数x,规定:f(x)=.例如:f(1)==,f(2)==,f()==.(1)求值:f(3)+f()=;f(4)+f()=;(2)猜想:f(x)+f()=,并证明你的结论;(3)求:f()+f()+…+f()+f(1)+f(2)+…+f(2016)+f(2017)的值.25.某工厂承接了一批纸箱加工任务,用如图1所示的长方形和正方形纸板(长方形的宽与正方形的边长相等)加工成如图所示的竖式与横式两种无盖的长方形纸箱.(加工时接缝材料不计)(1)该工厂原计划用若干天加工纸箱200个,后来由于对方急需要货,实际加工时每天加工速度时原计划的1.5倍,这样提前2天超额完成了任务,且总共比原计划多加工40个,问原计划每天加工纸箱多少个;(2)若该厂购进正方形纸板1000张,长方形纸板2000张.问竖式纸盒,横式纸盒各加工多少个,恰好能将购进的纸板全部用完.26.观察下面的变形规律:=﹣;=﹣;=;…解答下面的问题:(1)若n为正整数,若写成上面式子形式,请你猜想=;(2)说明你猜想的正确性;(3)计算:+++…+=;(4)解关于n的分式方程:+++…+=.27.阅读下面材料,并解答问题.材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.解:由分母为﹣x2+1,可设﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b则﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣(a﹣1)x2+(a+b)∵对应任意x,上述等式均成立,∴,∴a=2,b=1∴==+=x2+2+这样,分式被拆分成了一个整式x2+2与一个分式的和.解答:(1)将分式拆分成一个整式与一个分式(分子为整数)的和的形式.(2)试说明当﹣1<x<1时,的最小值为10.28.学校计划选购甲、乙两种图书作为“校园读书节”的奖品.已知甲图书的单价是乙图书单价的1.5倍;用600元单独购买甲种图书比单独购买乙种图书要少10本.(1)甲、乙两种图书的单价分别为多少元?(2)若学校计划购买这两种图书共40本,且投入的经费不超过1050元,要使购买的甲种图书数量不少于乙种图书的数量,则共有几种购买方案?29.已知=3,求分式的值.30.列方程解应用题:某一工程进行招标时,接到了甲、乙两个工程队的投标书,施工1天需付甲工程队工程款1.5万元,付乙工程队工程款1.1万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:方案(1):甲工程队单独完成这项工程,刚好如期完成;方案(2):乙工程队单独完成这项工程,要比规定日期多5天;方案(3):若甲、乙两队合作4天,余下的工程由乙工程队单独做,也正好如期完成;如果工程不能按预定时间完工,公司每天将损失3000元,在不耽误工期的情况下,你觉得哪种方案最省钱?请说明理由.。

人教版八下数学之数据的分析限时训练卷

人教版八下数学之数据的分析限时训练卷

人教版八下数学之数据的分析限时训练卷一.选择题(共6小题)1.为积极响应抗击疫情“停课不停学”的号召,某学校九年级年级组随机抽取了50名同学每周实际观看网课时长进行分析,通过计算得知这50名同学的每周观看网课的平均时长为29小时,下列说法正确的是()A.九年级全体学生每周观看网课的平均时长一定是29小时B.九年级全体学生每周观看网课的平均时长一定不是29小时C.可以估计九年级全体学生每周观看网课的平均时长是29小时D.不能估计九年级全体学生每周观看网课的平均时长是29小时2.初二某班45名同学一周参加体育锻炼时间如表所示:时间(小时)67910人数(人)713169同学们一周参加体育锻炼时间的众数、中位数分别是()A.9,7B.9,9C.16,9D.16,163.在一次演讲比赛中,某位选手的演讲内容、演讲表达的得分分别为95分,90分,将演讲内容、演讲表达的成绩按6:4计算,则该选手的成绩是()A.94分B.93分C.92分D.91分4.利用计算器求一组数据的平均数.其按键顺序如下:,则输出的结果为()A.1B.3.5C.4D.95.一组数据﹣3,1,0,1,2的中位数是()A.0B.1C.1.5D.26.小静期末考试语、数,英三科的平均分为92分、她记得语文是88分,英语是95分,则小静的数学成绩为()A.93分B.95分C.82.5分D.94分二.填空题(共6小题)7.甲、乙、丙、丁四名学生最近4次数学考试平均分都是112分,方差=2.2,=6.6,=7.4,=10.8,则这四名学生的数学成绩最稳定的是.8.数据50,60,80,90,96的中位数是.9.某少年军校准备从甲、乙、丙三名同学中选拔一名参加全市射击比赛.他们选拔比赛中,射靶十次的平均环数==8.3,=8,S甲2=1.5,S乙2=2.8,S丙2=1.5,根据以上提供的信息,你认为应该选参加全市射击比赛.10.每天登录“学习强国”App进行学习,在获得积分的同时,还可获得“点点通”附加奖励.李老师最近一周每日“点点通”收入明细如表,则这组数据的平均数是.星期一二三四五六日收入(点)15202727213021 11.(2022秋•阳谷县期末)某校评选先进班集体,从“学习”、“卫生”、“纪律”、“活动参与”四个方面综合考核打分,各项满分均为100,所占比例如表:项目学习卫生纪律活动参与所占比例40%25%25%10%某班这四项得分依次为85,90,80,75,则该班四项综合得分为.12.某同学用计算器求30个数据的平均数时,错将其中的一个数据105输入成15,则由此求出的平均数与实际平均数的差是.三.解答题(共3小题)13.为了加强心理健康教育,某校组织八年级(1)(2)两班学生进行了心理健康常识测试,已知两班学生人数相同,根据测试成绩绘制了如下所示的统计图.(1)请确定下表中a,b,c的值:统计量平均数众数中位数(1)班88c(2)班a b8a=分,b=分,c=分;(2)根据上表中各种统计量,说明哪个班的成绩更突出一些.14.为了加强安全教育,某校组织七、八年级开展了以“急救安全注意事项”为主题知识竞赛,为了解竞赛情况,从两个年级各随机抽取了20名同学的成绩.收集整理数据如表:分数707580859095100七年级2人3人2人4人5人3人1人八年级0人2人5人8人2人a人1人分析数据:平均数中位数众数方差七年级b c9076.3八年级8585d42.1根据以上信息回答下列问题:(1)a=,b=,c=,d=;(2)通过对两个年级平均数和方差的数据比较,直接写出两个年级中哪个年级成绩更稳定?(3)该校七、八年级共有1000人,本次知识竞赛成绩不低于85分的为“优秀”.请通过计算估计这两个年级共有多少名学生达到“优秀”?15.已知有理数﹣9,7,14在数轴上对应的点分别为A,B,C.(1)若数轴上点D对应的数为,求线段AD的长;(2)再添加一个数a,数轴上点E对应的数为﹣9,7,14和a四个数的平均数,若线段DE=1,求a的值.。

