运筹学课件第十章排队论

合集下载

《运筹学排队论》课件

《运筹学排队论》课件
资源分配
合理分配服务器资源,以提高系统的吞吐量 和响应时间。
最优服务策略问题
总结词
研究如何制定最优的服务策略,以最大化系 统的性能指标。
服务顺序策略
确定服务器的服务顺序,以最小化顾客的等 待时间和平均逗留时间。
服务中断策略
在服务器出现故障时,选择最优的服务中断 策略,以最小化对顾客的影响。
服务时间分布策略
等待队长
指在某一时刻,正在等待服务的顾客总数。
逗留时间与等待时间
逗留时间
指顾客从到达系统到离开系统所经过的时间 。包括接受服务和等待的时间。
等待时间
指顾客到达系统后到开始接受服务所经过的 时间。
忙期与空闲期
要点一
忙期
指系统连续有顾客到达并接受服务的时间段。在这个时间 段内,系统内的顾客数可能会超过系统的容量。
03
02
交通运输
分析铁路、公路、航空等交通系统 的调度和运输效率。
计算机科学
研究计算机网络、云计算、分布式 系统的性能和优化。
04
排队论的基本概念
服务器
提供服务的设施或 人员。
等待时间
顾客到达后到开始 接受服务所需的时 间。
顾客
需要接受服务的对 象。
队列
顾客按到达顺序等 待服务的排列。
服务时间
顾客接受服务所需 的时间。
《运筹学排队论》ppt课件
目录
• 排队论简介 • 排队系统的组成 • 排队模型的分类 • 排队模型的性能指标 • 排队论的优化问题 • 排队论的发展趋势与展望
01
排队论简介
排队论的定义与背景
1
排队论(Queueing Theory)是运筹学的一个重 要分支,主要研究排队系统(Queueing Systems)的行为特性。

排队论课件

排队论课件

③服务方式(输出)指同一时刻有多少服务台可接纳顾客, 每一顾客服务了多少时间。每次服务可以接待单个顾客, 也可以成批接待,例如公共汽车一次就装载大批乘客。 服务时间的分布主要有如下几种: • 负指数分布:即各顾客的服务时间相互独立,服从相 同的负指数分布(看病); • 爱尔朗分布:即各顾客的服务时间相互独立,具有相 同的爱尔朗分布。
• 定长分布:每一顾客的服务时间都相等(发放物品);
为叙述方便,引用下列符号,令
• M代表泊松分布输入或负指数分布服务;
• D代表定长分布输入或定长分布服务; • Ek代表爱尔朗分布的输入或服务。 于是泊松输入、负指数分布服务,N个服务台的排队系 统可以写成M/M/N; • 泊松输入、定长服务、单个服务台的系统可以写成M/D/1。 • 同样可以理解M/ Ek /N,D/M/N…等符号的含义。 • 如果不附其它说明,则这种符号一般都指先到先服务, 单个服务通道的等待制系统。
多通道服务方式
(1)系统中没有车辆的概率 为: 1 P (0) N 1 k N N !(1 / N ) k 0 k! ( 2)系统中有 k个车辆的概率: k .P (0), k! P(k) k P (0), kN N! N k N k N
1

5 5 10s / 辆
两种系统比较
4个M/M/1
平均车辆数 平均排队长 平均耗时 平均等候时间 20 16.68 30 25
M/M/4
6.6 3.3 10 5
设顾客平均到达率为,则到达的平均时距为1/ 。排队从单通道通过接受 服务的平均服务率为,则平均服务时间为1/ 。比率 / 叫做服务强度 或交通强度,可以确定系统的状态。所谓状态,指的是排队系统的顾客数。 1)在系统中没有顾客的概率为P(0) 1 2)在系统中有n个顾客的概率为P (n) n (1 ) 3)系统中的平均车辆数n 4)系统中的平均方差 2 5)平均排队长度q n 6)非零平均排队长度q w 1 1 n

