光电脉搏测量仪

合集下载

脉搏血氧仪使用指南

脉搏血氧仪使用指南

脉搏血氧仪使用指南脉搏血氧仪是一种用于测量血氧饱和度和脉搏的设备,常被用于医疗机构和个人家庭使用。

本文将为您详细介绍脉搏血氧仪的正确使用方法和注意事项。

一、脉搏血氧仪的基本原理脉搏血氧仪通过红外线和光电二极管的原理来监测血氧饱和度和脉搏频率。

当脉搏血氧仪夹在手指上或其他部位时,红外光和红外光电二极管通过血液测定光强度的变化,从而计算出血氧饱和度和脉搏频率。

二、正确使用脉搏血氧仪的步骤1. 准备工作在使用脉搏血氧仪之前,确保设备已经正确连接电源并处于工作状态。

同时,准备一个干净的手指,保持手指干燥和清洁,以确保测试结果的准确性。

2. 佩戴脉搏血氧仪将脉搏血氧仪戴在需要进行测量的手指上(一般为食指或中指),调整脉搏血氧仪的位置,确保光电二极管对准指尖。

然后轻轻按下脉搏血氧仪的开关按钮,等待设备开始测量。

3.等待测量结果待设备开始工作后,屏幕上会显示出血氧饱和度和脉搏频率的数字值。

通常情况下,测量结果会在几秒钟内显示出来。

在等待的过程中,保持手指静止,不要过度移动,以免影响测量的准确性。

4.读取测量结果读取屏幕上显示的血氧饱和度和脉搏频率数值。

通常来说,正常血氧饱和度范围在95%至100%之间,脉搏频率范围在60次/分钟至100次/分钟之间。

如果测量结果超出了正常范围,建议咨询医生进一步诊断和治疗。

5.清洁和保养使用完毕后,将脉搏血氧仪上的传感器部分用纸巾或湿布轻轻擦拭干净,并保持干燥。

避免将设备暴露在潮湿或多尘的环境中,以免影响使用寿命和准确性。

三、脉搏血氧仪的注意事项1. 正确佩戴佩戴脉搏血氧仪时,要确保光电二极管对准指尖,并注意不要戴得过紧或过松,以免影响测量结果的准确性。

2.保持手指稳定在测量的过程中,保持手指稳定不要过度移动,以免干扰脉搏血氧仪的工作。

3.避免阳光直射脉搏血氧仪应远离阳光直射的环境,因为阳光会对设备的精确性和准确性造成干扰。

4.充电和电量检查如果脉搏血氧仪是充电式的,确保设备有足够的电量来完成测试。

脉搏测量仪方案

脉搏测量仪方案

脉搏测量仪方案概述脉搏测量仪(Pulse Measurement Device)是一种用于测量人体脉搏的设备。

它能够准确地测量心脏跳动的频率,并提供实时的脉搏波形数据。

脉搏测量仪可以应用于医疗领域,以监测患者的心率状况,也可以应用于健康管理领域,帮助个人监测自己的健康状态。

本文将详细介绍脉搏测量仪的工作原理、硬件设计和软件实现,以及相关的应用场景。

工作原理脉搏测量仪的工作原理基于光电传感技术。

当光线通过皮肤时,被皮肤的组织、血液和其他物质吸收或散射。

脉搏测量仪利用光电传感器感知皮肤上反射的光线,并通过对光线的变化进行分析来测量脉搏。

光电传感器通常由两个组件组成:发光二极管(LED)和光电二极管(Photodiode)。

LED发出特定波长的光,通常是红光或红外光。

光电二极管感应到反射的光,并将其转换为电流信号。

脉搏测量仪的工作流程如下:1.LED发出特定波长的光照射在皮肤上。

2.光电二极管感知到反射的光,并将其转换为电流信号。

3.电流信号经过放大和滤波处理。

4.通过算法计算脉搏波形和心率。

硬件设计主要组件脉搏测量仪的硬件设计主要包括以下组件:1.光电传感器:用于感知皮肤上反射的光线。

2.放大器和滤波器:用于放大和滤波电流信号。

3.微处理器:用于数据处理和算法计算。

4.显示屏和按键:用于显示和设置相关信息。

电路设计脉搏测量仪的电路设计主要包括以下几部分:1.光电传感器电路:包括LED和光电二极管,以及相关的驱动电路。