人教版八年级下册数学课时练《20.1.1 平均数》(1)(含答案)

人教版八年级下册数学课时练《20.1.1 平均数》(1)(含答案)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!人教版八年级下册数学《20.1.1平均数》课时练学校:_______姓名:_______班级:_______考号:________一、单选题1.一次数学测验中,某学习小组六名同学的成绩(单位:分)分别是110,90,105,91,85,95.则该小组的平均成绩是()A .94分B .95分C .96分D .98分2.已知一组数据共有20个数,前面14个数的平均数是10,后面6个数的平均数是15,则这20个数的平均数是()A .23B .1.15C .11.5D .12.53.某校足球队20场比赛进球情况如下,进1球的有7场,进2球的有6场,进3球的有7场,则该队平均每场进球数为()A .1B .2C .3D .44.灯泡厂为测量一批灯泡的使用寿命,从中随机抽查了40只灯泡,它们的使用寿命如表所示:使用寿命x (h )6001000x £<10001400x £<14001800x £<18002200x £<灯泡只数5101510这批灯泡的平均使用寿命是()A .1300hB .1400hC .1500hD .1600h5.某同学使用计算器求30个数据的平均数时,错将其中一个数据75输入为15,那么所求出的平均数与实际平均数的差是()A .2.5B .2C .1D .-26.已知数据1x ,2x ,3x 的平均数是5,则数据132x +,232x +,332x +的平均数是()A .5B .7C .15D .17二、填空题7.在某中学举行的演讲比赛中,七年级5名参赛选手的成绩(单位:分)如下表所示,根据表中提供的数据,可知3号选手的成绩为_____________分.选手1号2号3号4号5号平均成绩成绩(分)9095■8988918.东营市某学校女子游泳队队员的年龄分布如下表:年龄(岁)131415人数474则该校女子游泳队队员的平均年龄是________岁.9.已知一组数据0,1,x ,3,6的平均数是y ,则y 关于x 的函数解析式是____.10.某公司招聘人才,对应聘者分别进行了阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的测试成绩(百分制)如表:(单位:分),将阅读能力、思维能力和表达能力三项测试得分按1:3:1的比确定每人的最后成绩,被录用的是________.应聘者阅读能力思维能力表达能力甲859080乙95809511.某计算机程序第一次算得m 个数据的平均数为x ,第二次算得另外n 个数据的平均数为y ,则这m n +()个数据的平均数等于__________.三、解答题12.数学老师全老师选派了班上8位同学去参加年级组的数学知识竞赛,试卷满分100分,我们将成绩中超过90分的部分记为正,低于90分的部分记为负,则这8位同学的得分如下:+8,+3,-3,-11,+4,+9,-5,-1.(1)请求出这8位同学本次数学竞赛的平均分是多少.(2)若得分95以上可以获得一等奖,请求出这8位同学获得一等奖的百分比是多少.13.某公司欲招聘一名部门经理,对甲、乙、丙三名候选人进行了三项素质测试.各项测试成绩如表所示:测试项目测试成绩(分)甲乙丙专业知识748790语言能力587470综合素质874350(1)根据实际需要,公司将专业知识、语言能力和综合素质三项测试得分按4:3:1的比例确定每个人的测试总成绩,此时谁将被录用?(2)请重新设定专业知识、语言能力和综合素质三项测试得分的比例来确定每个人的测试总成绩,使得乙被录用.若重新设定的比例为::1x y ,且110x y ++=,则x =__________,y =___________.(写出x 与y 的一组整数值即可)14.小华在八年级上学期的数学成绩如下表所示:测验类别平时期中考试期末考试测验1测验2测验3课题学习成绩887098869087(1)计算小华该学期平时的平均成绩;(2)如果该学期的总评成绩是根据如图所示的权重计算的,请计算小华该学期的总评成绩.15.某家庭记录了未使用节水龙头20天的日用水量数据(单位:3m )和使用了节水龙头20天的日用水量数据,得到频数分布表如下:未使用节水龙头20天的日用水量频数分布表:日用水量/3m00.1x £<0.10.2x £<0.20.3x £<0.30.4x £<0.40.5x £<频数042410使用了节水龙头20天的日用水量频数分布表:日用水量/3m 00.1x £<0.10.2x £<0.20.3x £<0.30.4x £<频数2684(1)计算未使用节水龙头20天的日平均用水量和使用了节水龙头20天的日平均用水量;(2)估计该家庭使用节水龙头后,一年能节省多少立方米水.(一年按365天计算)参考答案1.C 2.C 3.B 4.C 5.D 6.D7.938.149.125y x =+10.甲11.mx ny m n ++12.(1) 8位同学的得分如下:+8,+3,-3,-11,+4,+9,-5,-1,\这8位同学本次数学竞赛的平均分是190(833114951)900.590.58++--++--=+=(分).(2) 得分95以上可以获得一等奖,\获得一等奖的只有98分和99分两名同学,\这8位同学获得一等奖的百分比是2100%25%8´=.13.(1)甲的总成绩:7445838769.625431´+´+=++(分),乙的总成绩:8747434376.625431´+´+=++(分),丙的总成绩:9047035077.5431´+´+=++(分).77.576.62569.625>> ,\丙将被录用.(2) 乙的专业能力为87分,位于第二,语言能力74分,位于第一,而综合素质43分,位于第三,\要想乙被录用,则语言能力所占的权重要尽可能大,即y 尽可能大.110x y ++= ,因此,1x =,8y =即可.经过计算得,当1x =,8y =时,甲的总成绩:745888762.510+´+=(分),乙的总成绩:877484372.210+´+=(分),丙的总成绩:90708507010+´+=(分),此时乙的总成绩最高,会被录用,符合要求.14.(1)(88709886)485.5+++¸=(分),∴小华该学期平时的平均成绩为85.5分.(2)85.510%9030%8760%87.75´+´+´=(分),∴小华该学期的总评成绩为87.75分.解析:15.答案:(1)未使用节水龙头20天的日平均用水量为3(00.0540.1520.2540.35100.45)200.35m ´+´+´+´+´¸=,使用了节水龙头20天的日平均用水量为3(20.0560.1580.2540.35)200.22m ´+´+´+´¸=.(2)3365(0.350.22)3650.1347.45m ´-=´=.答:估计该家庭使用节水龙头后,一年能节省347.45m 水.。

