初中培优竞赛 第3讲 整 式

合集下载

广东省深圳市罗湖区七年级数学下册 第3讲 有理数的乘除、乘方培优讲义 新人教版

广东省深圳市罗湖区七年级数学下册 第3讲 有理数的乘除、乘方培优讲义 新人教版

第03讲 有理数的乘除、乘方考点·方法·破译1.理解有理数的乘法法那么以及运算律,能运用乘法法那么准确地进行有理数的乘法运算,会利用运算律简化乘法运算.2.掌握倒数的概念,会运用倒数的性质简化运算.3.了解有理数除法的意义,掌握有理数的除法法那么,熟练进行有理数的除法运算. 4.掌握有理数乘除法混合运算的顺序,以及四那么混合运算的步骤,熟练进行有理数的混合运算.5.理解有理数乘方的意义,掌握有理数乘方运算的符号法那么,进一步掌握有理数的混合运算.经典·考题·赏析 【例1】计算⑴11()24⨯- ⑵1124⨯ ⑶11()()24-⨯- ⑷25000⨯⑸3713()()(1)()5697-⨯-⨯⨯-【解法指导】掌握有理数乘法法那么,正确运用法那么,一是要体会并掌握乘法的符号规律,二是细心、稳妥、层次清楚,即先确定积的符号,后计算绝对值的积.解:⑴11111()()24248⨯-=-⨯=- ⑵11111()24248⨯=⨯= ⑶11111()()()24248-⨯-=+⨯=⑷250000⨯=⑸3713371031()()(1)()()569756973-⨯-⨯⨯-=-⨯⨯⨯=-【变式题组】01.⑴(5)(6)-⨯- ⑵11()124-⨯ ⑶(8)(3.76)(0.125)-⨯⨯-⑷(3)(1)2(6)0(2)-⨯-⨯⨯-⨯⨯- ⑸111112(2111)42612-⨯-+- 02.24(9)5025-⨯ 3.1111(2345)()2345⨯⨯⨯⨯---04.111(5)323(6)3333-⨯+⨯+-⨯【例2】两个有理数a 、b ,如果ab <0,且a +b <0,那么〔 〕A .a >0,b <0B .a <0,b >0C .a 、b 异号D .a 、b 异号且负数的绝对值较大 【解法指导】依有理数乘法法那么,异号为负,故a 、b 异号,又依加法法那么,异号相加取绝对值较大数的符号,可得出判断.解:由ab <0知a 、b 异号,又由a +b <0,可知异号两数之和为负,依加法法那么得负数的绝对值较大,选D .【变式题组】01.假设a +b +c =0,且b <c <0,那么以下各式中,错误的选项是〔 〕A .a +b >0B .b +c <0C .ab +ac >0D .a +bc >0 02.a +b >0,a -b <0,ab <0,那么a___________0,b___________0,|a|___________|b|. 03.(山东烟台)如果a +b <0,0ba>,那么以下结论成立的是〔 〕 A .a >0,b >0 B .a <0,b <0 C .a >0,b <0 D .a <0,b >004.(广州)以下命题正确的选项是〔 〕A .假设ab >0,那么a >0,b >0B .假设ab <0,那么a <0,b <0C .假设ab =0,那么a =0或b =0D .假设ab =0,那么a =0且b =0【例3】计算⑴(72)(18)-÷- ⑵11(2)3÷- ⑶13()()1025-÷ ⑷0(7)÷- 【解法指导】进行有理数除法运算时,假设不能整除,应用法那么1,先把除法转化成乘法,再确定符号,然后把绝对值相乘,要注意除法与乘法互为逆运算.假设能整除,应用法那么2,可直接确定符号,再把绝对值相除.解:⑴(72)(18)72184-÷-=÷=⑵17331(2)1()1()3377÷-=÷-=⨯-=-⑶131255()()()()10251036-÷=-⨯=-⑷0(7)0÷-= 【变式题组】01.⑴(32)(8)-÷- ⑵112(1)36÷- ⑶10(2)3÷- ⑷13()(1)78÷-02.⑴12933÷⨯⑵311()(3)(1)3524-⨯-÷-÷ ⑶530()35÷-⨯03.113()(10.2)(3)245÷-+-÷⨯-【例4】〔茂名〕假设实数a 、b 满足0a ba b+=,那么ab ab =___________. 【解法指导】依绝对值意义进行分类讨论,得出a 、b 的取值范围,进一步代入结论得出结果.解:当ab >0,2(0,0)2(0,0)a b a b a b a b >>⎧+=⎨-<<⎩; 当ab <0,0a ba b+=,∴ab <0,从而ab ab =-1. 【变式题组】01.假设k 是有理数,那么(|k|+k )÷k 的结果是〔 〕A .正数B .0C .负数D .非负数 02.假设A .b 都是非零有理数,那么aba b a b ab++的值是多少? 03.如果0x y xy+=,试比拟xy-与xy 的大小.【变式题组】01.〔北京〕假设2(2)0m n m -+-=,那么nm 的值是___________. 02.x 、y 互为倒数,且绝对值相等,求()nnx y --的值,这里n 是正整数.【例6】〔安徽〕 2022年我省为135万名农村中小学生免费提供教科书,减轻了农民的负担,135万用科学记数法表示为〔 〕A .0.135×106B .1.35×106C .0.135×107D .1.35×107【解法指导】将一个数表示为科学记数法的a×10n的形式,其中a 的整数位数是1位.故答案选B .【变式题组】 01.〔武汉〕武汉市今年约有103000名学生参加中考,103000用科学记数法表示为〔 〕A .1.03×105B .0.103×105C .10.3×104D .103×103 02.〔沈阳〕沈阳市方案从 2022年到 2022年新增林地面积253万亩,253万亩用科学记数法表示正确的选项是〔 〕A .25.3×105亩B .2.53×106亩C .253×104亩D .2.53×107亩 【例7】〔上海竞赛〕222222221299110050002200500010050009999005000k k k ++⋅⋅⋅++⋅⋅⋅+-+-+-+-+【解法指导】找出21005000k k -+的通项公式=22(50)50k -+原式=2222222222221299(150)50(250)50(50)50(9950)50k k ++⋅⋅⋅++⋅⋅⋅+-+-+-+-+ =222222222222199298[][](150)50(9950)50(250)50(9850)50++++⋅⋅⋅+-+-+-+-+ 222222222495150[](4950)50(5150)50(5050)50++-+-+-+ =49222+1++⋅⋅⋅+个=99【变式题组】3333+++=( )2+4+6++10042+4+6++10062+4+6++10082+4+6++2006⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅A .31003B .31004C .1334D .1100002.〔第10届希望杯试题〕111111111.2581120411101640+++++++=求111111112581120411101640---+--++的值.演练稳固·反应提高01.三个有理数相乘,积为负数,那么负因数的个数为〔 〕A .1个B .2个C .3个D .1个或3个 02.两个有理数的和是负数,积也是负数,那么这两个数〔 〕A .互为相反数B .其中绝对值大的数是正数,另一个是负数C .都是负数D .其中绝对值大的数是负数,另一个是正数 03.abc >0,a >0,ac <0,那么以下结论正确的选项是〔 〕A .b <0,c >0B .b >0,c <0C .b <0,c <0D .b >0,c >0 04.假设|ab |=ab ,那么〔 〕A .ab >0B .ab ≥0C .a <0,b <0D .ab <0 05.假设a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,那么代数式a bm cd m+-+的值为〔 〕A .-3B .1C .±3D .-3或106.假设a >1a,那么a 的取值范围〔 〕 A .a >1 B .0<a <1 C .a >-1 D .-1<a <0或a >107.a 、b 为有理数,给出以下条件:①a+b =0;②a-b =0;③ab<0;④1ab=-,其中能判断a 、b 互为相反数的个数是〔 〕A .1个B .2个C .3个D .4个 08.假设ab≠0,那么a ba b+的取值不可能为〔 〕 A .0 B .1 C .2 D .-209.1110(2)(2)-+-的值为〔 〕A .-2B .(-2)21C .0D .-21010.(安徽) 2022年一季度,全国城镇新增就业人数289万人,用科学记数法表示289万正确的选项是〔 〕A .2.89×107B .2.89×106C .2.89×105D .2.89×104 11.4个不相等的整数a 、b 、c 、d ,它们的积abcd =9,那么a +b +c +d =___________. 12.21221(1)(1)(1)n n n +--+-+-〔n 为自然数〕=___________.13.如果2x yxy +=,试比拟x y-与xy 的大小.14.假设a 、b 、c 为有理数且1a b c a b c ++=-,求abcabc的值.15.假设a 、b 、c 均为整数,且321a b c a -+-=.求a c c b b a -+-+-的值.培优升级·奥赛检测01.有理数x 、y 、z 两两不相等,那么,,x y y z z xy z z x x y------中负数的个数是〔 〕 A .1个 B .2个 C .3个 D .0个或2个02.计算12345211,213,217,2115,2131-=-=-=-=-=⋅⋅⋅归纳各计算结果中的个位数字规律,猜想201021-的个位数字是〔 〕A .1B .3C .7D .503.23450ab c d e <,以下判断正确的选项是〔 〕A .abcde <0B .ab 2cd 4e <0C .ab 2cde <0D .abcd 4e <004.假设有理数x 、y 使得,,,xx y x y xy y+-这四个数中的三个数相等,那么|y |-|x |的值是〔 〕A .12-B .0C .12D .3205.假设A =248163264(21)(21)(21)(21)(21)(21)(21)+++++++,那么A -1996的末位数字是〔 〕A .0B .1C .7D .9 06.5544332222,33,55,66a b c d ====,那么a 、b 、c 、d 大小关系是〔 〕A .a >b >c >dB .a >b >d >cC .b >a >c >dD .a >d >b >c07.a 、b 、c 都不等于0,且a b c abc a b c abc+++的最大值为m ,最小值为n ,那么2005()m n +=___________. 08.〔第22届“华杯赛〞试题〕从下面每组数中各取一个数将它们相乘,那么所有这样的乘积的总和是___________.第一组:15,3,4.25,5.753- 第二组:112,315-第三组:52.25,,412-09.一本书的页码从1记到n ,把所有这些页码加起来,其中有一页码被错加了两次,结果得出了不正确的和2002,这个被加错了两次的页码是多少? 10.图中显示的填数“魔方〞只填了一局部,将以下9个数:11,,1,2,4,8,16,32,6442填入方格中,使得所有行列及对角线上各数相乘的积相等,求x 的值.32 x6411.(第22届“华杯赛〞试题)m 、n 都是正整数,并且111111(1)(1)(1)(1)(1)(1);2233A m m =-+-+⋅⋅⋅-+111111(1)(1)(1)(1)(1)(1).2233B n n=-+-+⋅⋅⋅-+证明:⑴11,;22m n A B m n ++==⑵126A B -=,求m 、n 的值.。

初三数学培优辅导课3

初三数学培优辅导课3

初三数学培优辅导课程1. 如图,BD 是⊙O 的直径,OA ⊥OB ,M 是劣弧AB ⌒上一点,过点M 点作⊙O 的切线MP 交OA 的延长线于P点,MD 与OA 交于N 点.(1)求证:PM =PN ;(2)若BD =4,PA = 32AO ,过点B 作BC ∥MP 交⊙O 于C 点,求BC 的长.2. 如图,AB 是⊙O 的直径,点C 在⊙O 上,过点C 的直线与AB 的延长线交于点P ,AC=PC ,∠COB=2∠PCB.(1)求证:PC 是⊙O 的切线; (2)求证:BC=AB ;(3)点M 是弧AB 的中点,CM 交AB 于点N ,若AB=4,求MN ·MC 的值.3. 如图,⊙O 是Rt △ABC 的外接圆,AB 为直径,∠ABC =30°,CD 是⊙O 的切线,ED ⊥AB 于F ,(1)判断△DCE 的形状;(2)设⊙O 的半径为1,且OF =213-,求证△DCE ≌△OCB .214. ⊙O 的半径OD 经过弦AB (不是直径)的中点C ,过AB 的延长线上一点P 作⊙O 的切线PE ,E 为切点,PE ∥OD ;延长直径AG 交PE 于点H ;直线DG 交OE 于点F ,交PE 于点K .(1)求证:四边形OCPE 是矩形;(2)求证:HK =HG ; (3)若EF =2,FO =1,求KE 的长.5. 如图右,已知直线PA 交⊙0于A 、B 两点,AE 是⊙0的直径.点C 为⊙0上一点,且AC 平分∠PAE ,过C 作CD ⊥PA ,垂足为D 。

(1)求证:CD 为⊙0的切线;(2)若DC+DA=6,⊙0的直径为l0,求AB 的长度.6. 如图,△ABC 中,以BC 为直径的圆交AB 于点D ,∠ACD =∠ABC .(1)求证:CA 是圆的切线;(2)若点E 是BC 上一点,已知BE =6,tan ∠ABC =32,tan ∠AEC =35,求圆的直径.。

2015年中考数学复习培优第3讲

2015年中考数学复习培优第3讲

2、已知二次函数 y=x2﹣2mx+m2+3(m 是常数) . (1)求证:不论 m 为何值,该函数的图象与 x 轴没有公共点; (2)把该函数的图象沿 y 轴向下平移多少个单位长度后,得到的函数的图象与 x 轴只有一个公共点?
3、阅读材料:当抛物线的解析式中含有字母系数时,随着系数中的字母取值的不同,抛物线的顶点坐标
2
论:

