热工学基础 第3版

合集下载

工程热力学第三版 沈维道编 课件第1和第2章

工程热力学第三版 沈维道编 课件第1和第2章
两个独立的状态参数即可确定一个状态三坐标图pv图ts图15工质的状态变化过程一准平衡过程准静态过程相对缓慢工质再平衡破坏后自动恢复平衡所需时间又很可逆过程
第一章 基本概念 1-1 热能在热机中转变成机械能的过程 燃料——热能——动力 热能动力装置: 1蒸汽动力装置; 2燃气动力装置 工质:实现热能——机械能转化的媒介 高温热源(热源):工质从中吸取热能的物系 低温热源(冷源):接受工质排除热能的物系 热能动力装置工作过程:工质从热源获得热能, 做功,排除余下的热能给低温热源。
二状态方程式 T=T(p,v),p=p(T,v),v=v(p,t) F=F(p,v,T) 三坐标图 p-v图,T-s图 1-5 工质的状态变化过程 一准平衡过程(准静态过程) 相对缓慢,工质再平衡破坏后自动恢复平衡所需时间又很 短。 工质与外界的压力差无限小;温差无限小。 二 可逆过程和不可逆过程
二、压气机:动能差和势能差忽略 wc=-wi=(h2-h1)+(-q)=-wt 三、换热器:无功的交换 q=h2-h1 四、管道:
• 在分析中,取其进、出口截面间的流体为热力 系,并假定流动是稳定的。喷管实际流动过程 的特征是:气流迅速流过喷管,其散热损失甚 微,可认为Q =0;气流流过喷管时无净功输入 或输出,Wnet=0;进、出口气体的重力位能差 可忽略, 。将上述条件代入得到:对1kg流体 而言,(cf22-cf12)/2=h1-h2 • 喷管中气流宏观动能的增加是由气流进、出口 焓差转换而来。
边界:实际的或假想的;不动的和变形的。 闭口系:只有能量交换而无物质交换,又叫控制质量。 开口系:即有物质交换又有能量交换。又叫控制容积。 绝热系统:与外界无热量交换。 孤立系统:即无物质交换又无能量交换。 简单可压缩系:最常见的热力系,由可压缩流体构成,与 外界功的交换只有容积变化功。 1-3 工质的热力学状态及其基本状态参数 热力学状态:某一瞬间宏观物理状况,压力 P、温度 T 、 体积V、热力学能U、焓H、熵S。 一温度 微观:物质分子运动的积累程度。Mc2/2=BT t=T-273.15k

建筑物理 第3版 学习情境8 建筑热工学基本知识

建筑物理 第3版 学习情境8  建筑热工学基本知识

第 7 页 《建筑物理》第3版 学习情境8 建筑热工学基本知识 任务1 围护结构传热的基本方式
8.1.2 热量传递的基本方式
对流按产生原因可分为自然对流和受迫对流两种。 流体与固体表面的对流传热过程可用牛顿公式进行计算:
qc=αc(t-θ)
式中 qc——对流传热的面积热流量(W/m2); αc——表面传热系数(W / m2•K),即当固体壁面与流体主体部分的温差为1℃(对
热阻R反映了热量通过平壁时遇到的阻力,是平壁抵抗热量通过的能力。在同样的温差条件
下,热阻越大,通过材料层的热量就越少。要想增加热阻,可以加大平壁的厚度,或选用热导率λ
值小的材料。
(2)对流
对流是指依靠流体的宏观流动,把热量由一处传递到另一处的现象。工程上大量遇到的是流
体流过一个固体壁面时发生的热量交换过程,称为表面热流量),则
第 6 页 《建筑物理》第3版 学习情境8 建筑热工学基本知识 任务1 围护结构传热的基本方式
8.1.2 热量传递的基本方式
q
d
(i
e )
q i e i e
d
R
式中 q——平壁的面积热流量(W/m2);
R——热阻一(m2•K/W),R =d/λ。
8.1.2 热量传递的基本方式
式中 ρ——物体对辐射热的光谱反射比,ρ=Iρ/Io; α——物体对辐射热的光谱吸收比,α=Iα/Io; τ——物体对辐射热的光谱透射比,τ=Iτ/Io 。
物体对不同波长的外来辐射的吸收、反射及透射的性能是不同的。凡能将外来辐射全部反射
(ρ=1)的物体称为绝对白体,能全部吸收(α=1)的称为全辐射体(也可称为黑体),能全部 透过(τ=1)的则称为绝对透明体或透热体。在自然界中没有绝对全辐射体、绝对白体和绝对透

热工基础知识

热工基础知识

一、传热基本方式
① 导热的特点 A 必须有温差 B 物体直接接触 C 依靠分子、原子及自由电子等微观粒子热运动 而传递热量 D 不发生宏观的相对位移
一、传热基本方式
②导热机理 气体: 气体:导热是气体分子不规则热运动时相 互碰撞的结果,温度升高,动能增大, 互碰撞的结果,温度升高,动能增大,不 分子相互碰撞, 同能量水平的 分子相互碰撞,使热能从高 温传到低温处。 温传到低温处。
一、传热基本方式
对流换热特点 对流换热与热对流不同,既有热对流,也 有导热; 导热与热对流同时存在的复杂热传递过程 必须有直接接触(流体与壁面)和宏观运 动;也必须有温差
一、传热基本方式
4) 对流换热的基本规律 < 牛顿冷却公式 > ) 流体被加热时: 流体被加热时: 流体被冷却时: 流体被冷却时
Φ = t
1
δ
A

t
2
=
λ
∆ R
t
λ
一、传热基本方式
单位热流密度
q =
t1 − t 2
δ λ
∆ t = rλ
δ Rλ = Aλ
导热热阻
δ rλ = λ
单位导热热阻
Φ=
λ ∆tA δ
一、传热基本方式
λ— 比例系数,称为导热系数或热导率,其 意义是指单位厚度的物体具有单位温度差 时,在它的单位面积上每单位时间的导热 量,它的国际单位是 W/( m·K)。它表示材 料导热能力的大小。导热系数一般由实验 测定,例如,普通混凝土 W/(m·K), 纯铜 的将近400 W/(m·K) 。
作业题
2、一大平板,高3m,宽2m,厚0.2m, 导 热系数为45 W/(m·K), 两侧表面温度分别为 =150 ℃ 及=285 ℃, 试求该板的热阻、单位 面积热阻、热流密度及热流量

(整理)建筑热工学基础

(整理)建筑热工学基础

(整理)建筑热⼯学基础第⼀章建筑热⼯学基础⼀、传热的基本知识⼆、平壁的稳定传热过程三、封闭空⽓间层的传热四、周期性不稳定传热五、湿空⽓的概念及蒸汽渗透阻的概念第⼆章建筑热⼯设计⼀、建筑热⼯设计中常⽤名词的解释⼆、建筑热⼯设计中常⽤参数的计算第三章、建筑节能设计⼀、建筑节能设计的意义⼆、建筑节能设计的⼀般要求第⼀章建筑热⼯学基本知识⼀、传热的基本知识1、为什么会传热?传热现象的存在是因为有温度差。