【★】2023-2024学年人教版初中数学八年级下册数学课时练《20.1.1 平均数》

【★】2023-2024学年人教版初中数学八年级下册数学课时练《20.1.1 平均数》

人教版八年级下册数学《20.1.1 平均数》课时练学校:_______姓名:_______班级:_______考号:________一、单选题1.某次射击训练中,一个小组的成绩如下表所示:已知该小组的平均成绩为8.1环,那么成绩为8环的人数是()A.4 B.5 C.6 D.72.一次数学测验中,某学习小组六名同学的成绩(单位:分)分别是110,90,105,91,85,95.则该小组的平均成绩是()A.94分B.95分C.96分D.98分3.某班5名同学的数学竞赛成绩(单位:分)如下:76,80,73,92,a,如果这组数据的平均数是79,则a的值为()A.68 B.70 C.72 D.744.已知一组数据x1,x2,x3的平均数为7,则x1+3,x2+2,x3+4的平均数为()A.7 B.8 C.9 D.105.两次小测验中,李红分别得了64分(满分80分)和82分(满分100分),如果都按满分100分计算,李红两次成绩的平均分为( )A.73 B.81 C.64.8 D.806.有8个数的平均数是12,还有12个数的平均数是17,则这20个数的平均数是()A.15.6 B.15.9 C.15 D.147.已知:x1,x2,x3...x10的平均数是a,x11,x12,x13...x50的平均数是b,则x1,x2,x3...x50的平均数是( )A .a +bB .2a b +C .105060a b +D .104050a b + 8.某校把学生的纸笔测试、实践能力、成长纪录三项成绩分别按50%、20%、30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是( )A .甲B .乙丙C .甲乙D .甲丙9.有甲、乙两种糖果,原价分别为每千克a 元和b 元.根据调查,将两种糖果按甲种糖果x 千克与乙种糖果y 千克的比例混合,取得了较好的销售效果.现在糖果价格有了调整:甲种糖果单价下降15%,乙种糖果单价上涨20%,但按原比例混合的糖果单价恰好不变,则x y等于( ) A .34a b B .43a b C .34b a D .43b a10.小明要去超市买甲、乙两种糖果,然后混合成5千克混合糖果,已知甲种糖果的单价为a 元/千克,乙种糖果的单价为b 元/千克,且a >b .根据需要小明列出以下三种混合方案:(单位:千克)则最省钱的方案为( )A .方案1B .方案2C .方案3D .三个方案费用相同二、填空题 11.乐乐参加了学校广播站招聘小记者的三项素质测试,成绩(百分制)如下:采访写作70分,计算机操作60分,创意设计80分.如果采访写作、计算机操作和创意设计的成绩按5:2:3计算,那么他的素质测试的最终成绩为__________________分.12.某“中学生暑期环保小组”的同学,随机调查了“金沙绿岛”10户家庭一周内使用环保方便袋的数量,数据如下(单位:只):6,5,7,8,7,5,8,10,5,9,利用上述数据估计该小区500户家庭一周内需要环保方便袋__________只.13.某中学规定学生的学期体育成绩满分为100分,其中课外体育占20%,期中考试成绩占30%,期末考试成绩占50%.小彤的三项成绩(百分制)依次为95、90、88,则小彤这学期的体育成绩为______分.14.已知一组数据0、2、6、a 、8的平均数是245,那么字母a 表示的数是____. 15.下列说法:①若a ,b 互为相反数,则a b=-1;②若a +b <0,ab >0,则|a +2b|=-a -2b ;③若多项式ax 3+bx +1的值为5,则多项式-ax 3-bx +1的值为-3;④若甲班有50名学生,平均分是a 分,乙班有40名学生,平均分是b 分,则两班的平均分为2a b 分.其中正确的为____(填序号).三、解答题16.下图反映了初三(1)班、(2)班的体育成绩。

人教版数学八年级下册同步练习(含答案)

人教版数学八年级下册同步练习(含答案)