2.放大器和滤波器电路:用于放大和滤波电流信号,以便后续处理。

3.微处理器电路:包括微处理器、存储器和相关的接口电路。

外壳设计脉搏测量仪的外壳设计应考虑用户的使用体验和舒适度。

外壳应具有人体工程学设计,以便用户可以方便地握持设备,并确保光线可以有效地照射到皮肤上。

软件实现数据采集和处理脉搏测量仪的软件实现主要包括以下几个方面:1.数据采集:通过光电传感器采集到的电流信号。

2.数据放大和滤波:对采集到的电流信号进行放大和滤波处理,以减少干扰噪声。

脉搏测量

脉搏测量
当手指放在红外线发射二极管和接收三极管中间,随着心脏的跳动,血管中血液的流量将发生变换。由于手指放在光的传递路径中,血管中血液饱和程度的变化将引起光的强度发生变化,因此和心跳的节拍相对应,红外接收三极管的电流也跟着改变,这就导致红外接收三极管输出脉冲信号。该信号经放大、滤波、整形后输出,输出的脉冲信号作为单片机的外部中断信号。单片机电路对输入的脉冲信号进行计算处理后把结果送到数码管显示。
2.1 光电脉搏测量仪的结构
光电脉搏测量仪是利用光电传感器作为变换原件,把采集到的用于检测脉搏跳动的红外光转换成电信号,用电子仪表进行测量和显示的装置。本系统的组成包括光电传感器、信号处理、单片机电路、数码显示、电源等部分。
(1)光电传感器
即将非电量(红外光)转换成电量的转换元件,它由红外发射二极管和接收三极管组成,它可以将接收到的红外光按一定的函数关系(通常是线性关系)转换成便于测量的物理量(如电压、电流或频率等)输出。
测量过程当中,通常情况下手指和光电式脉搏传感器可能产生相对的运动,这样对脉搏测量产生误差,可以通过两个方面减少运动噪声误差:一是改善指套式传感器的机械抗运动性,比如说使指套能够更紧的套在手指上,不易松动;二是从脉搏信号处理的角度,通过算法来减小误差。对于传感器的设计,现在采用的主要是第一个途径。
4.3测量仪使用方法
5.系统调试
根据系统设计方案,本系统的调试可分为两大部分:模拟部分和纯MCU部分。由于在系统设计中采用模块化设计,所以方便了对各电路功能模块的逐级测试。断开两部分的连接点,先调试MCU部分。试着输入一系列脉冲(用适当的电阻接正极,间断性地输入),观察MCU部分能是否能显示;模拟部分用不透明的笔在红外发射二极管和接收三级管之间摇摆,借助示波器观察波形效果如何。单片机软件先在最小系统板上调试,确保工作正常之后,再与硬件系统联调。最后将各模块组合后进行整体测试,使系统的功能得以实现。 1.放大倍数的增加

脉搏测量仪

脉搏测量仪

引言脉搏测试仪是用来测量一个人脉搏跳动次数的电子仪器,也是心电图的主要组成部分,因此,在现代医学上具有重要的作用。

目前检测脉搏的仪器虽然很多,但是能实现精确测量、精确显示且计时功能准确等多种功能的便携式全数字脉搏测量装置很少。

随着人们生活环境和经济条件的改善,以及文化素质的提高,其生活方式,保健需求以及疾病种类、治疗措施等发生了明显的变化。

但在目前,我国的心脑血管疾病仍呈逐年上升趋势。

其发病率和死亡率均居各种疾病之首,是人类死亡的主要原因之一。

因此,认识、预防及早期发现这些疾病是十分必要的。

从脉搏波中提取人体的生理病理信息作为临床诊断和治疗的依据,历来都受到中外医学界的重视。

几乎世界上所有的民族都用过“摸脉”作为诊断疾病的手段。

脉搏波所呈现出的形态(波形)、强度(波幅)、速率(波速)和节律(周期)等方面的综合信息,在很大程度上反映出人体心血管系统中许多生理病理的血流特征,因此对脉搏波采集和处理具有很高的医学价值和应用前景。

