液压执行元件介绍

合集下载

第五章 液压系统的执行元件

第五章  液压系统的执行元件
液压缸的设计和计算是在对整个液压系统进行工况分析, 计算了最大负载力,先定了工作压力的基础上进行的。因此, 首先要根据使用要求确定结构类型,在按照负载情况,运动要 求决定液压缸的主要结构尺寸,最后进行结构设计。
液压缸的设计内容和步骤 (1)选择液压缸的类型和各部分结构形式。 (2)确定液压缸的工作参数和结构尺寸。 (3)结构强度、刚度的计算和校核。 (4)导向、密封、防尘、排气和缓冲等装置的设计。 (5)绘制装配图、零件图、编写设计说明书。
液压缸的典型结构——拉杆液压缸结构
缸体组件
活塞组件
密封装置
要求液压缸所选用的密封元件,在工作压力下具有良好 的密封性能。并且,密封性能应随着压力升高而自动提高, 使泄漏不致因压力升高而显著增加。
液压缸常用的密封方法:

间隙密封 密封元件的密封 间隙密封
缓冲结构示例
排气装置
5.3 液压缸的设计与计算
2.齿条活塞缸
由两个活塞缸和一套齿条传动 装置组成的复合式缸。

齿轮齿条传动装置将活塞的移 动变成齿轮的传动,用于实现工 作部件的往复摆动或间歇进给运 动。

用在机床的进刀机构、回转工 作台转位、分度装置、液压机械 手等。

3.增压缸
增压缸能将输入的低压油转变为 高压油供液压系统中的高压支路 使用。但它不是能量转换装置, 只是一个增压器件。 不计摩擦力,根据力平衡关系,可有如下等式:
液压缸主要尺寸的确定
1、工作压力的选取
根据液压缸的实际工况,计算出外负载大小, 然后参考下表选取适当的工作力。
液压缸工作压力的确定
负载
缸工作压力
0~0.7
70~140
140 ~250

