第10章 传热过程和换热器热计算基础
换热器热计算基础..

对于左侧对流换热 对于壁的导热
A1h1 tf1tw1
tf1tw1 1
t w 1 t w2
A1h1
A1
对于肋侧对流换热 A 2 h 2 t w 2 t f 2 A 2 h 2 t w 2 t f 2
根据肋片效率的定义式
f
A 2 h2tw 2tf2 A 2 h2tw 2tf2
2一种流体为单程,另一种流体以串联形式 与前一种流体多次交叉,其总趋势为顺 流。
3对其它流型平均温压的讨论,P18
五、加权平均温压
加权平均温压,P31
换热器的无因次量及其函数关系
在设•计性计算时(含校核性计算),其基本方程为: 传热方程式:Q=KF△tm=KFf(t1’,t1’’,t2’,t2’’) 热平衡方程式Q=W1(t1’-t1’’)=W2(t2’-t2’’) 共有7个量KF W1、W2、t1’、t1’’、 t2’、t2’’、,给出5 个量才能进行计算。 对设计性计算可采用上述温差法,对校核性计算应 采用本节的无因次法比较方便。
式表示的温差修正曲线绘于图7-5(a)、(b) 和 (c)中。
折流
• 折流:一流体沿一个方向流动,另一流 体反复改变方向称为简单折流。
• 若两流体均作折流,既有折流,又有错 流,称为复杂折流。
简单折流
•<1-2>型先逆后顺折流的平均温压
• <1-2>型先逆后顺折流的平均温压tmtm
=f(R,P)
1
Rh1
d1lh 1
tw1 tw2
1 ln d 2
2 l d1
tw1 tw2 R
d2lh2tw2tf2
tw2tf2tw2tf2
1
Rh2
d2lh2
传热学第十章

(2) 管壳式换热器 由管子和外壳构成。
(2) 管壳式换热器 由管子和外壳构成。
2壳程、4管程换热器
管壳式换热器结构牢固可靠、耐高温高压。
列管式冷凝器实例
波纹管换热器
波纹换热管
(3) 肋片管式换热器 由带肋片的管束构成的换热装置。
肋片管式换热器适用于管内液体和管外气体之间 的换热,且两侧表面传热系数相差较大的场合。
(4) 板翅式换热器 由金属板和波纹板形翅片层叠、交错焊接而成。
板翅式换热器结构紧凑、传热系数高。
(5) 板式换热器 由若干片压制成型的波纹状金属板叠加而成。
(5) 板式换热器
1 ,2 介质 3 环行孔道
垫圈 4 板片密封
垫圈 5 激光切焊
焊缝 6 焊接密封
流道
特点:结构紧凑 ,占用空间小;传热系数高 ;端部温差小(可达1℃); 热损失小 ,热效率高(≥98%); 适应性面式,在工程中最常用 混合式—适用于冷热流体为同类介质的场合 回热式(蓄热式) —适用于气体与气体间的换热,
为非稳态过程
2. 按表面的紧凑程度分: 紧凑式与非紧凑式 紧凑程度用当量直径d e (d h) 或传热面积密度 β来衡量 (β---单位体积中的传热面积)
kAo hi Ai 2 l di ho Ao
ri r0
通过肋壁的传热系数
10-2 换热器的类型
换热器:换热器也称热交换器,是把热量从一种 介质传给另一种介质的设备
换热器广泛应用于广泛应用于化工、能源、机械、 交通、制冷空调、航空航天以及日常生活等各个领 域。
换热器不仅是保证某些工艺流程和条件而广泛采用 的设备,也是开发利用工业二次能源,实现余热回 收和节能利用的主要设备。
紧凑式—β≥700m2/m3, 或dh≤6mm 层流换热器—β>3000m2/m3, 或100μm ≤dh≤1mm 微型换热器–β>15000m2/m3, 或100μm≤dh≤1mm
换热器的传热及阻力计算

换热器的传热及阻力计算换热器是一种用于传递热量的设备,广泛应用于各个领域,如工业生产、能源系统和空调系统等。
在设计换热器时,需要对其进行传热及阻力计算,以确保其正常工作和高效性能。
本文将详细介绍换热器的传热计算方法和阻力计算方法。
换热器的传热计算方法可以通过换热系数和传热面积两个方面来进行。
换热系数是一个反映传热效率的参数,可以通过实验测定或理论计算得到。
传热面积是指换热器内热量传递的表面积,可以通过换热器的几何形状和尺寸进行计算。
换热系数的计算方法主要有理论计算和实验测定两种。
理论计算方法是根据换热过程涉及的热力学和流体力学原理,利用换热器材料的导热性能、流体的物性参数和流体速度等来计算换热系数。
而实验测定方法则是通过实验室或现场实测来确定换热系数。
常见的实验测定方法有柱式法、风洞法、加热线法和表面平均温度法等。
传热面积的计算方法则根据具体的换热器结构形式来进行。
换热面积的计算需要考虑换热器的传热面的几何形状、尺寸和布置等因素。
根据实际情况和设计要求,可以选择适当的换热器结构,如管壳式、板式、管翅片式、环型或螺旋板式等,并根据具体结构进行面积计算。
阻力计算是指换热器在工作过程中对流体流动产生的阻力进行估算。
对流体流动的阻力计算需要考虑流体的运动状态、流量和流速等因素。
阻力计算可以通过实验测定或理论计算来进行。
实验测定方法包括风洞法、压差容器法和管道试验法等,其中风洞法是常用的方法之一、理论计算方法则根据流体流动的基本原理和方程来进行,如伯努利方程、连续性方程和动量方程等。
在进行换热器的阻力计算时,需要考虑流体的性质、流动状态和流道的几何形状等因素。
一般来说,流体的阻力与其粘度、密度、流速和流体的流动形式等有关。
流体的流动形式可以分为层流和紊流两种,其阻力特性也有所不同。
通常情况下,层流和紊流的阻力可以通过一系列经验公式或实验数据进行计算和估算。
除了传热计算和阻力计算,还需要对换热器进行性能评估和优化设计。
传热学第十章传热过程和换热器计算