但人体的生物信号多属于强噪声背景下的低频弱信号,脉搏波信号更是低频微弱的非电生理信号,必需经过放大和后级滤波以满足采集的要求。

1 基本结构模块1.1 脉搏波检测电路目前脉搏波检测系统有以下几种检测方法:光电容积脉搏波法、液体耦合腔脉搏传感器、压阻式脉搏传感器以及应变式脉搏传感器。

近年来光电检测技术在临床医学应用中发展很快,这主要是由于光能避开强烈的电磁干扰,具有很高的绝缘性,且可非侵入地检测病人各种症状信息。

用光电法提取指尖脉搏光信息受到了从事生物医学仪器工作的专家和学者的重视。

本系统设计了指套式的透射型光电传感器,实现了光电隔离,减少了对后级模拟电路的干扰。

传感器是一种以一定的精确度把被测量转换为与之有确定对应关系的、便于应用的某种物理量的测量装置。

所用光电式传感器由发光二级管和光敏二极管组成,其工作原理是:发光二极管发出的光透射过手指,经过手指组织的血液吸收和衰减,由光敏二极管接收。

脉诊仪的工作原理

脉诊仪的工作原理

脉诊仪的工作原理脉诊仪是一种用于探测和诊断人体脉搏的电子设备。

其工作原理主要基于两个方面:脉搏感应和信号处理。

脉搏感应是通过传感器来探测人体脉搏信号。

脉搏感应传感器通常使用光电传感器或压力传感器。

光电传感器使用红外线光源照射皮肤表面,然后通过光敏元件来检测反射回来的光线的强度变化。

当动脉血液流经皮肤表面时,皮肤的血红蛋白会对红外线光线产生吸收,使得反射回来的光线强度发生变化。

通过检测这种光线强度的变化,脉搏感应传感器可以探测到脉搏信号的存在。

信号处理是对脉搏信号进行放大、滤波和分析的过程。

脉诊仪通常会使用放大器来增强脉搏信号的幅度,以便更好地进行后续的处理。

滤波器则可以滤除掉脉搏信号中的噪声和杂波,以保证信号的准确性。

信号分析部分会对脉搏信号进行计算、特征提取和比对,以获得与不同脉象特征相关的诊断结果。

脉诊仪中的信号处理部分通常包括以下几个步骤。

首先,对脉搏信号进行滤波,以去除高频噪声和低频漂移。

滤波可以使用数字滤波器或者模拟滤波器实现。

然后,对滤波后的信号进行放大,以增加信号的幅度,使得后续的分析更容易进行。

放大可以使用放大电路或者运算放大器来实现。

接下来,对放大后的信号进行特征提取和分析。

特征提取是通过对脉搏信号的波形、频率和振幅等特征进行计算和分析来得到脉象的信息。

这些特征可以用于识别正常脉象和不正常脉象,并进行相应的诊断。

最后,将分析得到的结果进行显示和输出,以供医生和患者参考和分析。

总结来说,脉诊仪的工作原理主要是通过脉搏感应传感器来探测人体脉搏信号,然后通过信号处理来放大、滤波和分析脉搏信号,以获得与脉象特征相关的诊断结果。

这些技术的应用使得脉诊仪成为一种方便、快速和准确的诊断工具,在临床医学中得到了广泛的应用。

脉搏血氧仪的测量原理

脉搏血氧仪的测量原理

脉搏血氧仪的测量原理
脉搏血氧仪是一种用于测量人体脉搏和血氧饱和度的医疗设备。

它的工作原理基于一种叫做光电测量的技术。

首先,脉搏血氧仪通过一个传感器将红外线光和红光透射到人体皮肤上。

这两种光在通过皮肤组织时会被血液吸引和吸收,然后反射回传感器。

接下来,传感器会测量红光和红外线光经皮肤反射后的强度差异。

由于血红蛋白的吸收特性,当血液中的氧饱和度高时,红光被吸收较多;而当血液中的氧饱和度低时,则红外线光被吸收较多。

最后,脉搏血氧仪根据红光和红外线光的强度差异计算出血液的氧饱和度。

这个数值通常以百分比的形式显示。

需要注意的是,脉搏血氧仪的测量结果可能受到各种因素的影响,例如周围光线的强度、使用者的运动状态、传感器的质量等。

因此,在使用脉搏血氧仪进行测量时,我们应该尽量创建一个稳定的测量环境,并注意遵循使用说明书上的操作指南,以确保测量结果的准确性。

光电心率传感器原理

光电心率传感器原理

光电心率传感器原理
光电心率传感器是一种通过测量心脏跳动产生的脉搏波信号来监测心率的装置。

其原理基于脉搏波信号的特征,该信号可以在皮肤表面被光电传感器捕捉到。

光电心率传感器的工作原理可以简单分为两个步骤:光照射和光电传感。

首先,光照射。

传感器通常包括一个红外光源和一个光敏元件。

红外光源发出红外光,该光能够透过皮肤表面,达到血液中的血管。

接下来,光电传感。

光敏元件位于皮肤表面附近,它会接收由红外光照射到皮肤上的血管导致的反射光信号。

这个反射光信号的强度会随着血流量的变化而产生变化。

当心脏跳动时,血流量增加,将导致较强的反射光信号;当心脏放松时,血流量减少,反射光信号会变弱。

通过测量这些不同的光信号强度,传感器可以确定心脏的跳动频率。

为了确保准确性,该传感器通常会采集多次心脏跳动产生的脉搏波信号,并对其进行平均处理。

这样可以减少由于外界干扰或信号噪声引起的偏差。

值得注意的是,由于皮肤的透明度和血管位置的不同,不同人群和不同部位的测量结果可能会稍有差异。

因此,在使用光电心率传感器时,应该按照使用说明书进行正确的操作并进行数据的适当分析和解读。

基于单片机的脉搏心率测量仪-参考论文.