凡是有温度差存在的地⽅就会有热量转移现象的发⽣,热量总是由⾃发地由⾼温物体传向低温物体。

2、传热的三种基本⽅式及其区别导热—指温度不同的物体直接接触时,靠物质微观粒⼦的热运动⽽引起的热能转移现象。

它可以在固体、液体和⽓体中发⽣,但只有在密实的固体中才存在单纯的导热过程。

对流—指依靠流体的宏观相对位移,把热量由⼀处传递到另⼀处的现象。

这是流体所特有的⼀种传热⽅式。

⼯程上⼤量遇到的流体留过⼀个固体壁⾯时发⽣的热流交换过程,叫做对流换热。

单纯的对流换热过程是不存在的,在对流的同时总是伴随着导热。

辐射—指依靠物体表⾯向外发射热射线(能显著产⽣热效应的电磁波)来传递能量的现象。

参与辐射热换的两物体不需要直接接触,这是有别于导热和对流换热的地⽅。

如太阳和地球。

实际上,传热过程往往是这三种传热⽅式的两种或三种的组合。

3、温度场的概念实际的温度往往都是变化的,各点的温度因位置和时间的变化⽽变化,即温度是空间和时间的函数。

在某⼀瞬间,物体内部所有各点温度的总计叫温度场。

若温度是空间三个坐标的函数,这样的温度场叫三向温度场;当物体只沿⼀个⽅向或两个⽅向变化时,相应地称做⼀向或⼆向温度场。

物体的温度随时间变化的温度场叫不稳定温度场,反之为稳定温度场。

⼆、平壁的稳定传热过程室内、外热环境通过围护结构⽽进⾏的热量交换过程,包含导热、对流及辐射⽅式的换热,是⼀种复杂的换热过程,称之为传热过程。

温度场不随时间⽽变化的传热过程叫做稳定的传热过程。

热工学基础

热工学基础

热工学基础第一章 工质与热力系统1、工质:各种形式能量的转换或转移,通常都要借助一种携带热能的工作物质来完成,这种工作物质称为工质。

2、温度:实用温标(t )、理论温标(T ) t=T —273.153、准静态过程、可逆过程及其联系与区别 准静态过程:若过程进行的极其缓慢,则系统在每一瞬间的状态无限接近平衡状态,或者说,只是无限小的偏离平衡状态,该过程则为准静态过程。

可逆过程:系统在经历某一过程之后沿原路线方向进行,若系统和外界都能够回复到它们各自的最初状态,这过程成为可逆过程(它是指可能性,不是指必须回到最初状态的过程)。

联系与区别:可逆过程必定是准静态过程,而准静态过程未必是可逆过程。

它只是可逆过程的条件之一,没有机械摩擦损失的准静态过程是可逆过程,可逆过程是准静态过程的进一步理想化。

4、系统储存能=系统内部储存能(内能)+系统外部储存能(动能和位能)5、功量和热量:功量是除温度差外,不平衡势差作用下外界传递的能量,包括膨胀功和轴功;热量是热力系统通过边界与边界交换的能量中除了功的部分,是外界与系统之间所传递的能量,不是系统本身具有的能量。

第二章 热力学第一定律1、热力学第一定律:主要说明热能与机械能在转换过程中能量守恒。

2、热力学第一定律的基本表达式:输入系统的能量—系统输出的能量=系统储存能的变化3、闭口系统热力学第一定律解析式:Q=△U+W ;对于1千克工质:q=△u+w ;对于微元热力过程:w du q δδ+=4、焓:是物质进出开口系统时带入或带出的热力学能与推动功之和,是随物质一起转移的能量,它是宏观的状态参数,同时存在于闭口系统中。

H=u+pv(j /kg)5、5kg 气体在热力过程中吸热70kj,对外膨胀做功50kj 。

该过程中内能如何变化,每千克气体内能的变化为多少?(p17例2-1、2-2)6、2Kg 气体在压力0.5Mpa 下定压膨胀,体积增大了0.12m 2,同时吸热60kj.求气体内能的变化。

热工学基础

热工学基础
25
空气温度
主要指距地面1.5m高,背阴处的空气温度。 与地表面以导热、对流和长波辐射形式进行热交
换而被加热或冷却。对短波辐射几乎是透明体。 日较差:一日内气温的最高值和最低值之差。 年较差:一年内最冷月和最热月的月平均气温差。 年平均温度:向高纬度地区每移动 200~300 km
降低1℃。
一定温度、一定大气压力下,温度一定 时,湿空气的绝对湿度f与同一温度下 饱和湿空气的绝对湿度fmax的百分比称 为湿空气的相对湿度φ
19
湿空气的物理性质
露点温度
在湿空气的压力和含湿量保持不变的情 况下冷却空气,未饱和湿空气成为饱和 湿空气时所对应的温度叫湿空气的露点 温度,用td表示 。
湿球温度 用来测量空气状态的传统方法。
Iα+Iγ+Iτ=I0
13
非透 不同的表面对辐射的波长有选择性,黑色表 明围 面对各种波长的辐射几乎都是全部吸收,而
白色表面可以反射几乎90%的可见光。
护结 围护结构的表面越粗糙、颜色越深,吸收率 构外 就越高,反射率越低。 表面 所吸 收的 太阳 辐射 反射 吸收 热
14
太阳辐射在玻璃中传递过程
在建筑保温、隔热、
(如木材、玻
防潮设计时,都必须
璃纤维)?!
考虑到这种影响。
6
对流
发生在流体(液体、气体)中, 是指因温度不同的各部分流体之间发 生相对运动,互相掺合而传热的现象。
由于引起流体流动的动 力不同,对流的类型 可分为
自由对流:由于温度 的不同引起的对流换 热
受迫对流:由外力作 用形成的对流
26
空气温度
太阳辐射和气温变化
年较差与纬度的关系
27
空气温度的日变化

热能与动力工程测试技术(第3版)

热能与动力工程测试技术(第3版)

热能与动力工程测试技术(第3版)本课程旨在介绍《热能与动力工程测试技术(第3版)》的目的和内容。

在这门课程中,我们将深入探讨热能与动力工程领域中的测试技术,帮助学生了解并应用这些技术。

目的本课程的目的是培养学生在热能与动力工程领域中的测试技术方面的能力。

通过研究本课程,学生将能够掌握并应用各种测试技术,以准确、科学地评估和分析热能与动力工程系统的性能和效果。

内容本课程的内容包括但不限于以下方面:热能与动力工程测试的基本概念和原理测试设备和仪器的选择和使用热能与动力工程系统的测试方法和步骤数据采集和分析技术误差分析和结果解释测试结果的报告和呈现方式通过结合理论研究和实践操作,学生将能够全面了解和应用热能与动力工程测试技术,为解决实际问题提供准确可靠的数据支持。

请注意:本文档的内容只能根据《热能与动力工程测试技术(第3版)》课程而进行写作,不应引用未经确认的内容。

热能与动力工程测试技术的定义和重要性测试技术的分类和应用领域测试技术在热能与动力工程领域中的作用测试仪器和设备的介绍测试方法和技术的基本原理测试数据的采集和处理方法温度测量与控制技术压力测量与控制技术流量测量与控制技术速度测量与控制技术热能测试技术在工业领域的应用动力工程测试技术在能源领域的应用案例分析和解决方案新型热能测试技术的发展趋势新兴动力工程测试技术的应用前景测试技术创新的挑战和机遇该课程将详细介绍热能与动力工程测试技术的概念、基础知识和常用工具,以及其在实际应用中的案例和新兴领域的前景。

通过研究该课程,学生将获得对热能与动力工程测试技术有深入了解的能力,并能够应用所学知识解决相关问题。

本课程《热能与动力工程测试技术(第3版)》采用多样化的教学方法和研究工具,旨在提供广泛的知识和实践经验。

以下是该课程所采用的教学方法和研究工具的概述:课堂讲授:通过教师的讲解,学生将获得关于热能与动力工程测试技术的理论知识。

教师将结合案例分析和实际问题解决,帮助学生理解和应用所学的知识。

3 第三章 空气波

3 第三章 空气波

( 2—4 )
23
3.3 列车管减压量与制动缸压强的关系
pz = 3.25 · r -100 (kPa) ( 2 —4 )
二、列车管最小有效减压量 rmin(kPa)
能使制动缸的空气压强刚好使闸瓦压紧 车轮的列车管减压量即为列车管最小有效减 压量 rmin
24
3.3 列车管减压量与制动缸压强的关系
pz = 3.25 · r -100 (kPa) ( 2 —4 )
制动缸缓解弹簧一般按制动缸活塞的“背 压”为35 kPa 设计。 则 (kPa) pz = 3.25 · r -100 = 35
r = 135 / 3.25 = 42
(kPa)
单车试验时的列车管最小有效减压量 rmin规定为40 kPa,列车试验时和列车运行中 规定为50 kPa,编组60辆以上的为70 kPa。
21
3.3 列车管减压量与制动缸压强的关系
pf′ · Vf = pf · Vf + pz′ · Vz
p0′ · Vf = ( p0′-r) · Vf + pz′ · Vz
p0′ · Vf = p 0′ · Vf - r· Vf + pz′ · Vz r· Vf = pz′ · Vz
Vf — 副风缸容积(L) r—列车管减压量(kPa) pz′—制动缸的绝对压强(kPa) Vz—制动后的制动缸容积 (L)
(2—16)
式(2—15)乘式(2—16)可得
(ρ1.q).( P0-P1 )=(ρ0-ρ1)wKB.ρ1.q.wKB
=(ρ0-ρ1) (ρ1.q) wKB2
P0-P1 =(ρ0-ρ1)wKB2
wKB
2
p0 p1 p ρ0 ρ ρ 1
8
3.3 空气波和空气波速