>250

液压执行元件各有什么用途

液压执行元件各有什么用途

液压执行元件各有什么用途液压执行元件是液压系统中的核心部件,主要用于将液压能转化为机械能,实现各种工程机械的运动。

常见的液压执行元件包括液压缸、液压马达和液压伺服阀等。

它们各有不同的用途,具体如下:1. 液压缸:液压缸是最常见和应用广泛的液压执行元件,主要用于产生线性运动。

它通常由缸体、活塞、活塞杆和密封件等部件组成。

液压缸可用于各种工程机械,如挖掘机、铲车和推土机等,实现各种行程和推力的精确控制。

2. 液压马达:液压马达是将液压能转化为旋转运动的液压执行元件。

它通常由马达本体、齿轮或液压马达柱塞等组成。

液压马达广泛应用于各种需要转动运动的工程机械,如起重机、钻机和混凝土泵等。

3. 液压伺服阀:液压伺服阀是用于控制和调节液压系统中流量和压力的重要元件。

通过调节阀芯的位置和开口大小,实现对液压能的精确控制。

液压伺服阀广泛应用于液压系统中的动态控制和自动化控制系统。

4. 液压驻车制动器:液压驻车制动器主要用于工程机械和汽车等的停车制动。

它通过液压系统产生的压力来使制动器盘片紧密贴合,从而实现对车辆的牵制和停止。

5. 液力变矩器:液力变矩器是用于传递和调节动力的液压执行元件。

它通常由泵轮、涡轮和导向器等组成,可以实现变矩器的连续变比。

液力变矩器广泛应用于各种需要动力变速的工程机械和汽车等。

6. 液压传动件:液压传动件主要用于传递液压能和机械能的变换。

常见的液压传动件包括管路、接头和油管等。

液压传动件在液压系统中起到连接各个液压元件的作用,实现液压能的传递和分配。

总结来说,液压执行元件在工程机械、汽车等领域中起到至关重要的作用。

它们能够将液压能有效地转化为机械能,实现各种运动和动力传递。

液压执行元件的应用不仅提高了机械设备的工作效率和精度,还增加了操作的便利性和安全性。

4《液压传动》执行元件

4《液压传动》执行元件
19
的供液次数,可分为:
第4章 液压传动执行元件
4.6.2 液压缸的计算
• 液压缸的基本计算,主要指其供液压力和驱动负载计算,以及输入 流量和运动速度的计算,输出功率可根据负载及其运动速度计算出。
20
第4章 液压传动执行元件
4.6.2 液压缸的计算
21
第4章 液压传动执行元件
4.6.2 液压缸的计算
第4章 液压传动执行元件
4.4.2 静力平衡式径向柱塞马达

静力平衡式马达式在staffa马达的基础上演变和发展起来的,如图 4.4-2所示,其特点是取消了连杆,并在主要摩擦副之间实现了静压 力平衡,故称静力平衡式液压马达,国外称之为“Roston”马达。
15
第4章 液压传动执行元件
4.4.2 静力平衡式径向柱塞马达
27
第4章 液压传动执行元件
4.7 典型液压缸及其结构
3 密封装置 液压缸的密封是液压缸结构中的重要环节之一,用于活塞、活塞杆和 端盖等处。用以防止液压缸的内部泄漏。常见密封结构如下:
28
第4章 液压传动执行元件
4.7 典型液压缸及其结构
29
第4章 液压传动执行元件
4.7 典型液压缸及其结构
4 液压缸缓冲装置 当液压缸带动质量较大的部件作快速往复运动时,应设置缓冲装置, 以防止活塞运动到末端时与缸盖碰撞,损坏液压缸。利用节流原理来实现 液压缸的缓冲,常有两种:间隙缓冲装置和节流阀缓冲装置。 环形间隙缓冲装置:当活塞达到行程末端时,长度L上的油液从环形间 隙S处挤出,形成缓冲压力。 节流阀缓冲装置:当活塞进入行程末端时,缓冲柱塞a进入缸盖孔c时, b腔回油液被柱塞a堵塞,回油口d被封闭,压油液只能通过节流阀2的阀口 排出,起到缓冲作用。回程时,油液经单向阀1和d口进入,可使活塞平稳 启动

液压执行元件

液压执行元件

第三章液压执行元件液压执行元件是将液压泵提供的液压能转变为机械能的能量转换装置,它包括液压缸和液压马达。

液压马达习惯上是指输出旋转运动的液压执行元件,而把输出直线运动(其中包括输出摆动运动)的液压执行元件称为液压缸。

第一节液压马达一、液压马达的特点及分类从能量转换的观点来看,液压泵与液压马达是可逆工作的液压元件,向任何一种液压泵输入工作液体,都可使其变成液压马达工况;反之,当液压马达的主轴由外力矩驱动旋转时,也可变为液压泵工况。