运筹学课件第十章排队论

运筹学课件第十章排队论
第十章 排队论
第一节 引言
一、排队系统的特征及排队论 排队论研究排队系统的数学理论和方法, 是运筹学的一个重要分支。 排队问题表现:
到达的顾客 1、不能运转机器 2、病人 3、打电话 4、等待降落飞机 5、河水进入水库
要求的服务 修理 就诊 通话 降落 放水,调整水 位
服务机构 修理工人 医生 交换台 跑道指挥机构 水闸管理员
四、排队系统的主要数量指标和记号 描述一个排队系统运行状况的主要指标: 1、队长、排队长 队长:系统中的顾客数量(排队顾客+接受服务顾客)。
排队长:系统中的正在排队等待服务的顾客数量。
2、等待时间和逗留时间 等待时间:从顾客到达时刻起到他开始接受服务止这段时间 为等待时间。 逗留时间:从顾客到达时刻起到他接受服务完成这段时间为 逗留时间。
(i)队长有限:系统等待空间有限。 有限系统的空间为K, 顾客到达时的队长为L。若 L<K,则顾客进入队列等待服务,若L=K,则 顾客离去。 (ii) 等待时间有限: 顾客对等待时间具有不耐烦 性的系统。设最长等待时间是T0,某个顾客从 进入队列后的等待时间为 T。若T<T0,顾客继 续等待;若T=T0,则顾客脱离队列而离去。 (iii)逗留时间有限:等待时间与服务时间之和。
排队可以是人,也可以是物。 为了一致:将要求得到服务的对象统称为“顾客”,将提 供服务的服务者称为“服务员”或“服务机构”。
排队系统的一般描述; 顾客为了得到服务而到达系统,如果不能 立刻得到服务而又允许排队等待,则加入 等待队伍,待获得服务后离开系统。
顾客到达 队列 服务台 单服务台服务系统 服务完后离开

n 0
n ,n C 1 , 2 , 3 ,...... n u n p p , n 1 , 2 , 3 ,...... n 0

运筹学排队论2

运筹学排队论2
现将上式参数 引入时间因素 t ,即将
换为 t ,得到
pn
(t)
(t)n
n!
et
,
t
0,
n
0,1,2,.
表示长为t的时间区间内到达n个顾客的概率为 pn (t) ,且服从泊松分布.这称为泊松流或泊松过 程或简单流. 设t时间内到达的顾客数为随机变量N(t),则有
E[N(t)] t, D[N(t)] t.
服务台
2.C个服务台,一个公共队伍
服务台1 服务台2 服务台C
3.C个服务台,C个队伍
服务台1 服务台2 服务台C
二.排队系统的三个组成部分
1.输入过程:指顾客按怎样的规律到达. ⑴顾客的总体数或顾客源:指可能到达服务机
构的顾客总数.顾客总体数可以是有限的,也可 以是无限的; ⑵顾客到达的类型:顾客是单个到达还是成批 到达; ⑶顾客相继到达时间间隔的分布,如按泊松 分布,定长分布还是负指数分布.
排队论的创始人是丹麦哥本哈根市电话局的 工程师爱尔朗(A.K.Erlang),他早期研究电话 理论,特别是电话的占线问题,就是早期排队 论的内容.
§2 排队论的基本概念
一.排队现象的共同特征:为了获得某种服务而 到达的顾客,如不能立即得到服务而又允许排 队等候,则加入等待的队伍,获得服务后离开.我 们把包含这些特征的系统称为排队系统. 排队系统的几种情况: 1.单服务台排队系统
例9.1 某仓库全天都可以进行发料业务,假设 顾客到达的时间间隔服从均值为1的负指数分 布现在有一位顾客正好中午12:00到达领料, 试求:
(1)下一个顾客将在下午1:00前到达的概率; (2)在下午1:00与2:00之间到达的概率: (3)在下午2:00以后到达的概率。