热工学基础 第3版

热工学基础 第3版

S21可逆 S21不可逆
普通高等教育“
12
Q
1a 2
T

Q
1b 2
T
S21
S21 S 2 S1
Q
T
= 可逆 > 不可逆 除了传热,还有其它因素影响熵
S
Q
T
不可逆绝热过程 不可逆因素会引起熵变化
Q 0 dS 0
Q2
T2
普通高等教育“十一五”国家级规划教材
热力循环的评价指标 逆循环:净效应(对内作功,放热)
制冷循环:制冷系数
T0 Q1 W
Q2
T2
普通高等教育“十一五”国家级规划教材
热力循环的评价指标
逆循环:净效应(对内作功,放热)
制热循环:制热系数 T1
Q1 W
Q2
T0
普通高等教育“十一五”国家级规划教材
普通高等教育“十一五”国家级规划教材
4.1 热力循环
要实现连续作功,必须构成循环
定义:
热力系统经过一系列变化回到初态,这一系列变化 过程称为热力循环。 分类: 可逆 过程 不可逆 循环 不可逆循环
可逆循环
普通高等教育“十一五”国家级规划教材
热工学基础 第3版
• 书名:热工学基础 第3 版 • 书号:978-7-11150311-8 • 作者:刘春泽 李国斌 • 出版社:机械工业出 版社
可逆过程,
Q q
, 代表某一状态函数。 T T
定义:熵
dS
Qre
T
比熵 ds
qre
T
普通高等教育“十一五”国家级规划教材
可逆时
dS 0 dS 0 dS 0
Q 0 Q 0 Q 0

热工学第三版课程设计

热工学第三版课程设计

热工学第三版课程设计一、设计背景热工学是机械工程领域的一门重要科学,广泛应用于能源、热力机械、制冷空调、化工等领域。

热工学的内容丰富,涉及到热力学、热传导、传热器、流体力学、燃烧等多个方面。

本课程设计主要是为了对学生在前期学习热工学的基础上,通过实践操作和项目设计,全面了解热工学的应用,提高学生的实践能力和创新能力。

二、设计目的课程设计的目的主要有以下几点:1.帮助学生运用热工学理论和知识,解决实际问题。

2.增强学生的实践操作能力,提高其科研和工程项目的设计水平。

3.培养学生的团队合作和创新意识。

4.提高学生成为未来热能行业从业者的竞争力。

三、设计内容1. 选题本次课程设计围绕热工学的应用,选取适合学生实践操作的项目,下面列举一些可供选择的题目:•太阳能热水器的设计与制作•吸附式制冷循环系统的研究与开发•热泵空调系统的设计及性能测试•燃料电池发电系统的研究与应用•燃烧室的热传递与流动分析学生可以自由选题,也可以形成小组协作完成。

每个选题需要写一份课程设计报告,包含课程设计的目的、选题原因、研究内容、方法及实验结果等。

2. 实践操作在选定了课程设计的研究方向后,需要进行实践操作,以用实验数据验证研究成果。

为此,学生需要掌握以下实践操作技能:1.通过实验仪器进行温度、压力、流速等参数的测量。

2.使用计算机软件进行数据处理和分析。

3.安装和调试实验设备。

4.根据实验结果,总结分析结论,指导下一步实验方案的设计。

3. 研究报告最后,学生需要将实践操作的结果,撰写成课程设计报告,内容包括选题研究的背景、研究内容、实验方法及结果、结论及建议等。

四、设计要求本课程设计要求学生具有一定的热工学基础,能够熟练使用实验设备和测量仪器,熟练操作计算机软件。

具体要求如下:1.课程设计报告中的内容必须真实可靠、信息完整。

2.课程设计需要符合学校和学科的相关规定,学生在设计过程中需严格按照规定进行。

3.学生应严格按照课程设计要求进行实践操作和报告撰写,不得抄袭或剽窃。

热工学基础供热通风与空调工程技术专业适用第三版教学设计

热工学基础供热通风与空调工程技术专业适用第三版教学设计

热工学基础供热通风与空调工程技术专业适用第三版教学设计一、课程背景热工学基础是供热通风与空调工程技术专业的一门重要的基础课程,主要介绍能量传输与转换的基本规律,加热与冷却过程中涉及的生产技术与工艺,热力学原理及其应用等方面的内容。

因此,本课程对于提升学生的专业素质、培养学生的实践能力具有非常重要的作用。

尤其在现代化建设的时代背景下,对于热工学基础的学习和实践更具有实际的意义,因为热工学的应用广泛,不仅仅局限于供热通风与空调工程领域,而且在各个领域都有着广泛的应用。

因此,本课程的教学设计必须贴近实际,充分发挥热工学基础在现实生活中的重要作用。

二、课程目标本课程的主要目标如下:1.了解能量传输与转换的基本规律,掌握能量转换的主要方式,并能够应用于实际生产和工程项目中;2.掌握加热与冷却过程涉及的生产技术和工艺,了解各种加热与冷却过程的特点,认识各种加热和冷却技术的适用范围;3.了解热力学原理及其应用,在实际工程项目中能够积极运用热力学原理,为工程项目提供技术支持;4.培养学生的科学研究能力、创新思维和实践能力,为日后的工作和研究打下坚实的基础。

三、教学内容本课程的教学内容主要分为两个部分:第一部分介绍能量传输与转换的基本规律,第二部分介绍加热与冷却过程中涉及的生产技术和工艺,以及热力学原理及其应用。

第一部分:能量传输与转换的基本规律1.能量基本概念2.热量传递的三种基本方式3.热力学基本定理及其应用4.热平衡和热失衡的概念及其实际应用5.能量储存和储运装置6.能量转换装置的应用和特点第二部分:加热与冷却过程中涉及的生产技术和工艺,以及热力学原理及其应用1.液体加热和冷却技术2.气体加热和冷却技术3.热工程实验技术4.热工程设计和技术评价5.热流与物流的计算6.热工程计算软件的应用7.供热通风与空调工程项目案例分析四、教学方法根据教学目标和教学内容,我们将采用多种教学方法,以确保教学效果最大化。

具体的教学方法包括:1.理论授课2.实验操作3.计算模拟4.典型案例分析5.课程设计五、教学评价为了更好地评估学生的学习成果,我们将采用多种教学评价方法,包括:1.考试2.课程设计报告3.实验记录4.计算模拟报告5.课堂答题六、总结通过本次课程的学习,学生可以掌握能量传输与转换的基本规律,了解加热与冷却过程中涉及的生产技术和工艺,以及热力学原理及其应用。

《热工基础及应用》第3版知识点汇总

《热工基础及应用》第3版知识点汇总

《热工基础及应用》第3版知识点第一章 热能转换的基本概念本章要求:1.掌握研究热能转换所涉及的基本概念和术语;2.掌握状态参数及可逆过程的体积变化功和热量的计算;3.掌握循环的分类与不同循环的热力学指标。