因为它们具有同样的基本结构要素--密闭而又可以周期变化的容积和相应的配油机构。

但是,由于液压马达和液压泵的工作条件不同,对它们的性能要求也不一样,所以同类型的液压马达和液压泵之间,仍存在许多差别。

首先液压马达应能够正、反转,因而要求其内部结构对称;液压马达的转速范围需要足够大,特别对它的最低稳定转速有一定的要求。

因此,它通常都采用滚动轴承或静压滑动轴承;其次液压马达由于在输入压力油条件下工作,因而不必具备自吸能力,但需要一定的初始密封性,才能提供必要的起动转矩。

由于存在着这些差别,使得液压马达和液压泵在结构上比较相似,但不能可逆工作。

液压马达按其结梅类型来分可以分为齿轮式、叶片式、柱塞式和其它型式。

按液压马达的额定转速分为高速和低速两大类。

额定转速高于500r/min的属于高速液压马达,额定转速低于500r/min的属于低速液压马达。

高速液压马达的基本型式有齿轮式、螺杆式、叶片式和轴向柱塞式等。

它们的主要特点是转速较高、转动惯量小,便于启动和制动,调节(调速及换向)灵敏度高。

通常高速液压马达输出转矩不大(仅几十N·m到几百N·m)所以又称为高速小转矩液压马达。

低速液压马达的基本型式是径向柱塞式,此外在轴向柱塞式、叶片式和齿轮式中也有低速的结构型式,低速液压马达的主要特点是排量大、体积大转速低(有时可达每分钟几转甚至零点几转),因此可直接与工作机构连接,不需要减速装置,使传动机构大为简化,通常低速液压马达输出转矩较大(可达几千N·m到几万N·m),所以又称为低速大转矩液压马达。

液压元件介绍

液压元件介绍

液压元件介绍
液压元件是指组成液压系统的各类部件,通常可以分为四大类:
1. 动力元件:如液压泵,其作用是将原动机(通常是电动机或内燃机)提供的机械能转换为流体的液压能。

液压泵是液压系统中的动力源,负责提供压力和流量以驱动整个系统。

2. 执行元件:包括油缸和液压马达,它们是将液压能转换回机械能的元件,实现直线运动或旋转运动,完成各种动作和工作循环。

3. 控制元件:主要是各种阀门,如溢流阀、方向控制阀、速度控制阀等,用于调节和控制液压系统中的压力、流量和流向,从而实现对执行元件运动的精确控制。

4. 辅助元件:如油箱、过滤器、管路和接头等,这些元件虽然不直接参与能量转换,但在整个系统中起到连接、保护和支撑的作用,保证液压系统稳定可靠地运行。

此外,还有工作介质,通常是液压油,它作为传递能量的介质,在液压系统中流动,承受压力并传递动力。

综上所述,液压系统通过这些元件的协同工作,实现了能量的转换和控制,广泛应用于工业机械、工程机械等领域。

根据不同的应用需求,液压元件的种类和设计也会有所不同,以满足特定的功能和性能要求。

第三章液压执行元件

第三章液压执行元件

p1
p2 )D2
p2d 2 ]
v1
q A1
4q
D 2
b)从有杆腔进油时,活塞上所产生的推力
F2和速度v2
F2
A2 p1
A1 p2
4 [( p1
p2 )D2
p1d 2 ]
q
4q
v2 A2 (D 2 d 2 )
C)速度比
v
v2 v1
1 1 (d / D)2
3.差动液压缸——单杆活塞缸的左右两腔同 时通压力油,称为差动液压缸。
(二)液压缸的组成 液压缸的结构基本上可以分为缸筒和
缸盖、活塞和活塞杆、密封装置、缓冲装 置和排气装置五个部分。
1、缸筒与缸盖
2、活塞和活塞杆
3、密封装置 用以防止油液的泄漏(液压缸一般不允许外泄 并要求内泄漏尽可能小)。
4.缓冲装置 目的:使活塞接近终端时,增达回油阻力, 减缓运动件的运动速度,避免冲击。
3.液压马达的转速和低速稳定性
1)转速
n
q V
v
2)爬行现象——当液压马达工作转速过低 时,往往保持不了均匀的速度,进入时动 时停的不稳定状态,这就是所谓爬行现象
• 和其低速摩擦阻力特性有关。
• 另外,液压马达排量本身及泄漏量也在 随转子转动的相位角变化作周期性波动, 这也会造成马达转速的波动
4.调速范围 液压马达的调速范围以允许的最大转速和 最低稳定转速之比表示,即
当E1=E2时,工作部件的机械能全部被缓冲 腔液体所吸收,由上两式得
pc
E2 Ac l c
节流口可调式则最大的缓冲压力即冲击压
力为
pc max
pc
mv02 2 Aclc
5.液压缸稳定性校核 当 l/d ≤15时 一般不用校核 当 l/d ≥15时 必须进行校核,即F<Fk F为活塞杆承受的负载力,Fk为保持工作稳 定的临界负载力