. (对称轴方程,图象与 x 正半轴、y 轴交点坐标例外)
2
3、 从地面垂直向上抛出一小球, 小球的高度 h (米) 与小球运动时间 (秒) t 的函数关系式是 h 9.8t 4.9t , 那么小球运动中的最大高度为米. 4、如图,两条抛物线 y1
1 2 1 x 1 、 y 2 x 2 1 与分别经过点 2,0 , 2,0 且平行于 y 轴的 2 2
2 也将发生变化.例如:由抛物线 y x 2mx m 2m 1 ①,有 y= ( x m) 2m 1②,所以抛物
2
2
③ x m 线的顶点坐标为(m,2m-1) ,即 当 m 的值变化时,x、y 的值随之变化,因而 y 值也随 x y 2m 1 ④
2015 年中考复习培优系列
2015 年中考数学复习培优第三讲:一元二次方程与二次函数
一、选择题 1、下列哪一个函数,其图形与 x 轴有两个交点( )
A.y=17(x83)22274B.y=17(x83)22274 C.y= 17(x83)22274D.y= 17(x83)22274。 2、 (2012 年台州市)已知二次函数 y ax2 bx c 的 y 与 x 的部分对应值如下表:
金额 w(元) 批发单价(元)
80 5 4

初中培优竞赛含详细解析 第3讲 整 式

初中培优竞赛含详细解析 第3讲 整 式

初中数学竞赛专题3——整式(1)1.(4、5)(数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、整式、绝对值、选择题)【标准答案】1#0#1#4#B已知a,b,c都是整数,m=|a+b|+|b−c|+|a−c|,那么()A. m一定是奇数 B. m一定是偶数C. 仅当a,b,c同奇或同偶时,m是偶数D. m的奇偶性不能确定【分析】|a|与a的奇偶性相同,所以m与(a+b)+(b−c)+(a−c)=2(a+b−c)同为偶数.【答案】B【技巧】把握奇偶性与绝对值的关系,从本质入手进行判断. 本题也可以按各数的奇偶性来分类讨论最后整合.【易错点】分类讨论时容易遗漏可能出现的情况而导致出错.2. (1、2)(数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、整式、高次方程、代数式、选择题)【标准答案】2#0#1#4#C若x3+x2+x+1=0,则 x−27+x−26+⋯+x−1+1+x+⋯+x26+x27的值是()A. 1 B. 0 C. -1 D. 2【分析】由x3+x2+x+1=0得x2+1x+1=0,由于x2+1>0,故x=−1,所以x−27+x−26+⋯+x−1+1+x+⋯+x26+x27=−1 .【答案】C【技巧】根据题目所给等式求出x的值,再代值计算.【易错点】将x=-1代入时,一定注意-1的奇数次方和偶数次方的个数,否则易错.3. (3、4)(数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、整式、高次方程、代数式、选择题)【标准答案】3#0#1#4#D已知m2=n+2,n2=m+2,m≠n,则m3−2mn+n3的值为()A. 1B. 0C. -1D. -2【分析】两式相减得m2−n2=n−m=m+n m−n,因为m≠n,所以m+n=−1.m3−2mn+n3=n+2m−2mn+m+2n=2m+n=−2.【答案】D【技巧】利用条件等式进行降次处理,逐步求值.4. (1、2)(数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、整式、高次方程、代数式、填空题)【标准答案】4#0#4#1998设m2+m−1=0,则m3+2m2+1997=_______.【分析】因为m2+m−1=0,所以m2+m=1 .则m3+2m2+1997=m m2+m+m+1997=m1+m+1997=m2+m+1997=1998.【答案】1998【技巧】运用整体代换进行降次求值.5. (3、4)(数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、整式、高次方程、代数式、填空题)【标准答案】5#0#4#5当m=2n 时,多项式am3+bm+1的值是0,则多项式4an3+bn+512= _________.【分析】依题意得 a(2n)3+b2n+1=8an3+2bn+1=0 ,故4an3+bn=−12. 则4an3+bn+512=−12+512=5 .【答案】5【技巧】整体代换求解是整式求值常用的技巧和方法.6. (3、4)(数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、整式、高次方程、代数式、填空题)【标准答案】6#0#4#26#-28已知m,n互为相反数,a,b互为负倒数,x的绝对值等于3,则x3−(1+m+n+ab)x2+(m+ n)x2004+(ab)2005= ________.【分析】由条件可得m+n=0, ab=-1 , x=±3 , 代入就可以求解.【详解】由题意知m+n=0, ab=-1 , x=±3 ,∴ x3−1+m+n+ab x2+m+n x2004+ab2005= x3−1 = 26或-28 .【技巧】根据相反数、倒数、绝对值等相关知识列式代值计算.7.(3、4) (数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、整式、高次方程、解答题)【标准答案】7#0#0已知a2+4a+1=0,且a4−ma2+I2a3+ma2+2a= 3,求m的值.【分析】因为a2+4a+1=0 ,所以a4+1=(a2+1)2−2a2=14a2. 代入求解. 【详解】由a2+4a+1=0得a2+1=−4a ,则a4+1=(a2+1)2−2a2=14a2.由a4−m22+12a3+mx2+2a= 3得(14−m)a2=3[2a(a2+1)+ma2],即14−m=3m−8,m=192⋅【技巧】在于将题目中的条件进行灵活变形,然后代入求解.【易错点】代数式变形时不要出错.8. (3、4) (数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、整式、方程、解答题)【标准答案】8#0#0已知m,n为自然数,且满足12+92+92+22+m2=n2,求m, n的值.【分析】依题意得(n+m)(n−m)=167=1×167,而m,n为自然数,故n+m=167, n−m=1,最后求解.【详解】(n+m)(n−m)=167=1×167,而m,n为自然数,故n+m=167,n−m=1,解得:m=83, n=84. 答:m、n的值分别为83、84.【技巧】利用平方差公式展开,很方便解决.【易错点】将167拆分的时候容易出错.9. (3、4) (数学、初中、竞赛、初中竞赛、数学竞赛、初中数学竞赛、整式、方程、解答题)【标准答案】9#0#0已知a=19992−199919982+1998,b=20002−200019992+1999,c=20012−200120002+2000,求(a-b-c) - (a+b-c)-(-a-b+c)的值.【分析】因为a=19992−19991998+1998.=19991999−119981998+1=1,同理可求b=1,c=1,代入求解.【详解】因为a=19992−19991998+1998.=19991999−119981998+1=1,同理可求b=1,c=1,所以a−b−c−a+b−c—a−b+c=1−1−1−1+1−1—1−1+1=−1−1+1=−1【技巧】将a、b、c进行化简,然后代入求解. 【易错点】化简、代入求值时,都要谨防出错.。

初一数学竞赛培优讲义 含答案 全册 共15讲 改好98页

初一数学竞赛培优讲义  含答案 全册  共15讲 改好98页

装订线初一数学竞赛培优第1讲数论的方法技巧(上)数论是研究整数性质的一个数学分支,它历史悠久,而且有着强大的生命力。

数论问题叙述简明,“很多数论问题可以从经验中归纳出来,并且仅用三言两语就能向一个行外人解释清楚,但要证明它却远非易事”。

因而有人说:“用以发现天才,在初等数学中再也没有比数论更好的课程了。

任何学生,如能把当今任何一本数论教材中的习题做出,就应当受到鼓励,并劝他将来从事数学方面的工作。

”所以在国内外各级各类的数学竞赛中,数论问题总是占有相当大的比重。

数学竞赛中的数论问题,常常涉及整数的整除性、带余除法、奇数与偶数、质数与合数、约数与倍数、整数的分解与分拆。

主要的结论有:1.带余除法:若a,b是两个整数,b>0,则存在两个整数q,r,使得a=bq+r(0≤r<b),且q,r是唯一的。

特别地,如果r=0,那么a=bq。

这时,a被b整除,记作b|a,也称b是a的约数,a是b的倍数。

2.若a|c,b|c,且a,b互质,则ab|c。

3.唯一分解定理:每一个大于1的自然数n都可以写成质数的连乘积,即其中p1<p2<…<p k为质数,a1,a2,…,a k为自然数,并且这种表示是唯一的。

(1)式称为n的质因数分解或标准分解。

4.约数个数定理:设n的标准分解式为(1),则它的正约数个数为:d(n)=(a1+1)(a2+1)…(a k+1)。

5.整数集的离散性:n与n+1之间不再有其他整数。

因此,不等式x<y与x≤y-1是等价的。

下面,我们将按解数论题的方法技巧来分类讲解。

一、利用整数的各种表示法对于某些研究整数本身的特性的问题,若能合理地选择整数的表示形式,则常常有助于问题的解决。

这些常用的形式有: 1.十进制表示形式:n=a n 10n +a n-110n-1+…+a 0; 2.带余形式:a=bq+r ;4.2的乘方与奇数之积式:n=2m t ,其中t 为奇数。

例1 红、黄、白和蓝色卡片各1张,每张上写有1个数字,小明将这4张卡片如下图放置,使它们构成1个四位数,并计算这个四位数与它的各位数字之和的10倍的差。

【核心考点突破】2023学年七年级数学上册培优讲与练(人教版) 整式的化简求值的五种类型-原卷版

【核心考点突破】2023学年七年级数学上册培优讲与练(人教版) 整式的化简求值的五种类型-原卷版

整式的化简求值的五种类型(原卷版)【专题精讲】整式的化简常与求值相结合,体现了特殊与一般的辩证关系.解决这类问题的大体步骤可以简化为“一化、二代、三计算”,但有时也可根据题目的特征和已知条件灵活选择解题方法.根据代入方法的不同,可将整式的化简求值题划分为以下几种类型:(1)利用直接代入法求值;(2)利用整体代入法求值(3)利用拆项或添项法求值(4)利用降次消元法求值;(5)利用赋值法求值◎类型一:利用直接代入法求值解题方法:整式的化简求值一般分为三步:一是利用整式加减的运算法则将整式化简;二是把已知字母或某个整式的值代入化简后的式子;三是依据有理数的运算法则进行计算1.(黑龙江省大庆市庆新中学2021-2022学年六年级(五四学制)下学期期末考试数学试题)先化简再求值213()(1)322----+xy y xy x其中54,33x y==2.(2022·湖南·长沙市开福区清水塘实验学校七年级期末)先化简再求值:()()23343334a a a a a+----+其中a=﹣1.3.(2020·天津市红桥区教师发展中心七年级期中)已知2223A x xy y=+-2223B x xy y=-+(1)求32A B +;(2)当21,==x y 求32A B +的值.4.(2021·福建·福州十八中七年级期中)先化简 再求值:(1)()()2232223,a a a a ---其中3a =-.(2)()2272421,x y xy xy x y ⎡⎤-----+⎣⎦其中x y 满足()2201510x y -++=.◎类型二:利用整体代入法求值解题方法:解答此类题目,先将原式化简,再将已知条件(或变形后的条件)整体代入求值。