1
10.1 传热过程的分析和计算
传热过程:热量由壁面一侧的流体通过壁面传到另一侧流 体中去的过程。(两个流体通过壁面的换热过程。) 【传热过程是传热学中特指的概念】
传热方程式: Φ = K A Δt
式中:K为传热系数(总传热系数)。对于不同的传热过程,
K的计算公式不同。
25
(1)加大传热温差 tm
在冷、热流体进、出口温度相同的情况下,逆流的平均温 差最大,顺流的平均温差最小,因此从强化传热的角度出 发,换热器应当尽量布置成逆流。
(2)减小传热热阻 Rk
1)多布置换热面,增加总传热面积A,可降低总传热热阻, 加大传热量。
2)降低污垢热阻。
3)减小对流换热热阻Rh1、Rh2。如果两个热阻相差较大,应 抓住主要矛盾,设法减小其中最大的热阻。
Φ Ko Ao (t fi t fo )
说明: 也可以以内表面为基准。
ho
4
3. 带保温层的金属圆管传热 —— 临界热绝缘直径
圆管外敷保温层后:
Φ
1
l(t fi t fo ) 1 ln( di 2 )
1
hidi 2
di
ho (di 2 )
可见,保温层使得导热热阻增加,换热削弱;降低对流 换热热阻,使得换热增强,那么,综合效果到底是增强 还是削弱呢?
传热工程技术的两个方向:强化传热技术与削弱传热技术 (又称隔热保温技术)。
24
无论是强化传热还是削弱传热,一般都是从改变传热温差和 改变传热热阻两方面入手。
以换热器内的传热过程为例:
kAtm
tm 1
tm Rk
tm Rh1 R Rh2
kA
传热强化途径: (1)加大传热温差 tm; (2)减小传热热阻 Rk 。
10传热学-传热过程和换热器

tf1 tf 2
K
For steady heat transfer through a series composite wall
K
1 1 n i 1 h1 i 1 i h2
二、通过圆筒壁的传热 (heat transfer through a cylinder)
二、对保温隔热材料的要求 1. 有最佳密度:使用时,应尽量使其使用密 度接近最佳密度; 2. 热导率小:选用热导率小的材料; 3. 温度稳定性好:在一定温度范围内,物性 值稳定 4. 有一定的机械强度; 5. 吸水、吸湿性小:水分会使材料导热系数 大大增加。 三、最佳保温隔热厚度
四、保温结构 为防止水或湿气进入,外加保护层。 为减少对环境的辐射散热,外加铝箔或聚酯镀铝薄膜。 五、保温隔热效率 设备和管道保温隔热前后的散热量(或冷损失量)之差 与保温隔热前散热量0(或冷损失量)之比,即:
Heat transfer rate:
KAt KA(t f 1 t f 2 )
where A—surface area, m2 t—temperature difference, C K—overall heat transfer coefficient, W/m2· C
一、通过平壁的传热 (heat transfer through a plane wall)
注意:对于低温、超低温管道和设备的保冷,一般的 保温隔热材料不能满足要求,须采用多层镀铝薄膜和 网状玻璃纤维布并抽真空。
0 0
§3 换热器(Heat exchangers)
一、换热器的种类(Heat exchanger types) 1. 按原理分 间壁式换热器:冷热流体被固体壁隔开,如蒸发 器、冷凝器等。 混合式换热器:在这种换热器中,两种流体相互 混合,依靠直接接触交换热量。如水和空气直接 接触的冷却水塔。 回热式(或蓄热式、再生式)换热器:在这种换热 器中,冷热流体交替地与固体壁接触,使固体壁 周期地吸热和放热,从而将热流体的热量传给冷 流体。如锅炉的再生式空气预热器和燃气轮机的 空气预热器。
《传热学》杨世铭-陶文铨-第十章传热分析与计算

t x
t
Ax dt k dA 0 t
t x ln kAx t
t x texp(kAx )
可见,当地温差随换热面呈指数变化,则沿整个换热面的平 均温差为: 1 A 1 A
t m
A
0
t x dA x
A
0
t exp( kAx )dA x
l (t fi t fo ) Φ (d o 2 )
d 0 dd o 2 do2
d l (t fi t fo ) 1 1 2 2 dd o 2 (do 2 ) 22 do 2 h2 do 2
22 d cr or h2
Bi
t h th R tc tc
式中:下标1、2分别表示两种流体,上角标 ` 表示进口, `` 表示出口,图表中均以P为横坐标,R为参量。
(2)P的物理意义:流体2的实际温升与理论上所能达到
的最大温升之比,所以只能小于1 (3)R的物理意义:两种流体的热容量之比
t h t h qmc cc R tc tc qmh ch
Φ
l (t fi t fo )
d 1 1 1 ln( o ) hi d i 2 di ho d o
圆管外敷保温层后:
Φ
l (t fi t fo )
d o1 do2 1 1 1 1 ln( ) ln( ) hi d i 21 di 22 d o1 ho d o 2
TB,out TA,in (tube side)
增加管程
TB,in (shell side) TA,in (tube side) TA,out TB,out
TB,in (shell side)
传热过程和换热器热计算基础