运筹08(第10章排队论)精品PPT课件

运筹08(第10章排队论)精品PPT课件

2020/11/30
7
排队系统类型3:
服务完成后离开
服务台1
顾客到达
服务完成后离开
服务台2
服务完成后离开
服务台s
S个服务台, S个队列的排队系统
2020/11/30
8
排队系统类型4:
顾客到达
服务台1
离开
服务台s
多服务台串联排队系统
2020/11/30
9
排队系统的描述 实际中的排队系统各不相同,但概括 起来都由三个基本部分组成: 1、输入过程; 2、排队及排队规则; 3、服务机构
2020/11/30
21
➢ 定长分布(D):每个顾客接受的服 务时间是一个确定的常数。
➢ 负指数分布(M):每个顾客接受的
服务时间相互独立,具有相同的负指
数分布: e- t t0
f(t)=
0
t<0
其中>0为一常数。
2020/11/30
22
➢ K阶爱尔朗分布(Ek):
f(t)=
k(kt)k-1 · e- kt
2
无形排队现象:如几个旅客同时打电话 订车票;如果有一人正在通话,其他人只 得在各自的电话机前等待,他们分散在不 同的地方,形成一个无形的队列在等待通 电话。
排队的不一定是人,也可以是物。如生 产线上的原材料,半成品等待加工;因故 障而停止运行的机器设备在等待修理;码 头上的船只等待装货或卸货;要下降的飞 机因跑道不空而在空中盘旋等。
理;出价高的顾客应优先考虑。
2020/11/30
20
❖ 3、服务机制
包括:服务员的数量及其连接方式(串联还是并联) 顾客是单个还是成批接受服务; 服务时间的分布
记某服务台的服务时间为V,其分布函数 为B(t),密度函数为b(t),则常见的分布 有:定长分布(D)

排队论主要公式 运筹学 课件

排队论主要公式   运筹学 课件

排队论主要公式一、状态平衡方程()()()()⎪⎩⎪⎨⎧=-=-<≤=++---++--12.10,011.10,010.10,1,01111001111k k k k n n n n n n n p p p p k n p p p μλμλμμλλ当系统状态为可数状态时,将上述第一个式子的k 换成∞,而将第三式去掉。

二、的关系为和q s q s W W L L ,,()()()()00;001;10.20210.2113;10.224.10.23s q q s q s q L W L W W W L L Littie λλμλμ===+=+上述四个式子称为公式。

三、标准的M/M/1模型(1)系统在稳定状态下处于状态n 的概率()()13.10,1,1,1,10<≥-=-=ρρρρn p p n n其中μλρ/=,它是系统的平均到达率与平均服务率之比,称为服务强度或称为话务强度。

(2)系统的运行指标10系统中的平均顾客数L S 为()14.10;10,10<<-=-==∑∞=ρλμλρρN n S np L02系统中等待的平均顾客数q L 为()()15.10;1121λμρλρρ-=-=-=∑∞=n n q p n L03 顾客在系统中的逗留时间W 的分布及平均逗留时间S W 为()()()[]()1,0,10.161;10.17s F e W E μλωωωωμλ--=-≥==-04 顾客在系统中的等待时间分布及平均等待时间q W 为()()()()()19.10.118.10,0,1λμρλμμλμωρωωλμ-=-=-=≥-=--s q q W W e F//1N M M 四、系统容量有限制(设为)的模型(1)系统在稳态下处于状态n 的概率01系统空闲的概率为()24.10.1,11;1,1110⎪⎪⎩⎪⎪⎨⎧=+≠--=+ρρρρN p N02 系统中有n 个客户的概率为()()01,1,1,1110.251,1;1nnn n N N p p N ρρρρρρ⎧-≠≤≤⎪⎪-+==⎨⎪=⎪+⎩其中1,/<=p 此处μλρ的条件可以取消。

管理运筹学-排队论

管理运筹学-排队论

排队系统
顾客到达
排队Biblioteka 服务机构服务顾客离去
2
§1 排队过程的组成部分(2)
• 考虑要点: 1、服务台个数:单服务台、多服务台 2、顾客到达过程:本教材主要考虑顾客泊松到达情况。 满足以下四个条件的输入流称为泊松流(泊松过程) *平稳性:在时间区间[t, t+t)内到达k个顾客的概率与t无关,只与t有关。记为pk(t)。 *无后效性:不相交的时间区间内到达的顾客数互相独立。 *普通性:在足够短的时间内到达多于一个顾客的概率可以忽略;
第十三章
• • • • • • •
排队论
排队过程的组成部分 单服务台泊松到达、负指数服务时间的排队模型 多服务台泊松到达、负指数服务时间的排队模型 排队系统的经济分析 单服务台泊松到达、任意服务时间的排队模型 单服务台泊松到达、定长服务时间的排队模型 多服务台泊松到达、任意的服务时间、损失制排队 模型 • 顾客来源有限制排队模型
3
§2 单服务台泊松到达、负指数 服务时间的排队模型
• 记号: M / M / 1 / ∞ / ∞ • 条件:单位时间顾客平均到达数
单位平均服务顾客数 P0 Lq Ls Wq Ws Pw Pn
4
• 关心的项目:
1、系统中无顾客的概率 2、系统中平均排队的顾客数 3、系统中的平均顾客数 4、系统中顾客平均的排队等待时间 5、系统中顾客的平均逗留时间 6、系统中顾客必须排队等待的概率 7、系统中恰好有 n 个顾客的概率
§3 多服务台泊松到达、负指数 服务时间的排队模型
• 记号: M / M / C / ∞ / ∞ • 条件:单位时间顾客平均到达数
单位平均服务顾客数 P0 Lq Ls Wq Ws Pw Pn