16.1 分式同步测试题1、式子①x 2 ②5y x + ③a -21 ④1-πx 中,是分式的有( ) A .①② B. ③④ C. ①③ D.①②③④2、分式13-+x a x 中,当a x -=时,下列结论正确的是( ) A .分式的值为零 B.分式无意义 C. 若31-≠a 时,分式的值为零 D. 若31≠a 时,分式的值为零 3. 若分式1-x x 无意义,则x 的值是( ) A. 0 B. 1 C. -1 D.1±4. (2008年山西省太原市)化简222m n m mn-+的结果是( ) A .2m n m - B .m n m - C .m n m + D .m n m n-+ 5.使分式x++1111有意义的条件是( ) A.0≠x B.21-≠-≠x x 且 C.1-≠x D. 1-≠x 且0≠x6.当_____时,分式4312-+x x 无意义. 7.当______时,分式68-x x 有意义. 8.当_______时,分式534-+x x 的值为1. 9.当______时,分式51+-x 的值为正. 10.当______时分式142+-x 的值为负. 11.要使分式221y x x -+的值为零,x 和y 的取值范围是什么?12.x 取什么值时,分式)3)(2(5+--x x x (1)无意义?(2)有意义? (3)值为零?13.2005-2007年某地的森林面积(单位:公顷)分别是321,,S S S ,2005年与2007年相比,森林面积增长率提高了多少?(用式子表示)14.学校用一笔钱买奖品,若以1支钢笔和2本日记本为一份奖品,则可买60份奖品;若以1支钢笔和3本日记本为一份奖品,则可买50份奖品,那么这笔钱全部用来买钢笔可以买多少支?15.用水清洗蔬菜上残留的农药.设用x (1≥x )单位量的水清洗一次后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为x+11. 现有a (2≥a )单位量的水,可以一次清洗,也可以把水平均分成两份后清洗两次.试问用哪种方案清洗后蔬菜上残留的农药量比较少?说明理由.16.1 分式第1课时课前自主练1.________________________统称为整式.2.23表示_______÷______的商,那么(2a+b )÷(m+n )可以表示为________. 3.甲种水果每千克价格a 元,乙种水果每千克价格b 元,取甲种水果m 千克,乙种水果n 千克,混合后,平均每千克价格是_________.课中合作练题型1:分式、有理式概念的理解应用 22是有理式的有_________.题型2:分式有无意义的条件的应用5.(探究题)下列分式,当x 取何值时有意义.(1)2132x x ++; (2)2323x x +-.6.(辨析题)下列各式中,无论x 取何值,分式都有意义的是( )A .121x +B .21x x +C .231x x +D .2221x x + 7.(探究题)当x______时,分式2134x x +-无意义. 题型3:分式值为零的条件的应用8.(探究题)当x_______时,分式2212x x x -+-的值为零. 题型4:分式值为±1的条件的应用9.(探究题)当x______时,分式435x x +-的值为1; 当x_______时,分式435x x +-的值为-1. 课后系统练 基础能力题10.分式24x x -,当x_______时,分式有意义;当x_______时,分式的值为零. 11.有理式①2x ,②5x y +,③12a -,④1x π-中,是分式的有( ) A .①② B .③④ C .①③ D .①②③④12.分式31x a x +-中,当x=-a 时,下列结论正确的是( ) A .分式的值为零; B .分式无意义C .若a ≠-13时,分式的值为零; D .若a ≠13时,分式的值为零 13.当x_______时,分式15x -+的值为正;当x______时,分式241x -+的值为负. 14.下列各式中,可能取值为零的是( )A .2211m m +-B .211m m -+C .211m m +-D .211m m ++ 15.使分式||1x x -无意义,x 的取值是( ) A .0 B .1 C .-1 D .±116.(学科综合题)已知y=123x x--,x 取哪些值时:(1)y 的值是正数;(2)y 的值是负数;(•3)y 的值是零;(4)分式无意义.17.(跨学科综合题)若把x 克食盐溶入b 克水中,从其中取出m 克食盐溶液,其中含纯盐________.18.(数学与生活)李丽从家到学校的路程为s ,无风时她以平均a 米/•秒的速度骑车,便能按时到达,当风速为b 米/秒时,她若顶风按时到校,请用代数式表示她必须提前_______出发.19.(数学与生产)永信瓶盖厂加工一批瓶盖,甲组与乙组合作需要a 天完成,若甲组单独完成需要b 天,乙组单独完成需_______天.20.(探究题)若分式22x x +-1的值是正数、负数、0时,求x 的取值范围.21.(妙法巧解题)已知1x -1y =3,求5352x xy y x xy y +---的值.22.(2005.杭州市)当m=________时,分式2(1)(3)32m m m m ---+的值为零.16.1分式第2课时课前自主练1.分数的基本性质为:______________________________________________________.2.把下列分数化为最简分数:(1)812=________;(2)12545=_______;(3)2613=________. 3.把下列各组分数化为同分母分数:(1)12,23,14; (2)15,49,715.4.分式的基本性质为:______________________________________________________.用字母表示为:______________________.课中合作练题型1:分式基本性质的理解应用5.(辨析题)不改变分式的值,使分式115101139x y x y-+的各项系数化为整数,分子、分母应乘以(• ) A .10 B .9 C .45 D .906.(探究题)下列等式:①()a b c --=-a b c -;②x y x -+-=x y x -;③a b c -+=-abc +; ④m nm --=-m nm -中,成立的是( )A .①②B .③④C .①③D .②④7.(探究题)不改变分式2323523x xx x -+-+-的值,使分子、分母最高次项的系数为正数,正确的是(• )A .2332523x x x x +++-B .2332523x x x x -++-C .2332523x x x x +--+D .2332523x x x x ---+题型2:分式的约分8.(辨析题)分式434y x a +,2411x x --,22x xy y x y -++,2222a abab b +-中是最简分式的有( )A .1个B .2个C .3个D .4个9.(技能题)约分:(1)22699x x x ++-; (2)2232m m m m -+-.题型3:分式的通分10.(技能题)通分:(1)26xab ,29ya bc ; (2)2121a a a -++,261a -.课后系统练基础能力题11.根据分式的基本性质,分式a a b--可变形为( ) A .a a b -- B .a a b + C .-a a b - D .a a b + 12.下列各式中,正确的是( )A .x y x y -+--=x y x y -+;B .x y x y -+-=x y x y ---;C .x y x y -+--=x y x y +-;D .x y x y -+-=x y x y-+ 13.下列各式中,正确的是( )A .a m a b m b +=+B .a b a b ++=0C .1111ab b ac c --=--D .221x y x y x y-=-+ 14.(2005²天津市)若a=23,则2223712a a a a ---+的值等于_______. 15.(2005²广州市)计算222a ab a b +-=_________. 16.公式22(1)x x --,323(1)x x --,51x -的最简公分母为( ) A .(x-1)2 B .(x-1)3 C .(x-1) D .(x-1)2(1-x )317.21?11x x x -=+-,则?处应填上_________,其中条件是__________. 拓展创新题 18.(学科综合题)已知a 2-4a+9b 2+6b+5=0,求1a -1b 的值.19.(巧解题)已知x 2+3x+1=0,求x 2+21x 的值.20.(妙法求解题)已知x+1x =3,求2421x x x ++的值.16.1分式同步测试题A一、选择题(每题分,共分)1、把分式yx x +中的、都扩大3倍,那么分式的值( ) A 、扩大3倍 B 、不变 C 、缩小3倍 D 、缩小9倍 2、把分式xy y x +中的、都扩大2倍,那么分式的值 ( ) A 、扩大2倍 B 、扩大4倍 C 、缩小2倍 D 不变3、下列等式中成立的是 ( )A 、B 、C 、D 、4、(2008年株洲市)若使分式2x x -有意义,则x 的取值范围是( ) A .2x ≠ B .2x ≠- C .2x >- D .2x <5、已知,则 ( )A 、B 、C 、D 、A 、①③④B 、①②⑤C 、③⑤D 、①④二、填空题(每题分,共分) 1、分式392--x x 当x __________时分式的值为零. 2、当x __________时分式x x 2121-+有意义.当________________x 时,分式8x 32x +-无意义. 3、①())0(,10 53≠=a axy xy a ②()1422=-+a a . 4、约分:①=b a ab 2205__________,②=+--96922x x x __________. 5、已知P=999999,Q=911909,那么P 、Q 的大小关系是_______。