(m2·℃) / W
多层平壁的传热:
q=
n δi 1 1 +∑ + h1 i =1 λi h2
tf1- tf2
二、圆筒壁的传热 每米长圆筒壁的总传热热阻热阻:
只有管道外径 d 2 超过某一值后包上热绝缘层才能 起到减少单位管长热损失的作用,把此直径称为临界 热绝缘直径,用 d c 表示。
d c 可由求 q1 对热绝缘层外径的一阶导数并令之 等于零而得到,即 d = 2λins c h2 ( d 2 > d c 加绝热层才能减少热损)
式中: 2 ——管道热绝缘层外表面对环境的表面传 h 热系数[W/(m2·K)]; λins ——保温材料的导热系数[W/(m·K)]。
' 肋面平均温度 t w2 (< tw2 )
肋片实际散热量:
h A (t
2
2
'
w2
− tf2
)
2
肋处于肋基温度下的理想散热量: h 肋片效率:
A2 (t w 2 − tf2 )
t w 2 − tf2 实际散热量 h2 A2 t w 2 − tf2 = = η= 理想散热量 h2 A2 (t w 2 − tf2 ) t w 2 − tf2
Φ = Ah2 (t w2 − tf2 )
λ Φ = A (t w1 − t W2 ) δ
Φ tf1 − t W1 = Ah Φ t w1 − t W2 = Aλ / δ Φ t w2 − t f2 = Ah2
传热方程:
A(t f1 − t f2 ) Φ= = KA ∆ t 1 / h1 + λ / δ + 1 / h2
第十章传热和换热器

tw,
q qc qr (hc hr ) tw t f
qr , tam
h tw t f
qc , hc , t f
§ 10-3 换热器的型式和基本构造
一、分类
1.按结构型式分: 1)间壁式: 冷、热流体被固体壁面隔开。
如:暖风机、冷凝器、蒸发器等。
暖风机
风冷冷凝器
2)混合式: 冷、热流体互相混合。 如:喷淋式冷却塔、蒸汽喷射器。
以管壳式换热器为例,说明方法的要点.
总传热系数可表示为:
1 k
1 ho
Rw
Rf
1 hi
do di
(a)
Rw 管壁导热热阻
R f 污垢热阻
工业换热器中的管内流体的流动一般都是处于 旺盛湍流状态,hi 与流速u的0.8次方成正比.则
two
ho A1 two t fo ho f A2 two t fo
h0A0 (tw0 t f 0 )
为肋面总效率:
A1 A2 f
A0
1
tf1 tf2
1
hi Ai Ai ho A0
则以光壁为基准的传热系数:
ki
1
1
1
hi ho
定义肋化系数: Ao Ai
1, 1
(3)根据结构,算出传热系数K。(带有假设性)
(4)由传热方程(换热面积A已定),得到 。
(5)由热平衡方程得出’(出口温度均是未知量,也 带假设性.) (6)与’的误差<5%,则满足计算要求. 否则重新假设t,重复上述步骤.
2. 传热单元数法
1)换热器的效能定义:
实际传热量 最大可能传热量
实际传热量: M1c1(t'1t"1 ) M 2c2 (t"2 t'2 )
10.5 换热器的热计算:效能-传热单元数方法

第十章 10.5节(11)
下一节 11
1 Leabharlann C min C max第十章 10.5节(11)
4
t1 t2 (t1 t1 ) (t1 t2 ) (Cmin / Cmax )(t1 t1) 1 Cmin
t1 t2
t1 t2
C max
1 exp NTU(1 Cmin / Cmax )
1 (Cmin / Cmax )
系数和总传热系数 • 求换热器效能及两侧流体的热容比 • 求出NTU值,进而得到换热面积 • 若与初选面积不同,修改布局重新计算
第十章 10.5节(11)
9
校核计算:
• 根据已知传热面积、总传热系数和较小 侧热容可直接求出NTU值
• 由热容比和NTU 值,选取相应的公式或 者曲线求得换热器效能
• 由效能求出小热容流体的出口温度,再 由能量守恒关系式得到另一个出口温度
• 如果总传热系数未知,那么迭代过程仍 然不可避免
第十章 10.5节(11)
10
教材中汇总表10-1/10-2
• 针对n个壳程的式(10-5-13a)假定每个 壳程的布置相同,总NTU 数平均分配
• 相变换热器,传热性能与流动形式无关
• 式(10-5-14)只能在热容比等于1时获得 精确值,无法表示成NTU的显函数形式
10.5 换热器的热计算: 效能 – 传热单元数方法
效能 – 传热单元数
effectiveness - NTU method ( - NTU)
NTU: Number of Transfer Units
第十章 10.5节(11)
1
传热过程和换热器热计算基础