运筹学100排队论

运筹学100排队论

运筹学100排队论第10章排队论第一节排队服务系统的基本概念一、排队系统的特性排队问题的实例:超市付款,自动取款机取款,医院门诊,乘公交车,设备修理。

排队服务系统的要素:顾客源,等待队列,服务机构。

要素的特性:1. 顾客源顾客到达的间隔时间:确定、随机(分布类型);一次到达人数:单个到达,成批到达;顾客源:数量无限,数量有限。

2. 等待队列等待规则:损失制,等待制,混合制;接受服务顺序:先到先服务,后到先服务,按优先权服务,随机服务。

3. 服务机构服务台数量:单个,多个;排列方式:串联、并联、混合排列。

服务时间:固定,随机(分布类型);一次服务人数:单人,成批。

三、排队服务系统的分类按上面所讨论的排队系统各项的特性,可对排队系统作出分类。

通常按如下6方面的特性对排队系统进行分类:(a/b/c) : (d/e/f)每个字母代表一个特征,它们分别是:a:顾客到达间隔的分布,有:M──负指数分布;D──确定型;E k ──k 阶爱尔郎分布;GI ──一般相互独立的分布。

b :服务时间的分布有:M 、D 、E k 、Gc :系统中并联的服务台数,记为Sd :系统中最多可容纳的顾客数,∞~1e :顾客源总数,为∞~1f :排队服务规则FCFS ──先到先服务LCFS ──后到先服务用这6个参数我们可以表示出某种类型的排队系统,如:M /M /1/10/∞/FCFS其中后三项可以省略,这时表示的是:a /b /c /∞/∞/FCFS三、排队系统的状态及参数系统状态N (t )——排队系统中的顾客数,包括等待的和正在被服务的。

其与系统运行的时刻t 相关,且是一个随机变量。

稳定状态——当系统状态与时刻t 无关时,称系统处于稳定状态。

在系统开始运行的一段时间内,系统状态随时间而变化,在运行一段时间之后,系统的状态将不随时间变化,此时系统即进入稳定状态。

排队论主要研究系统处于稳定状态的工作情况,以下参数也都针对于稳定状态进行定义。

运筹学第10章 排队论

运筹学第10章 排队论
平均到达时间(1/λ)=145/41=3.46(分钟/人)
平均服务率(μ)=42/130=0.323(人/分钟)
平均服务时间(1/μ)=130/42=3.1(分钟/人)
这些指标都是排队系统分析中非常重要的数量指标。
二、泊松分布(Poisson) 设N(t)表示在时间区间(0,t)内到达的顾客数,Pn(t)
L=Lq+s
(假定服务强度为1)
2. 逗留时间和等待时间:顾客在系统中停留的时间包括等待时间和服
务时间称作逗留时间,其期望值记作w;其排队等待的时间称作等待时间,期
望值记作wq。用λ和μ分别表示单位时间到达的顾客数和服务台平均完成服务的
顾客数,则有: L=λw 或 w=L/λ

Lq=λwq 或 wq =Lq/λ
(三)少不了服务台
• 服务台是服务设施和服务人员的总称,没有服务台,就没有排队问题。
• 服务台可以是一个,也可以是多个。在多个服务台情况下,它们可以是 串联的,也可以是并联的,还可以是混合式的。
• 服务方式可以是单个进行的,也可以是成批进行的。
• 服务时间的分布可以是确定的,也可以是随机的。如自助洗衣店中全自 动洗衣机的服务就是定长的。在大多数服务系统中,服务时间都是随机的。
2
2
27 2
3
23 86 6 3
2
3
61 4
6
24 88 5 2
6
4 11 9 5
2
25 92 1 4
7
5 12 2 1
10
6 19 4 7
5
7 22 3 3
6
8 26 3 4
5
9 36 1 10
0
10 38 2 2