知识点:1.热力系统:根据研究问题的需要和某种研究目的,人为划定的一定范围内的研究对象称为热力系统,简称热力系或系统。

热力系可以按热力系与外界的物质和能量交换情况进行分类。

2.工质:用来实现能量相互转换的媒介物质称为工质。

3.热力状态:热力系在某瞬时所呈现的宏观物理状态称为热力状态。

对于热力学而言,有意义的是平衡状态。

其实现条件是:0,0,0p T μ∆=∆=∆=。

4. 状态参数和基本状态参数:描述系统状态的宏观物理量称为热力状态参数,简称状态参数。

状态参数可按与系统所含工质多少有关与否分为广延量(尺度量)参数和强度量状态参数;按是否可直接测量可分为基本和非基本状态参数。

5. 准平衡(准静态)过程和可逆过程:准平衡过程是基于对热力过程的描述而提出的。

实现准平衡过程的条件是推动过程进行的不平衡势差要无限小,即0p ∆→,0T ∆→(0μ∆→)。

6、热力循环:为了实现连续的能量转换,就必须实施热力循环,即封闭的热力过程。

热力循环按照不同的方法可以分为:可逆循环和不可逆循环;动力循环(正循环)和制冷(热)循环(逆循环)等。

动力循环的能量利用率的热力指标是热效率:0=t H W Q η;制冷循环能量利用率的热力学指标是制冷系数:L 0=Q W ε。

第二章 热力学第一定律本章要求:1. 深入理解热力学第一定律的实质;2. 熟练掌握热力学第一定律的闭口系统和稳定流动系统的能量方程。

知识点:1. 热力学第一定律:是能量转换与守恒定律在涉及热现象的能量转换过程中的应用。

热力学第一定律揭示了能量在传递和转换过程中数量守恒这一实质。

2. 闭口系统的热力学第一定律表达式,即热力学第一定律基本表达式:Q U W =∆+。

《大学物理教程(第三版)》第十一章 热力学基础

《大学物理教程(第三版)》第十一章  热力学基础

第十一章 热力学基础本篇引言指出,统计物理学和热力学的研究对象相同,都是热现象,但研究方法不相同.统计物理学从物质是由大量分子组成以及分子作热运动的观点出发,运用统计方法建立宏观量与相应的微观量的平均值之间的关系,从物质的微观结构说明物质的宏观现象,所以统计物理学是微观理论.与此相反,热力学不涉及物质的微观结构,它以实验定律为基础,从能量观点出发,研究热现象的宏观规律,所以它属于宏观理论.热力学具有高度的普遍性和可靠性.统计物理学与热力学的研究方法虽然不同,但它们彼此联系,互相补充,使我们对现象的认识更加全面,更加深入,都是研究热现象的不可缺少的理论.§11-1 功 内能 热量一、功在热力学中通常把所研究的物体(气体、液体或固体)称为热力学系统,简称系统.而把与系统发生作用的环境称为外界.在力学中,我们将力对质点所作的功定义为力在位移方向的分量与位移大小的乘积;角位移d θ中力矩M 的功定义为d W = M d θ.此外,在电磁学中,还定义过电场力的功和磁场力的功.功的概念是很广泛的,但不论是哪一种类型的功,作功的过程始终是与能量的改变、转换以及运动形式的转化相联系.现在,我们要研究热力学系统在状态变化过程中所作的功.我们假设系统的状态变化过程进行得无限地缓慢,使系统所经历的每一中间状态无限地接近于平衡状态,也就是每一中间状态有确定的状态参量,这种过程就是上一章已讲过的准静态过程.在本章中所要讨论的过程均设为准静态过程.取封闭在气缸中的质量一定的气体为研究对象.气缸活塞的面积为S ,如图11-1(a).当气体的压强为p 时,气体作用于活塞的力为F = pS .令气体作准静态膨胀,现在来研究气体在这一膨胀过程中所作的功.当活塞移动一个微小距离d l 时,气体体积的增量为d V = S d l ,气体所作的功为d W = F d l = pS d l = p d V由于这是气体在体积发生无限小变化期间所作的功,称为元功.如果气体膨胀,d V > 0,d W 为正,表示系统对外界作功;如果气体被压缩,d V < 0,d W 为负,表示外界对系统作功.当气体由体积为V 1的状态I 变到体积为V 2的状态II 时,其状态变化过程(准静态过程)可用p -V 图上一光滑曲线表示,如图11-1(b).元功p d V 可用此图上有阴影的窄条面积表示.气体从状态I 变到状态II 所作的总功等于曲线下面所有这样的窄条面积的总和,即面积I II V 2V l I ,用积分表示则为(a) (b)图11-1⎰=21d V V V p W (11-1) 显然这个功与过程曲线的形状有关,也就是与过程有关.即使初末状态相同,只要过程路径不同,整个过程中气体所作的功就不相同.所以气体所作的功不仅与气体的初末状态有关,而且还与气体所经历的过程有关.功是一个过程量不是状态量.二、系统的内能为了精确地测定热运动与机械运动之间的转化关系,焦耳从1840年开始的20多年期间,反复进行了大量的实验.实验中,工作物质(水或气体)盛在不传热的量热器中,以致没有热量传递给系统,这样的过程称为绝热过程.例如,图11-2(a)中,重物下降带动量热器中的叶轮搅拌使水温升高,通过机械功使系统内能的状态发生改变.图11-2(b)中,将水与电阻丝视为一个系统,重物下降驱动发电机,发电机产生的电流通过电阻丝,使水温升高,即电功使系统的状态发生改变.焦耳通过大量的实验发现,在绝热过程中,无论用什么方式作功,使系统升高一定的温度所作功的数量是相等的.即在绝热过程中外界对系统所作的功仅与系统的初末状态有关,与过程无关.由于功是能量变化的量度,在热力学中定义系统内能E 的增量等于绝热过程中外界对系统所作的功ΔE = E 2 – E 1 = W 绝热系统的内能和系统的机械能一样完全取决于系统的状态,是系统状态的单值函数,即是它的状态参量的单值函数.在上一章中用气体动理论的观点已经说明,系统的内能包括物体内部大量分子的无规则运动(平动、转动及振动)的动能和分子间相互作用的势能.例如,对给定的理想气体来说,其内能RT i M m E 2=是温度T 的单值函数.对实际气体来说,由于分子间的相互作用力不能忽略,除了分子的各种运动的动能以外,还有分子间的势能,这势能与分子间的距离有关,也就是与气体的体积有关,所以实际气体的内能是气体的温度T 及体积V 的函数.E = E (T ,V )如果用统计物理学方法来研究系统的内能,就要计算分子的动能和势能,为此就要知道系统由什么样的分子组成,分子间的相互作用力以及分子有哪几种运动等.但除了理想气体之外,这个要求是很难满足的.所以用统计物理学的方法来研究系统的内能是有困难的.我们用热力学方法来研究系统的内能,并以统计物理学中建立的内能概念为基础,从能量观点出发来研究系统的内能与被传递的(a) (b)图11-2热量和所作的功之间的关系,可以不需要知道系统的微观结构.三、热量热与功的等效性前面已经说明,对系统作功可以使系统的状态(如温度)发生变化,并改变系统的内能.经验表明,当系统与外界之间存在温度差时,外界与系统发生热传递也可以使系统的状态发生变化,改变系统的内能.例如把一杯冷水与高温物体接触,这时高温物体传热给水,水的温度逐渐升高,内能增加.在图11-2(b)中,如果将量热器中的水视为一个系统,电流通过电阻丝发热并传递给水,水温升高,内能增加.所以向系统传热也是向系统传递能量,传热和作功都是传递能量的方式,传热和作功是等效的.热力学中定义热量为在不作功的传热过程中系统内能变化的量度.当系统在一个不作功的传热过程中内能由E1改变为E2时,系统从外界所吸收的热量为Q,则Q = ΔE = E2-E1上式表明,热量与功和能量的单位完全相同,在国际单位制中都是焦耳.焦耳曾经用实验证明:如果分别用传热和作功的方式使系统的温度升高,则当系统升高的温度相同时,所传递的热量和所作的功总有一定的比例关系.过去,习惯上热量用卡(cal)为单位,功用焦耳(J)为单位,根据焦耳的实验结果,向系统传递1 cal的热量使它升高的温度与对它作4.18 J的功使它升高的温度相同.