液压-第04章液压执行元件

液压-第04章液压执行元件
可以看出,液压马达总的输出转矩等于处在马达压 力腔半圆内各柱塞瞬时转矩的总和。
由于柱塞的瞬时方位角呈周期性变化,液压马达总
的输出转矩也周期性变化,所以液压马达输出的转矩是 脉动的,通常只计算马达的平均转矩。
Ft Ft Ft FN
Ft
F F
13
4.1.3 低速大扭矩液压马达
低速大扭矩液压马达是相对于高速马达而言的,通常 这类马达在结构形式上多为径向柱塞式,其特点是:最低转 速低,大约在5~10转/分;输出扭矩大,可达几万牛顿米; 径向尺寸大,转动惯量大。
动、制动、调速和换向。通常高速马达的输出转矩不
大,最低稳定转速较高,只能满足高速小扭矩工况。
9
柱塞式马达的工作原理
当压力油输入液压马达时,处于压力腔的柱塞被顶 出,压在斜盘上,斜盘对柱塞产生反力,该力可分解为 轴向分力和垂直于轴向的分力。其中,垂直于轴向的分 力使缸体产生转矩。
Ft Ft Ft Ft FN
由上式可见,液压马达的总效率亦同于液压泵的总效 率,等于机械效率与容积效率的乘积。
8
4.1.2
高速液压马达
一般来说,额定转速高于 500r/min 的马达属于高 速马达,额定转速低于 500r/min 的马达属于低速马达。
高速液压马达基本型式:齿轮式、叶片式和轴向 柱塞式等。 它们的主要特点是转速高,转动惯量小,便于启
(2.32)
马达的实际输出转矩小于理论输出转矩: pV T m (2.33) 2 因马达实际存在机械摩擦,故实际输出转矩应考虑机 械效率。
7
• 功率和总效率 马达的输入功率为
N i pq
马达的输出功率为 N o 2nT 马达的总效率为
(2.34) (2.35) (2.36)

液压执行元件

液压执行元件

第五专题液压执行元件第一讲定义与基本概念第一讲定义与基本概念一、液压执行元件的定义二、液压执行元件的图形符号三、液压缸的基本概念四、液压缸的分类一、液压执行元件的定义压力能机械能压力能机械能动力元件控制元件执行元件原动机辅助元件与工作介质液压执行元件是将液压泵提供的压力能转变为机械能的能量转换装置。

依据输出方式的不同可分为液压缸和液压马达两类。

液压缸是指输出直线运动(包括摆动)的液压执行元件;液压马达是指输出旋转运动的液压执行元件。

二、液压执行元件的图形符号液压泵液压马达液压缸缸筒活塞活塞杆进出油口【注意点1】进出油口放置在靠近两端的侧面位置。

缸筒活塞活塞杆进出油口【注意点2】无杆腔与有杆腔的截面面积是不同的。

无杆腔有杆腔缸筒活塞活塞杆进出油口【注意点3】单杆和双杆的工作腔是不同的。

左腔右腔四、液压缸的分类(1)按结构形式分类活塞缸、柱塞缸、伸缩缸等活塞缸又分为单杆式和双杆式两种。

(2)按受液压力作用分类单作用缸、双作用缸第五专题液压执行元件第二讲单杆式双作用缸的工作原理第二讲单杆式双作用缸的工作原理一、单杆式双作用缸的工作原理二、单杆式双作用缸的固定方式三、单杆式双作用缸的运动范围一、单杆式双作用缸的工作原理1)通压力油的油口进油;未通压力油的油口出油。