数学八年级下人教新课标17.2实际问题与反比例函数课时练A

数学八年级下人教新课标17.2实际问题与反比例函数课时练A

数学:17.2实际问题与反比例函数课时练A 〔人教新课标八年级下〕第一课时1.某种汽车可装油400L ,假设汽车每小时的用油量为x 〔L 〕.〔1〕用油量)(h y 与每小时的用油量x 〔L〕的函数关系式为 ;〔2〕假设每小时的用油量为20L ,那么这些油可用的时间为 ;〔3〕假设要使汽车继续行驶40h 不需供油,那么每小时用油量的范围是 .2.甲、乙两地相距250千米,如果把汽车从甲地到乙地所用的时间y 〔小时〕,表示为汽车的平均速度为x 〔千米/小时〕的函数,那么此函数的图象大致是〔 〕.3.如果等腰三角形的底边长为x 。

底边上的高为y ,那么它的面积为定植S 时,那么x 与y 的函数关系式为〔 〕A.x S y =B. x S y 2=C.x S y 2=D.Sx y 2= 4. (08佳木斯市)用电器的输出功率P 与通过的电流I 、用电器的电阻R 之间的关系是2P I R =,下面说法正确的选项是〔 〕A .P 为定值,I 与R 成反比例B .P 为定值,2I 与R 成反比例 C .P 为定值,I 与R 成正比例D .P 为定值,2I 与R 成正比例5.一定质量的二氧化碳,其体积V 〔)3m 是密度)/(3m kg ρ的反比例函数, 请你根据图中的条件,下出反比例函数的关系式 , 当V=1.93m 时,ρ= .6你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识: 一定体积的面团做成拉面,面条的总长度y 〔)m 四面条的粗细 〔横截面积〕S 〔)2mm 的反比例函数,其图象如下图. 〔1〕写出y 与S 的函数关系式;〔2〕求当面条粗1.62mm 时,面条的总长度是多少米?第5踢图第6题图7.蓄电池的电压为定植,使用此电源时,电流I 〔A 〕和电阻R 〔)Ω成反比例函数关系,且当I=4A ,R=5Ω.〔1〕蓄电池的电压是多少?请你写出这一函数的表达式. 〔2〕当电流喂A 时,电阻是多少?〔3〕当电阻是10Ω.时,电流是多少?〔4〕如果以此蓄电池为电源的用电器限制电流不超过10A ,那么用电器的可变电阻应该控制在什么范围内? 第一课时答案:1.〔1〕;100)3(;20)2(;400<<=x h x y2.D ,提示:由题意,得)0(250>=x xy ,应选D ;3.C ,提示:根据面积公式S=xSy xy 2,21=;4.B5.V=3/5;5.9m kg ρ,提示:设V=5.99.15,===k V k,代入得,由图象得ρρ;6.解:〔1〕由于一定体积的面团做成拉面,面条的总长度y 〔)m 是面条的粗细〔横截面积〕S 〔)2mm 的反比例函数,所以可设)0(≠=k S ky ,由图象知双曲线过点〔4,32〕,可得,,128=k 即y 与S 的函数关系式为.128S y = 〔2〕当面条粗1.62mm 时,即当S=1.6时,,806.1128==y 当面条粗1.62mm 时,面条的总长度为80米.7.〔1〕U=IR=4×5=20V ,函数关系式是:I=.20R〔2〕当I=1.5时,R=4Ω.; 〔3〕当R=10时,I=2A ; 〔4〕因为电流不超过10A ,由I=.20R 可得2,1020≥≤R R,可变电阻应该大于等于2Ω.. 第二课时1. 正在新建中的饿某会议厅的地面约5002m ,现要铺贴地板砖.(1) 所需地板砖的块数n 与每块地板砖的面积S 有怎样的函数关系?(2) 为了使地面装饰美观,决定使用蓝、白两种颜色的地板砖组合成蓝白相间的图案, 每块地板砖的规格为80×802cm ,蓝、白两种地板砖数相等,那么需这两种地板砖各多少块?2.正比例函数x k y 11=和反比例函数xk y 22=交于A 、B 两点。