5.(2022·全国·七年级单元测试)已知3,2a b c d +=-= 则()()a c b d +--+的值是( ) A .5 B .-5 C .1 D .-16.(2021·福建漳州·七年级期中)若代数式13-22x y = 则代数式2()22421x y y x -+-+的值为( )A .7B .13C .19D .257.(2022·全国·七年级课时练习)已知21x y -= 则式子22(43)(2)y x y y ----的值为( ) A .-1 B .1 C .-5 D .58.(2022·全国·七年级课时练习)若21a a += 则代数式2225+-a a 的值为( ) A .0 B .1 C .2 D .3-◎类型三:无关类题型的求值9.(2020·天津市红桥区教师发展中心七年级期中)已知2232A a b ab abc =-+ 小明错将“2A B -”看成“2A B +”,算得结果22434C a b ab abc =-+.(1)计算B 的表达式;(2)求正确的结果的表达式;(3)小强说(2)中的结果的大小与c 的取值无关 对吗?若1185a b ==,求(2)中代数式的值10.(2021·陕西·西北大学附中七年级期中)如果关于x 、y 的代数式()()22262351x ax y bx x y +-+--+-的值与字母x 所取的值无关 试化简代数式323212234a b a b ⎛⎫--- ⎪⎝⎭再求值.11.(2022·全国·七年级专题练习)已知多项式M =()()2223221x xy y x x yx -+++++. (1)当x =1 y =2 求M 的值;(2)若多项式M 与字母x 的取值无关 求y 的值.12.(2022·全国·七年级专题练习)已知代数式22212,221A x xy y B x xy x =++-=-+-.(1)当x =﹣1 y =﹣2时 求2A ﹣B 的值.(2)若2A ﹣B 的值与x 的取值无关 求y 的值.◎类型四:图形类问题的应用求值13.(2022·浙江绍兴·七年级期末)已知有2个完全相同的边长为a 、b 的小长方形和1个边长为m 、n 的大长方形 小明把这2个小长方形按如图所示放置在大长方形中 小明经过推事得知 要求出图中阴影部分的周长之和 只需知道a 、b 、m 、n 中的一个量即可 则要知道的那个量是( )A .aB .bC .mD .n14.(2022·浙江宁波·七年级期末)如图所示 三张正方形纸片① ① ①分别放置于长()a b + 宽()a c +的长方形中 正方形① ① ①的边长分别为a b c 且a b c >> 则阴影部分周长为( )A .42a c +B .42a b +C .4aD .422a b c ++ 15.(2021·广东·揭西县宝塔实验学校七年级期中)如图 大长方形ABCD 是由一张周长为C 1正方形纸片①和四张周长分别为C 2 C 3 C 4 C 5的长方形纸片① ① ① ①拼成 若大长方形周长为定值 则下列各式中为定值的是( )A .C 1B .C 3+C 5 C .C 1+C 3+C 5D .C 1+C 2+C 416.(2022·山东·万杰朝阳学校期中)如图 阴影部分的面积是 ( )A .72xyB .92xyC .4xyD .2xy◎类型五:利用数轴化简求值17.(2022·全国·七年级课时练习)已知A B C 三点在数轴上如图所示 它们表示的数分别是a b c .且|a |<|b |.(1)填空:abc 0 a +b 0(填“>”“<”或“=”).(2)化简:|a ﹣b |﹣2|a +b |+|b ﹣c |.18.(2022·贵州黔西·七年级期末)(1)已知有理数a b c 在数轴上的对应点的位置如图所示 化简:a b c b b a +--+-;(2)若x 的相反数是2- y 没有倒数 24z = 求2()x y z x y z -++-+-的值.19.(2021·河南开封·七年级期中)已知x 、y 两数在数轴上表示如图.(1)试在数轴上找出表示x - y -的点 并用“<”连接x y x - y -.(2)若x 的绝对值等于3 y 的倒数等于它本身 化简求值:32x y y x -+-.20.(2021·天津·耀华中学七年级期中)已知在数轴上的位置如图所示:(1)判断下列式子正负:a +1 0;c ﹣b 0;b ﹣1 0;(2)化简:|a +1|+|c ﹣b |﹣|b ﹣1|;(3)若332b x y -与123a a x y --的差仍是单项式 且a 与﹣1的距离等于c 与﹣1的距离 求﹣4c 2+2(a ﹣4b )﹣3(﹣c 2+5a ﹣b )的值.【专题训练】1.(2022·广西贵港·七年级期末)若a ﹣5=6b 则(a +2b )﹣2(a ﹣2b )的值为( ) A .5 B .﹣5 C .10 D .﹣102.(2022·全国·七年级课时练习)如果a ﹣4b =0 那么多项式2(b ﹣2a +10)+7(a ﹣2b ﹣3)的值是( )A .﹣1B .﹣2C .1D .23.(2021·黑龙江·绥芬河市第三中学七年级期中)把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m 宽为n )的盒子底部(如图①) 盒子底面未被卡片覆盖的部分用阴影表示 则图①中两块阴影部分的周长和是( )A .4mB .4nC .2(m +n )D .4(m -n ) 4.(2022·浙江绍兴·七年级期中)如图 大长方形按如图方式分成5块 其中标号① ① ①的为正方形 标号① ①的为长方形 若要求出①与①的周长差 则只需知道下列哪个条件( )A .①的周长B .①的周长C .①的面积D .①的面积 5.(2020·湖北·公安县教学研究中心七年级期中)先化简 再求值:()()222221653242ab a b ab ab a b +-+-- 其中a =2、b =-12. 6.(2021·河北·原竞秀学校七年级期中)老师在黑板上书写了一个正确的演算过程 随后用一张纸挡住了一个多项式 形式如下:()2231251x x x +-=--+(1)求所挡的多项式;(2)当1x =-时 求代数式的值.7.(2022·全国·七年级专题练习)已知代数式22232A x xy y B x xy x =++,=﹣+. (1)求A ﹣2B ;(2)当x =﹣1 y =3时 求A ﹣2B 的值;(3)若A ﹣2B 的值与x 的取值无关 求y 的值.8.(2020·浙江·余姚市姚江中学七年级期中)已知:222351 2.A x xy x B x xy =+-+=-++,(1)当2,1x y =-=时 求2A B +的值.(2)若2A B +的值与x 的值无关 求y 的值.9.(2021·重庆市万州第二高级中学七年级阶段练习)(1)已知325A x x =- 2116B x x =-+ 求当1x =时 求()3A A B ---+⎡⎤⎣⎦;(2)已知||5a = ||8b = 且0a b +> 求ab 的值;(3)已知有理数,,a b c 在数轴上对应的点如图所示:化简:|||2|||b a a c c b --+-+= .10.(2020·山东·日照市新营中学七年级期中)条件求值:(1)对于有理数a 、b 定义运算:a ①b =a ×b +|a |-b .计算(-5)①4的值;(2)已知有理数a b c 在数轴上对应点的位置如图所示 化简:|b -c |+2|c +a |-3|a -b |;(3)若代数式x 2的值和代数式2x +y -1的值相等 则代数式9-2(y +2x )+2x 2的值;y=2.(4)先化简再求值:3x2y-[2x2y-3(2xy-x2y)-xy] 其中x=12。

(2021年整理)七年级(上)培优讲义:第3讲代数式(一)

(2021年整理)七年级(上)培优讲义:第3讲代数式(一)

七年级(上)培优讲义:第3讲代数式(一)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(七年级(上)培优讲义:第3讲代数式(一))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为七年级(上)培优讲义:第3讲代数式(一)的全部内容。

第3讲:代数式(一)一、建构新知1。

阅读教材中的本节内容后填写:写出下面各式的简略形式5×b = c ×a = x ×6= 1×a = x ×x = c ÷4=规范:(1) 或 相乘时,乘号可省略不写,或者用“ ”。

(2)数和字母相乘,在省略乘号时,要把 写在 前面. (3)带分数与字母相乘时,带分数要写成 的形式. (4)除法运算要写成 形式,除号改为 . 2. 下列各式书写规范的是( )A.c ab ÷ B.)32(2⨯-a C.ab 411 D.73+-xy3。

一隧道长l 米,一列火车长180米,如果该列火车穿过隧道所花的时间为t 分钟,则列车的速度怎么表示? 。

(课本引例) 再描述式子中的字母和数字所代表的意义?4. 代数式由 组成, 单独一个 或也称代数式。

代数式中可以含有的运算是 。

5. 用代数式表示“a 与比b 小10的数的积”是 ( )A.10ab - B.10a b- C.(10)a b - D.(10)a b +6。

阅读教材中的本节内容后填写下表,并观察下列两个代数式的值的变化情况:⑴如何求得代数式的值: ⑵随着n 的值逐渐变大,两个代数式的值变化为 。

⑶估计一下,代数式 的值先超过100。

二、经典例题例1. (1)当x 分别等于-1、0、1、2、3、4、5时,求代数式342+-x x 的值,请用表格的形式解答;(2)通过观察,你能找出342+-x x 的值随x的变化规律吗?(3)你能通过上述方法归纳出322++-x x 的值随x 的变化规律吗?例2怎样的两个数,它们的和等于它们的积呢?你大概马上会想到2+2=2×2,其实这样的两个数还有很多,例如:3+23=3×23(1)你还能写出一些这样的两个数吗?(2)你能从中发现什么规律吗?把它用字母n 表示出来.例3.甲、乙两人从同一地点出发,甲每小时走5km ,乙每小时走3km ,用代数式表示: (1)反向行走t 时,两人相距多少千米?(2)同向行走t 时,两人相距多少千米?(3)反向行走,甲比乙早出发m 时,乙 走n 时,两人相距多少千米?(4)同向行走,甲比乙晚出发m 时,乙 走n 时(n >m ),两人相距多少千米?例4. 当x =1时,代数式ax 3+bx -6的值为8,试求当x = -1时,代数式ax 3+bx -6的值。

第3讲 直角三角形全等的性质与判定(培优)

第3讲 直角三角形全等的性质与判定(培优)

1.如图1,CD AB ⊥于D ,BE AC ⊥于E ,BE 与CD 交于O ,OB OC =,则图中全等的直角三角形共有()A .2对B .3对C .4对D .5对2.如图2,在Rt ABC ∆中,90ACB ∠=︒,30A ∠=︒,点D 是AC 上一点,将ABD ∆沿线段BD 翻折,使得点A 落在A '处,若28A BC '∠=︒,则(CBD ∠=)A .15︒B .16︒C .18︒D .20︒3.已知如图3,//AD BC ,AB BC ⊥,CD DE ⊥,CD ED =,2AD =,3BC =,则ADE ∆的面积为()A .1B .2C .5D .无法确定4.把两个同样大小的含45°角的三角尺按如图4所示的方式放置,其中一个锐角顶点与另一个的直角顶点重合于点A ,且另外三个锐角顶点B ,C ,D 在同一条直线上,若AB =,则CD 的长为()A .﹣1B .C .﹣1D .5.如图5,ABC ∆的角平分线CD 、BE 相交于F ,90A ∠=︒,//EG BC ,且CG EG ⊥于G ,下列结论:①2CEG DCB ∠=∠;②12DFB CGE ∠=∠;③ADC GCD ∠=∠;④CA 平分BCG ∠.其中正确的结论是()A .③④B .①②④C .①②③D .①②③④6.如图6,ABC ∆中,10AB AC ==,210BC =,点D 是AB 上一点,连接CD ,将BCD ∆沿CD 翻折得到△B CD ',若B D AC '⊥于点E ,则E 到CD 的距离为()A .6B .8C .455D .6557.如图7,在Rt ABC ∆中,90C ∠=︒,62B ∠=︒,D 、E 分别在AB 、AC 上,将ADE ∆沿DE 折叠得FDE ∆,且满足//EF AB ,则1∠=.8.如图8,已知∠AOB =45°,点P 在OA 边上,OP =8cm ,点M 、N 在边OB 上,PM =PN ,若MN =2cm ,则ON 的长为.9.如图9,△ACB 和△ECD 都是等腰直角三角形,CA =CB =6,CE =CD ,△ACB 的顶点A 在△ECD 的斜边DE 上,若AE :AD =1:2,则两个三角形重叠部分的面积为.10.如图10,在ABC ∆中,90BAC ∠=︒,AB AC =,D 为ABC ∆外一点,连接AD ,BD ,CD ,发现4AD =,2CD =且45ADC ∠=︒,则BD =.11.如图11,在等腰三角形ABC 中,4AC BC ==,30A ∠=︒,点D 为AC 的中点,点E 为边AB 上一个动点,连接DE ,将ADE ∆沿直线DE 折叠,点A 落在点F 处.当直线EF 与直线AC 垂直时,则AE 的长为.12.如图12,ABC ∆中60CAB ∠=︒,AD 平分CAB ∠交BC 于点D ,6AC AB +=,当ABD ∆为直角三角形时,线段AD 的值为.13.小明是一位善于思考的学生,在一次数学活动课上,他将一副直角三角板按如图所示的位置摆放,A 、B 、D 三点在同一直线上,//EF AD ,90CAB EDF ∠=∠=︒,45C ∠=︒,60E ∠=︒,量得8DE =.(1)试求点F 到AD 的距离.(2)试求BD 的长.14.如图,在ABC ∆中,AC AB >,以点A 为圆心、AB 长为半径的弧交BC 于点D ,连接AD ,过点B 作BE AD ⊥,垂足为点E .(1)若10AB =,2DE =,求ABD ∆的面积;(2)若125AC =,20AD =,410CD =,求ABC ∆的面积.15.如图1,点A 、D 在y 轴正半轴上,点B 、C 分别在x 轴上,CD 平分ACB ∠与y 轴交于D 点,90CAO BDO ∠=︒-∠.(1)求证:AC BC =;(2)如图2,点C 的坐标为(4,0),点E 为AC 上一点,且DEA DBO ∠=∠,求BC EC +的长.16.在ABC ∆中,90BAC ∠=︒,AB AC =,AD BC ⊥于点D .(1)如图1,点M ,N 分别在AD ,AB 上,且90BMN ∠=︒,当30AMN ∠=︒,2AB =时,求线段AM 的长;(2)如图2,点E ,F 分别在AB ,AC 上,且90EDF ∠=︒,求证:BE AF =;(3)如图3,点M 在AD 的延长线上,点N 在AC 上,且90BMN ∠=︒,求证:2AB AN AM +=.17.在Rt ABC ∆中,90C ∠=︒,30B ∠=︒,10AB =,点D 是射线CB 上的一个动点,ADE ∆是等边三角形,点F 是AB 的中点,连接EF .(1)如图,当点D 在线段CB 上时,①求证:AEF ADC ∆≅∆;②连接BE ,设线段CD x =,线段BE y =,求y 关于x 的函数解析式及取值范围;(2)当15DAB ∠=︒时,求ADE ∆的面积.。

浙教版初中数学培优讲义 七年级上册 4.3 整式 知识讲解+同步练习 教师版

浙教版初中数学培优讲义  七年级上册  4.3  整式  知识讲解+同步练习  教师版

整式(不分层)知识讲解【学习目标】1.掌握单项式系数及次数的概念;2. 理解多项式的次数及多项式的项、常数项及次数的概念;3.掌握整式的概念,会判断一个代数式是否为整式;4. 能准确而熟练地列式子表示一些数量关系.【要点梳理】要点一、单项式1.单项式的概念:如22xy -,13mn ,-1,它们都是数与字母的积,像这样的式子叫单项式,单独的一个数或一个字母也是单项式.要点诠释:(1)单项式包括三种类型:①数字与字母相乘或字母与字母相乘组成的式子;②单独的一个数;③单独的一个字母.(2)单项式中不能含有加减运算,但可以含有除法运算.如:2st 可以写成12st 。