传热过程和换热器热计算基础前言:在工业生产和日常生活中,传热是一个非常重要的过程。
无论是热运输、能源利用、工业生产还是家庭暖气系统,我们都需要了解传热过程和换热器的热计算基础。
在本文中,我们将详细介绍传热过程的基本概念和传热计算的方法。
一、传热过程的基本概念1、传热的基本概念传热是指能量由高温区域传递到低温区域的过程。
传热过程可以通过三种方式进行传递,分别是传导、对流和辐射。
传导是指热量通过物质的直接接触传递,对流是指热量通过流体(液体或气体)的运动传递,辐射是指热量通过电磁辐射传递。
在实际应用中,这三种传热方式常常同时存在。
例如,热水锅炉中的传热过程包括水的对流传热、锅炉壁的传导传热和辐射传热。
2、传热的基本定律传热过程基于以下两个基本定律,它们是传热计算的基础。
(1)热传导定律热传导定律描述了热量沿着温度梯度的方向从一个物体传递到另一个物体的过程。
热传导定律可以用以下公式表示:q = -kA(dT/dx)其中,q是单位时间内通过单位面积的热流量,k是材料的热传导系数,A是传热的横截面积,dT/dx是温度梯度。
(2)牛顿冷却定律牛顿冷却定律描述了通过对流传热的过程。
它指出,对流换热速率正比于温差和表面积,反比于流体和固体的热阻。
牛顿冷却定律可以用以下公式表示:q=hA(Ts−T∞)其中,q是单位时间内通过单位面积的热流量,h是对流传热系数,A 是传热表面积,Ts是固体表面温度,T∞是流体的温度。
二、换热器的计算基础换热器是用于传递热量的设备,广泛应用于各个行业中。
换热器的设计需要进行热计算,主要包括换热面积的计算和换热系数的计算。
1、换热面积的计算换热面积的计算取决于需要传递的热量流率和温度差。
换热面积可以使用以下公式计算:A=Q/(UΔT)其中,A是换热面积,Q是需要传递的热量流率,U是换热系数,ΔT 是温度差。
2、换热系数的计算换热系数是衡量换热器性能的重要指标之一、换热系数可以通过经验公式、理论公式或实验方法进行计算。
热交换器传热计算的基本方法

i1 i2
C1 C2
分别为热流体与冷流体的焓,J/Kg 分别为两种流体的定压质量比热,J/(Kg·℃)
Q M1c1 t1 t1t1 M1c1 t1 t2t1 M1c1t1 W1t1
Q
Q
M 2c2
M
t2
1
t
t21
C1dt1 M 2 C2dt2
M 2c2t2t2 W2t2
热交换器传热计算的基本方法
热交换器热计算的基本原理
1.1 热计算基本方程 1.2平均温差法 1.3 效率—传热单元数法(传热有效度) 1.4热交换器热计算方法的比较 1.5流体流动方式的选择
1.1 热计算基本方程式
进口温度t1
热流体1
流量 M1 比热容 c1
冷流体2
热交换器的换热面积F
进口温度 t 2 流量 M 2
(2)传热系数是常数;
t1
(3)换热器无散热损失;
(4)换热面沿流动方向的导热量可
以忽略不计。
要想计算沿整个换热面的平均温差,
t2
首先需要知道当地温差随换热面积的
变化,然后再沿整个换热面积进行平均。
t1 dt1 t1 t2 dt2 t2
在假设的基础上,并已知冷热流体的 进出口温度,现在来看图中微元换热 面dA一段的传热。温差为:
讨论:
1 考虑热损失的情况下:Q1 Q2 QL 或 Q1L Q2
L 以放热热量为准的对外热损失系数,通常为0.97-0.98
2
由式③可以知道 W1 W2
t 2 t1
冷流体的加热度 热流体的冷却度
可见 :两种流体在热交换器内的温度变化与他们的热容量成反比
3 由 W1t1= W2t2 =Q,还可以知道,在热交换器内,热容量
换热器的传热计算解析

换热器的传热计算解析换热器是一种常用的传热设备,用于在两个流体之间转移热量。
它采用传导、对流和辐射传热方式,通过对热传导方程和对流换热方程的求解,可以得到换热器的传热计算解析。
第一步,确定传热区域和传热方式。
换热器的传热区域通常包括管内和管外两个区域,传热方式根据具体的条件可以分为对流传热、辐射传热和传导传热。
第二步,建立传热方程。
对于传热区域内的热传导,可以根据热传导方程进行计算。
对于对流传热,可以使用牛顿冷却定律或其他适用的换热关系进行计算。
对于辐射传热,可以使用斯蒂芬-玻尔兹曼定律进行计算。
第三步,边界条件的确定。
边界条件包括温度边界条件和流体流动边界条件。
温度边界条件可以根据实际情况进行确定,流体流动边界条件可以根据流体流动的特性进行确定。
第四步,求解传热方程。
对于热传导方程,可以使用数值求解方法(如有限差分法、有限元法等)进行计算。
对于对流传热和辐射传热,可以使用经验公式进行估算或者使用数值方法进行求解。
第五步,计算换热系数。
换热器的传热系数是一个重要的参数,它反映了换热器的传热性能。
传热系数可以通过实验测量或者基于经验公式进行估算。
第六步,进行传热计算解析。
根据所得到的传热方程和边界条件,可以进行传热计算解析。
根据实际需求,可以计算换热器的传热速率、传热效率、温度分布等参数,从而评估和优化换热器的设计。
在进行换热器的传热计算解析时,还需要考虑换热器的结构、材料的热物性、流体流动的特性等因素,以及适用的传热理论和模型。
此外,还需要进行传热计算解析的验证和优化,以确保计算结果的准确性和可靠性。
总之,换热器的传热计算解析是一个复杂的过程,需要根据具体情况确定传热方式、建立传热方程、确定边界条件、求解传热方程、计算传热系数等,从而得到相应的传热计算解析结果。
这些结果可以用于优化换热器的设计和评估换热器的传热性能。
热工基础第十章-张学学-思考题答案教学内容