2)活塞会受到与压力油相连工作腔的作用力,向未通压力油的工作腔方向移动。

二、单杆式双作用缸的固定方式1、缸筒固定2、活塞杆固定缸筒固定方式实现较为简单,是常用的固定方式。

因此,在未说明固定方式的情况下,都默认为缸筒固定方式。

活塞能够运动的最大长度称为该液压缸的活塞行程(L)。

活塞能够伸出的最大长度近似等于活塞行程。

为简化计算,一般也认为活塞伸出的最大长度也为L。

L L运动范围:活塞缸在整个活塞行程中所波及的最大长度。

已知活塞行程为L,在缸筒固定情况下,单杆式双作用缸的运动范围是2L。

L LL【思考】已知活塞行程为L,在活塞杆固定情况下,单杆式双作用缸的运动范围是多少呢?A.0B.LC.2LD.3LL运动范围:活塞缸在整个活塞行程中所波及的最大长度。

液压系统执行元件资料

液压系统执行元件资料
一般油缸油管在油 缸上部,便于排气;
对要求较高的液压 缸,采用排气阀:
注意排气针的自位 性。
4.5 液压马达
一、液压马达特点: 1、液压马达的工作压力高,驱动负载大; 2、 液压马达,尤其是低速大扭矩马达,均可直接驱 动负载。液压马达力密度大,在同等功率输出情况下, 其重量、尺寸仅为直流电马达的5%~20%,相对质量 很轻,所以转动惯量小,启动、制动、反向运转快速 性及低速稳定性好,并可方便地实施无级调速; 3、承受静负载; 4、调速范围广,无级调速。 5、效率较低,能量损失大。
密封种类: 密封圈种类较多,根据不同的密封要求,选用不同的 形状的密封圈,常用的密封圈有: 1、O型密封圈 2、U型密封圈 3、V型密封圈 4、Y型密封圈 密封形式:间隙密封、密封圈密封 运动形式:往复运动和旋转密封 密封材料:金属 铜、铝、橡胶:各种类型,高温,常 温; 尼龙:聚四 氟乙烯:
六、缓冲装置
qt V n
5、流量损耗Δq:由于泄漏引起流量的损失,与压力成 正比;实际流量qn 与理论流量qt 之差。
6、 实际流量qn :输入马达的流量。
qn
V n
mv
V -排量;n -马达转速;ηv- 泄漏系数;
7、理论转速
nt
qt V
8、实际转速
n
qt V
mv
四、马达的转矩、功率:
1、
理论输出转矩T t
二、执行机构作用
1、推拉缸:实现往复直线 运动,输出力和速度;
2、液压马达:实现连续回转,输出扭矩和角速度。
3、摆动缸:实现往复摆动,输出力矩和角速度;
4.1 液压缸
一、单ห้องสมุดไป่ตู้活塞缸
1、简介:往复运动主体为活塞,是双作用油缸。 两个吸油口,两个排油口;单出杆。