但若分母中含有字母,如5m就不是单项式,因为它无法写成数字与字母的乘积. 2.单项式的系数:单项式中的数字因数叫做这个单项式的系数.要点诠释:(1)确定单项式的系数时,最好先将单项式写成数与字母的乘积的形式,再确定其系数;(2)圆周率π是常数.单项式中出现π时,应看作系数;(3)当一个单项式的系数是1或-1时,“1”通常省略不写;(4)单项式的系数是带分数时,通常写成假分数,如:2114x y 写成254x y . 3.单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数.要点诠释:单项式的次数是计算单项式中所有字母的指数和得到的,计算时要注意以下两点:(1)没有写指数的字母,实际上其指数是1,计算时不能将其遗漏;(2)不能将数字的指数一同计算.要点二、多项式1.多项式的概念:几个单项式的和叫做多项式.要点诠释:“几个”是指两个或两个以上.2. 多项式的项:每个单项式叫做多项式的项,不含字母的项叫做常数项.要点诠释:(1)多项式的每一项包括它前面的符号.(2)一个多项式含有几项,就叫几项式,如:2627x x --是一个三项式.3. 多项式的次数:多项式里次数最高项的次数,叫做这个多项式的次数.要点诠释:(1)多项式的次数不是所有项的次数之和,而是多项式中次数最高的单项式的次数.(2)一个多项式中的最高次项有时不止一个,在确定最高次项时,都应写出.4.升幂排列与降幂排列: 把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列;若按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列.如:多项式2x 3y 2-xy 3+21x 2y 4-5x 4-6是六次五项式,按x 的降幂排列为-5x 4+2x 3y 2+21x 2y 4-xy 3-6,在这里只考虑x 的指数,而不考虑其它字母;按y 的升幂排列为-6-5x 4+2x 3y 2-xy 3+21x 2y 4.要点诠释:(1)重新排列多项式时,每一项一定要连同它的正负号一起移动;(2)含有两个或两个以上字母的多项式,常常按照其中某一个字母的升幂排列或降幂排列.要点三、 整式单项式与多项式统称为整式.要点诠释:(1)单项式、多项式、整式这三者之间的关系如图所示.即单项式、多项式必是整式,但反过来就不一定成立.(2)分母中含有字母的式子一定不是整式.【典型例题】类型一、整式概念辨析1.指出下列代数式中哪些是单项式?哪些是多项式?哪些是整式?22x y +,x -,3a b+,10,61xy +,1x ,217m n ,225x x --,22x x +,7a举一反三:【高清课堂:整式的概念 例1】【变式】下列代数式:322332111;;;;2;-232ax y ab x x y x y y x +--++π①②③④⑤⑥,其中是单项式的是_______________,是多项式的是_______________。

【精华篇】初中数学九年级培优教程整理(全)

【精华篇】初中数学九年级培优教程整理(全)

初中数学九年级培优目录第1讲二次根式的性质和运算(P2----7)第2讲二次根式的化简与求值(P7----12)第3讲一元二次方程的解法(P13----16)第4讲根的判别式及根与系数的关系(P16----22)第5讲一元二次方程的应用(P23----26)第6讲一元二次方程的整数根(P27----30)第7讲旋转和旋转变换(一)(P30----38)第8讲旋转和旋转变换(二)(P38----46)第9讲圆的基本性质(P47----51)第10讲圆心角和圆周角(P52----61)第11讲直线与圆的位置关系(P62----69)第12讲圆内等积证明及变换((P70----76)第13讲弧长和扇形面积(P76----78)第14讲概率初步(P78----85)第15讲二次函数的图像和性质(P85----91)第16讲二次函数的解析式和综合应用(P92----98) 第17讲二次函数的应用(P99----108)第18讲相似三角形的性质(P109----117)第19讲相似三角形的判定(P118-----124)第20讲相似三角形的综合应用(P124-----130)每天进步一点点!坚持就是胜利!第1讲 二次根式的性质和运算考点·方法·破译1.了解二次根式、最简二次根式、同类二次根式的定义,能准确进行辨析; 2.掌握二次根式有关性质,并能熟练运用性质进行化简;3.会根据二次根式的性质挖掘题中隐含条件,求参数的值(或取值范围).经典·考题·赏析【例1】 (荆州)下列根式中属最简二次根式的是( )A.B 【解法指导】判断式子是否为最简二次根式的条件有两点:①被开方式中不能含分母;②被开方式中不能有可开尽方的数或式子. B中含分母,C 、D 含开方数4、9,故选A .【变式题组】1.⑴(中山)下列根式中不是最简二次根式的是( )A.BA.①,②ﻩB.③,④ﻩC.①,③D.①,④【例2】(黔东南)方程480x -=,当y >0时,m 的取值范围是( )A.0<m<1 B .m ≥2ﻩ C .m <2 ﻩD.m ≤2【解法指导】本题属于两个非负数的代数和问题,隐含两个代数式均为0的结论.由题意得4x -8=0,x -y-m =0.化为y =2-m,则2-m >0,故选C.【变式题组】2.(宁波)若实数x、y 2(0y -=,则xy 的值是__________.3.(荆门)2()x y =+,则x -y 的值为( )A .- 1ﻩB .1ﻩC .2 ﻩD .34.(鄂州)使代数式4x -有意义的x 的取值范围是( ) A .x >3 B.x≥3ﻩﻩC.x>4 ﻩD.x≥3且x ≠45.(怀化)22(4)0a c --=,则a-b -c =________.【例3是同类二次根式的是( )B C ﻩ【解法指导】判断几个二次根式是否为同类二次根式应先把它们都化为最简二次根式,再看被开方数是否一样. A=; B不能化简;=D=,=故本题应选D.【变式题组】6.,则a=________. 7.在下列各组根式中,是同类二次根式的是( )CD8.已知最简二次根式ba =_______,b =______. 【例4】下列计算正确的是( )=4=ﻩC= D.(11+=【解法指导】正确运用二次根式的性质①2(0)a a =≥;②(0)0(0)(0)a a a a a a ⎧⎪===⎨⎪-⎩><;③0,0)a b =≥≥;0,0)b a =≥> 进行化简计算,并能运用乘法公式进行计算.A 、B 中的项不能合并.D. 2(111+=-=-.故本题应选C.【变式题组】9. (聊城)下列计算正确的是( )A.= B=C3=ﻩ3=-10.计算:200720074)(4⋅=_____________ 11.22-=_____________12.(济宁)已知a 为实数,( ) A.a B.-a ﻩ C.-1 D .0 13.已知a >b >0,a +b =的值为( )A.2B.2ﻩCﻩD .12【例5】已知xy >0,化简二次根式的正确结果为( )A Bﻩ C .ﻩ D .【解法指导】先要判断出y <0,再根据xy >0知x<0. 故原式= D. 【变式题组】14.已知a 、b 、c 为△AB C 三边的长,则化简a b c --_______.15.===,算果中找出规律,并利用这一规律计算:1)2006++⋅=_________.16.已知,则0<x<1,=_________.【例6】(辽宁)⑴先化简吗,再求值:11()ba b b a a b ++++,其中12a =,12b =.⑵已知x =,y =值为________. 【解法指导】对于⑴,先化简代数式再代入求值;对于⑵,根据已知数的特征求xy 、x +y 的值,再代入求值.【解】⑴原式=22()()()()ab a a b b a b a b ab a b ab a b ab +++++==++,当12a =,12b =时,ab =1,a+b⑵由题意得:xy =1,x +y =10, 原式10199=-. 【变式题组】17.(威海)先化简,再求值:(a +b )2+(a -b)(2a+b )-3a 2,其中2a =--2b =.18.(黄石)已知a 是4的小数部分,那么代数式22224()()442a a a a a a a a a+-+⋅-+++的值为________.【例7】已知实数x 、y满足(2008x y =,则3x 2-2y 2+3x -3y -2007的值为( )A.-2008ﻩﻩB.2008C.-1ﻩﻩD.1【解法指导】对条件等式作类似于因式分解的变形,找出a 、b 的关系,再代入求值.解:∵(2008x y =,∴(x =y =(y =x =,由以上两式可得x =y .∴(2008x =, 解得x2=2008,所以3x2-2y 2+3x-3y-2007=3x 2-2x 2+3x -3x -2007=x2-2007=1,故选D .【变式题组】19.若a >0,b>0=的值.演练巩固·反馈提高01.若4m =,则估计m的值所在的范围是( )A .1<m <2B .2<m <3ﻩC .3<m <4 ﻩD .4<m <502.(绵阳)n的最大值为( )A .12 ﻩB.11C.8 ﻩD .303.(黄石)下列根式中,不是..最简二次根式的是( )A.04.(贺州)下列根式中,不是最简二次根式的是( )A.C 05.下列二次根式中,是最简二次根式的是( )A.C06.(常德)设a=20, b=(-3)2, c =11()2d -=, 则a 、b、c、d 、按由小到大的顺序排列正确的是( )A.c<a<d <b ﻩ B.b <d<a<c ﻩﻩC.a <c<d<bD .b <c <a <d07.(十堰)下列运算正确的是( )A+=ﻩ B =C.21)31=-ﻩﻩ 53=-08.如果把式子(1a -根号外的因式移入根号内,化简的结果为( )A .C.ﻩD .09.(徐州)2x -化简的结果为2x -3,则x的取值范围是( )A.x ≤1 ﻩB .x ≥2ﻩ C .1≤x ≤2ﻩ D.x>010.(怀化)函数y =中自变量的取值范围是________.11.(湘西)对于任意不相等的两个数a,b ,定义一种运算a※b =那么12※4=________.12.(荆州)先化简,再求值:22321121a a a a a a -+÷-+-,其中a =13.(广州)先化简,再求值:((6)a a a a --,其中12a =. 培优升级01.(凉山州)已知一个正数的平方根是3x -2和5x +6,则这个数是________.02.已知a、b 是正整数,且满足是整数,则这样的有序数对(a ,b)共有________对.03.(全国)设12a =,则5432322a a a a a a a+---+=-________. 04.(全国)设x =a 是x的小数部分,b 是x 的小数部,则a 3+b 3+3a b=________.05.(重庆)已知2y =,则x 2+y 2=________.06.(全国)已知1a =,a =2a =,那么a、b 、c 的大小关系是( )A.a <b <c ﻩﻩB.b <a<c ﻩﻩC.c<b <a ﻩ D .c <a <b07.(武汉)已知y =(x,y均为实数),则y的最大值与最小值的差为( )A 3ﻩB .3ﻩ3ﻩ D08.(全国)已知非零实数a 、b满足24242a b a -+++=,则a+b 等于( ) A .-1ﻩ B.0ﻩﻩC .1D.209.(全国) )A.5-ﻩB .1ﻩﻩC.5ﻩﻩD .110.已知0(0,0)x y x y -=>>的值为( )A.13ﻩﻩB .12 ﻩC. 23ﻩ D .3411.已知152a b c +-=-,求a +b +c 的值.12.已知9+9a 和b ,求ab -3a+4b +8的值.第2讲 二次根式的化简与求值考点·方法·破译1.会灵活运用二次根式的运算性质化简求值.2.会进行二次根式的有理化计算,会整体代入求值及变形求值. 3.会化简复合二次根式,会在根式范围内分解因式.经典·考题·赏析【例1】(河北)2=的值等于__________ 【解法指导】通过平方或运用分式性质,把已知条件和待求式的被开方数都用1x x+表示或化简变形. 解:两边平方得,124x x ++=,12x x+= ,两边同乘以x 得,212x x += ,∵2315x x x ++=,29111x x x ++=,∴原式511-1.若14a a +=(0<a<1),=________ 2=-( ) A .1a a -ﻩ B .1a a -ﻩﻩC .1a a+ﻩﻩD .不能确定 【例2】(全国)满足等式=2003的正整数对(x ,y )的个数是( )A .1ﻩ ﻩB.2ﻩﻩ C.3 D .4【解法指导】对条件等式作类似于因式分解的变形,将问题转化为求不定方程的正整数解.0=,∴0=0>,0=,则xy =2003,且2003是质数,∴正整数对(x ,y )的个数有2对,应选B. 【变式题组】3.若a >0,b >0=的值.【例3】(四川)1)a =<<,求代数式22632x x x x x x +-+÷-. 【解法指导】视x -2,x 2-4x为整体,=移项用含a 的代数式表示x -2,x2-4x ,注意0<a <1的制约.解:平方得,12x a a =++,∴12x a a -=+,2221442x x a a -+=++, 222142x x a a-=+-,∴化简原式=(3)(2)(2)3x x x x x x +---+ =2211()1()211()a a a a a a a a a a a++-+-=++--4.(武汉)已知32x x +=+,求代数式35(2)242x x x x -÷----的值.5.(五羊杯)已知1m =+1n =-且22(714)(367)8m m a n n -+--=,则a的值等于( ) A .-5ﻩB .5ﻩ ﻩC .-9ﻩD .9【例4】(全国)如图,点A、C都在函数0)y x =>的图像上,点B、D都在x 轴上,且使得△OAB 、△BC D都是等边三角形,则点D的坐标为________.【解法指导】解:如图,分别过点A 、C 作x 轴的垂线,垂足分别为E 、F .设OE=a,BF=b ,则,CFb ,所以,点A、C 的坐标为(aa )、(2a+b),所以2(2)a b =+=解得a b ⎧=⎪⎨=⎪⎩因此,点D的坐标为(,0) 【变式题组】6.(邵阳)阅读下列材料,然后回答问题. 在进行二次根式化简时,我们有时会碰上如1323235+,,一样的式子,其实我们还可以将其进一步化简: 335333535=⨯⨯=; (一) 36333232=⨯⨯=; (二) ()()()131313132132-=-+-⨯=+; (三) 以上这种化简的步骤叫做分母有理化,132+还可以用以下方法化简:()()()13131313131313131322-=+-+=+-=+-=+; (四)(1)请你用不同的方法化简352+;①参照(三)试得:352+=_____________________________;(要有简化过程)②参照(四)试得:352+=_____________________________;(要有简化过程)(2)2n +++【例5】(五羊杯)设a 、b 、c 、d 为正实数,a <b,c <d ,bc >ad ,,,求此三角形的面积.【解法指导】虽然不能用面积公式求三角形面积(为什么a、c 为直角边的直角三角形的斜边,从构造图形入手,将复杂的根式计算转化为几何问题加以解决.解:如图,作长方形AB CD ,使AB =b -a ,AD =c ,延长DA 至E ,使DE =d ,延长D C至F ,使D F=b,连结EF 、FB 、EB ,则BFEF=,BE =,从而知△BEF 就是题设的三角形,而S△BEF=S 长方形ABCD +S △BCF+S △ABE -S △DEF =(b -a )c +12(d -c )(b -a)-12bd =12(bc -a d)【变式题组】7.(北京)已知a、b 均为正数,且a+b=2,求U演练巩固·反馈提高01.已知x =,y =值为__________ 02.设1a =-,则32312612a a a +--=( )A.ﻩ24ﻩB .25ﻩﻩC.10ﻩﻩD.1203.(天津)计算2001200019991)1)1)2001--+=__________04.(北京)若有理数x 、y 、z 1()2x y z =++,则2()x yz -=__________05.(北京)正数m、n 满足430m n +-=,=__________06.(河南)若1x =,则32(2(15x x x -++的值是( )A .2 ﻩB .4ﻩﻩC .6ﻩﻩﻩD .807.已知实数a 满足2000a a -=,那么22000a -的值是( ) A .1999ﻩB.2000 C .2001 ﻩ D .200208.设a =b =c =则a 、b 、c 之间的大小关系是( ) A .a <b <c ﻩﻩB .c <b <a ﻩC.c<a <bﻩD.a<c <b09.已知1x =培优升级01.(信利)已知1x =+那么2111242x x x +-=+--__________02.5=,=__________03.(江苏)已知(2002x y =,则2234x xy y --6658x y --+=__________04.(7x =,则x=__________05.已知x =,y =,那么22y x x y +=__________06.(武汉)如果a b +=,a b -=,3333b c b c +=-,那么333a b c -的值为( )A .ﻩB.2001ﻩﻩﻩC .1 ﻩﻩD .007.(绍兴)当12x +=时,代数式32003(420052001)x x --的值是( ) A.0ﻩ ﻩ B .-1 ﻩC.1ﻩﻩ D .20032-08.(全国)设a、b 、c 为有理数,且等式a +=,则29991001a b c ++的值是( )A.1999ﻩ B .2000 ﻩ C .2001ﻩﻩ D .不能确定09.计算:((24947++(10.已知实数a 、b 满足条件1b a b a -=<,化简代数式11()(1)a b a b---,将结果表示成不含b 的形式.11.已知21(0)a x aa +=>,化简12.已知自然数x 、y 、z 0=,求x+y +z 的值.第3讲一元二次方程的解法考点·方法·破译1.掌握一元二次方程根的定义并能应用根的定义解题;2.掌握一元二次方程的四种解法,并能灵活应用各种解法解方程;3.会应用一元二次方程解实际应用题。