此二单位的关系为1 cal = 4.18 J§11-2 热力学第一定律根据上一节的讨论,作功和传递热量是等效的,都是能量传递的方式.如果能量、功和热量都用相同的单位,则根据能量守恒定律,当对系统作功时,系统的能量的增加等于所作的功;当向系统传递热量时,系统的能量的增加等于所传递的热量.在实际过程中,作功和传递热量往往是同时进行的.设外界对系统作功W’,同时又向系统传递热量Q,使系统从平衡状态1变到平衡状态2,则系统的内能的增量等于两者之和,即ΔE= E2-E1= W’+ Q(11-2)其中E2和E1分别为系统在平衡状态1和平衡状态2的内能.在生产技术上往往要研究的是系统吸热对外作功的过程.设W表示系统对外界所作的功,则W’ = -W,则上式可改写为Q= E2-E1+ W(11-3)这就是热力学第一定律的数学表达式.它表示:系统从外界吸取的热量,一部分用于增加系统的内能,另一部分用于对外作功.显然热力学第一定律就是包括热现象在内的能量守恒定律.由于内能的改变与过程无关,而所作的功与过程有关,所以系统吸取的热量与系统所经历的过程有关.在(11-3)式中,Q、E2-E1及W各量可以是正值,也可以是负值,一般规定系统从外界吸热时,Q为正,向外界放热时,Q为负;系统对外界作功时,W 为正,外界对系统作功时,W为负;系统的内能增加时,E2-E1为正,内能减少时,E2-E1为负.又Q、E2-E1及W各量要用同一种单位,在国际单位制中,统一用焦耳为单位.对于微小的状态变化过程,热力学第一定律可写为d Q = d E + d W(11-4)历史上曾有不少人企图制造一种循环动作的机器,使系统经历状态变化后又回到原来的状态,在这过程中不需要外界供给能量而可以不断地对外作功,这种机器叫做第一类永动机.这种企图经过多次尝试都失败了.这些尝试的失败导致了热力学第一定律的建立.反过来,我们从热力学第一定律也可以证明第一类永动机是不可能造成的.因为这种机器作功后又回到原来状态,内能不改变,即E 2 - E 1 = 0,根据热力学第一定律有Q = W ,亦即系统所作的功等于供给它的热量或其他形式的等值的能量,不供给系统能量却要它不断地对外作功是不可能的.在热功转换过程中.虽然热量可以转变为功,功也可以转变为热量,但热量和功的转换不是直接的,而是通过热力学系统来完成的.例如向系统传递热量的直接结果是增加系统的内能,再由内能的减少系统对外界作功,外界对系统作功的直接结果也是增加系统的内能,再由内能的减少系统向外界传递热量.如果脱离开系统,就无法实现功与热量之间的转换,但为了叙述简便起见,通常就说“热转变为功”或“功转变为热”.现在我们进一步研究图11-1中气体从状态I 变到状态II 所经历的过程.(11-1)式给出了在这一过程中系统所作的总功为⎰=21d V V V p W 将上式代入(11-3)式,得气体在从状态I 变到状态Ⅱ的过程中从外界吸取的热量为Q = E 2 - E 1 +⎰21d V V V p (11-5) 在一微小的气体状态变化过程中,热力学第一定律(11-4)式又可写为d Q = d E + p d V (11-6)§11-3 热力学第一定律对理想气体等体、等压和等温过程的应用本节将根据上一章中给出的理想气体状态方程及理想气体的内能公式,应用热力学第一定律分别计算理想气体在等体、等压和等温过程中所作的功、内能的变化及吸收的热量,所得结果将在下面§11-4及§11-6中用到.等体过程 气体的等体过程的特征是气体的体积保持不变,即V 为常量,d V = 0.设气体被封闭在一气缸中,气缸的活塞保持固定不动(图11-3a).为了实现准静态的等体过程,必须有一系列温度一个比一个高但相差极微的热源,令气缸依次与这一系列热源接触,与每一热源接触时要等到气体达到平衡状态后再令其与另一温度次高的热源接触.这样,气体的温度逐渐升高,压强亦逐渐增大,但体积保持不变,这样的过程就是等体过程.在p -V 图上可用一平行于p 轴的直(a) (b)图11-3线表示,如图11-3(b),此直线称为等体线.在等体过程中,因气体的体积保持不变,所以气体不作功,d W = p d V = 0,W = 0(图11-3b).由热力学第一定律得在一微小等体过程中(d Q )V = d E (11-7)对于一有限等体过程,当气体从状态I(p 1,V ,T 1)变到状态II(p 2,V ,T 2)时,根据热力学第一定律,考虑到理想气体的内能公式RT i M m E 2=,得 )(21212T T R i M m E E Q V -=-= (11-8) 下标V 表示体积保持不变.上式表示在等体过程中,气体没有对外作功,外界供给的热量全部用于增加系统的内能.等压过程 气体的等压过程的特征是气体的压强保持不变,即p 为常量,d p = 0.设气体被封闭在一气缸中,气缸的活塞上放置砝码并保持不变(图11-4a).令气缸与一系列温度一个比一个高但相差极微的热源接触,气体的温度便逐渐升高,体积也逐渐增大,但压强保持不变,这样的过程就是等压过程.在p -V 图上,可用平行于V 轴的直线表示,如图11-4(b),此直线称为等压线. 根据理想气体状态方程RT Mm pV =在一微小变化过程中d p = 0,气体所作的功为T R Mm V p W d d d == 根据热力学第一定律,气体吸收的热量为T R Mm E V p E Q p d d d d )(d +=+= (11-9) 在一有限过程中,当气体从状态I(p ,V 1,T 1)变到状态Ⅱ(p ,V 2,T 2)时,有 )()(d 121221T T R M m V V p V p W V V p -=-==⎰ (11-10) )(1212V V p E E Q p -+-= (11-11)下标p 表示压强保持不变.上式表示在等压过程中,气体吸收的热量一部分用于增加内能,另一部分用于对外作功,如果用温度表示,则有(a) (b)图11-4)()(21212T T R Mm T T R i M m Q p -+-= 或 )(2212T T R i M m Q p -+= (11-12) )(21212T T R i M m E E -=- (11-13) 比较(11-8)及(11-13)两式看出,不论是等体过程或等压过程,只要是温度变化相同时,内能的变化就相等,这是因为理想气体的内能仅与温度有关之故. 等温过程 气体的等温过程的特征是气体的温度保持不变,即T = 常量,d T = 0.设气体被封闭在气缸中,气缸活塞上放置砂粒(图11-5a).为了实现准静态等温过程,必须令气缸与一恒温热源接触并一粒一粒地从活塞上取下砂粒,使气体的压强逐渐减小,体积逐渐增大,而温度保持不变,这样的过程就是等温膨胀过程.在p -V 图上可用一曲线表示,如图11-5(b),这条曲线称为等温线.当温度保持不变时,气体的压强p 与体积V 的关系为pV = C (常量),所以等温线为双曲线的一支.在等温过程中.因气体的温度保持不变,由理想气体内能公式RT i M m E 2=得知气体的内能保持不变,当气体从状态I(p 1,V 1,T )变到状态II(p 2,V 2,T )时,E 2 - E 1 = 0由热力学第一定律得 ⎰==21d V V T T V p W Q (11-14) 下标T 表示温度保持不变.上式表示在等温过程中气体吸收的热量完全用于对外作功,因为气体的内能保持不变.由理想气体状态方程RT Mm pV = 可解出VRT M m p 1=,代入(11-14)式,便得到 12ln d 21V V RT M m V V RT M m W Q V V T T ===⎰ (11-15)(a) (b)图11-5又因p 1V 1 = p 2V 2,上式亦可写为21ln p p RT M m W Q T T == (11-16) 例题11-1 设质量一定的单原子理想气体开始时压强为3.0×105 Pa ,体积为1.0 L ,先作等压膨胀至体积为2.0 L ,再作等温膨胀至体积为 3.0 L ,最后被等体冷却到压强为1.0×105 Pa .