热工基础第十章-张学学-思考题答案热工基础第十章思考题答案1 何谓表面传热系数?写出其定义式并说明其物理意义。
答:q=h(t w-t f),牛顿冷却公式中的h为表面传热系数。
表面传热系数的大小反映对流换热的强弱。
2 用实例简要说明对流换热的主要影响因素。
答:(1)流动起因室内暖气片周围空气的流动是自然对流。
而风机中的流体由于受到外力的作用属于强迫对流。
强迫对流和自然对流的换热效果是不同的。
(2)流动的状态流动状态有层流和湍流,层流和湍流的对流换热强度不同,输水管路,水流速度不同,会导致水的流动状态由层流到湍流,那么这两种流动状态对流换热效果是不同的。
(3)流体有无相变水在对流换热过程中被加热变成水蒸气,蒸气在对流换热过程中被冷却变成水,这个过程会吸收和放出汽化潜热,两个换热过程的换热量不同。
(4)流体的物理性质流体的物理性质对对流换热影响很大,对流换热是导热和对流两种基本导热共同作用的结果。
因此,比如水和油,金属和非金属对流换热效果不同。
(5)换热表面的几何因素换热器管路叉排和顺排换热效果不同,换热管线直径大小对换热效果也有影响。
3 对流换热微分方程组有几个方程组组成,各自到处的理论依据是什么?答:(1)连续性微分方程(2)热量平衡方程(1)ρ(∂u∂τ+u∂u∂x+v∂u∂y)=F x−∂p∂x+η(∂2u∂x2+∂2u∂y2)动量平衡方程连续性微分程的依据是根据质量守恒导出的热量平衡方程是根据能量守恒导出的动量平衡方程是根据动量守恒导出的4 何谓流动边界层和热边界层?它们的厚度是如何规定的。
答:流动边界层是由于流体粘度造成速度变化的区域,即速度发生明显变化的流体薄层。
速度达到0.99u∞处的y值作为边界层的厚度,用δ表示。
当温度均匀的流体与它所流过的固体壁面温度不同时,在壁面附近会形成一层温度变化较大的流体层,称为热边界层。
过于温度t-t w=0.99(t∞-t w)处到壁面的距离为热边界层的厚度。
传热学第十章传热过程和换热器计算

传热学第十章传热过程和换热器计算热力学是研究能量转换和能量传递的学科,传热学是热力学的一个重要分支。
传热过程是指热量从一个物体传递到另一个物体的过程,它是通过传导、对流和辐射三种方式进行的。
换热器则是用来实现热量传递的设备。
一、传热过程1.传导:传导是指热量通过物质内部的微观振动和相互碰撞传递的过程。
物体的导热性质取决于其热导率和导热面积。
传导的热流量可用傅里叶传热定律表示。
2.对流:对流是指液体或气体中的分子通过传递热量的方式。
对流的热流量可用牛顿冷却定律表示。
3.辐射:辐射是指热能以电磁波的形式传递的过程。
辐射热量的传递与物体的温度和表面特性有关,可以用斯特藩—玻尔兹曼定律表示。
换热器是用来实现热量传递的设备,广泛应用于工业生产和能源系统中。
换热器的设计和计算需要考虑换热面积、传热系数、传热温差等参数。
1.换热面积:换热面积是换热器的一个重要参数,它表示传热过程中热量通过的表面积。
换热面积可以通过传热方程计算得出。
2.传热系数:传热系数是指在单位时间内,单位面积上的热量传递量与温度差之比。
传热系数的大小与换热器的结构、工作条件及流体性质等有关。
3.传热温差:传热温差是指热量在换热过程中的温度差异。
传热温差越大,热量传递越快。
换热器的计算包括两个方面:换热面积计算和传热系数计算。
换热面积计算一般根据传热方程进行。
传热方程可以写成Q=UAΔT,其中Q为热量传递量,U为总传热系数,A为换热面积,ΔT为温度差。
通过已知的换热量和温度差,可以计算出换热面积。
传热系数计算一般需要参考实验数据或者经验公式。
传热系数与换热器的结构和工作条件有关,一般通过实验或者估算得到。
在进行换热器计算时,还需要注意换热器的热损失问题。
热损失会影响换热器的热效率,因此需要进行热损失的计算和控制。
总之,传热过程和换热器计算是传热学中重要的内容,它们在工程实践中有着广泛的应用。
通过对传热过程和换热器的深入理解和计算,可以提高工程设备的热效率,实现能源的节约和利用。
传热过程分析与换热器的热计算