初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页

初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页

初中数学竞赛辅导讲义及习题解答含答案共30讲改好278页初中奥数辅导讲义培优计划(星空课堂)第一讲走进追问求根公式第二讲判别式——二次方程根的检测器第三讲充满活力的韦达定理第四讲明快简捷—构造方程的妙用第五讲一元二次方程的整数整数解第六讲转化—可化为一元二次方程的方程第七讲化归—解方程组的基本思想第八讲由常量数学到变量数学第九讲坐标平面上的直线第十讲抛物线第十一讲双曲线第十二讲方程与函数第十三讲怎样求最值第十四讲图表信息问题第十五讲统计的思想方法第十六讲锐角三角函数第十七讲解直角三角形第十八讲圆的基本性质第十九讲转化灵活的圆中角2第二十讲直线与圆第二十一讲从三角形的内切圆谈起第二十二讲园幂定理第二十三讲圆与圆第二十四讲几何的定值与最值第二十五讲辅助圆第二十六讲开放性问题评说第二十七讲动态几何问题透视第二十八讲避免漏解的奥秘第二十九讲由正难则反切入第三十讲从创新构造入手3第一讲走进追问求根公式形如a某2b某c0(a0)的方程叫一元二次方程,配方法、公式法、因式分解法是解一元二次方程的基本方法。

而公式法是解一元二次方程的最普遍、最具有一般性的方法。

求根公式某1,2bb24ac内涵丰富:它包含了初中阶段已学过的全部代数运算;它回答了2a一元二次方程的诸如怎样求实根、实根的个数、何时有实根等基本问题;它展示了数学的简洁美。

降次转化是解方程的基本思想,有些条件中含有(或可转化为)一元二次方程相关的问题,直接求解可能给解题带来许多不便,往往不是去解这个二次方程,而是对方程进行适当的变形来代换,从而使问题易于解决。

解题时常用到变形降次、整体代入、构造零值多项式等技巧与方法。

【例题求解】【例1】满足(n2n1)n21的整数n有个。

思路点拨:从指数运算律、±1的特征人手,将问题转化为解方程。

【例2】设某1、某2是二次方程某2某30的两个根,那么某134某2219的值等于()A、一4B、8C、6D、0思路点拨:求出某1、某2的值再代入计算,则计算繁难,解题的关键是利用根的定义及变形,使多项式降次,如某123某1,某223某2。

著名机构初中数学培优讲义全等三角形.第03讲(A级).教师版

著名机构初中数学培优讲义全等三角形.第03讲(A级).教师版

内容基本要求略高要求较高要求 全等三角形了解全等三角形的概念,了解相似三角形和全等三角形之间的关系掌握两个三角形全等的条件和性质;会应用三角形全等的性质和判定解决有关问题会利用全等三角形的知识解释或证明经过图形变换后得到的图形与原图形对应元素间的关系常见辅助线的作法有以下几种:1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”.2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”.3) 遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.4) 过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是全等变换中的“平移”或“翻转折叠”5) 截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答. 一、借助角平分线造全等【例1】 如图,ABC △中,AD 平分BAC ∠,DG BC ⊥且平分BC ,例题精讲中考要求全等三角形DE AB ⊥于E ,DF AC ⊥于F . (1)说明BE CF =的理由;(2)如果AB a =,AC b =,求AE BE 、的长.GFE DC BA【解析】构造全等BE【答案】(1)连接BD 、CD ,显然=BD DF ,因为AD 为角分线,所以DE DF =,BDE CDF ≌△△,所以BE CF =(2)显然AED AFD ≌△△,所以AE AF =,所以22a b a bBE AE -+==, GFE DC BA【例2】 如图,已知ABC △中,90BAC ︒∠=,AB AC =,BE 平分ABC ∠,CE BD ⊥ 求证:2BD CE =.EDCBA【解析】有垂直和角平分线想等腰三角形【答案】延长CE 与BA 的延长线交于点F ,因为BE 为角平分线和垂线,所以显然CE EF =即2CF CE = 证ABD ACF ≌△△,所以2BD CF BD CE ==,所以 F EDCBA【例3】 如图,BC BA >,BD 平分ABC ∠,且AD CD =,求证:180A C ∠+∠=︒.CDAB【解析】略【答案】BC 上取BE AB =所以ABD EBD BED A ∠=∠≌,所以△△,又可证180C DEC BED DEC ︒∠=∠∠+∠=,又,所以180A C ︒∠+∠=. EDCBA【例4】 如图,AC 平分BAD ∠,CE AB ⊥,且180B D ∠+∠=︒,求证:AE AD BE =+.E DCBA【解析】略【答案】过C 作AD 的垂线交AD 延长线于F ,BCE DCF BE DF ⇒=≌△△EAC FAC AE AF AE AD DF AD BE ⇒==+=+≌,所以△△FE D CBA二、倍长中线(线段)造全等【例5】 已知,如图ABC △中,5AB =,3AC =,则中线AD 的取值范围是_________.D CBA【解析】延长AD 至E 使AD DE =,连接BE .利用三角形三边关系 【答案】28AD <<ED CB A【例6】 如图,ABC △中,E F 、分别在AB AC 、上,DE DF ⊥,D 是中点,试比较BE CF +与EF 的大小.FEDCBA【解析】略【答案】延长FD 至G 使DG DF =,所以有GED FED ≌△△和BDG CDF ≌△△,所以CF BG GE EF ==,。

初中七年级培优竞赛辅导讲义全册(207页)

初中七年级培优竞赛辅导讲义全册(207页)