求气体在全过程中内能的变化、所作的功和吸收的热量 解 如图11-6所示,ab 、bc 及cd 分别表示等压膨胀、等温膨胀及等体冷却等过程.由玻意耳定律得Pa 102.0Pa 100.3100.2100.35335⨯=⨯⨯⨯⨯==--c b b c V V p p 在全过程中,由理想气体内能公式及理想气体状态方程得内能的变化ΔE 为)(2)(2Δa a d d a d a d V p V p i T T R i M m E E E -=-=-= 对于单原子理想气体,i = 3,代入数字得0J )100.1100.3100.3100.1(23Δ3535=⨯⨯⨯-⨯⨯⨯⨯=--E 气体在全过程中所作的功等于在各分过程中所作的功之和,即W = W p + W T + W V由(11-10)式得W p = p a (V b - V a ) = 3.0×105×(2.0 -1.0) ×10-3 J = 304 J由(11-15)式及理想气体状态方程得J 246J 100.2100.3ln 100.2100.3 ln ln 3335=⨯⨯⨯⨯⨯⨯===---b cb b bc b T V V V p V V RT M m W在等体过程中气体不作功,即W V = 0所以 W = W p + W T + W V = (304+246+0) J = 550 J在全过程中吸收的热量等于在各分过程吸收的热量之和,即Q = Q p + Q T + Q V由(11-12)式及理想气体状态方程得 J 760J 10)0.10.2(100.3223 )(22)(2235=⨯-⨯⨯⨯+=-+=-+=-a b a a b p V V p i T T R i M m Q由(11-16)式得Q T = W T = 246 J由(11-8)式及理想气体状态方程得图11-6J 456J )100.3100.2100.3100.1(23 )(2)(23535-=⨯⨯⨯-⨯⨯⨯⨯=-=-=-=--c c d d c d c d V V p V p i T T R i M m E E Q “-”号表示气体放热.所以 Q = Q p + Q T + Q V = (760+246-456) J= 550 J在全过程中吸收的热量亦可用热力学第一定律求出Q = W + ΔE = (550 + 0) J = 550 J与上面所得结果相同.§11-4 气体的热容根据实验,质量为m 的物体,温度从T l 升高到T 2时,它吸收的热量Q 与T 2 - T l 成比例,又与m 成比例,设c 为比例系数,则Q = mc (T 2 - T l )c 称为组成该物体的物质的比热容.mc 称为该物体的热容.如果物体的物质的量为1摩尔,即mol 1=Mm ,则其热容Mc 称为摩尔热容,它的物理意义是:1 mol 的物质温度升高1 K 时吸收的热量,用C 表示,C = Mc .摩尔热容的单位是焦耳每摩尔开,符号为J/(mol·K).气体吸收的热量与气体所经历的过程有关,所以气体的摩尔热容有无限多个,其中最简单而又最重要的是定体摩尔热容和定压摩尔热容.气体的定体摩尔热容 1 mol 的气体在等体过程中,温度升高1 K 时吸收的热量称为定体摩尔热容,记号为C V ,m .如果1 mol 气体在等体过程中温度升高d T 时吸收的热量为(d Q )V ,则TQ C V V d )d (m ,= (11-17) 由(11-7)式,(d Q )V = d E ,代入上式得TE T Q C V V d d d )d (m ,== (11-18) 如果气体是理想气体,则1 mol 气体的内能为RT i E 2= 代入(11-18)式得R i T E C V 2d d m ,== (11-19) 式中i 是气体分子的自由度,R 是摩尔气体常量.R = 8.31 J/(mol·K),因此理想气体的定体摩尔热容与气体的自由度有关,而与气体的温度无关.对于单原子理想气体,i = 3,C V ,m =23R = 12.5 J/(mol·K) 对于双原子理想气体,i = 5,C V ,m =25R = 20.8 J/(mol·K) 对于多原子理想气体,i = 6,C V ,m = 3R = 24.9 J/(mol·K)有了定体摩尔热容,就可以计算气体在等体过程中吸收的热量.因为质量为m 的气体的摩尔数为Mm ,故由定体摩尔热容定义,当气体的温度由T l 升高到T 2时吸收的热量为)(12m ,T T C Mm Q V V -=(11-20) 此式适用范围不限于理想气体,但式中C V ,m 应是所讨论的气体在相应温度范围内的平均定体摩尔热容.气体的定压摩尔热容 1 mol 的气体在等压过程中温度升高l K 时吸收的热量称为定压摩尔热容,记号为C p ,m ,如果l mol 气体在等压过程中温度升高d T 时吸收的热量为(d Q )p ,则 T Q C pp d )d (m ,= (11-21)由(11-9)式,(d Q )p = d E + p d V ,代入上式得TV p T E C p d d d d m ,+= (11-22) 对于1 mol 理想气体来说,d E = C V ,m dT ,p d V = R d T ,代入(11-22)式得C p ,m = C V ,m + R (11-23)上式称为迈耶公式.它表示理想气体的定压摩尔热容比定体摩尔热容大一常量R = 8.31 J/(mol·K).即是说,1 mol 理想气体在等压过程中温度升高1 K 时吸收的热量比在等体过程中吸收的热量多8.31 J .这多吸收的热量是用来对外作功的.因R i C V 2m ,=,代入(11-23)式得 R i C p 22m ,+= (11-24) 对于单原子理想气体,i = 3,C p ,m =25R = 20.8 J/(mol·K) 对于双原子理想气体,i = 5,C p ,m =27R = 29.1 J/(mol·K) 对于多原子理想气体,i = 6,C p ,m = 4R = 33.2 J/(mol·K)有了定压摩尔热容,就可以计算气体在等压过程中吸收的热量.因为质量为m 的气体的物质的量为Mm ,故由定压摩尔热容定义,当气体的温度从T l 升高到T 2时吸收的热量为)(12m ,T T C Mm Q p p -= (11-25) 此式适用的范围也不限于理想气体.热容比 定压摩尔热容与定体摩尔热容的比值称为气体的热容比,用γ表示:m ,m ,V p C C =γ (11-26) 对于理想气体,R i C p 22m ,+=,R i C V 2m ,=,代入(11-26)式得 ii 2+=γ (11-27)对于单原子理想气体,i = 3,γ =35 = 1.67 对于双原子理想气体,i = 5,γ = 57 = 1.40 对于多原于理想气体,i = 6,γ = 68 = 1.33 表11-1列举了在常温常压下几种气体的定体和定压摩尔热容的实验值.从表中可以看出:(1) 对各种气体来说,两种摩尔热容之差C p ,m - C V ,m 都接近于R ;(2) 对单原子及双原子气体来说C p ,m 、C V ,m 、γ的实验值与理论值都比较接近,这说明古典热容理论近似地反映了客观事实.但是对分子结构复杂的气体即三原子以上的气体来说,理论值与实验值有较大偏离.这说明上述理论是个近似理论,只有用量子理论才能较好地解决热容的问题.§11-5 热力学第一定律对理想气体绝热过程的应用气体与外界无热量交换的变化过程称为绝热过程,它的特征是Q = 0.