第四页,共42页。
每米管长的传热量:
q l1t1 f1 ltn d f2 21 k l(tf1 tf2) h 1d 1 2 d 1 h 2d 2
kl h11d1211 lnd d1 2h21d2
对于多层圆管
1
kl 1 n
1ln di 1 1
1d 1
2 i 1
i
di
d 2 n 1
第五页,共42页。
传热过程分析与换热器的热计算
第一页,共42页。
本章要点:1. 着重掌握传热过程的分析和计算(肋壁的传热)
2. 着重掌握临界热绝缘直径的概念和分析计算
3. 着重掌握顺流及逆流的对数平均温差的分析计算 4. 掌握换热器的型式和分类以及换热器的热设计 5. 了解传热的强化和隔热保温技术及有关问题分析 本章难点:临界热绝缘直径、对数平均温差的概念和分析计算
本章主要内容:
第一节 传热过程的分析和计算
第二节 换热器的类型 第三节 换热器中传热过程平均温差的计算 第四节 间壁式换热器的热设计 第五节 热量传递过程的控制(强化与削弱)
第二页,共42页。
传热过程:一侧的热流体通过固体壁面把热量传给另一侧冷流体的过程。 传热过程分析求解的基本关系为传热方程式,即
第十五页,共42页。
一、换热器的分类 1.换热器:把热量从热流体传递给冷流体的热力设备。
2.按换热器操作过程分为:间壁式、混合式及蓄热式(或称回 热式)三大类。
1)间壁式:冷、热流体被间壁隔开,通过间壁换热。 2)混合式:冷、热流体通过直接接触换热。
3)回热式:冷、热流体周期性地流过固体壁面换热。
h 1 h 2 205 00 10
q1 /q = 4347.6/570.3 = 7.623
换热器及其基本计算

姓名:杜鑫鑫学号:0903032038合肥学院材料工程基础姓名:班级:09无机非二班学号:\课题名称:换热器及其基本计算指导教师:胡坤宏换热器及其基本计算一、换热器基础知识(1)换热器的定义:换热器是指在两种温度不同的流体中进行换热的设备。
(2)换热器的分类:由于应用场合不同,工程上应用的换热器种类很多,这些换热器照工作原理、结构和流体流程分类。
二、几个不同的换热器(1)管壳式换热器管壳式换热器又称列管式换热器,是一种通用的标准换热设备。
它具有结构简单、坚固耐用、造价低廉、用材广泛、清洗方便、适应性强等优点,应用最为广泛,在换热设备中占据主导地位。
管壳式换热器是把换热管束与管板连接后,再用筒体与管箱包起来,形成两个独立的空间。
管内的通道及与其相贯通的管箱称为管程;管外的通道及与其相贯通的部分称为壳程。
一种流体在管内流动,而另一种流体在壳与管束之间从管外表面流过,为了保证壳程流体能够横向流过管束,以形成较高的传热速率,在外壳上装有许多挡板。
而壳管式换热器又可根据不同分为U形管式换热器、固定管板换热器、浮头式换热器、填料函式换热器几类。
(2) 套管式换热器套管式换热器是用两种尺寸不同的标准管连接而成同心圆套管,外面的叫壳程,内部的叫管程。
两种不同介质可在壳程和管程内逆向流动(或同向)以达到换热的效果。
套管式换热器以同心套管中的内管作为传热元件的换热器。
两种不同直径的管子套在一起组成同心套管,每一段套管称为“一程”,程的内管(传热管)借U形肘管,而外管用短管依次连接成排,固定于支架上。
热量通过内管管壁由一种流体传递给另一种流体。
通常,热流体由上部引入,而冷流体则由下部引入。
套管中外管的两端与内管用焊接或法兰连接。
内管与U形肘管多用法兰连接,便于传热管的清洗和增减。
每程传热管的有效长度取4~7米。
这种换热器传热面积最高达18平方米,故适用于小容量换热。
当内外管壁温差较大时,可在外管设置U形膨胀节或内外管间采用填料函滑动密封,以减小温差应力。
传输原理第十章 对流换热

25
第五节 自然对流换热的计算
一、自然对流换热的特点
自然流动或自然对流: 静止流体与固体表面接触,存在温度 差,引起密度差,在浮力作用下产生流体上下的相对运动。 自然对流换热中,Gr准数起决定性作用.
表示浮力与粘性力之比,并且包括温度
差ΔT。靠近固体表面流体的流动层就是 自然对流边界层,贴近固体表面处流速 为零,而边界层以外静止流体的流速也为 零,因而在边界层内存在一流速极大值,如图所示:
29
表2 自然对流简化对流表面传热系数公式
例 长10m,外径为0.3m的包扎蒸汽管,外表面温度为55℃, 求在25℃的空气中水平与垂直两种方式安装时单位管长的散 热量。
30
作业
• 1、3、7、12
31
第四节 强制对流换热的计算
一、外掠平板
1.流体顺着平板掠过时,层流至湍流的转变临界雷诺数的确定 在一般有换热的问题中取 Re下临<5×105 2.平板在常壁温边界条件下平均表面传热系数准则关系式如下: 层流区:Re<5×105 3.最终达到湍流区(5×105≤Re<107)时全长合计的平均表面传 热系数α可按以下准则式先计算出Nu,再算出α:
1.非对称平板
取特征尺寸
L=A/S
2.块状物体水平面,侧面同时发生自然对流换热时
3.对长方体 取特征尺寸为
4.在101.3kPa(标准大气压)F,中等温度水平,即tm
=50℃的空气与表面的自然对流可由下表2中的简
化公式求表面传热系数。当压力发生变化时应乘以
压力修正系数如下(其中p为实际压力,Pa):
对于液体
………………………(10)
………………………..(11)
• 对于自然对流受到抑制时,推荐下列准则关系式: ……………..(12) 完全发展的层流,在恒定壁面热流通量的条件下圆管内热交换 的Nu数为: 在恒定壁面温度的条件下, 24 圆管内热交换的Nu数也是常量;Nu=3.66。
传热过程的计算