基于单片机的脉搏心率测量仪-参考论文.

摘要脉搏心率测量仪在我们的日常生活中已经得到了非常广泛的应用。

为了提高脉搏心率测量仪的简便性和精确度,本课题设计了一种基于52单片机的脉搏心率测量仪。

系统以STC89C52单片机为核心,以红外反射式传感器ST188为检测原件,并利用单片机系统内部定时器来计算时间,由红外反射式传感器ST188感应产生脉冲,单片机通过对脉冲累加得到脉搏心率跳动次数,时间由定时器定时而得。

系统运行中能显示脉搏心率次数和时间,系统停止运行时,能够显示总的脉搏心率次数和时间。

经测试,系统工作正常,达到设计要求。

关键词:脉搏心率测量仪;STC89C52单片机;红外反射式传感器AbstractPulse meter in our daily life have got the very extensive application.In order to improve the simplicity and accuracy of the apparatus used to measure the pulse, this topic has designed a pulse measuring instrument based on 52 microcontroller.System with STC89C52 single-chip microcomputer as the core, with original ST188 infrared reflection type sensor for the detection, and use the single chip microcomputer system internal timer to measure time, pulse generated by the reflecting type of infrared sensor ST188 induction, microcontroller pulse is obtained by the pulse accumulation number, time by the timer timing.System can display the pulse frequency and time, the system stops running, can display the total pulse frequency and time.After the test, the system works well, to meet the design requirements.Keywords:The pulse measuring instrument;STC89C52 single-chip microcomputer;The infrared reflection type sensor目录摘要 (I)Abstract........................................................... I I 第1章概述 (1)1.1 选题的背景和意义 (1)1.2 脉搏心率测量仪的发展与应用 (2)第2章脉搏心率测量仪系统结构 (4)2.1 光电脉搏心率测量仪的结构 (4)2.2工作原理 (5)2.3光电脉搏心率测量仪的特点 (5)第3章硬件系统 (7)3.1 控制器 (7)3.1.1 STC89C52 简介 (7)3.1.2 STC89C52 的特点 (7)3.1.3 STC89C52 的结构 (8)3.2脉搏心率信号采集 (10)3.2.1光电传感器的原理 (11)3.2.2光电传感器的结构 (11)3.2.3 光电传感器检测原理 (12)3.2.4信号采集电路 (12)3.3信号放大 (13)3.3.1放大器的介绍 (13)3.3.2 放大电路 (14)3.4 波形整形电路 (15)3.5单片机处理电路 (17)3.6 显示电路 (17)3.6.1 LCD1602 的综述 (19)3.6.2 LCD1602 的结构 (19)3.6.3 LCD1602指令集 (19)3.6.4 脉搏心率测量仪电路原理图 (21)第4章软件系统 (24)4.1 主程序流程: (24)4.2 定时器中断程序流程: (24)4.3 INT中断程序流程: (25)4.4 显示程序流程: (26)4.5 软件说明 (27)第五章抗干扰措施及使用方法 (27)5.1抗干扰措施 (27)5.1.1环境光对脉搏心率传感器测量的影响 (27)5.1.2电磁干扰对脉搏心率传感器的影响 (28)5.1.3 测量过程中运动噪声的影响 (28)5.2测量仪使用方法 (28)第6章系统调试 (30)6.1 系统调试 (30)6.2 系统检验 (31)6.3 误差分析 (32)第七章总结与展望 (34)参考文献 (36)附录 (38)致谢 (44)第1章概述1.1 选题的背景和意义脉搏心率携带有丰富的人体健康状况的信息,自公元三世纪我国最早的脉学专著《脉经》问世以来,脉学理论得到不断的发展和提高。