初中七年级培优竞赛辅导讲义目录(共207页,按住ctrl键点击目录直接跳转到对应章节)第01讲与有理数有关的概念第02讲有理数的加减法第03讲有理数的乘除、乘方第04讲整式第05讲整式的加减第06讲一元一次方程概念和等式性质第07讲一元一次方程解法第08讲实际问题与一元一次方程第09讲多姿多彩的图形第10讲直线、射线、线段第11讲角第12讲与相交有关概念及平行线的判定第13讲平行线的性质及其应用第14讲平面直角坐标系(一)第15讲平面直角坐标系(二)第16讲认识三角形第17讲认识多边形第18讲二元一次方程组及其解法第19讲实际问题与二元一次方程组第20讲三元一次方程组和一元一次不等式组第21讲一元一次不等式(组)的应用第22讲一元一次不等式(组)与方程(组)的结合第23讲数据的收集与整理第1讲 与有理数有关的概念考点·方法·破译1.了解负数的产生过程,能够用正、负数表示具有相反意义的量. 2.会进行有理的分类,体会并运用数学中的分类思想.3.理解数轴、相反数、绝对值、倒数的意义.会用数轴比较两个有理数的大小,会求一个数的相反数、绝对值、倒数. 经典·考题·赏析【例1】写出下列各语句的实际意义⑴向前-7米⑵收人-50元⑶体重增加-3千克 【解法指导】用正、负数表示实际问题中具有相反意义的量.而相反意义的量包合两个要素:一是它们的意义相反.二是它们具有数量.而且必须是同类两,如“向前与自后、收入与支出、增加与减少等等”解:⑴向前-7米表示向后7米⑵收入-50元表示支出50元⑶体重增加-3千克表示体重减小3千克.【变式题组】01.如果+10%表示增加10%,那么减少8%可以记作( ) A . -18% B . -8% C . +2% D . +8% 02.(金华)如果+3吨表示运入仓库的大米吨数,那么运出5吨大米表示为( ) A . -5吨 B . +5吨 C . -3吨 D . +3吨 03.(山西)北京与纽约的时差-13(负号表示同一时刻纽约时间比北京晚).如现在是北京时间l5:00,纽约时问是____【例2】在-227,π,0.033.3这四个数中有理数的个数( )A . 1个B . 2个C . 3个D . 4个【解法指导】有理数的分类:⑴按正负性分类,有理数0⎧⎧⎨⎪⎩⎪⎪⎨⎪⎧⎪⎨⎪⎩⎩正整数正有理数正分数负整数负有理数负份数;按整数、分数分类,有理数⎧⎧⎪⎪⎨⎪⎪⎪⎨⎩⎪⎧⎪⎨⎪⎩⎩正整数整数0负整数正分数分数负分数;其中分数包括有限小数和无限循环小数,因为π=3.1415926…是无限不循环小数,它不能写成分数的形式,所以π不是有理数,-227是分数0.033.3是无限循环小数可以化成分数形式,0是整数,所以都是有理数,故选C .【变式题组】01.在7,0.1 5,-12,-301.31.25,-18,100.l ,-3 001中,负分数为 ,整数为 ,正整数 .02.(河北秦皇岛)请把下列各数填入图中适当位置 15,-19,215,-138,0.1.-5.32,123, 2.333【例3】(宁夏)有一列数为-1,12,-13,14.-15,16,…,找规律到第2007个数是 .【解法指导】从一系列的数中发现规律,首先找出不变量和变量,再依变量去发现规律.击归纳去猜想,然后进行验证.解本题会有这样的规律:⑴各数的分子部是1;⑵各数的分母依次为1,2,3,4,5,6,…⑶处于奇数位置的数是负数,处于偶数位置的数是正数,所以第2007个数的分子也是1.分母是2007,并且是一个负数,故答案为-12007.【变式题组】 01.(湖北宜宾)数学解密:第一个数是3=2 +1,第二个数是5=3 +2,第三个数是9=5+4,第四十数是17=9+8…观察并精想第六个数是 . 02.(毕节)毕选哥拉斯学派发明了一种“馨折形”填数法,如图则?填____. 03.(茂名)有一组数l ,2,5,10,17,26…请观察规律,则第8个数为____. 【例4】(2008年河北张家口)若l +m 2的相反数是-3,则m 的相反数是____.【解法指导】理解相反数的代数意义和几何意义,代数意义只有符号不同的两个数叫互为相反数.几何意义:在数轴上原点的两旁且离原点的距离相等的两个点所表示的数叫互为相反数,本题m2=-4,m =-8【变式题组】 01.(四川宜宾)-5的相反数是( ) A .5 B . 15 C . -5 D . -1502.已知a 与b 互为相反数,c 与d 互为倒数,则a +b +cd =______03.如图为一个正方体纸盒的展开图,若在其中的三个正方形A 、B 、C 内分别填人适当的数,使得它们折成正方体.若相对的面上的两个数互为相反数,则填人正方形A 、B 、C 内的三个数依次为( )A . - 1 ,2,0B . 0,-2,1C . -2,0,1D . 2,1,0 【例5】(湖北)a 、b 为有理数,且a >0,b <0,|b|>a ,则a,b 、-a,-b 的大小顺序是( ) A . b <-a <a <-b B . –a <b <a <-b C . –b <a <-a <b D . –a <a <-b< b【解法指导】理解绝对值的几何意义:一个数的绝对值就是数轴上表示a 的点到原点的距离,即|a|,用式子表示为|a|=0)0(0)(0)a a a a a >⎧⎪=⎨⎪-<⎩(.本题注意数形结合思想,画一条数轴标出a 、b,依相反数的意义标出-b,-a,故选A .【变式题组】01.推理①若a =b ,则|a|=|b|;②若|a|=|b|,则a =b ;③若a ≠b ,则|a |≠|b|;④若|a |≠|b|,则a ≠b ,其中正确的个数为( ) A . 4个 B . 3个 C . 2个 D . 1个02.a 、b 、c 三个数在数轴上的位置如图,则|a|a +|b|b +|c|c = .03.a 、b 、c 为不等于O 的有理散,则a |a|+b |b|+c|c|的值可能是____.【例6】(江西课改)已知|a -4|+|b -8|=0,则a+bab的值.【解法指导】本题主要考查绝对值概念的运用,因为任何有理数a 的绝对值都是非负数,即|a|≥0.所以|a -4|≥0,|b -8|≥0.而两个非负数之和为0,则两数均为0.解:因为|a -4|≥0,|b -8|≥0,又|a -4|+|b -8|=0,∴|a -4|=0,|b -8|=0即a -4=0,b -8=0,a =4,b =8.故a+b ab =1232=38【变式题组】01.已知|a|=1,|b|=2,|c|=3,且a >b >c ,求a +b +C . 02.(毕节)若|m -3|+|n +2|=0,则m +2n 的值为( ) A . -4 B . -1 C . 0 D . 403.已知|a|=8,|b|=2,且|a -b|=b -a ,求a 和b 的值 【例7】(第l8届迎春杯)已知(m +n)2+|m|=m ,且|2m -n -2|=0.求mn 的值.【解法指导】本例关键是通过分析(m +n)2+|m|的符号,挖掘出m 的符号特征,从而把问题转化为(m +n)2=0,|2m -n -2|=0,找到解题途径. 解:∵(m +n)2≥0,|m|≥O∴(m +n)2+|m|≥0,而(m +n)2+|m|=m ∴ m ≥0,∴(m +n)2+m =m ,即(m +n)2=0 ∴m +n =O ① 又∵|2m -n -2|=0 ∴2m -n -2=0 ②由①②得m =23,n =-23,∴ mn =-49【变式题组】01.已知(a +b)2+|b +5|=b +5且|2a -b –l|=0,求a -B . 02.(第16届迎春杯)已知y =|x -a|+|x +19|+|x -a -96|,如果19<a <96.a ≤x ≤96,求y 的最大值.演练巩固·反馈提高01.观察下列有规律的数12,16,112,120,130,142…根据其规律可知第9个数是( )A . 156B . 172C . 190D . 111002.(芜湖)-6的绝对值是( )A . 6B . -6C . 16D . -1603.在-227,π,8..0.3四个数中,有理数的个数为( )A . 1个B . 2个C . 3个D . 4个 04.若一个数的相反数为a +b ,则这个数是( )A . a -bB . b -aC . –a +bD . –a -b05.数轴上表示互为相反数的两点之间距离是6,这两个数是( ) A . 0和6 B . 0和-6 C . 3和-3 D . 0和3 06.若-a 不是负数,则a( )A . 是正数B . 不是负数C . 是负数D . 不是正数 07.下列结论中,正确的是( )①若a =b,则|a|=|b| ②若a =-b,则|a|=|b| ③若|a|=|b|,则a =-b ④若|a|=|b|,则a =b A . ①② B . ③④ C . ①④ D . ②③08.有理数a 、b 在数轴上的对应点的位置如图所示,则a 、b ,-a ,|b|的大小关系正确 的是( )A . |b|>a >-a >bB . |b| >b >a >-aC . a >|b|>b >-aD . a >|b|>-a >b09.一个数在数轴上所对应的点向右移动5个单位后,得到它的相反数的对应点,则这个数是____.10.已知|x +2|+|y +2|=0,则xy =____.11.a 、b 、c 三个数在数轴上的位置如图,求|a|a +|b|b +|abc|abc +|c|c12.若三个不相等的有理数可以表示为1、a 、a +b 也可以表示成0、b 、ba 的形式,试求a 、b 的值.13.已知|a|=4,|b|=5,|c|=6,且a >b >c ,求a +b -C .14.|a|具有非负性,也有最小值为0,试讨论:当x为有理数时,|x-l|+|x-3|有没有最小值,如果有,求出最小值;如果没有,说明理由.15.点A、B在数轴上分别表示实数a、b,A、B两点之间的距离表示为|AB|.当A、B两点中有一点在原点时,不妨设点A在原点,如图1,|AB|=|OB|=|b|=|a-b| 当A、B两点都不在原点时有以下三种情况:①如图2,点A、B都在原点的右边|AB|=|OB|-|OA|=|b|-|a|=b-a=|a-b|;②如图3,点A、B都在原点的左边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;③如图4,点A、B在原点的两边,|AB|=|OB|-|OA|=|b|-|a|=-b-(-a)=|a-b|;综上,数轴上A、B两点之间的距离|AB|=|a-b|.回答下列问题:⑴数轴上表示2和5的两点之间的距离是 , 数轴上表示-2和-5的两点之间的距离是 , 3,数轴上表示1和-3的两点之间的距离是 4;⑵数轴上表示x和-1的两点分别是点A和B,则A、B之间的距离是 |x+1|,如果|AB|=2,那么x= 1或3;⑶当代数式|x+1|+|x-2|取最小值时,相应的x的取值范围是 7.培优升级·奥赛检测01.(重庆市竞赛题)在数轴上任取一条长度为199919的线段,则此线段在这条数轴上最多能盖住的整数点的个数是( )A . 1998B . 1999C . 2000D . 2001 02.(第l8届希望杯邀请赛试题)在数轴上和有理数a 、b 、c 对应的点的位置如图所示,有下列四个结论:①abc <0;②|a -b|+|b -c|=|a -c|;③(a -b )(b -c)(c -a)>0;④|a|<1-bc .其中正确的结论有( )A . 4个B . 3个C . 2个D . 1个03.如果a 、b 、c 是非零有理数,且a +b +c =0.那么a |a|+b |b|+c |c|+abc|abc|的所有可能的值为( )A . -1B . 1或-1C . 2或-2D . 0或-2 04.已知|m|=-m ,化简|m -l|-|m -2|所得结果( ) A . -1 B . 1 C . 2m -3 D . 3- 2m05.如果0<p <15,那么代数式|x -p|+|x -15|+|x -p -15|在p ≤x ≤15的最小值( ) A . 30 B . 0 C . 15 D . 一个与p 有关的代数式 06.|x +1|+|x -2|+|x -3|的最小值为 .07.若a >0,b <0,使|x -a|+|x -b|=a -b 成立的x 取值范围 . 08.(武汉市选拔赛试题)非零整数m 、n 满足|m|+|n|-5=0所有这样的整数组(m ,n)共有 组09.若非零有理数m 、n 、p 满足|m|m +|n|n +|p|p =1.则2mnp|3mnp|= .10.(19届希望杯试题)试求|x -1|+|x -2|+|x -3|+…+|x -1997|的最小值.11.已知(|x +l|+|x -2|)(|y -2|+|y +1|)(|z -3|+|z +l|)=36,求x +2y +3的最大值和最小值.12.电子跳蚤落在数轴上的某点k0,第一步从k0向左跳1个单位得k1,第二步由k1向右跳2个单位到k2,第三步由k2向左跳3个单位到k3,第四步由k3向右跳4个单位到k4…按以上规律跳100步时,电子跳蚤落在数轴上的点k100新表示的数恰好19.94,试求k0所表示的数.13.某城镇,沿环形路上依次排列有五所小学,它们顺扶有电脑15台、7台、1l台、3台,14台,为使各学校里电脑数相同,允许一些小学向相邻小学调出电脑,问怎样调配才能使调出的电脑总台数最小?并求出调出电脑的最少总台数.第02讲有理数的加减法考点·方法·破译1.理解有理数加法法则,了解有理数加法的实际意义.2.准确运用有理数加法法则进行运算,能将实际问题转化为有理数的加法运算.3.理解有理数减法与加法的转换关系,会用有理数减法解决生活中的实际问题.4.会把加减混合运算统一成加法运算,并能准确求和.经典·考题·赏析【例1】(河北唐山)某天股票A开盘价18元,上午11:30跌了1.5元,下午收盘时又涨了0.3元,则股票A这天的收盘价为()A.0.3元B.16.2元C.16.8元D.18元【解法指导】将实际问题转化为有理数的加法运算时,首先将具有相反意义的量确定一个为正,另一个为负,其次在计算时正确选择加法法则,是同号相加,取相同符号并用绝对值相加,是异号相加,取绝对值较大符号,并用较大绝对值减去较小绝对值.解:18+(-1.5)+(0.3)=16.8,故选C.【变式题组】01.今年陕西省元月份某一天的天气预报中,延安市最低气温为-6℃,西安市最低气温2℃,这一天延安市的最低气温比西安低()A.8℃B.-8℃C.6℃D.2℃02.(河南)飞机的高度为2400米,上升250米,又下降了327米,这是飞机的高度为__________03.(浙江)珠穆朗玛峰海拔8848m,吐鲁番海拔高度为-155 m,则它们的平均海拔高度为__________【例2】计算(-83)+(+26)+(-17)+(-26)+(+15)【解法指导】应用加法运算简化运算,-83与-17相加可得整百的数,+26与-26互为相反数,相加为0,有理数加法常见技巧有:⑴互为相反数结合一起;⑵相加得整数结合一起;⑶同分母的分数或容易通分的分数结合一起;⑷相同符号的数结合一起.解:(-83)+(+26)+(-17)+(-26)+(+15)=[(-83)+(-17)]+[(+26)+(-26)]+15=(-100)+15=-85【变式题组】01.(-2.5)+(-312)+(-134)+(-114)02.(-13.6)+0.26+(-2.7)+(-1.06)03.0.125+314+(-318)+1123+(-0.25)【例3】计算1111 12233420082009 ++++⨯⨯⨯⨯【解法指导】依111(1)1n n n n=-++进行裂项,然后邻项相消进行化简求和.解:原式=1111111 (1)()()()2233420082009 -+-+-++-=1111111 12233420082009 -+-+-++-=112009-=20082009【变式题组】01.计算1+(-2)+3+(-4)+…+99+(-100)02.如图,把一个面积为1的正方形等分成两个面积为12的长方形,接着把面积为12的长方形等分成两个面积为14的正方形,再把面积为14的正方形等分成两个面积为18的长方形,如此进行下去,试利用图形揭示的规律计算11111111 248163264128256+++++++=__________.【例4】如果a<0,b>0,a+b<0,那么下列关系中正确的是()A.a>b>-b>-a B.a>-a>b>-bC.b>a>-b>-a D.-a>b>-b>a【解法指导】紧扣有理数加法法则,由两加数及其和的符号,确定两加数的绝对值的大小,然后根据相反数的关系将它们在同一数轴上表示出来,即可得出结论.解:∵a <0,b >0,∴a +b 是异号两数之和又a +b <0,∴a 、b 中负数的绝对值较大,∴| a |>| b |将a 、b 、-a 、-b 表示在同一数轴上,如图,则它们的大小关系是-a >b >-b >a 【变式题组】01.若m >0,n <0,且| m |>| n |,则m +n ________ 0.(填>、<号)02.若m <0,n >0,且| m |>| n |,则m +n ________ 0.(填>、<号)03.已知a <0,b >0,c <0,且| c |>| b |>| a |,试比较a 、b 、c 、a +b 、a +c 的大小【例5】425-(-33311)-(-1.6)-(-21811)【解法指导】有理数减法的运算步骤:⑴依有理数的减法法则,把减号变为加号,并把减数变为它的相反数;⑵利用有理数的加法法则进行运算.解:425-(-33311)-(-1.6)-(-21811)=425+33311+1.6+21811 =4.4+1.6+(33311+21811)=6+55=61【变式题组】01.21511()()()()(1)32632--+---+-+02.434-(+3.85)-(-314)+(-3.15)03.178-87.21-(-43221)+1531921-12.79【例6】试看下面一列数:25、23、21、19…⑴观察这列数,猜想第10个数是多少?第n个数是多少?⑵这列数中有多少个数是正数?从第几个数开始是负数?⑶求这列数中所有正数的和.【解法指导】寻找一系列数的规律,应该从特殊到一般,找到前面几个数的规律,通过观察推理、猜想出第n个数的规律,再用其它的数来验证.解:⑴第10个数为7,第n个数为25-2(n-1)⑵∵n=13时,25-2(13-1)=1,n=14时,25-2(14-1)=-1故这列数有13个数为正数,从第14个数开始就是负数.⑶这列数中的正数为25,23,21,19,17,15,13,11,9,7,5,3,1,其和=(25+1)+(23+3)+…+(15+11)+13=26×6+13=169【变式题组】01.(杭州)观察下列等式1-12=12,2-25=85,3-310=2710,4-417=6417…依你发现的规律,解答下列问题.⑴写出第5个等式;⑵第10个等式右边的分数的分子与分母的和是多少?02.观察下列等式的规律9-1=8,16-4=12,25-9=16,36-16=20⑴用关于n(n≥1的自然数)的等式表示这个规律;⑵当这个等式的右边等于2008时求n.【例7】(第十届希望杯竞赛试题)求12+(13+23)+(14+24+34)+(15+25+35+45)+…+(150+250+…+4850+4950)【解法指导】观察式中数的特点发现:若括号内在加上相同的数均可合并成1,由此我们采取将原式倒序后与原式相加,这样极大简化计算了.解:设S=12+(13+23)+(14+24+34)+…+(150+250+…+4850+4950)则有S=12+(23+13)+(34+24+14)+…+(4950+4850+…+250+150)将原式和倒序再相加得2S=12+12+(13+23+23+13)+(14+24+34+34+24+14)+…+(150+250+…+4850+4950+4950+4850+…+250+150)即2S=1+2+3+4+…+49=49(491)2⨯+=1225∴S=1225 2【变式题组】01.计算2-22-23-24-25-26-27-28-29+21002.(第8届希望杯试题)计算(1-12-13-…-12003)(12+13+14+…+12003+12004)-(1-12-13-…-12004)(12+13+14+…+12003)演练巩固·反馈提高01.m是有理数,则m+|m|()A.可能是负数B.不可能是负数C.比是正数D.可能是正数,也可能是负数02.如果|a|=3,|b|=2,那么|a+b|为()A. 5 B.1 C.1或5 D.±1或±503.在1,-1,-2这三个数中,任意两数之和的最大值是()A. 1 B.0 C.-1 D.-304.两个有理数的和是正数,下面说法中正确的是()A.两数一定都是正数B.两数都不为0C.至少有一个为负数D.至少有一个为正数05.下列等式一定成立的是()A.|x|- x =0 B.-x-x =0 C.|x|+|-x| =0 D.|x|-|x|=0 06.一天早晨的气温是-6℃,中午又上升了10℃,午间又下降了8℃,则午夜气温是()A.-4℃B.4℃C.-3℃D.-5℃07.若a<0,则|a-(-a)|等于()A.-a B.0 C.2a D.-2a08.设x是不等于0的有理数,则||||2x xx值为()A.0或1 B.0或2 C.0或-1 D.0或-2 09.(济南)2+(-2)的值为__________10.用含绝对值的式子表示下列各式:⑴若a<0,b>0,则b-a=__________,a-b=__________⑵若a>b>0,则|a-b|=__________⑶若a<b<0,则a-b=__________11.