传热过程的计算
理论和实验可以证明,单位时间内通过换热器传热面上 传递的热量Q (即传热速率)与传热面积以及冷、热流体间的 平均温度差Δtm成正比,用数学式表示为
传热过程的计算
式(4-55)称为总传热速率方程或传热基本 方程,它是换热器传热计算的重要根据,无论是核 算换热器的生产能力或是根据传热任务设计和选用 换热器,都要用到传热基本方程。其中总传热系数 K、传热平均温度差Δtm和传热面积A是传热过程中 的三要素。式中1/KA称为传热总热阻,表示传热速 率等于传热推动力与传热总热阻之比。
传热过程的计算
(三)总传热系数K值的计算
1.
K 值计算公式推导
以冷、热两种流体在列管换热器内间壁换热为例,推导总 传热系数K值的计算式。如图4-16所示,设热流体在管内流动, T1=T2=T(如蒸气冷凝),冷流体在管外流动且t1=t2=t(如液体沸 腾),即两流体为间壁恒温传热。热流体一侧的壁面温度为Tw, 冷流体一侧的壁面温度为tw,Ai、Ao和Am分别为内、外侧和管壁 的平均传热面积,αi、αo分别为管内、外流体的对流传热系数, λ为管壁的导热系数,b为壁厚。
式中 Q——
kJ/h或kW
(4-52)
qm——流体的质量流量,kg/h; H——单位质量流体的焓,kJ/kg。
传热过程的计算
图4-15 热量衡算图
传热过程的计算
若换热器中两流体无相变化,且流体的比热取为平均温度下的比热时,
用比热法得到的热负荷计算公式为
Q=qmhcph(T1-T2)=qmccpc(t2-t1) 式中 cp——流体的平均定压比热,kJ/(kg·℃) T——热流体的温度, ℃;
传热过程的计算
图4-16 流体与壁间的对流传热
传热学-第十章