光电脉搏测量仪

光电脉搏测量仪

光电脉搏测量仪设计报告一、设计意义从脉搏波中提取人体的生理病理信息作为临Array床诊断和治疗的依据,历来都受到中外医学界的重视。

目前医院的护士每天都要给住院的病人把脉记录病人每分钟脉搏数,方法是用手按在病人腕部的动脉上,根据脉搏的跳动进行计数。

为了节省时间,一般不会作1分钟的测量,通常是测量10秒钟时间内心跳的数,再把结果乘以6即得到每分钟的心跳数,即使这样做还是比较费时,而且精度也不高,因此,需要有使用更加方便,测量精度更高的设备。

二、关键技术脉搏检测中关键技术是传感器的设计与传感器输出的微弱信号提取问题, 本文设计的脉搏波检测系统以光电检测技术为基础,并采用了脉冲振幅光调制技术消除周围杂散光、暗电流等各种干扰的影响。

并利用过采样技术和数字滤波等数字信号处理方法,代替实现模拟电路中的放大滤波电路的功能。

本系统模拟电路简单,由ADC841芯片实现脉搏信号采集,信号处理和脉搏次数的计算等功能,因此体积小,功耗低,系统稳定性高。

本系统可实现脉搏波的实时存储并可实现与上位机(PC机)的实时通讯, 因此可作为多参数病人中心监护系统的一个模块完成心率检测和脉搏波形显示。

三、硬件设计3.1 设计框图光电脉搏测量仪是利用光电传感器作为变换原件,把采集到的用于检测脉搏跳动的红外光转换成电信号,用电子仪表进行测量和显示的装置。

本系统的组成包括光电传感器、信号处理、单片机电路、数码显示、电源等部分。

脉搏测量仪硬件框图如图1所示。

当手指放在红外线发射二极管和接收三极管中间,随着心脏的跳动,血管中血液的流量将发生变换。

由于手指放在光的传递路径中,血管中血液饱和程度的变化将引起光的强度发生变化,因此和心跳的节拍相对应,红外接收三极管的电流也跟着改变,这就导致红外接收三极管输出脉冲信号。

该信号经放大、滤波、整形后输出,输出的脉冲信号作为单片机的外部中断信号。

单片机电路对输入的脉冲信号进行计算处理后把结果送到数码管显示。

3.2脉搏信号采集与放大整形目前脉搏波检测系统有以下几种检测方法:光电容积脉搏波法、液体耦合腔脉搏传感器、压阻式脉搏传感器以及应变式脉搏传感器。

人体脉搏测量仪的设计(终稿)讲解

人体脉搏测量仪的设计(终稿)讲解

目录1绪论 (1)1.1课题背景及意义 (1)1.2设计目标和要求 (2)2人体脉搏测量仪总体设计 (3)2.1设计原则 (3)2.2问题分析 (3)2.3方案论证 (4)2.4总体结构 (6)3人体脉搏测量仪硬件设计 (7)3.1脉搏信号采集电路 (7)3.1.1常用脉搏传感器及选型 (7)3.1.2光电传感器电路 (8)3.2放大滤波电路 (9)3.2.1前级放大及滤波电路 (9)3.2.2二级放大电路 (11)3.3整形电路 (12)3.4单片机控制电路 (13)3.5LED显示电路 (14)3.6电源电路 (15)4人体脉搏测量仪软件设计 (16)5单片机仿真测试 (17)6结论与展望 (18)参考文献 (19)附录 (20)附录一:人体脉搏测量仪原理图 (20)附录二:PCB排版 (21)附录三:程序 (22)致谢 (25)摘要本课题是人体脉搏测量仪的设计。

