流体力学第9章
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章 绕流与射流
重点阐述不可压缩粘性流体绕流二维和回转物体绕流现象及其绕流阻力的计算,分析工业生产中常遇到的紊流射流问题。
§9-1 绕流阻力与阻力系数
当粘性流体绕流物体时,物体总是受到压力和摩擦力的作用。作用在整个物体一表面上的压力和摩擦力的合力F 可分解为两个分力,即绕流物体的未受干扰时来流速度∞V 方向上的分力F D ,及垂直来流速度∞V 方向上的分力F L 。对于在静止流体中运动的物体来讲,由于F D 与物体运动方向相反,是阻碍物体运动的力,故称之为绕流阻力;F L 称为绕流升力。于是
D L F F F +=
绕流阻力和升力二者都包含摩擦力和压力两个分量,因此,物体所受摩擦力和压力的大小及二者的变化是分析绕流阻力的基础。
一、绕流阻力一般分析
物体壁面所受摩擦阻力是粘性直接作用的结果,所受压力又称压差阻力,是粘性间接作用的结果,当粘生流体绕流物体时,边界层分离是引起压差阻力的主要原因。 下面以圆柱绕流为例来说明绕流阻力的变化规律。
在绕流未分离的情况下,由理想流体所确定的物面上的压强分布如图6-12所示,在第六章的第四节详细地讨论过这个解,物体所受压力阻力为零。
在绕流圆柱体发生严重分离的情况下,由于柱体后部背流面存在分离区,此时主流区的边界处在分离区的外缘,柱面上的压强分布不同于未分离时的压强分布,从分离点开始,柱体后部受到的流体压强大约等于分离处的压强,而不能恢复到理想流体绕圆柱体流动时应有的压强数值,从而产生对圆柱体的压差阻力。图9-1(b)所示是有边界层分离的圆柱面上的无因次压强分布,实验曲线见图6-12中的II 、III 曲线。
对于摩擦阻力,其形成过程比较清楚。实验表时,象机翼、船只和其它一些流线型物
D
F
体都有较大的摩擦阻力。钝体如圆柱、球、桥墩和汽车等都有较大的甚至压倒优势的压差阻力。由于压差阻力的大小与物体的形状有很大关系,因此,压差阻力又称为形状阻力。
二、阻力系数
虽然绕流物体阻力的形成过程从物理观点看完全清楚,但要想从理论上通过面积分求解一个任意形状物体的阻力是十分困难的,目前都是由实验测得,工程上习惯借助无因次阻力系数来确定总阻力的大小,即
A V C F 2D
D 2
1
∞=ρ (1) A V F C 2D D 2
1
∞=
ρ (2)
式中A 为物体的投影面积,当物体主要受压差阻力时,采用物体垂直于来流速度方向的投影面积,即迎流面积。
物体的阻力系数的大小,主要取决于雷诺数Re 的大小和物体的形状,也与物体在流场中的方位密切相关。由相似定律知道,对于不同的不可压缩流体中的几何相似体,如果Re
相等且在流场中的方位相同,则它们的阻力系数相等。因此,在不可压缩流体中,对于与来流方向具有相同方位的几何相似体,如果Re 相等且在流场中的方位相同,则它们的阻力系数相等。因此,在不可压缩流体中,对于与来流方向具有相同方位的几何相似体,其阻力系数C D 只是Re(v
l
V ∞=
Re ,式中l 为特征尺寸)的函数,即 ()Re D f C = (3)
图9-2和图9-3给出了无限长圆柱体和球体阻力系数与Re 的实验关系曲线。由图可知,在不同的Re 下,流动现象的差异和阻力系数的大小是明显的。
下面仍以圆柱为例,具体分析随着Re 的变化绕流现象的变化过程及阻力系数的大小。
(1) 在Re ≤1的范围内,流动如图9-4(a),边界层没有分离,其特点为圆柱表面上下、前后流动对称且呈层流流态。流动阻力来源于柱面摩擦阻力的合力,C D 与Re 成反比,如图中直线部分。
(2) 在3~5 (3) 30~40 (a)Re ≤1;(b)3~5 区出现摆动,如图9-4(c)所示。此范围内,压差阻力在总阻力中占的比例逐渐增大,虽然摩擦阻力和压差阻力有同等重要地位,但压差阻力已逐渐占主要部分。 (4) 在60~90 (5) 在Re>1.5×105条件下,随着的Re的增大,分离点前的边界层由层流转变为紊流,紊流边界层的强烈混合效应使得分离点向后移,尾涡区变窄,绕流得以改善,如图9-4(f)所示。该流动情况称为绕流的超临界状态,阻力系数亦随之下降,即从Re=1.5×105~5×105,C D从1.2急剧下降到0.3,如图9-2所示,由于物体阻力以压差阻力为主,故绕流总阻力是下降的。 应指出,层流边界层可以人为地转变为紊流边界层,即亚临界状态可人为地提前转变为超临界状态。转变的办法是扰动来流,增加上游的紊流度,普朗特曾用下面的实验证实了这一现象,他在紧靠圆球上层流边界层分离点的稍前面套上一圈细金属丝,人工地把层流边界层转变为紊流边界层,则Re在小于3×105的亚临界时,阻力就显著下降,此时分离点从原来的圆球前驻点后约80°处向后移到约110°~120°。 通过上述分析,可归纳如下: 为了减小绕流阻力,应设法避免边界层分离。在不发生边界层分离的情况下,边界层应尽可能保持层流。如果已发生分离,则应在发生分离处稍前设法使边界层流转变为紊流,以使分离点后移。由于发生边界层分离的条件是沿流向压强增大和动能不足,因此,如果在压强增大处采取减压措施或使流体增加流速,均能消除边界层分离而降低阻力,这种措施称为边界层控制,这里不再介绍,可能参阅有关文献。 §9-1 卡门涡街