计算下列各题:⑴23+(-27)+9+5 ⑵-5.4+0.2-0.6+0.35-0.25⑶-0.5-314+2.75-712⑷33.1-10.7-(-22.9)-|-2310|12.计算1-3+5-7+9-11+…+97-9913.某检修小组乘汽车沿公路检修线路,规定前进为正,后退为负,某天从A地出发到收工时所走的路线(单位:千米)为:+10,-3,+4,-2,-8,+13,-7,+12,+7,+5⑴问收工时距离A地多远?⑵若每千米耗油0.2千克,问从A地出发到收工时共耗油多少千克?14.将1997减去它的12,再减去余下的13,再减去余下的14,再减去余下的15……以此类推,直到最后减去余下的11997,最后的得数是多少?15.独特的埃及分数:埃及同中国一样,也是世界著名的文明古国,古代埃及人处理分数与众不同,他们一般只使用分子为1的分数,例如13+115来表示25,用14+17+128表示37等等.现有90个埃及分数:12,13,14,15,…190,191,你能从中挑出10个,加上正、负号,使它们的和等于-1吗?培优升级·奥赛检测01.(第16届希望杯邀请赛试题)1234141524682830-+-+-+-+-+-+-等于()A.14B.14-C.12D.12-02.自然数a、b、c、d满足21a+21b+21c+21d=1,则31a+41b+51c+61d等于()A.18B.316C.732D.1564534333231303.(第17届希望杯邀请赛试题)a 、b 、c 、d 是互不相等的正整数,且abcd =441,则a +b +c +d 值是( )A .30B .32C .34D .3604.(第7届希望杯试题)若a =1995199519961996,b =1996199619971997,c =1997199719981998,则a 、b 、c大小关系是( )A .a <b <cB .b <c <aC .c <b <aD .a <c <b05.11111(1)(1)(1)(1)(1)1324351998200019992001+++++⨯⨯⨯⨯⨯的值得整数部分为( )A .1B .2C .3D .4 06.(-2)2004+3×(-2)2003的值为( )A .-22003B .22003C .-22004D .2200407.(希望杯邀请赛试题)若|m|=m +1,则(4m +1)2004=__________08.12+(13+23)+(14+24+34)+ … +(160+260+…+5960)=__________ 09.19191976767676761919-=__________10.1+2-22-23-24-25-26-27-28-29+210=__________ 11.求32001×72002×132003所得数的末位数字为__________ 12.已知(a +b)2+|b +5|=b +5,且|2a -b -1|=0,求aB .13.计算(11998-1)(11997-1) (11996-1) … (11001-1) (11000-1)14.请你从下表归纳出13+23+33+43+…+n3的公式并计算出13+23+33+43+…+1003的值.第03讲有理数的乘除、乘方考点·方法·破译1.理解有理数的乘法法则以及运算律,能运用乘法法则准确地进行有理数的乘法运算,会利用运算律简化乘法运算.2.掌握倒数的概念,会运用倒数的性质简化运算.3.了解有理数除法的意义,掌握有理数的除法法则,熟练进行有理数的除法运算.4.掌握有理数乘除法混合运算的顺序,以及四则混合运算的步骤,熟练进行有理数的混合运算.5.理解有理数乘方的意义,掌握有理数乘方运算的符号法则,进一步掌握有理数的混合运算.经典·考题·赏析【例1】计算⑴11()24⨯-⑵1124⨯⑶11()()24-⨯-⑷25000⨯⑸3713 ()()(1)() 5697 -⨯-⨯⨯-【解法指导】掌握有理数乘法法则,正确运用法则,一是要体会并掌握乘法的符号规律,二是细心、稳妥、层次清楚,即先确定积的符号,后计算绝对值的积.解:⑴11111 ()() 24248⨯-=-⨯=-⑵11111() 24248⨯=⨯=⑶11111 ()()() 24248 -⨯-=+⨯=⑷250000⨯=⑸3713371031 ()()(1)()() 569756973 -⨯-⨯⨯-=-⨯⨯⨯=-【变式题组】01.⑴(5)(6)-⨯-⑵11()124-⨯⑶(8)(3.76)(0.125)-⨯⨯-⑷(3)(1)2(6)0(2)-⨯-⨯⨯-⨯⨯-⑸111112(2111)42612-⨯-+-02.24(9)5025-⨯3.1111(2345)()2345⨯⨯⨯⨯---04.111 (5)323(6)3333 -⨯+⨯+-⨯【例2】已知两个有理数a、b,如果ab<0,且a+b<0,那么()A.a>0,b<0 B.a<0,b>0C.a、b异号 D.a、b异号且负数的绝对值较大【解法指导】依有理数乘法法则,异号为负,故a、b异号,又依加法法则,异号相加取绝对值较大数的符号,可得出判断.解:由ab<0知a、b异号,又由a+b<0,可知异号两数之和为负,依加法法则得负数的绝对值较大,选D.【变式题组】01.若a+b+c=0,且b<c<0,则下列各式中,错误的是()A.a+b>0 B.b+c<0 C.ab+ac>0 D.a+bc>002.已知a+b>0,a-b<0,ab<0,则a___________0,b___________0,|a|___________|b|.03.(山东烟台)如果a+b<0,ba>,则下列结论成立的是()A.a>0,b>0 B.a<0,b<0 C.a>0,b<0 D.a<0,b>0 04.(广州)下列命题正确的是()A.若ab>0,则a>0,b>0 B.若ab<0,则a<0,b<0C.若ab=0,则a=0或b=0 D.若ab=0,则a=0且b=0 【例3】计算⑴(72)(18)-÷-⑵11(2)3÷-⑶13()()1025-÷⑷0(7)÷-【解法指导】进行有理数除法运算时,若不能整除,应用法则1,先把除法转化成乘法,再确定符号,然后把绝对值相乘,要注意除法与乘法互为逆运算.若能整除,应用法则2,可直接确定符号,再把绝对值相除.解:⑴(72)(18)72184 -÷-=÷=⑵1733 1(2)1()1()3377÷-=÷-=⨯-=-⑶131255 ()()()() 10251036 -÷=-⨯=-⑷0(7)0÷-=【变式题组】01.⑴(32)(8)-÷-⑵112(1)36÷-⑶10(2)3÷-⑷13()(1)78÷-02.⑴12933÷⨯⑵311()(3)(1)3524-⨯-÷-÷⑶530()35÷-⨯03.113()(10.2)(3) 245÷-+-÷⨯-【例4】(茂名)若实数a、b满足a ba b+=,则abab=___________.【解法指导】依绝对值意义进行分类讨论,得出a、b的取值范围,进一步代入结论得出结果.解:当ab>0,2(0,0)2(0,0)a ba ba ba b>>⎧+=⎨-<<⎩;当ab<0,a ba b+=,∴ab<0,从而abab=-1.【变式题组】01.若k是有理数,则(|k|+k)÷k的结果是()A.正数 B.0 C.负数 D.非负数02.若A.b都是非零有理数,那么aba ba b ab++的值是多少?03.如果x yx y+=,试比较xy-与xy的大小.【例5】已知223(2),1 x y=-=-⑴求2008xy 的值; ⑵求32008x y 的值.【解法指导】na 表示n 个a 相乘,根据乘方的符号法则,如果a 为正数,正数的任何次幂都是正数,如果a 是负数,负数的奇次幂是负数,负数的偶次幂是正数.解:∵223(2),1x y =-=- ⑴当2,1x y ==-时,200820082(1)2xy =-= 当2,1x y =-=-时,20082008(2)(1)2xy =-⨯-=- ⑵当2,1x y ==-时,332008200828(1)x y ==- 当2,1x y =-=-时,3320082008(2)8(1)x y -==--【变式题组】 01.(北京)若2(2)0m n m -+-=,则nm 的值是___________.02.已知x 、y 互为倒数,且绝对值相等,求()n nx y --的值,这里n 是正整数.【例6】(安徽)2007年我省为135万名农村中小学生免费提供教科书,减轻了农民的负担,135万用科学记数法表示为( )A .0.135×106B .1.35×106C .0.135×107D .1.35×107【解法指导】将一个数表示为科学记数法的a×10n 的形式,其中a 的整数位数是1位.故答案选B .【变式题组】 01.(武汉)武汉市今年约有103000名学生参加中考,103000用科学记数法表示为( ) A .1.03×105 B .0.103×105 C .10.3×104 D .103×103 02.(沈阳)沈阳市计划从2008年到2012年新增林地面积253万亩,253万亩用科学记数法表示正确的是( )A .25.3×105亩B .2.53×106亩C .253×104亩D .2.53×107亩 【例7】(上海竞赛)222222221299110050002200500010050009999005000k k k ++⋅⋅⋅++⋅⋅⋅+-+-+-+-+【解法指导】找出21005000k k -+的通项公式=22(50)50k -+原式=2222222222221299(150)50(250)50(50)50(9950)50k k ++⋅⋅⋅++⋅⋅⋅+-+-+-+-+ =222222222222199298[][](150)50(9950)50(250)50(9850)50++++⋅⋅⋅+-+-+-+-+ 222222222495150[](4950)50(5150)50(5050)50++-+-+-+=49222+1++⋅⋅⋅+个=99【变式题组】3333+++=( )2+4+6++10042+4+6++10062+4+6++10082+4+6++2006⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅ A .31003 B .31004 C .1334 D .11000 02.(第10届希望杯试题)已知11111111 1.2581120411101640+++++++= 求111111112581120411101640---+--++的值.演练巩固·反馈提高01.三个有理数相乘,积为负数,则负因数的个数为( )A .1个B .2个C .3个D .1个或3个 02.两个有理数的和是负数,积也是负数,那么这两个数( )A .互为相反数B .其中绝对值大的数是正数,另一个是负数C .都是负数D .其中绝对值大的数是负数,另一个是正数 03.已知abc >0,a >0,ac <0,则下列结论正确的是( )A .b <0,c >0B .b >0,c <0C .b <0,c <0D .b >0,c >0 04.若|ab|=ab ,则( )A .ab >0B .ab ≥0C .a <0,b <0D .ab <005.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,则代数式a bm cd m +-+的值为( )A .-3B .1C .±3D .-3或106.若a >1a ,则a 的取值范围( )A .a >1B .0<a <1C .a >-1D .-1<a <0或a >107.已知a 、b 为有理数,给出下列条件:①a +b =0;②a -b =0;③ab <0;④1ab =-,其中能判断a 、b 互为相反数的个数是( )A .1个B .2个C .3个D .4个08.若ab≠0,则a b a b+的取值不可能为( )A .0B .1C .2D .-209.1110(2)(2)-+-的值为( )A .-2B .(-2)21C .0D .-21010.(安徽)2010年一季度,全国城镇新增就业人数289万人,用科学记数法表示289万正确的是( )A .2.89×107B .2.89×106C .2.89×105D .2.89×10411.已知4个不相等的整数a 、b 、c 、d ,它们的积abcd =9,则a +b +c +d =___________.12.21221(1)(1)(1)n n n +--+-+-(n 为自然数)=___________.13.如果2x y x y +=,试比较xy -与xy 的大小.14.若a 、b 、c 为有理数且1a b ca b c++=-,求abc abc的值.15.若a 、b 、c 均为整数,且321a b c a -+-=.求a c cb b a-+-+-的值.培优升级·奥赛检测01.已知有理数x 、y 、z 两两不相等,则,,x y y z z xy z z x x y ------中负数的个数是( ) A .1个 B .2个 C .3个 D .0个或2个02.计算12345211,213,217,2115,2131-=-=-=-=-=⋅⋅⋅归纳各计算结果中的个位数字规律,猜测201021-的个位数字是( )A.1 B.3 C.7 D.503.已知23450ab c d e<,下列判断正确的是()A.abcde<0 B.ab2cd4e<0 C.ab2cde<0 D.abcd4e<004.若有理数x、y使得,,,xx y x y xyy+-这四个数中的三个数相等,则|y|-|x|的值是()A.12-B.0 C.12 D.3205.若A=248163264(21)(21)(21)(21)(21)(21)(21)+++++++,则A-1996的末位数字是()A.0 B.1 C.7 D.906.如果20012002()1,()1a b a b+=--=,则20032003a b+的值是()A.2 B.1 C.0 D.-107.已知5544332222,33,55,66a b c d====,则a、b、c、d大小关系是()A.a>b>c>d B.a>b>d>c C.b>a>c>d D.a>d>b>c08.已知a、b、c都不等于0,且a b c abca b c abc+++的最大值为m,最小值为n,则2005()m n+=___________.09.(第13届“华杯赛”试题)从下面每组数中各取一个数将它们相乘,那么所有这样的乘积的总和是___________.第一组:15,3,4.25,5.753-第二组:11 2,315 -第三组:5 2.25,,412-10.一本书的页码从1记到n,把所有这些页码加起来,其中有一页码被错加了两次,结果得出了不正确的和2002,这个被加错了两次的页码是多少?11.(湖北省竞赛试题)观察按下列规律排成一列数:11,12,21,13,22,31,14,23,3 2,41,15,24,23,42,51,16,…(*),在(*)中左起第m个数记为F(m),当F(m)=12001时,求m 的值和这m 个数的积.12.图中显示的填数“魔方”只填了一部分,将下列9个数:11,,1,2,4,8,16,32,6442填入方格中,使得所有行列及对角线上各数相乘的积相等,求x 的值.13.(第12届“华杯赛”试题)已知m 、n 都是正整数,并且111111(1)(1)(1)(1)(1)(1);2233A m m =-+-+⋅⋅⋅-+ 111111(1)(1)(1)(1)(1)(1).2233B n n =-+-+⋅⋅⋅-+证明:⑴11,;22m n A B m n ++==⑵126A B -=,求m 、n 的值.第04讲整式考点·方法·破译1.掌握单项式及单项式的系数、次数的概念.2.掌握多项式及多项式的项、常数项及次数等概念.3.掌握整式的概念,会判断一个代数式是否为整式.4.了解整式读、写的约定俗成的一般方法,会根据给出的字母的值求多项式的值.经典·考题·赏析【例1】判断下列各代数式是否是单项式,如果不是请简要说明理由,如果是请指出它的系数与次数.【解法指导】理解单项式的概念:由数与字母的积组成的代数式,单独一个数或一个字母也是单项式,数字的次数为0,是常数,单项式中所有字母指数和叫单项式次数.解:⑴不是,因为代数式中出现了加法运算;⑵不是,因为代数式是与x的商;⑶是,它的系数为π,次数为2;⑷是,它的系数为32,次数为3.【变式题组】01.判断下列代数式是否是单项式02.说出下列单项式的系数与次数【例2】如果与都是关于x、y的六次单项式,且系数相等,求m、n 的值.【解法指导】单项式的次数要弄清针对什么字母而言,是针对x或y或x、y等是有区别的,该题是针对x与y而言的,因此单项式的次数指x、y的指数之和,与字母m无关,此时将m看成一个要求的已知数.解:由题意得【变式题组】01.一个含有x、y的五次单项式,x的指数为3.且当x=2,y=-1时,这个单项式的值为32,求这个单项式.02.(毕节)写出含有字母x、y的五次单项式______________________.【例3】已知多项式⑴这个多项式是几次几项式?⑵这个多项式最高次项是多少?二次项系数是什么?常数项是什么?【解法指导】 n个单项式的和叫多项式,每个单项式叫多项式的项,多项式里次数最高项的次数叫多项式的次数.解:⑴这个多项式是七次四项式;(2)最高次项是,二次项系数为-1,常数项是1.【变式题组】01.指出下列多项式的项和次数⑴ (2)02.指出下列多项式的二次项、二次项系数和常数项⑴ (2)【例4】多项式是关于x的三次三项式,并且一次项系数为-7.求m+n-k的值【解法指导】多项式的次数是单项式中次数最高的次数,单项式的系数是数字与字母乘积中的数字因数.解:因为是关于x的三次三项式,依三次知m=3,而一次项系数为-7,即-(3n+1)=-7,故n=2.已有三次项为,一次项为-7x,常数项为5,又原多项式为三次三项式,故二次项的系数k=0,故m+n-k=3+2-0=5.【变式题组】01.多项式是四次三项式,则m的值为()A.2 B.-2 C.±2 D.±102.已知关于x、y的多项式不含二次项,求5a-8b的值.03.已知多项式是六次四项式,单项式的次数与这个多项式的次数相同,求n的值.【例5】已知代数式的值是8,求的值.【解法指导】由,现阶段还不能求出x的具体值,所以联想到整体代入法.解:由得由(3【变式题组】01.(贵州)如果代数式-2a+3b+8的值为18,那么代数式9b-6a+2的值等于()A.28 B.-28 C.32 D.-3202.(同山)若,则的值为_______________.03.(潍坊)代数式的值为9,则的值为______________.【例6】证明代数式的值与m的取值无关.【解法指导】欲证代数式的值与m的取值无关,只需证明代数式的化简结果不出现字母即可.证明:原式=∴无论m的值为何,原式值都为4.∴原式的值与m的取值无关.【变式题组】01.已知,且的值与x无关,求a的值.02.若代数式的值与字母x的取值无关,求a、b 的值.【例7】(北京市选拔赛)同时都含有a、b、c,且系数为1的七次单项式共有()个A.4 B.12 C.15 D.25【解法指导】首先写出符合题意的单项式,x、y、z都是正整数,再依x+y+z=7来确定x、y、z的值.解:为所求的单项式,则x、y、z都是正整数,且x+y+z=7.当x=1时,y=1,2,3,4,5,z =5,4,3,2,1.当x=2时,y=1,2,3,4,z=4,3,2,1. 当x=3时,y=1,2,3,z=3,2,1.当 x =4时,y=1,2,z=2,1.当 x=5时,y=z=1.所以所求的单项式的个数为5+4+3+2+1=15,故选C.【变式题组】01.已知m、n是自然数,是八次三项式,求m、n值.02.整数n=___________时,多项式是三次三项式.演练巩固·反馈提高01.下列说法正确的是()A.是单项式 B.的次数为5 C.单项式系数为0 D.是四次二项式02.a表示一个两位数,b表示一个一位数,如果把b放在a的右边组成一个三位数.则这个三位数是()A.100b+a B.10a+b C.a+b D.100a+b03.若多项式的值为1,则多项式的值是()A.2 B.17 C.-7 D.704.随着计算机技术的迅猛发展,电脑价格不断降低,某品牌电脑原售价为n元,降低m 元后,又降低20%,那么该电脑的现售价为()A. B. C. D.05.若多项式是关于x的一次多项式,则k的值是()A.0 B.1 C.0或1 D.不能确定06.若是关于x、y的五次单项式,则它的系数是____________.07.电影院里第1排有a个座位,后面每排都比前排多3个座位,则第10排有_______个座位.08.若,则代数式xy+mn值为________.09.一项工作,甲单独做需a天完成,乙单独做需b天完成,如果甲、乙合做7天完成工作量是____________.10.(河北)有一串单项式(1)请你写出第100个单项式;⑵请你写出第n个单项式.11.(安徽)一个含有x、y的五次单项式,x的指数为3,且当x=2,y=-1时,这个单项式值为32,求这个单项式.12.(天津)已知x=3时多项式的值为-1,则当x=-3时这个多项式的值为多少?13.若关于x、y的多项式与多项式的系数相同,并且最高次项的系数也相同,求a-b的值.14.某地电话拨号入网有两种方式,用户可任取其一.A:计时制:0.05元/分B:包月制:50元/月(只限一部宅电上网).此外,每种上网方式都得加收通行费0.02元/分.⑴某用户某月上网时间为x小时,请你写出两种收费方式下该用户应该支付的费用;(2)若某用户估计一个月内上网时间为20小时,你认为采用哪种方式更合算.培优升级·奥赛检测01.(扬州)有一列数,从第二个数开始,每一个数都等于1与它前面那个数的倒数的差.若,则为()。