由于脉搏信号的特殊性,在设计时必须要注意实现测量的准确,该系统的重点就在于要求实现测量的简便化和精确化。

系统要在30S、60S的时间内,分别测量出人体一分钟的脉搏,并且保证误差在2次以内。

本系统以89C2051单片机作为中心,通过使用单片机来实现系统最核心的计算脉搏功能。

在信号的前端处理上使用光电式传感器采集人体脉搏信号,然后经过3个4069级联做运算放大器放大、低通滤波器滤波、施密特触发器整形等一系列操作,将脉搏信号转换为同频率的脉冲信号输入到单片机内,并利用单片机对其进行计数。

计数的方法是利用单片机的计时器,计算一次心跳的时间,然后由该周期计算出频率,继而就可以求出一分钟的脉搏数。

按照理论来说,只要有一次心跳信号就可以,但是要考虑到计算的精确性,可以设定为测量五次或者十次心跳信号,然后再求脉搏就可以使结果比较精确。

计数结果将最终送至LED数码管进行显示。

本文精确地介绍了从脉搏采集到显示脉搏数的原理及各部分电路的参数分析。

关键词:脉搏测量;光电式传感器;LED数码管;单片机AbstractThis topic is a design of body pulse measuring instrument. Because of the specificity of the pulse signal, the design must pay attention to achieve an accurate measurement. The point of this design is the simple and precise of the measurement. We need to measure the pulse of the human body in one minute in 30 or 60 seconds of time, and to ensure that the error in less than 2 times. The whole system is center on SCM 89C2051, using the SCM to achieve the system core function of counting pulse. In the front-end processing of the signal, we use photoelectric sensor to collect the signal of the human body pulse. And then, after amplification of Operational Amplifier which consist of 3 4069s, shaping of Schmidt trigger, filtering of the low-pass filter and other operations, the signal will be converted to the pulse signal with the same frequency, and this signal will be input to the SCM. The SCM will count to this. The method of counting is using the timer of the SCM, and then uses the cycle, get the frequency and we can get the number of the one-minute pulse. In accordance with the theory, as long as there is one heart signal, the final result can be got. But taking into account the accuracy of the calculation, we can set measure 5 or 10 times for the final result. By this way, we can make the result more precise. The final result of the count will display in the LED nixie tube. This topic describes the theory from collecting pulse to displaying the count and the parameter analysis of circuit.Key words: pulse measurement; photoelectric sensor; LED; SCM1绪论1.1课题背景及意义在我国传统中医学的诊断中,中医脉诊已经有两千多年的历史,“望、闻、问、切”是最基本的四个方面。

基于51单片机的脉搏测量仪的答辩问题

基于51单片机的脉搏测量仪的答辩问题

基于51单片机的脉搏测量仪的答辩问题一、什么是脉搏测量仪?脉搏测量仪是一种用于监测人体脉搏的仪器,通过传感器感知人体的脉搏信号,并将其转化成数字信号通过处理器进行分析和显示。

基于51单片机的脉搏测量仪是利用51单片机作为核心控制器,搭配适当的传感器和显示器组件,可以实现对脉搏的实时监测和数据处理。

二、该脉搏测量仪的工作原理是怎样的?1. 传感器采集脉搏信号:脉搏测量仪通常会采用光电传感器或压力传感器来感知人体的脉搏信号,光电传感器通过发射一束红外光束照射到皮肤上,当血液脉动时,血液会吸收不同程度的红外光,通过检测光电传感器接收到的反射光强度变化来获取脉搏信号;压力传感器则是通过感知皮肤上的微小压力变化来获取脉搏信号。

2. 信号处理与数字化:传感器采集到的模拟信号需要经过信号调理电路进行滤波和放大,然后通过模数转换器(ADC)将模拟信号转化成数字信号,以便于单片机的处理。

3. 数据处理与显示:单片机接收到数字化的脉搏信号后,会根据预设的算法进行脉搏波形的提取和心率的计算,并将结果显示在液晶显示器上,同时可以通过串口或蓝牙模块将数据传输到外部设备进行进一步分析和存储。

三、基于51单片机的脉搏测量仪有哪些特点?1. 灵活性强:基于51单片机的脉搏测量仪可以根据实际需求进行灵活的定制和扩展,比如可以根据具体情况选择合适的传感器,采用不同的数据处理算法,实现不同的功能。