2019-2020年八年级下学期数学第12周限时作业

2019-2020年八年级下学期数学第12周限时作业

2019-2020年八年级下学期数学第12周限时作业一、选择题(30分)1.1.下列图形中,不是中心对称图形是()2.下列调查方式,你认为最合适的是()A.调查市场上某种白酒的塑化剂的含量,采用普查方式B.了解我市每天的流动人口数,采用抽样调查方式C.调查鞋厂生产的鞋底能承受的弯折次数,采用普查方式D.旅客上飞机前的安检,采用抽样调查方式3.要使分式有意义,则x的取值应满足()A.x=﹣2 B.x<﹣2 C.x>﹣2 D.x≠﹣24.如果反比例函数的图象在第二、四象限,那么m的取值范围是 ( ) A.m>2 B.m<2 C. D.5.如图,点A为反比例函数图象上一点,过A作AB⊥x轴于点B,连接OA,则△ABO的面积为() A.﹣4 B.4 C.﹣2 D.26.如图,O是矩形ABCD的对称中心,M是AD的中点.若BC=8,OB=5,则OM的长为()A.4 B.3 C.2 D.17.已知反比例函数(k<0)的图象上有两点A(x1,y1),B(x2,y2),且0<x1<x2,设y1-y2=a,则 ( ) A.a>0 B.a<0 C.a≥0 D.a≤08.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,此时点C恰好在线段DE上,若∠B=40°,∠CAE=60°,则∠DAC的度数为()A.15°B.20°C.25°D.30°9.为了早日实现“绿色无锡,花园之城”的目标,无锡对4000米长的城北河进行了绿化改造.为了尽快完成工期,施工队每天比原计划多绿化10米,结果提前2天完成.若原计划每天绿化x米,则所列方程正确的是 ( ) A. B. C. D.10.如图,正方形ABCD的顶点B、C在x轴的正半轴上,反比例函数在第一象限的图象经过点A(m,2)和CD边上的点E(n,),过点E作直线l∥BD交y轴于点F,则点F的坐标是()A.(0,) B.(0,) C.(0,﹣3) D.(0,)二、填空题(16分)11.小芳抛一枚硬币10次,有6次正面朝上,当她抛第11次时,正面朝上的概率为.12.下列4个分式:①a+3a2+3;②x-yx2-y2;③m2m2n;④2m+1,中最简分式有___ _个.13.在菱形ABCD中,边长为5,对角线AC=6.则菱形的面积为__________.14.已知ABCD中,∠C=2∠B,则∠A=度.15.如图,在△ABC中,点D是BC的中点,点E、F分别在线段AD及其延长线上,且DE=DF,给出下列条件:①BE⊥EC;②BF∥CE;③AB=AC;从中选择一个条件,使四边形BECF为菱形,你认为这个条件是 (只填写序号).16.若关于x的分式方程的解为非正数,则a的取值范围是_________________.17.设函数y=﹣与y=x+2的图象的交点坐标为(m,n),则的值为.18.如图,点A(a,2)、B(﹣2,b)都在双曲线y=上,点P、Q分别是x轴、y轴上的动点,当四边形PABQ的周长取最小值时,PQ所在直线的解析式是y=x+,则k=.三、解答题(54分)19.计算:(6分) (1)+|1﹣|;(2).20.解方程(8分)(1)(2)21.(6分)化简1﹣÷,并直接写出a为何整数时,该代数式的值也为整数22.(6分)小明随机调查了若干市民租用公共自行车的骑车时间t(单位:分),将获得的数据分成四组,绘制了如图统计图,请根据图中信息,解答下列问题:(1)这次被调查的总人数是多少?(2)试求表示A组的扇形圆心角的度数,并补全条形统计图.(3)如果骑自行车的平均速度为12km/h,请估算,在租用公共自行车的市民中,骑车路程不超过6km的人数所占的百分比.23.(6分) 如图,AC是□ABCD的对角线,∠BAC=∠DAC.(1)求证:AB=BC;(2)若AB=2,AC=,求□ABCD的面积.24.(6分)如图8,是药品研究所所测得的某种新药在成人用药后,血液中的药物浓度y (微克/毫升)用药后的时间(小时)变化的图象(图象由线段OA与部分双曲线AB组成).并测得当时,该药物才具有疗效.若成人用药4小时,药物开始产生疗效,且用药后9小时,药物仍具有疗效,则成人用药后,血液中药物浓则至少需要多长时间达到最大度?25.(8分)如图,在平面直角坐标系xOy中,已知四边形DOBC是矩形,且D(0,4),B (6,0),若反比例函数y=(x>0)的图象经过线段OC的中点A,交DC于点E,交BC 于点F.设直线EF的解析式为y=k2x+b.(1)求反比例函数和直线EF的解析式;(2)求△OEF的面积;(3)请直接写出不等式k2x+b﹣<0的解集.26.(8分)如图,在平面直角坐标系中,四边形ABCD为正方形,已知点A(﹣6,0),D (﹣7,3),点B、C在第二象限内.(1)点B的坐标;(2)将正方形ABCD以每秒1个单位的速度沿x轴向右平移t秒,若存在某一时刻t,使在第一象限内点B、D两点的对应点B′、D′正好落在某反比例函数的图象上,请求出此时t的值以及这个反比例函数的解析式;(3)在(2)的情况下,问是否存在x轴上的点P和反比例函数图象上的点Q,使得以P、Q、B′、D′四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点P、Q 的坐标;若不存在,请说明理由.。