全国通用初中数学竞赛培优辅导讲义1-10)讲

全国通用初中数学竞赛培优辅导讲义1-10)讲
合数的定义:一个正整数除了能被1和本身整除外,还能被其他的正整数整除,这样的正整数叫做合数。
2.根椐质数定义可知
1)质数只有1和本身两个正约数,
2)质数中只有一个偶数2
如果两个质数的和或差是奇数那么其中必有一个是2,
如果两个质数的积是偶数那么其中也必有一个是2,3任何合数都可以分解为几个质数的积。
能写成几个质数的积的正整数就是合数。
8.8个数:①125,②756,③1011,④2457,⑤7855,⑥8104,⑦9152,⑧70972中,能被下列各数整除的有(填上编号):6________,8__________,9_________,11__________
9.从1到100这100个自然数中,能同时被2和3整除的共_____个,
解:五位数字都不相同的最小五位数是10234,
但(1+2+4)-(0+3)=4,不能被11整除,只调整末位数仍不行
调整末两位数为30,41,52,63,均可,∴五位数字都不相同的最小五位数是10263。
练习
1.分解质因数:(写成质因数为底的幂的連乘积)
①593②1859③1287④3276⑤10101⑥10296
那么N+2,N+3,N+4,N+5就是适合条件的四个合数. 即32,33,34,35就是所求的一组数。
本题可推广到n个。
令N等于不大于n+1的所有质数的积,那么N+2,N+3,N+4,……N+(n+1)就是所求的合数。
练习3
1.小于100的质数共___个,它们是__________________________________
三在近似数中,当0作为有效数字时,它表示不同的精确度。
例如 近似数1.6米与1.60米不同,前者表示精确到0.1米(即1分米),误差不超过5厘米;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题
1.(4、5)(数学、初中数学竞赛、整式、绝对值、选择题)
已知a,b,c都是整数,
那么()
A.m一定是奇数
B.m一定是偶数
C.仅当a,b,c同奇或同偶时,m是偶数
D.m的奇偶性不能确定
分析:|a|与a的奇偶性相同,所以m 与
同为偶数 .
答案:B
技巧:找准奇偶性的本质,从本质入手,化简式子,从而方便判断.本题也可以按奇偶性分类讨论.
易错点:容易陷入讨论的误区,被绝对值迷惑导致出错.
2. (1、2)(数学、初中数学竞赛、整式、高次方程、代数式、选择题)
若,则的值是()
A. 1
B. 0
C -1 D. 2
分析:由得,所以
答案:C
技巧:将条件进行提公因式解出,就非常方便求解了.
3. (3、4)(数学、初中数学竞赛、整式、高次方程、代数式、选择题)
已知,m≠n,则的值为()
A . 1
B . 0
C . -1
D . -2
分析:=-2.
答案:D
技巧:本题关键在于将条件和所求代数式进行处理化简,最终求解. 易错点:在化简和变形的时候容易出错.
二、填空题
4. (1、2)(数学、初中数学竞赛、整式、高次方程、代数式、填空题)
设,则 m3 +2m2 +1997 =
分析:
m3 +2m2 +1997=+1997 ,因为
答案:1998.
技巧:特殊观察,将条件和所求都变形,从而求解.
易错点:代数式变形时不要出错.
5. (3、4)(数学、初中数学竞赛、整式、高次方程、代数式、填空题)
当时,多项式的值是0,则多项式
分析:通过变形发现,.而
答案:5 .
技巧:将条件进行变形就能集体代入求解.
易错点:代入变形时易出错.
6. (3、4)(数学、初中数学竞赛、整式、高次方程、代数式、填空题)
已知m,n互为相反数,a,b互为负倒数,x的绝对值等于3,则
分析:由题意知m+n=0, ab=-1 , χ=±3 , 代入就可以求解.
详解:
=
=26或-28
技巧:这类题直接把条件列出来代入到式中,结果基本就出来了.
易错点:容易出现遗漏的情况.
7.如果,那么
8.(2006年四川省竞赛题)设a 1,a2,…,a k,为k个不相同的正整数,且
,则k的最大值为
9.(2001年重庆市竞赛题)若,则
10.(1999年江苏省竞赛题)已知a,b,c,d是四个不同的有理数,且
,则
11.(2006年全国初中数学竞赛题)已知a,b,c为整数,且
.若.则a+b+c的最大值为
三、解答题
12.(3、4) (数学、初中数学竞赛、整式、高次方程、解答题)
已知且求m的值.
分析:因为所以.代入求解 . 详解: . 由
得,即
答:m的值为.
技巧:在于将题目中的条件进行灵活变形,然后代入求解.
易错点:代数式变形时不要出错.
13. (3、4) (数学、初中数学竞赛、整式、方程、解答题)
已知m,n为自然数,且满足,求m, n的值.
分析:依题意得,而m,n为自然数,故
,最后求解.
详解:,而m,n为自然数,故,解得:m=83, n=84. 答:m、n的值分别为83、84.
技巧:利用平方差公式展开,很方便解决.
易错点:将167拆分的时候容易出错.
14. (3、4) (数学、初中数学竞赛、整式、方程、解答题)
已知,求(a-b-c) - (a+b-c)-(-a-b+c)的值 .
分析:因为同理可求代入求解.
详解:因为同理可求
技巧:将a、b、c进行化简,然后代入求解.
易错点:化简、代入求值时,都要谨防出错.
15.(第8届希望杯竞赛题)已知a是实数,且,求
17.(第13届迎春杯竞赛题)已知当时,.求当
时,代数式的值.
18.(天津市竞赛题)数码不同的两位数,将其数码顺序交换后得到一个新的两位数,这两个两位数的平方差是完全平方数,求所有这样的两位数,
答案与解析
1.B |a|与a的奇偶性相同,所以m与
同为偶数 .
2.C 由得,所以
3.D
4. 1998
5.5 因为.所以
6. 26或- 28 .原式或
8. 62 设,要使k最大,则需使前面的a i(i=l,2,…,k-l)尽量小,于是取以a1=1为首的连续m个正整数相加,得,即
4010.经验证.故当
9.2 因为,所以而a显然不等于0,所以0,即
所以
10.
11. 5013 由得.因为
,a为整数,所以a的最大值为1002.于是,a+b+c的最大值为5013 12.因为所以.由
得,即
13.依题意得,而m,n为自然数,故
,所以
14.因为同理可求
15.由已知得(a+1)3+1=0,所以a+1=-1,所以(a+1)1996+(a+1)1997+ (a+1)1998=1 16.9996+998
6
+999=9992-9982999+998=1997
17.当时,,所以.当时,
18.设所求两位数为,由已知得(k为整数),得
.而,得或
所以或.所以这样的两位数为65或56.。

相关文档
最新文档