2. 成本低廉:51单片机作为一种经典的微控制器,价格低廉且性能稳定可靠,适合用于中小型医疗设备的开发和生产。

3. 易于开发:基于51单片机的脉搏测量仪的软硬件开发相对简单,开发人员可以利用丰富的开发资源和成熟的开发工具进行快速开发和调试。

四、该脉搏测量仪在医疗保健领域有哪些应用前景?1. 个人健康监测:随着人们健康意识的提高,个人健康监测设备越来越受到关注,基于51单片机的脉搏测量仪可以作为便携式的个人健康监测设备,可用于定期监测心率、血压等生理指标,提醒个人关注身体健康。

双波长光电脉搏波检测

双波长光电脉搏波检测

双波长光电脉搏波检测
双波长光电脉搏波检测是一种用于测量心率和心率变异性的非侵入性方法。

它利用两种不同波长的光,通过皮肤组织透射和反射,测量光的吸收变化来确定脉搏波的信息。

这种方法利用了血液中的血红蛋白对不同波长的光的吸收特性不同的特点。

在心脏收缩时,血液流动增加,血红蛋白的吸收能力也会随之变化。

通过测量皮肤上的反射光或穿透光的吸收变化,可以确定脉搏波的频率和幅度。

双波长光电脉搏波检测可用于监测心率和心率变异性,这对评估心血管健康和自主神经系统功能具有重要意义。

它可以应用于临床医疗、健康检测和运动监测等领域。

值得注意的是,双波长光电脉搏波检测是一种间接测量方法,测量结果可能受到许多因素的影响,如环境条件、感光元件质量等。

因此,在实际应用中需要结合其他临床指标进行综合评估。

光电脉搏测量仪电路图、PCB图、全部程序

光电脉搏测量仪电路图、PCB图、全部程序

附录附录一:电路图附录二:PCB图附录三:主要程序#include "STC89.h"#include <intrins.h>#include <stdlib.h>//*******宏定义****************************#define uint unsigned int#define uchar unsigned charsbit Key_A = P1^0;sbit Key_B = P1^1;sbit Key_C = P1^2;sbit Key_M = P1^3;sbit Beep = P0^0;sbit SEG1 = P0^6;sbit SEG2 = P0^5;sbit SEG3 = P0^4;sbit SEG4 = P0^7;//*******变量定义************************************************ uchar code table[]={0x05,0xDD,0x46,0x54,0x9C,0x34,0x24,0x5D,0x04,0x14}; uchar Heart_Rate1[]={0,0,0};//甲的心率uchar Heart_Rate2[]={0,0,0};//乙的心率uchar Heart_Rate3[]={0,0,0};//丙的心率uchar Heart_Rate_Temp[] = {0,0,0,0,0};uchar Heart_Rate_Temp2[] = {0,0,0,0,0};uchar Heart_count = 0;uchar Heart_Current = 0;uchar Heart_Save = 0;uchar Heart_High;uchar Heart_Low;uint Ms_5count;uint Ms_5count_temp;uint Ms_5count_old;uchar Error_count = 0;uchar Error_count2 = 0;uchar Disp_wei_count;uchar Disp_Buf;uchar Status;uchar Status_temp;uchar Record;uchar Times_Count;bit Flag_Disp_en = 0;bit Flag_Count = 0;bit Flag_Save = 0;//*******函数声明************************************************ void init(void);void delay(uint z);void display(uchar disdata);void Key_Scan(void);void BEEP(void);void Auto_Save(void);uchar Isp_Read(uint addr);void Isp_Write(uint addr,uchar Data);void Isp_Erase(uint addr);void Isp_Idle();//*******主函数*************************************************** void main(){init();Flag_Disp_en = 1;Heart_High = Isp_Read(0x2600);Heart_Low = Isp_Read(0x2800);while(1){Key_Scan();//按键扫描//计算及处理采集回来的5次心率if(Flag_Count){uchar ii,jj;uint temp;Flag_Count = 0;//用冒泡排序法,将采集回来的5次数据从小到大排序for(ii = 0;ii<4;ii++){for(jj = 0;jj<4;jj++){if(Heart_Rate_Temp[jj]>Heart_Rate_Temp[jj+1]){temp = Heart_Rate_Temp[jj];Heart_Rate_Temp[jj] = Heart_Rate_Temp[jj+1];Heart_Rate_Temp[jj+1] = temp;}}}temp = 0;ii = 0;jj = 0;//去掉首尾两个数据,取中间三个数据的平均值for(ii = 1;ii<3;ii++){if(Heart_Rate_Temp[ii] > 0){temp = temp + Heart_Rate_Temp[ii];jj++;}}Heart_Current = temp/jj; //取平均值//判断是否超出了范围,如果超出了,打开蜂鸣器,否则关闭if(Heart_Current>Heart_High || Heart_Current<Heart_Low) {Error_count2++;if(Error_count2>3){Error_count2 = 0;Beep = 0;}}else{Error_count2 = 0;Beep = 1;}//自动记录数据Times_Count++;if(Times_Count>4)Times_Count = 0;Heart_Rate_Temp2[Times_Count] = Heart_Current;if(Times_Count == 4){uchar xx,yy;uint temp2;for(xx = 0;xx<4;xx++){for(yy = 0; yy<4; yy++){if(Heart_Rate_Temp2[yy]>Heart_Rate_Temp2[yy+1]){temp2 = Heart_Rate_Temp2[yy];Heart_Rate_Temp2[yy] = Heart_Rate_Temp2[yy+1];Heart_Rate_Temp2[yy+1] = temp2;}}}temp2 = 0;xx = 0;yy = 0;//去掉首尾两个数据,取中间三个数据的平均值for(xx = 1;xx<3;xx++){if(Heart_Rate_Temp2[xx] > 0){temp2 = temp2 + Heart_Rate_Temp2[xx];yy++;}}Heart_Save = temp2/yy;Flag_Save = 1;}}//保存时的处理if(Flag_Save){BEEP();Flag_Disp_en = 0;Auto_Save();delay(500);Flag_Disp_en = 1;BEEP();delay(600);Flag_Disp_en = 0;delay(600);Flag_Disp_en = 1;BEEP();delay(600);Flag_Disp_en = 0;delay(600);Flag_Disp_en = 1;BEEP();delay(600);Flag_Disp_en = 0;delay(600);Flag_Disp_en = 1;BEEP();delay(800);Record++;Heart_Current = 0;Status = 0;Flag_Save = 0;Ms_5count = 0;EX0 = 1;TR0 = 1;}//显示处理部分switch(Status){case 0: Disp_Buf = Heart_Current ; //显示当前的心率break;case 1: Disp_Buf = Heart_Rate1[Record]; //显示甲的心率break;case 2: Disp_Buf = Heart_Rate2[Record]; //显示乙的心率break;case 3: Disp_Buf = Heart_Rate3[Record]; //显示丙的心率break;case 4: Disp_Buf = Heart_High; //显示上限break;case 5: Disp_Buf = Heart_Low; //显示下限break;default:break;}}}。