福建省永定县第二中学八年级数学下学期周末培训练习1(无答案) 新人教版

福建省永定县第二中学八年级数学下学期周末培训练习1(无答案) 新人教版

福建省永定县第二中学八年级数学下学期周末培训练习1一、 填空题:1、若函数y=4x 与y=x 1的图象有一个交点是(21,2),则另一个交点坐标是 _。

2、直线y=kx +b 过一、三、四象限,则函数kxby =的图象在____________象限。

3、反比例函数k y x =的图象经过(-32,5)、(,3a -)两点,则k = ,a = 。

4、已知y -2与x 成反比例,当x =3时,y =1,则y 与x 间的函数关系式为 。

5、己知反比例函数xm y 1-= (x >0),y 随x 的增大而增大,则m 的取值范围是 。

6、如图,点A 是反比例函数xy 4=图象上一点,AB ⊥y 轴于点B ,那么△AOB 的面积是 。

二. 选择题:7、下列函数中,是反比例函数的是( ) A.y x =-2B.y x =-12 C. y x =-11D.y x =12 8、如果反比例函数xky =的图像经过点(-3,-4),那么函数的图像应在( ) A 、 第一、三象限 B 、 第一、二象限 C 、 第二、四象限 D 、 第三、四象限 9、函数xy 1-=的图象上有两点),(11y x A 、),(22y x B 且21x x <,那么下列结论正确的是( ) A.21y y < B.21y y > C.21y y = D.1y 与2y 之间的大小关系不能确定10、如图,过反比例函数y=x2(x >0)图象上任意两点A 、B 分别作x 轴的垂线, 垂足分别为C 、D ,连结OA 、OB ,设AC 与OB 的交点为E ,△AOE 与梯 形ECDB 的面积分别为S 1、S 2,比较它们的大小,可得( ) A.S 1>S 2 B.S 1<S 2 C.S 1=S 2 D.S 1、S 2的大小关系不能确定 11、在第三象限中,下列函数,y 随x 的增大而减小的有( ) ①、y= -3x ②、y =x8③、y = -2x+5 ④、y = - 5x-6 A 、1个 B 、2个 C 、3个 D 、4个12、在同一直角坐标系中,函数y=kx-k 与k y x =(k ≠0)的图象大致是( )三. 解答题:13、某空调厂的装配车间原计划用2个月时间(每月以30天计算),组装9000台空调.(1)从组装空调开始,每天组装的台数m (单位: 台/天)与生产的时间t (单位:天)之间有怎样的函数关系?(2)由于气温提前升高、厂家决定这批空调提前十天上市,那么装配车间每天至少要组装多少空调?y x O A y x O B y x O C y x O DOxy A B14、如图,已知一次函数b kx y +=的图象与反比例函数xy 8-=的图象交于A 、B 两点,且点A 的横坐标和点B 的纵坐标都是2-,求:(1)一次函数的解析式;(2)△AOB的面积.15、制作一种产品,需先将材料加热达到60℃后,再进行操作.设该材料温度为y (℃),从加热开始计算的时间为x (分钟).据了解,设该材料加热时,温度y 与时间x 成一次函数关系;停止加热进行操作时,温度y 与时间x 成反比例关系(如图).已知该材料在操作加工前的温度为15℃,加热5分钟后温度达到60℃.(1)分别求出将材料加热和停止加热进行操作时,y 与x 的函数关系式; (2)根据工艺要求,当材料的温度低于15℃时,须停止操作,那么从开始加热到停止操作,共经历了多少时间?yxBA Ox y。

人教版数学八年级下册初二数学一次函数限时练

人教版数学八年级下册初二数学一次函数限时练

初中数学试卷 金戈铁骑整理制作初二数学一次函数限时练2016.4.7一、选择题(每题3分)1.变量x,y 有如下关系:①x+y=10②y=x5 ③y=|x-3|④y 2=8x.其中y 是x 的函数的是 A. ①②②③④ B. ①②③ C. ①②D. ① 2.下列各点中,在直线y=-4x+1上的点是A.(-4,-17)B. (-,276)C. (,32-132) D. (1,-5) 3.已知正比例函数y=(k+5)x,且y 随x 的增大而减小,则k 的取值范围是A.k >5B.k <5C.k >-5D.k <-54.在平面直角坐标系xoy 中,点M(a,1)在一次函数y=-x+3的图象上,则点N(2a-1,a)所在的象限是A.一象限B. 二象限C. 四象限D.不能确定5.下列说法不正确的是A.正比例函数是一次函数的特殊形式B.一次函数不一定是正比例函数C.y=kx+b 是一次函数D.2x-y=0是正比例函数6.已知正比例函数y=kx(k ≠0)的函数值y 随x 的增大而减小,则函数y=kx-k 的图象大致是7.若方程x-2=0的解也是直线y=(2k-1)x+10与x 轴的交点的横坐标,则k 的值为A.2B.0C.-2D. ±28.直线y=kx+b 交坐标轴于A(-8,0),B(0,13)两点,则不等式kx+b ≥0的解集为A.x ≥-8B.x ≤-8C.x ≥13D.x ≤139.已知直线y 1=2x 与直线y 2= -2x+4相交于点A.有以下结论:①点A 的坐标为A(1,2);②当x=1时,两个函数值相等;③当x <1时,y 1<y 2④直线y 1=2x 与直线y 2=2x-4在平面直角坐标系中的位置关系是平行.其中正确的是A. ①③④B. ②③C. ①②③④D. ①②③二、填空题(每小题3分)。

10.若函数y=(n-3)x+n 2-9是正比例函数,则n 的值为11.四边形有2条对角线,五边形有5条对角线,六边形有9条对角线,……n 边形有 条对角线.三、解答题(1题4分2题4分3题9分)1. 根据下列条件分别确定函数y=kx+b 的解析式:(1)y 与x 成正比例,当x=2时,y=3; (2)直线y=kx+b 经过点(2,4)与点()31,312.如图所示的折线ABC•表示从甲地向乙地打长途电话所需的电话费y (元)与通话时间t (分钟)之间的函数关系的图象.(1)写出y 与t•之间的函数关系式;(2)通话2分钟应付通话费多少元?通话7分钟呢?3.如图正比例函数y=2x 的图像与一次函数 y=kx+b 的图像交于点A (m,2),一次函数的图像经过点B (-2,-1)与y 轴交点为C 与x 轴交点为D.(1)求一次函数的解析式;(2)求C 点的坐标;(3)求△AOD 的面积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学限时训练(三)
2013.3.19
一、选择题:(每题3分,共36分) 1、在
(3)5,,,
2a b x x x a b x a b π-+++-,m
a 1
+中,是分式的有 ( ) A 、1个 B 、2个 C 、3个 D 、4个 2、下列约分正确的是( )
A 、
3
2
6x x
x = B 、
0=++y
x y x C 、
x
xy
x y x 12
=
++ D 、
2
1422
2
=
y
x xy
3、下列函数是反比例函数的是 ( ) A 、y=
3
x B 、y=
x
36 C 、y=x 2+2x D 、y=4x+8
4、分式:①
2
23
a a ++,②
2
2
a b a b
--,③
412()
a a
b -,④
12
x -中,最简分式有( )
A.1个
B.2个
C.3个
D.4个
5、无论x 取什么数时,总是有意义的分式是( ) A .
1
22
+x x B.1
2+x x C.
1
33
+x x D.
2
5x
x -
6、能使分式1
22
--x x x 的值为零的所有x 的值是( )
A 、0=x
B 、1=x
C 、0=x 或1=x D.、0=x 或1±=x 7、若分式2
31
x
x -的值为正数,则( ) A 、0>x B 、0<x C 、1>x D 、1<x 8、反比例函数)0(≠=
k x
k y 的图象经过点(2-,3),则它还经过点 ( )
A. (6,1-)
B. (1-,6-)
C. (3,2)
D.(2,3)
9、如图,一次函数与反比例函数的图像相交于A 、B 两点,则图中使反比例函数的值小于一次函数的值的x 的取值范围是( )
A 、x <-1
B 、x >2
C 、-1<x <0,或x >2
D 、x <-1,或0<x <2 10.若把分式
xy
y x +中的x 和y 都扩大2倍,那么分式的值( )
A .扩大2倍
B .不变
C .缩小2倍
D .缩小4倍
11.一艘轮船在静水中的最大航速为30千米/时,它沿江以最大航速顺流航行100千米所用
时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?设江水的流速为x 千米/时,则可列方程( ) A .x x -=+306030100 B .306030100-=+x x C .
x
x
+=
-306030100 D .
30
6030
100+=
-x x
12、在一段坡路,小明骑自行车上坡的速度为每小时V 1千米,下坡时的速度为每小时V 2千
米,则他在这段路上、下坡的平均速度是每小时 ( )。