为了实现绝热过程,必须使容器壁是绝热的.例如气体在用绝热材料包起来的容器内或在杜瓦瓶(如热水瓶胆)内进行的变化过程可近似地看作绝热过程,又如声波传播时所引起的空气的膨胀和压缩,内燃机气缸内爆炸过程后的膨胀作功过程等,由于过程进行得很快,来不及与四周交换热量,也可近似地看作绝热过程. 在绝热过程中,因为Q = 0,热力学第一定律可写为E 2 - E 1 + W Q = 0 (11-28)对于微小的变化过程有d E + p d V = 0 (11-29)由(11-28)式得W Q = - (E 2 - E 1) (11-30)此式表示;气体作绝热膨胀时,对外作功是以气体内能的减少为代价的,由R i C V 2m ,=及(11-13)式得 )(12m ,12T T C Mm E E V -=- (11-31) 以(11-31)式代入(11-30)式得)()(12m ,12T T C Mm E E W V Q --=--= (11-32) 由此式看出,当气体作绝热膨胀对外作功时,它的内能减少,温度降低;反之,当气体作绝热压缩时,外界对气体作功,气体的内能增加,温度升高.总起来讲,不论气体作绝热膨胀或绝热压缩,它的体积和温度都要发生变化,又由理想气体状态方程RT Mm pV =知气体的体积、温度变化时,压强也要发生变化.所以在绝热过程中,气体的p 、V 、T 三个状态参量都同时发生变化.可以证明(推导过程见后面小字部分)在绝热过程中p 、V 、T 三个量中任意两个量之间的关系为pV γ = 常量 (11-33)V γ-1T = 常量 (11-34)p γ-1T -γ = 常量 (11-35) 式中m ,m,V p C C =γ是气体的热容比.以上三个方程中的常量的值各不相同,每一方程中的常量的值可由气体的初始状态决定.以上三个方程中每一方程都表示同一过程.应区别过程方程与状态方程,状态方程适用于任何平衡状态,故RT Mm pV =适用于任何平衡状态,而过程方程只适用于特定过程中的平衡状态,例如绝热过程方程pV γ = 常量,只适用于某一绝热过程中的平衡状态.绝热过程方程pV γ = C (常量)可用p -V 图上一曲线表示,如图11-7中的实线,此曲线称为绝热线.图中虚线表示同一气体的等温线,A 点是两条曲线的交点.从图上看出,绝热线比等温线陡些.这可以从两方面加以解释. 从数学角度看,等温线的方程是pV = C ,所以等温线于A 点的斜率是 V p V p T-=⎪⎭⎫ ⎝⎛d d 绝热线的方程是pV γ = C ’,所以绝热线在A 点的斜率是 V p V p Q γ-=⎪⎭⎫ ⎝⎛d d 因γ > 1,所以在交点A 处绝热线的斜率的绝对值大于等温线的斜率的绝对值,即是说,绝热线比等温线陡些.从物理方面来看,假设从状态A 开始,令气体体积增加ΔV .不论气体作等温膨胀或绝热膨胀,其压强p 都要降低.但因为当气体作等温膨胀时,引起压强降低的因素只有一个,即体积的增加.而当气体作绝热膨胀时,引起压强降低的因素有两个,即体积的增加和温度的降低.所以气体作绝热膨胀时引起的压强降低比气体作等温膨胀时降低得多些,即图中Δp Q 比Δp T 大些,所以绝热线比等温线陡些.图11-7*绝热过程方程的推导 由理想气体内能公式RT i M m E 2=及R i C V 2m ,=,并利用微分得 T C Mm E V d d m ,=代入(11-29)式得 0d d m ,=+V p T C Mm V (11-36) 又由理想气体状态方程RT Mm pV =及微分得 T R Mm p V V p d d d =+ (11-37) 由(11-36)及(11-37)两式消去d T 得C V ,m (p d V + V d p )+ Rp d V = 0因C p ,m = C V ,m + R ,上式可写为C p ,m p d V + C V ,m V d p = 0即 0d d =+VV p p γ 其中m ,m,V p C C =γ.积分上式得ln p + γ ln V = 常量或 ln pV γ = 常量或 pV γ = 常量这就是绝热过程方程(11-33)式.将上式与状态方程RT Mm pV =依次消去p 和V ,便得到(11-34)及(11-35)式.例题11-2 1.2×10-2 kg 的氦气(视为理想气体)原来的温度为300K ,作绝热膨胀至体积为原来体积的2倍,求氦气在此过程中所作的功.如果氦气从同一初态开始作等温膨胀到相同的体积,问气体又作了多少功?将此结果与绝热过程中的功作比较.并说明其原因.解 氦气的摩尔质量M = 4.0×10-3 kg/mol ,已知氦气质量m = 1.2×10-2 kg ,T 1 = 300 K ,V 2 = 2V 1.因为把氦气当作单原子理想气体,i = 3,γ = 1.67,R i C V 2m ,=,则由绝热过程方程(11-34)式111212T V T V --=γγ得 K 189K 30021167.111212=⨯⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=--T V V T γ由(11-30)式,气体在绝热过程中的功为)(2)()(1212m ,12T T R i M m T T C M m E E W V Q --=--=--= J 104.2J )300189(31.823100.4102.1332⨯=-⨯⨯⨯⨯⨯-=-- 如果氦气作等温膨胀至体积为原来体积的2倍,由(11-15)式,气体所作的功为J 105.2J 2ln 30031.8100.4102.1ln 332121⨯=⨯⨯⨯⨯⨯==--V V RT M m W T 由此可以看出W T > W Q ,这是因为绝热线比等温线陡,从同一初态开始膨胀到同一体积的条件下,等温线下面的面积大于绝热线下面的面积之故.§11-6 循环过程 卡诺循环 热机的效率一、循环过程在生产实践中需要持续不断地把热转变为功,但依靠一个单独的变化过程不能够达到这个目的.例如,气缸中的气体作等温膨胀时,它从热源吸热对外作功,它所吸收的热量全部转变为功.但由于气缸的长度总是有限的,这个过程不可能无限制地进行下去,所以依靠气体等温膨胀所作的功是有限的.为了持续不断地把热转变为功,必须利用循环过程.定义:如果物质系统经过一系列状态变化过程后又回到原来的状态,则这全部变化过程称为循环过程,简称循环,这个系统称为工作物质.在p -V 图上工作物质的循环过程可用一闭合曲线表示,如图11-8(a)中的ABCDA 曲线.工作物质经历一系列状态变化过程后又回到原来状态时,它的内能没有变化,即E 2 – E 1 = 0.这是循环过程的重要特征.现在讨论从状态A 开始沿顺时针方向,即沿ABCDA 方向进行的循环,这样的循环称为正循环过程.工作物质完成一个正循环回到原始状态A 时,其内能不变,但工作物质对外界作了功,并且与外界有热量交换.在ABC 过程中工作物质膨胀对外作功,所作的功在数值上等于曲线ABC 下面的面积,在CDA 过程中工作物质被压缩,外界对工作物质作功,所作的功等于曲线CDA 下面的面积.所以在整个循环中工作物质所作的净功W 等于闭合曲线ABCDA 所包围的面积.在循环过程中工作物质要从外界吸热,也会向外界放热,根据热力学第一定律,因E 2 – E 1 = 0,工作物质从外界吸收的总热量Q 1必然大于放出的总热量Q 2(取绝对值).设工作物质吸收的净热Q = Q 1 - Q 2,故得Q = Q 1 - Q 2 = W (11-38)上式表示,在循环过程中工作物质吸收的净热等于它对外所作的净功,即净热 = 净功 = 循环过程曲线所包围的面积(11-38)式可以写为Q 1 = W + Q 2此式表示,在每一循环中,工作物质从高温热源吸取热量Q l 一部分用于对外作(a) (b)图11-8。