把单位体积内所包含的换热面积作为衡量换热器紧凑程度的 衡量指标,一般将大于700m2/m3的换热器称为紧凑式换热器, 板翅式换热器多属于紧凑式,因此,日益受到重视。
(4) 板式换热器:由一组几何结构相同的平行薄平板叠加所 组成,冷热流体间隔地在每个通道中流动,其特点是拆卸清 洗方便,故适用于含有易结垢物的流体。
1 通过平壁的传热
k K的计算1
1
1
公式?h1 h2
说明: (1) h1和h2的计算;(2)如果计及辐射时对流 换热系数应该采用等效换热系数(总表面传热系数)
单相对流:ht hc hr
(8-24)
膜态沸腾:ht43hc43hr43 (6-23)
hr
(T14 T24)
T1 T2
由于平壁两侧的面积是相等的,因此传热系数的数值无论 对哪一侧来说都是相等的。
2 通过圆管的传热
园管内外侧表面积不等,所以对内侧
而言和对外侧而言的传热系数在数值上不同的。先分析管长为L
的一段园管:见图(9-1)
传热过程包括管内流体到管内侧壁面, 管内侧壁面到管外侧壁面,管外侧壁面 到管外流体三个环节。
)dAx
t exp(kA)-1
(1)
k A
lntx t
kAx
Ax A
lnt kA
t
(2)
t exp(kA)
(3)
t
(1)+(2)+(3)
在固体微元面dA内,两种流体的换热量为:
d kd A t
对于热流体和冷流体:
dqmch hdth dthqm 1ch hd
dqmcccdtc dtcqm 1cccd
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、 复合传热
传热过程包含的传热方式: 导热、对流、热辐射
2
辐射换热 对流换热 热传导
稳态时,组成复合换热过 程的各基本过程互不影响, 复合换热的结果是基本换 热过程单独作用的总和。
复合换热过程中,较多的场合是对流换热起主要作用,可用 适当加大表面传热系数的办法来考虑辐射换热的影响。
复合表面传热系数
l
(300 20)K
(0.05 9.62 104 8.313 0.504)m K/W
99.2W/m
l h2d3 tw3 tf 2
tw3
tf 2
l h2d3
20
99.2ቤተ መጻሕፍቲ ባይዱ/m
C
36
0.248m 8W/(m2 K)
C
9
管道外壁与周围环境换热是自然对流和辐射换热复合换热,
解:(1)通过单位面积砖墙传递的热量为
q
A
tf1 tf 2
1 1
h1 h2
293K 263K
1 8W/(m2
K)
0.20m 0.95W/(m
K)
1 22W/(m2
K)
70.91W/m2
砖墙内表面温度
tw1
tf 1
q h1
293K
70.91W/m2 22W/(m2 K)
284.1K
6
(2)查水蒸气表,温度为 20℃ ps 2.339kPa pv1 ps1 0.45 2.339kPa 1.053kPa
先确定自然对流的表面传热系数。问题的特征温度
tm
1 2 (tw3
tf2 )
1 (36 20) 2
C 28
C
从附录查得空气的参数值
15.8106 m2/s 2.65102 W/(m K) Pr 0.701
空气的体积膨胀系数
V
1
Tm
1 (273 28)K
3.32 103 K1
Gr
对流换热表面传热系数
W/(m2 K)
ht hc hr
辐射换热 表面传热系数
总换热量
c r (hc hr ) A(Tw Tf )
辐射换热量
hr
r
A(Tw Tf )
壁面和流体温度
3
三、通过平壁和圆筒壁的一维稳态传热过程计算
忽略热辐射换热,则
左侧对流换热热阻
Rh1
1 h1
平壁
固体的导热热阻
道散热损失Φl及管道外壁与周围环境辐射换热表面传热系数hr。
解:
d2 d1 21 100mm 2 4mm 108mm
d3 108mm 2 70mm 248mm
l
1
tf1 tf 2
1 ln d2 1 ln d3
1
h1d1 21 d1 22 d2 h2d3
1 h1d1
1 200W/(m2 K) 0.1m
与此对应饱和温度,即露点为7℃。 td = 280.15K < tw1 ,所以内墙面不发生结露
7
例10-2电厂有一内径d1=100mm,壁厚δ1=4mm,导热系数 λ1=40W/(m·K)的钢质蒸汽直管,管外包厚度δ2=70mm,导 热系数λ2 =0.05W/(m·K) ,的保温层。管内蒸汽温度tf1=300℃, 表面传热系数h1=200W/(m2·K),保温层外壁复合表面传热系数 h2=8W/(m2·K),周围空气温度t∞=20℃。试计算单位管长蒸汽管
R
圆筒壁
R
1 ln d2
2l d1
过程的热流密度
右侧对流换热热阻
Rh 2
1 h2
q
k (tf1
tf 2 )
(tf1 tf 2 ) Rt
(tf1 tf 2 ) Rh1 R Rh2
传热过程总热阻
4
平壁传热系数
k
1 Rt
1 Rh1 R Rh2
1
1
1
h1 h2
对于多层平壁
q
tf1 tf 2
hc
d3
Nu
2.65 102 W/(m K) 0.248m
33.0
3.52W/(m2
K)
hr ht hc (8 3.52)W/(m2 K) 4.48W/(m2 K)
在外壁温不是很高的条件下,辐射换热损失可以大于对流 换热损失;
工程上常在管道外包裹一层表面发射率较小的镀锌铁皮, 同时也起到保护保温层的作用。
第十章
传热过程与换热器
热计算基础
1
10.1 传热过程
一、 传热方程
传热过程——两流体间通过固体壁面进行的换热
面积m2
传热方程 Φ Ak(tf1 tf 2 ) Akt
关键——k及Δt
传热系数[W/(m2ּK)] ——表征传热过程强烈 程度的标尺,单位温差单位时间内通过单位 面积转递的热量,与涉及物体的物性、流体 流速等与过程相关因素有关。
0.05
m K/W
d2
d3
8
1 ln d2
1
108mm ln
9.62 104
m K/W
21 d1 2 40W/(m K) 100mm
1 ln d3
1
248mm
ln
8.313 m K/W
22 d2 2 0.05W/(m K) 108mm
1
1
0.504 m K/W
h2d3 8W/(m2 K) 0.248m
11
4.2 传热的增强和削弱
一、 强化传热
强化传热就是应用传热学的基本原理去增强传热效果: 增大传热面积;
1
n
i
1
h h 1 i1 i
2
Φ
A(tf1 tf 2 )
1 1
Rt
1 kA
h1
h2
单位长度圆筒壁传热系数和热阻
1 1
Rt,l Rh1 R Rh2 kl h1 d1
i
1 ln di1 1
2i di h2 d2
单位管长的热流量
l kl tf1 tf 2
例10-1 例10-2
tf1 tf 2
tf1 tf 2
Rtl
1
n
1 ln di1
1
h1d1
2 i 1
i
di
h2dn1 5
例10-1 已知墙厚200mm;室内的空气温度为20℃,室外空气温 度为-10℃;砖墙导热系数λ = 0.95W/(m·℃),室内空气对墙面的 对流表面传热系数h1 = 8W/(m2ּK),室外空气的对流表面传系数 h2 = 22W/(m2ּK)。(1)试求室内外空气通过单位面积砖墙传递 的热量和砖墙内侧的温度;(2)若室内空气相对湿度为45%, 试确定内墙面是否结露。
gV td 3 2
9.81m/s2 3.32 103 (36 20)K (0.248m)3 3.18 107
(15.8 106 m2 / s)2
10
GrPr 3.18107 0.701 2.23107
Nu c(GrPr)n 从表9-5查得 c 0.48 n 0.25
Nu 0.48(GrPr)0.25 0.48 (2.23 107 )0.25 33.0