液压执行元件

液压执行元件

图4-20 液压马达图形符号 a)单向定量马达;b) 单向变量马达; c) 双向定量马达;d) 双向变量马达
1)轴向柱塞式液压马达 如图4-21是轴向柱塞式液压马达的工作原理图。当压力油经配 油盘通入柱塞底部孔时,柱塞受压力油作用向外伸出,并紧压在斜
盘上,这时斜盘对柱塞产生一反作用力F。 由于斜盘倾斜角为γ, 所以F可分解为两个分力:一个轴向分力FX,它和作用在柱塞上的 液压作用力相平衡;另一个分力FY,它使缸体产生转矩。
机电一体化
液压式执行元件是先将电能变化成液体压力,并用电磁阀控制 压力油的流向,从而使液压执行元件驱动执行机构运动。液压式执 行元件有直线式油缸、回转式油缸、液压马达等。
液压执行元件的特点是输出功率大、速度快、动作平稳、可实 现定位伺服、响应特性好和过载能力强。缺点是体积庞大、介质要 求高、易泄露和环境污染。
图 4-15双杆活塞式液压缸 (a) 缸体固定; (b) 活塞杆固定
图4-16 (a) 无杆腔进油;;活塞缸两腔同时通入压力油时,由于无杆腔有效作用面 积大于有杆腔的有效作用面积,使得活塞向右的作用力大于向左的 作用力,因此,活塞向右运动,活塞杆向外伸出;与此同时,又将 有杆腔的油液挤出,使其流进无杆腔,从而加快了活塞杆的伸出速 度,单杆活塞液压缸的这种连接方式被称为差动连接。如图4-16 (c)差动连接时,液压缸的有效作用面积是活塞杆的横截面积,工 作台运动速度比无杆腔进油时的速度大,而输出力则减小。差动连 接是在不增加液压泵容量和功率的条件下,实现快速运动的有效办 法。
l
1)活塞式液压缸 活塞式液压缸可分为双杆式和单杆式两种结构形式,其安装又 有缸筒固定和活塞杆固定两种方式。 ∫ 双杆活塞液压缸的活塞两端都带有活塞杆,分为缸体固定和活 塞杆固定两种安装形式,如图4-15所示。前者工作台移动范围约等 于活塞有效行程 的三倍, 常用于中小型设备。后者工作台的移动范围只约等于液压缸行 程 的两倍,常用于大型设备。单杆活塞液压缸的活塞仅一端带有 活塞杆,活塞双向运动可以获得不同的速度和输出力。其简图 及油路连接方式如图4-16所示。

液压元件名称及作用

液压元件名称及作用

液压元件名称及作用
液压传动在现代机械中具有重要的地位,而液压元件是构成液压系统的重要部分。

以下是一些常见的液压元件名称及其在液压系统中的作用:
1. 液压泵:液压泵是液压系统的动力源,它能够将机械能转化为液压能,为液压系统提供压力油。

2. 液压马达:液压马达是液压系统的执行元件,它能够将液压能转化为机械能,驱动负载进行旋转或直线运动。

3. 液压缸:液压缸是液压系统的另一种执行元件,它能够将液压能转化为直线运动动能,驱动负载进行运动。

4. 液压阀:液压阀是液压系统中的控制元件,它能够控制液体的流动方向、流量和压力等参数,从而实现不同的动作控制。

5. 液压油箱:液压油箱是液压系统中的油液储存元件,它能够储存和供应足够的油液,为液压泵和液压马达提供必要的润滑和冷却。

6. 液压油管:液压油管是液压系统中的流体通道,它能够连接各个液压元件,使油液能够在系统中流动。

7. 密封件:密封件是液压系统中的重要元件,它能够防止油液泄漏和空气进入系统,保证系统的正常工作和稳定性。

8. 液压附件:液压附件包括各种接头、管夹、滤清器等,它们是辅助元件,用于安装、固定和保护液压元件,保证系统的正常运行。

以上是一些常见的液压元件名称及其在液压系统中的作用,了解这些元件的作用和特点,对于正确设计和维护液压系统具有重要意义。

液压执行元件

液压执行元件

17
第四章、 液压执行元件
第二节 液压缸
2、双活塞杆式液压缸
F 1 F 2 ( p1 p2 ) Am
v1 v2 q V A
18
第四章、 液压执行元件
第二节 液压缸
3、伸缩式液压缸
Fi p1 Aimi
q vi Vi Ai
19
第四章、 液压执行元件
第二节 液压缸
第一节 液压马达
§1.1 柱塞式液压马达 一、结构及工作原理
3
第四章、 液压执行元件
第一节 液压马达
§1.1 柱塞式液压马达 一、结构及工作原理
单作用连杆型径向柱塞马达——低速大转矩马达
4
第四章、 液压执行元件
第一节 液压马达
§1.1 柱塞式液压马达 一、结构及工作原理
多作用内曲线径向柱塞液压马达
因此仅用于高速小转矩的场合,如工程机械、农
业机械及对转矩均匀性要求不高的设备。
9
第四章、 液压执行元件
第一节 液压马达§1.4 摆动式液压马达 Nhomakorabea10
第四章、 液压执行元件
§1.5 液压泵与液压马达的比较 (1)液压马达一般需要正反转,所以在内部结构上应具有对称性, 而液压泵一般是单方向旋转的,没有这一要求; (2)液压泵在结构上需保证具有自吸能力,而液压马达就没有这一 要求。为了减小吸油阻力,减小径向力,一般液压泵的吸油口比出油口 的尺寸大。而液压马达低压腔的压力稍高于大气压力,所以没有上述要
身不能直接作为执行元件 。
D 2 p2 p1 ( ) d
增压缸只能将高压油输入其它液压缸以获得大的推力,其本
21
第四章、 液压执行元件
第二节 液压缸