运筹学—第十章 排队轮

运筹学—第十章 排队轮

第14页 页
生灭过程
各状态之间的转移关系图: 各状态之间的转移关系图:
P0
λ0
P1
1
Pn −1
λ n −1
Pn n
λn
Pn +1 n+ 1
0

n-1

µ1
图 10-3
µn
µ n +1
圆圈表示状态,圆圈中标号是状态符号,表示系统中稳定顾客 圆圈表示状态,圆圈中标号是状态符号 , 数; 箭头表示从一个状态转移到另一个状态 表示从一个状态转移到另一个状态, 箭头表示从一个状态转移到另一个状态 , 表示转移速率。 λ和μ表示转移速率。 P0 表示系统中没有顾客、服务台空闲的概率; P1 表示系统中有 1 表示系统中没有顾客、服务台空闲的概率; 个顾客、 个顾客、服务台忙着的概率; P2 表示系统中有 2 个顾客、 有 1 个顾客 个顾客、服务台忙着的概率; 排队,其余依此类推, 表示系统中有 个顾客、服务台忙着、 排队,其余依此类推, Pn 表示系统中有 n 个顾客、服务台忙着、 有 n-1 个顾客排队时的概率。 个顾客排队时的概率。
第7页 页
顾客到达 单队单服务台:
队列
服务完成离去 服务台
〇…
正在接受服务的顾客 服务台 1 服务完成离去 服务台 2
单队多服务台 并联:
顾客到达
队列
〇…
〇 〇 〇 〇…

服务台 n 服务台 1 服务完成离去 服务台 2
多队多服务台 并联:
顾客到达
〇… 〇…

服务台 n
多服务台串联: 顾客到达 程和常见的概率分布 生灭过程 泊松过程 负指数分布 爱尔朗分布 定长分布
第13页 页

第十章 物流运筹学——排队论

第十章 物流运筹学——排队论

2.排队问题解决 (1)排队问题分析。将每次到达的药品看作一 个客户,每次到达的药品可能有一个品规也可能 有多个品规,每个品规验收员都要进行验收。由 于国药集团医药控股沈阳有限公司物流中心的供 应商分布在全国各地,没有关联性药品到达相互 独立。验收的服务时间由于到达货物的品规数, 到货包装破损情况,药品剂型等的不同每个客户 的验收时间也不同,客户的服务时间可能服从负 指数分布。 (2)客户到达服务观察。从4月12日到7月12 日62个工作日中利用随机抽样原则随机抽取了10 天进行观察,记录每天9个时段内客户到达的数量。
c
ρ
P0
Pc
D
4 0.75 0.0377 0.1272 0.5090
5 0.6 0.0466 0.0945 0.2363
6 0.5 0.0489 0.0495 0.0990
7 0.43 0.0495 0.0215 0.0377
可见,应设置7个站台。
M / M / c / ∞ 排队系统模型(
λ
0 1
案例分析
以国药集团医药控股沈阳有限公司在验收服务 设施配置中的应用,给出排队模型,说明排队理论 在实际当中的应用情况。 • 国药集团医药控股沈阳有限公司物流中心每天 要验收大量的货物,货物到达后需要签收、验收、 入库。现验收组有两人,验收员和理货员各一人, 从2004年4月开始由于到货量增加,验收出现不及 时,经常被内部客户投诉。物流中心为提高客户服 务水平,需要增加验收服务能力,为此需要对验收 排队服务进行以下数量分析作为决策依据。 1.决策目标 (1)降低客户等待时间; (2)降低作业成本。 •
实训设计
• 【实训目标】 实训目标 掌握 M / M / c (包括 c =1)排队模型的各项系 统指标的求解方法。 • 【实训内容与要求 实训内容与要求】 在企业内或流通环节中调查数据,并以此建 立数学模型,利用排队模型计算得出的各项系统 指标来具体分析系统的结构,以获得更好的效益。 • 【成果与检验 成果与检验】 能够建立相应的排队模型,利用以给出的系 统指标公式,给出系统的量化结果。