A 、
2
2
1v v +千米 B 、
2
121v v v v +千米 C 、
2
1212v v v v +千米 D 无法确定
13、赵强同学借了一本书,共280页,要在两周借期内读完,当他读了一半时,发现平时每天要多读21页才能在借期内读完.他读了前一半时,平均每天读多少页?如果设读前一半时,平均每天读x 页,则下列方程中,正确的是 ( ) A 、
1421140
140=-+x x B 、
1421280
280
=++
x x
B 、1211010
=++x x D 、1421
140140=++x x 二、填空题:(每小题3分,共12分)
14、用科学记数法表示:-0.00002009= .
15、一批零件300个,一个工人每小时做15个,用关系式表示人数y 与完成任务所需的时间x•之间的函数关系式为_______ _. 16、关于x 的方程 23
23
=--
-x a x x 无解,则a 为_______ __ __.
17、已知:
2
41
1
1
A B x x x =
+
--+是一个恒等式,则A =______,B=________。

18、已知点A (-2,a ),B (-1,b ),C (3,c )在双曲线y=x
7上,则a 、b 、c 的大小关系
为 (用“<”号将a 、b 、c 连接起来)。

19、观察下面一列有规律的数:31
,82,153,244,355,48
6,……
根据规律可知第n 个数应是 (n 为正整数)
三、解答题:(共9小题,共72分)
20、在某一电路中,保持电压不变,电流I(安培)与电阻R(欧姆)成反比例,当电阻R=5欧姆时,电流I=2安培。

(每小题3分,共6分) (1)求I 与R 之间的函数关系式 (2)当电流I=0.5安培时,求电阻R 的值
21、解方程 (1)、2212
1--=
--x
x x (2)
、0(,0)1
m n m n m n x
x -
=≠≠+
22、请你先化简2
2
21
4
244x x x x x
x x x
+--⎛⎫-
÷ ⎪--+⎝⎭,再选取一个你喜欢的数代入求值。

(8分)
23、(8分)已知关于x 的方程23
3
x m x x -=
--有一个正数解,求m 的取值范围?
24、甲、乙两个工程队合做一项工程,需要16天完成,现在两队合做9天,甲队因有其他任务调 走,乙队再做21天完成任务。

甲、乙两队独做各需几天才能完成任务?
25、 某市从今年1月1日起调整居民用天燃气价格,每立方米天燃气价格上涨25%.小颖家去12月份的燃气费是96元.今年小颖家将天燃气热水器换成了太阳能热水器,5月份的用气量比去年12月份少10m ³,5月份的燃气费是90元.求该市今年居民用气的价格.
26、小王开着私家车到某市接朋友,他家到该市的路程为300千米,其车速与每千米的耗油量之间的关系如下表所示:
车速x (千米/小时)
10
20
40
80 每千米耗油量y (升) 0.4 0.2 0.1
0.05
(1)认真分析表中的数据,试写出y 和x 之间的函数关系式; (2)若该车油箱最大容积为35升,小王把油箱加满油后出发,接到朋友后迅速返回,如果
他保持60千米/小时的速度匀速行驶,问油箱中的油是否够用?
27、供电局的电力维修工甲、乙两人要到30千米远的A 地进行电力抢修.甲骑摩托车先行,
41
小时后乙开抢修车载着所需材料出发,结果甲、乙两人同时到达.已知抢修车的速度
是摩托车的1.5倍,求摩托车的速度.
28.某服装店用960元购进一批服装,并以每件46元价格全部售完,由于服装畅销,服装店又用了2220元再次以比第一次进价多5元的价格购进服装,数量是第一次购进服装的2倍,仍以每件46元的价格出售,卖了部分后,为了加快资金周转,服装店将剩余20件以售价的九折全部出售,
(1) 服装店第一次购买了此种服装多少件? (2)两次出售服装共盈利多少元?
29. 我市对观光路工程招标时,接到甲、乙两个工程队的投标书,甲、乙施工一天的工程费用分别为1.5万元和1.1万元,市政局 根据甲乙两队的投标书测算,应有三种施工方案: (1)甲队单独做这项工程刚好如期完成. (2)乙队单独做这项工程,要比规定日期多5天. (3)若甲、乙两队合作4天后,余下的工程由乙队单独做,也正好如期完成. 在确保如期完成的情况下,你认为哪种方案最节 省工程款,通过计算说明理由.
30.如图,已知一次函数y=k 1x+b 的图象与反比例函数y=
x
k 2的图象交于A (1,-3),B (3,
m )两点,连接OA 、OB . (1)求两个函数的解析式;(2)求△AOB 的面积.
A B
O
x
y。

相关文档
最新文档