第三章液压执行元件-PPT

第三章液压执行元件-PPT

二、液压马达得工作原理
1、叶片式液压马达
叶片式液压马达工作原理
大家学习辛苦了,还是要坚持
❖继续保持安 静
• 原理——由于压力油作用,受力不平衡使转子 产生转矩。
• 输出转矩T——与液压马达得排量VM和液压马
达进出油口之间得压力差有关,
• 转速n——输入液压马达得流量qM大小来决定。
❖ 转动特性——能正反转(压、回油互换) ❖ 结构特点: ❖ 叶片要径向放置---适应正反转
❖ 双杆活塞缸在工作时,一个活塞杆是受拉得,而另一 个活塞杆不受力,(活塞杆始终不受压力)因此这种液 压缸得活塞杆可以做得细些。
连杆式径向 柱塞马达
❖ 曲线定子 式
定子有多段曲线,转子每转一转柱塞来回往复多次, 排量大,所以转矩大。 定子内表面采用正弦曲线,(或等加速曲线、阿基米德曲
线),保证在低转速下也能稳定工作。 为增大转矩,也有做成多排转子,各排错开可减小脉动。
❖ 多作用指定子得内曲面可以多达十几段(多次行程)。转子每转 一转,每个柱塞经过每一段时都要吸排油各一次,柱塞要进行多 次进退,对输出轴产生多次渐增转矩,并通过输出轴带动负载旋 转,因此称为多作用马达。
❖ 原因——液压n马M 达内Vq部MM 有M泄v 漏,
❖ 式中,nM —液压马达得实际转速

qM —液压马达得输入流量;