上海交通大学管理科学-运筹学课件排队论

上海交通大学管理科学-运筹学课件排队论

排队论在日常生活和工作中,人们常常会为了得到某种服务而排队等候。

比如顾客到商店购买东西,病人到医院看病,汽车进加油站加油,轮船进港停靠码头等,都会因为拥挤而发生排队等候的现象。

这时,商店的售货员和顾客,医院的医生和病人,加油站的加油泵和待加油的汽车,码头的泊位和停泊的轮船等,形成了各自的排队服务系统,简称排队系统。

在一个排队系统中,通常包括一个或多个“服务设施”,服务设施可以指人,如售货员,医院大夫等。

也可以是物,如加油泵、码头泊位等。

同时还包括许多进入排队系统要求得到服务的“顾客”。

这里的顾客是指请求服务的人或物。

如到医院看病的病人,或等待加油的汽车等。

作为顾客总希望一到系统马上就能得到服务,但客观情况并非如此。

由于顾客的到达和服务机构对每个顾客的服务时间具有随机性,因此出现排队现象几乎是不可避免的。

当然,为了方便顾客减少排队时间,排队系统可以多开设服务设施。

但那将增加系统的投资和运营成本,还可能发生空闲浪费。

排队论(Queueing Theory)是为解决上述问题而发展起来的一门学科。

排队论起源于上世纪初,当时的美国贝尔(Bell)电话公司发明了自动电话后,满足了日益增长的电话通讯的需要。

但另一方面,也带来了新的问题,即如何合理配置电话线路的数量,以尽可能减少用户的呼叫次数。

如今,通讯系统仍然是排队论应用的主要领域。

同时在运输、港口泊位设计、机器维修、库存控制等领域也获得了广泛的应用。

6. 1 排队系统的基本概念6. 1. 1排队系统的一般表示一个排队系统可以抽象描述为:为了获得服务的顾客到达服务设施前排队,等候接受服务。

服务完毕后就自行离开。

其中把要求得到服务的对象称为顾客,而把服务者统称为服务设施或服务台。

在排队论中,把顾客的到达和离开称为排队系统的输入和输出。

而潜在的顾客总体又称为顾客源或输入源。

因此任何一个排队系统是一种输入-输出系统,其基本结构如图6-1所示。

排队系统图6-16. 1. 2排队系统的特征由排队系统的基本结构可知,任何一个排队系统的特征可以从以下三个方面加以描述。

第10章 排队论 《运筹学》PPT课件全

第10章  排队论  《运筹学》PPT课件全

WL
Wq
Lq
W
1
M/M/s 混 合 制 排 队 模 型
一、 单服务台混合制模型
M/M/1/K: 顾客的相继到达时间服从参数 为λ的负指数分布(即顾客的到达过程为 Poisson流),服务台个数为1,服务时间V 服从参数为μ的负指数分布,系统的空间 为K。

平稳状态下队长N的分布pn=P{N=n},n=0,1,2,…。

由于所考虑的排队系统中最多只能容纳K个顾 客(等待位置只有K-1个),因而有
务 台
n
0
n
n=0,1,2,...,K-1 n≥K n=1,2,...K
混 合

Cn
(
)n
n
n=0,1,2,...,K
0
n>K

故 pn n p0 n=1,2,…,K
模 型
1
其中,p0
1
1
K
n
1
K
1
1
n1

其分布函数为B(t),密度函数为b(t),则

常见的分布有: (1) 定长分布(D)

(2) 负指数分布(M)

(3) k阶爱尔朗分布(Ek):

排队系统的符号表示

“Kendall记号”,其一般形式为:X/Y/Z/A/B/C,其中 XX:顾客到达时间间隔的分布

YY:服务时间的分布

Z Z:服务台个数

A :系统容量 B B:顾客源数量

C C:服务规则

例 (M / M / 1 /
FCFS)表示:

到达间隔为负指数分布,服务时间也为负指数分 布,1个服务台,顾客源无限,系统容量也无限,

第十章 排队论(2)PPT课件

第十章 排队论(2)PPT课件

[M/M/1]:[//FCFS]的系统指标
系统中的平均顾客数N
NkPk kρk(1ρ)(1ρ)kρk
k0
k0
k0
(1ρ)(1ρρ)2
ρ λ 1ρ μλ
[M/M/1]:[//FCFS]的系统指(k1)kP (k1ρ)k(1ρ )(1ρ) (k1ρ)k
k1
k1
k1
p k (t () λ k kλ e ! λt t k 0, 1,2 λ 0
即服从以为参数的Poisson分布。
定理说明,如果顾客到达为Poisson流的话, 则达到顾客数的分布为Poisson分布.考虑 到从Poisson过程或其概率分布来分析顾客 的到达情况不便.而实际问题中比较容易得 到和进行分析的往往是顾客相继到达系统的 时刻或相继到达的时间间隔, 因此一般以顾 客到达的时间间隔分布来对排队系统进行分 析.
P
1
P
2
λ μ λ μ
P0 P1
λ μ
2 P 0
Pn
λ μ
Pn
λ μ
n
P 0
Pk 1
k0
得到 1μ λμ λ2 μ λn P01

λ ρ
μ
称为服务强度,则
P0ρk11ρ 0ρ1
k0
P n ρ n ( 1ρ)n0, 1 ,2
可以看出, 是系统中至少有一个顾客的概率,也就是服务 台处于忙状态下的概率,因而称为服务强度,反映了系统的 繁忙程度.另外, <1的条件下才能使系统达到统计平衡.
生灭过程和Poisson过程
在排队论模型中,以“生灭过程”模拟顾客 到达与离去的随机发生过程。
在排队论中,如果N(t)表示时刻t系统中的顾 客数,则{N(t),t0}就构成了一个随机过程。 如果用“生”表示顾客的到达,“灭”表示 顾客的离去,则对许多排队过程来说,{N(t), t0}就是一类特殊的随机过程 - 生灭过程。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