热工学基础第3版的课后答案

热工学基础第3版的课后答案

热工学基础第3版的课后答案
第一章思考题
1.平衡状态与稳定状态有何区划?热力学中为什么要引入平衡态的概念?
答:平衡状态是在不受外界影响的条件下,系统的状态参数不随时间而变
化的状态。

而稳定状态则是不论有无外界影响,系统的状态参数不随时间而变
化的状态。

可见平衡必稳定,而稳定未必平衡,热力学中引入平衡态的概念,
是为了能对系统的宏观性质用状态参数来进行描述。

2.表压力或真空度能否作为状态参数进行热力计算?若工质的尺力不变,
问测量其压力的压力表或真空计的读数是否可能变化?
答:不能,岗为表压力或真空度只是一个相对压力。

若工质的压力不变,
测量其压力的压力表或真空计的读数可能变化,因为测录所处的环境压力可能
发生变化。

3.当真空表指示数值愈大时,表明被测对象的实际压力愈大还是愈小?
答:真空表指示数值愈大时,表明被测对象的实际压力愈小,
4.准平衡过程与可逆过程有何区别?
答;无耗散的准平衡过程才是可逆过程,所以可逆过释一定是准平衡过程,而准平衡过程不一定是可逆过程。

5.不可逆过程是无法回复到初态的过程,这种说法是否正确?
答:不正确。

不可递过程是指不论用任何曲折复杂的方法都不能在外界不
造留任何变化的情况下使系统回复到初态,并不是不能回复到初态。

流体力学与热工学基础3-4 伯努利方程在工程上的应用

流体力学与热工学基础3-4 伯努利方程在工程上的应用

2,注意事项
1)选取参考面时,尽是过较低断面的中心,使Z1、Z2中
至少有一个为0
2)用伯努利方程时,常配合使用总流的连续性方程
v1F1 v2 F2
3)压力P1、P2必须同时使用同一压力(表压力或绝对压力)。 4)取定断面上,列伯努利方程的点常取在断面的中心
(有代表性),对大容器、明渠,可取在自由液面上。
pM
g
v
2 M
2g
hl3M
pM
g ( H
hl3M
v
2 M
)
9.8(5
0.2
1.38)
33.5KPa
2g
(3)将各断面总水头值所描绘的点连线得到总水头线,将各断面 测压管水头线值所描绘的点连线得到测压管水头线。
例2,如图所示,已知dA=15mm、 dB=7.5mm,a=2.4m,
水的流量Q=0p.A02mpB3/s,11772 N / m2 . (1)如果AB之间的水头损失表示为 v,A2 试求ξ值。
Z2
p2
g
v22 2g
hw
将参考断取在管轴线上,不计水头损失。
p1 p2 v22 v12 h
g
2g
由连续性方程:
v2
v1
F1 F2
v1
d12
d
2 2
得: v1
2g h (d1 / d2 )4 1
实测流量为:
QT K h
μ——粘性修正系数,一般取0.98
K—仪器常数
4.船用螺旋桨的推力
5)一般所取断面上的动能修正系数不等,实际计算时可
取值如下:
对管内紊流: 1 对管2 内1层流:
1 2 2
二、有机械功出入时的伯努利方程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

T2 1 T1 T2
T1 2 T1 T2
逆卡诺循环的供热系数:
1、逆卡诺循环的性能系数取决于高温热源和低温冷 源的温度。
普通高等教育“十一五”国家级规划教材
2、逆卡诺循环的制冷系数可能小于、等于、大于1。逆卡 诺循环的供热系数大于1。 3、逆卡诺循环的制冷系数通常大于1。
4、逆卡诺循环可以用于供热和制冷。供热时叫做热泵。
(2)有限温差传热 热可以自发地从高温物体传到低温物体,但却不能自 发地从低温物体传到高温 (3)自由膨胀 气体自发向真空膨胀,但却不能自发压缩,空出一个 空间 (4)混合过程 两种气体可自发地混合,却不可自发地分离
普通高等教育“十一五”国家级规划教材
二、热力学第二定律的表述 由于人们分析问题的出发点不同,所以“热二”有各 种各样的说法,但无论有多少种不同的说法,它们都反映 了客观事物的一个共同本质,即自然界的一切自发过程有 方向性。
普通高等教育“十一五”国家级规划教材
二、逆卡诺循环(属可逆循环)
组成:
c-b 工质可逆定熵压缩
a-d工质可逆定熵膨胀
b-a工质向高温热源可逆定温放热
d-c工质从低温冷源可逆定温吸热
普通高等教育“十一五”国家级规划教材
热源 T
T1
热源 T
T2
冷源 T
冷源 T
普通高等教育“十一五”国家级规划教材
逆卡诺循环的制冷系数:
S21可逆 S21不可逆
普通高等教育“十一五”国家级规划教材
不可逆过程的熵
任意不可逆循环

12
Q
1a 2
T

Q
1b 2
T
S21
S21 S 2 S1
Q
T
= 可逆 > 不可逆 除了传热,还有其它因素影响熵
S
Q
T
不可逆绝热过程 不可逆因素会引起熵变化
Q 0 dS 0
普通高等教育“十一五”国家级规划教材
4.1 热力循环
要实现连续作功,必须构成循环
定义:
热力系统经过一系列变化回到初态,这一系列变化 过程称为热力循环。 分类: 可逆 过程 不可逆 循环 不可逆循环
可逆循环
普通高等教育“十一五”国家级规划教材
热工学基础 第3版
• 书名:热工学基础 第3 版 • 书号:978-7-11150311-8 • 作者:刘春泽 李国斌 • 出版社:机械工业出 版社
Q2
T2
普通高等教育“十一五”国家级规划教材
热力循环的评价指标 逆循环:净效应(对内作功,放热)
制冷循环:制冷系数
T0 Q1 W
Q2
T2
普通高等教育“十一五”国家级规划教材
热力循环的评价指标
逆循环:净效应(对内作功,放热)
制热循环:制热系数 T1
Q1 W
Q2
T0
普通高等教育“十一五”国家级规划教材
普通高等教育“十一五”国家级规划教材
正循环:顺时针方向 p T 2
1
2 V 净效应:对外作功
1 S 净效应:吸热
普通高等教育“十一五”国家级规划教材
逆循环:逆时针方向 p T 2
1
2 V 净效应:对内作功
1 S 净效应:放热
普通高等教育“十一五”国家级规划教材
热力循环的评价指标
正循环:净效应(对外作功,吸热) 动力循环:热效率 T1 Q1 W
普通高等教育“十一五”国家级规划教材
克劳修斯说法: 不可能把热从低温物体传到高温物体而不引起其它 变化。 开尔文说法: 不可能从单一热源取热,使之完全变为有用功,而 不引起其它变化。 “克氏”是从传热的角度出发,“开氏”是从功热 转换的角度出发。
普通高等教育“十一五”国家级规划教材
4.3 卡诺循环与卡诺定理 热功转换的最大效率的求取方法 一、卡诺循环(属可逆循环) 组成: a-b工质从高温热源可逆定温吸热 c-d工质低温冷源可逆定温放热 b-c工质可逆定熵膨胀 d-a工质可逆定熵压缩
可逆过程,
Q q
, 代表某一状态函数。 T T
定义:熵
dS
Qre
T
比熵 ds
qre
T
普通高等教育“十一五”国家级规划教材
可逆时
dS 0 dS 0 dS 0
Q 0 Q 0 Q 0
熵的物理意义
熵变表示可逆过程中 热交换的方向和大小
熵是状态量
熵变与路径无关,只与初终态有关
2 1 1
普通高等教育“十一五”国家级规划教材
三、卡诺定理 卡诺定理表达: 1、所有工作于同温冷源与同温热源之间的一切热机, 以可逆热机的效率为最高。 2、在工作于同温冷源与同温热源之间的一切可逆热机, 其效率均相等。
普通高等教育“十一五”国家级规划教材
4.4 熵及孤立系统的熵增原理
பைடு நூலகம்总是熵增
普通高等教育“十一五”国家级规划教材
熵的计算
理想气体 任何过程
dT v2 S21 cv R ln 1 T v1 2 dT p2 S21 cp R ln 1 T p1 2 dv 2 dp S21 cp cv 1 v 1 p
2
仅 可 逆 过 程 适 用
普通高等教育“十一五”国家级规划教材
热源 T
T1
热源 T
T2
冷源 T
冷源 T
普通高等教育“十一五”国家级规划教材
卡诺循环的热效率:
q2 t 1 q1
t ,c
T2 1 T1
结论:1、卡诺循环的热效率取决于高温热源和低温冷源的 温度。 2、卡诺循环的热效率总小于1。 3、当T1=T2时,卡诺循环的热效率等于0。 4、卡诺循环的热效率与工质的性质无关。
4.2 热力学第二定律的实质及表述
一、自然过程的方向性 经验告诉我们,自然界发生的许多过程是有方向性的。 例如: (1)热工转化 焦耳的功转换成热的试验,重物下降,搅动量热 器中的水使水温升高,但不能让水自动冷却而产生动 力把重物举起。即重物下降能使水温升高,但水温降 低不能使重物上升
普通高等教育“十一五”国家级规划教材
普通高等教育“十一五”国家级规划教材
孤立系统熵增原理
无质量交换
孤立系统
无热量交换
无功量交换
dSf 0
dSiso dSg 0
热二律表达式之一
=:可逆过程 >:不可逆过程
结论:孤立系统的熵只能增大,或者不变, 绝不能减小,这 一规律称为孤立系统 熵增原理。
相关文档
最新文档