VM —液压马达得理论排量

ηMV —液压马达得容积效率
❖ 转速过低时得爬行现象——当液压马达工作 转速过低时,往往保持不了均匀得速度,进入 时动时停得不稳定状态。
❖ 为防止“爬行” :高速液压马达工作转速不应
七、液压马达常见故障及其排除
一、转速低输出转矩小
1、由于滤油器阻塞,油液粘度过大,泵间隙过大, 泵效率低,使供油不足。清洗滤油器,更换粘度适 合得液油,保证供油量。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3、密封圈密封:
2)材料要求:
密封圈的材料应具有较好的弹性,适当 的机械强度,耐热耐磨性能好,摩擦系数小 ,与金属接触不互相粘着和腐蚀,与液压油 有很好的“相容性”。 材料:耐油橡胶;
尼龙 聚氨脂
3、密封圈密封:
❖ 3)密封圈形状:
“O”形; “Y”形 ; “V”形 。
四、缓冲装置
❖ 1、型式:1)间隙缓冲装置;
液压执行元件介绍
液压马达和液压缸是将液压系统中的压力能转换成机械 能的能量转换装置,都是执行元件。液压马达驱动机构实 现连续的回转运动,使系统输出一定的转矩和转速;液压 缸实现直线往复运动,输出推力和速度。
第一节 液压马达
液压马达和液压泵在原理上可逆,结构上类似, 但由于用途不同,它们在结构上有一定差别。常用 的液压马达有柱塞式、叶片式和齿轮式等。
液压缸的类型:
结构及工作原理:
下图(a)是工程机械采用的一 种单活塞杆液压缸,下图(b)是它 的图形符号。
一、活塞式液压缸
1、双出杆液压缸
2、单出杆液压缸
2、单出杆液压缸
a)无杆腔进油
2、单出杆液压缸
❖ b)有杆腔进油
2、单出杆液压缸
❖ c)差动连接
2、单出杆液压缸
❖ 在组合机床中,常用:图(a )作工进;
一、判断题
❖ 1.双活塞杆Байду номын сангаас压缸由于活塞两端作用面积相等, 理论上其往复速度相等。 ( )
❖ 2.增压液压缸可以不用高压泵而获得比该液压系
统中油泵高的压力。
()
❖ 3.装有排气装置的液压缸,只需要打开排气装置
即可排尽液压缸的空气。
()
❖ 4.若输给轴向柱塞泵以高压油,则一般可作为液
压马达。
()
一、液压马达的类型
与液压泵类似,从结构上看,常用的液压马达有柱塞式、叶片式和齿轮式 等三大类。根据其排量是否可调,可分为定量马达和变量马达;根据转速高低 和转矩大小,液压马达又分为高速小转矩和低速大转矩马达等。另外,有些液 压马达只能作小于某一角度的摆动运动,称为摆动式液压马达。各类液压马达
。 图形符号见下图
密封装置的要求
: (1)在一定工作压力下,具有良好的密封性能。
(2)相对运动表面之间的摩擦力要小,且稳定。 (3)要耐磨,工作寿命长,或磨损后能自动补偿 。 (4)使用维护简单,制造容易,成本低。
密封形式:
间隙密封; 活塞环密封; 密封圈密封。
1、间隙密封:
三角形环形 槽(平衡槽 )
2、活塞环密封(开口金属环):

2)可调节流缓冲装置;

3)可变节流缓冲装置。
2、缓冲原理:
当活塞接近端盖时,增大液压缸回油阻力,使缓冲油腔内产生 足够的缓冲压力,使活塞减速,从而防止活塞撞击端盖。
五、排气装置
排气孔
排气塞
本章小结
❖ 液压缸的类型; ❖ 液压缸的差动联接及其特点、应用; ❖ 液压缸的五大组成部分; ❖ 液压缸的泄漏途径、液压缸的密封; ❖ 液压缸的缓冲原理。
❖ 适用于高压、高速 或密封性能要求较高的场 合
3、密封圈密封:
1)优点: ❖ (1)结构简单,制造方便,成本低; ❖ (2)能自动补偿磨损; ❖ (3)密封性能可随压力加大而提高,密封可靠
; ❖ (4)被密封的部位,表面不直接接触,所以加
工精度可以放低 ❖ (5)既可用于固定件,也可用于运动件。

图(b )作快退;

图(c )作快进。
❖ 为使快进和工进速度相等,即:
二、柱塞式液压缸
典型液压缸的结构
典型液压缸的结构
❖ 缸体组件:缸体、前后端盖 ❖ 活塞组件:活塞、活塞杆 ❖ 密封装置:密封环,密封圈等 ❖ 缓冲装置 ❖ 排气装置
一、缸体组件
二、活塞组件:活塞、活塞杆
三、密封装置
❖ 液压缸中的密封主要指活塞和缸体之间, 活塞杆和端盖之间的密封,用于防止内、 外泄漏。
二、典型液压马达的结构和工作原理
1.齿轮液压马达
2.叶片马达
第二节 液压缸
液压缸是将液压系统的压力能转换成直 线往复运动形式的机械能。它结构简单, 工作可靠,在各种机械的液压系统中得到 广泛应用。
液压缸的类型:
1、按结构形式分: 活塞式 柱塞式 摆动式 2、按作用方式分: 单作用液压缸:
活塞单向作用,由弹簧使活塞复位; 柱塞单向作用,由外力使柱塞返回。 双作用液压缸: 活塞双作用; 双柱塞双作用。
相关文档
最新文档