运筹学教程
四、排队系统的主要数量指标和记号 描述一个排队系统运行状况的主要指标: 1、队长、排队长 队长:系统中的顾客数量(排队顾客+接受服务顾客)。
排队长:系统中的正在排队等待服务的顾客数量。
2、等待时间和逗留时间 等待时间:从顾客到达时刻起到他开始接受服务止这段时间 为等待时间。 逗留时间:从顾客到达时刻起到他接受服务完成这段时间为 逗留时间。
ueut t0 b(t ) 0 t0
运筹学教程
(3)k阶爱尔郎分布(Ek):每个顾客接受服务时间服 从k阶爱尔郎分布,具有密度函数:
ku(kut) kut b(t ) e (k 1)!
k 1
运筹学教程
三、排队系统的符号表示 一个排队系统的特征可以用六个参数表示,形式为: X/Y/Z / A/B/C 其中
运筹学教程
3、忙期和闲期 忙期:顾客到达空闲的服务机构起,到服务机构再次成为 空闲止的这段时间。 闲期:服务机构连续保持空闲的时间。
运筹学教程
主要数量指标的常用记号:
N(t):时刻t系统中顾客数量(系统的状态),队长; Nq(t):时刻t系统中排队顾客数量,排队长; T(t):时刻t到达系统的顾客在系统中的逗留时间; Tq(t):时刻t到达系统的顾客在系统中的等待时间;
运筹学教程
3、服务机制 排队系统的服务机制主要包括: 服务员的数量、连接形式(串联或并联); 顾客单个或成批接受服务;
服务时间的分布;
服务时间为V,分布函数为B(t),密度函数为b(t): (1)定长分布(D):每个顾客接受服务时间是一个常数。 (2)负指数分布(M):每个顾客接受服务时间相互独立, 具有相同的负指数分布:
服务台1 顾客到达 队列2 队列s
服务完后离开 服务完后离开
服务台2
服务台s 服务完后离开
S个服务台,s个队列服务系统
运筹学教程
顾客到达
队列 服务台
队列 服务台 多个服务台的串联服务系统
服务完后离开
聚(输入) 服务机构
散(输出)
随机 服务系统
运筹学教程
二、排队系统的描述 1、输入过程:说明顾客按照怎样的规律到达系统。 (1)顾客总体数:按顾客源顾客的数量,可分为有限顾客源和 无限顾客源; (2)按顾客到达的形式,分为单个到达和成批到达; (3)按顾客相继到达的时间间隔分布,可分为 a.定长分布[D]:顾客相继到达的时间间隔为确定性的常数。 b.最简流(poisson流) [M]:顾客相继到达的时间间隔 {X(n)}独立的,同负指数分布:
Pn(t) –– 时刻t系统中有n个顾客的概率,系统的瞬时状态;
Pn ––系统达到统计平衡时处于状态n的概率;
运筹学教程
统计平衡: N-系统处于平衡状态时的队长,均值为L,称为平均队长。 Nq-系统处于平衡状态时的排队长,均值为Lq,称为平均排队长。 T- 系统处于平衡状态时的顾客的逗留时间,均值为 W, 称为平 均逗留时间。 Tq-系统处于平衡状态时的顾客的等待时间,均值为 W, 称为平 均等待时间。 n ––系统处于平衡状态 n 时,新来顾客到达的平均速率,即单 位时间内平均到达的顾客数; n ––系统处于平衡状态n时,系统的平均服务速率,即单位时 间内服务完毕离去的顾客数;
X–– 顾客到达的概率分布,可取M、D、Ek等;
Y–– 服务时间的概率分布,可取M、D、Ek等; Z –– 服务台个数,取正整数; A–– 排队系统的最大容量,可取正整数或; B –– 顾客源的最大容量,可取正整数或; C –– 排队规则,可取FCFS、LCFS等。
运筹学教程
例如 M/M/1 / //FCFS 表示顾客到达的时间间隔是负指数分布,服务时间是负 指数分布,一个服务台,排队系统和顾客源的容量都是 无限,实行先到先服务的一个服务系统。 可以缩写为 M/M/1。 M/M/S/K: 表示顾客到达的时间间隔是负指数分布,服务时间是负 指数分布,S个服务台,排队系统容量K和顾客源的容量 都是无限,实行先到先服务的一个服务系统。
e t t0 ( ) t0 0
运筹学教程
补充:泊松分布: 设随机变量X所有可能的取值为0,1,2,…,而各 个取值的概率为
p( X K )
e
k
k
k!
, k 0,1,2...
0
称x服从参数为的泊松分布
运筹学教程
2、排队及其规则 (1)排队 分为有限排队和无限排队。 无限排队:系统空间无限;又称为等待制排队系统。 有限排队:系统空间有限;又分为: a.损失制:排队空间为零的系统,不允许排队;到达的 顾客有一部分未接受服务就离去; b. 混合制:损失制和等待制系统的结合;顾客到达后, 一直等到服务完毕以后才离去;不允许队列无限等待。 又分为:
运筹学教程
到达的顾客 1、不能运转机器 2、病人 3、打电话 4、等待降落飞机 5、河水进入水库
要求的服务 修理 就诊 通话 降落 放水,调整水 位
服务机构 修理工人 医生 交换台 跑道指挥机构 水闸管理员
排队可以是人,也可以是物。 为了一致:将要求得到服务的对象统称为“顾客”,将提 供服务的服务者称为“服务员”或“服务机构”。
运筹学教程
排队系统的一般描述; 顾客为了得到服务而到达系统,如果不能 立刻得到服务而又允许排队等待,则加入 等待队伍,待获得服务后离开系统。
顾客到达 队列 服务台 单服务台服务系统 服务完后离开
运筹学教程
服务台1
顾客到达 队列 服务台2 服务台s S个服务台,一个队列服务系统 服务完后离开
队列1
运筹学教程
(2)排队规则 (i)先到先服务(FCFS,First Come First Serve);
(ii)后到先服务(LCFS,Last Come First Serve);
(iii)有优先权的服务(PS,Priority Serve )
(iiii)随机服务(SIRO,Service in Random Order)
运筹学教程
(i)队长有限:系统等待空间有限。 有限系统的空间为K, 顾客到达时的队长为L。若 L<K,则顾客进入队列等待服务,若L=K,则 顾客离去。 (ii) 等待时间有限: 顾客对等待时间具有不耐烦 性的系统。设最长等待时间是T0,某个顾客从 进入队列后的等待时间为 T。若T<T0,顾客继 续等待;若T=T0,则顾客脱离队列而离去。 (iii)逗留时间有限:等待时间与服务时间之和。
相关文档
最新文档