脉搏测量仪设计方案

脉搏测量仪设计方案

1. 引言脉搏是人体生命活动中重要的生理指标之一,脉搏测量仪可以实时监测人体的脉搏情况,并提供相应的数据分析。

本文档将详细介绍脉搏测量仪的设计方案,包括硬件设计和软件开发。

2. 硬件设计2.1 传感器选择脉搏测量仪的核心是脉搏传感器,选择适合的传感器对脉搏信号的采集至关重要。

我们建议选择带有光电传感器的脉搏传感器,该传感器可以通过红外线光电技术来测量脉搏信号。

2.2 信号采集电路设计脉搏传感器的输出是微弱的光电信号,需要通过信号采集电路进行放大和滤波处理。

我们建议采用放大器和滤波器的组合来实现信号的放大和去噪。

2.2.1 放大器设计放大器的作用是放大传感器输出的微弱信号,提高信号的幅值。

我们建议使用差分放大电路,以提高信号的抗干扰能力。

2.2.2 滤波器设计滤波器的作用是滤除高频噪声,保留脉搏信号的低频成分。

我们建议采用带通滤波器,设置合适的截止频率,以滤除高频和低频信号。

2.3 数据处理电路设计脉搏信号的采集和处理完成后,需要将脉搏数据传输到微处理器进行进一步处理。

我们建议使用微控制器作为数据处理的主要控制单元。

2.3.1 微控制器选择选择适合的微控制器对整个脉搏测量仪的性能和功能实现起着至关重要的作用。

我们建议选择一款具有高性能和低功耗的微控制器,以满足脉搏测量仪的要求。

2.3.2 数据传输接口设计在数据传输方面,我们建议使用串行接口(如UART)将脉搏数据传输到外部设备或计算机上进行进一步的分析和存储。

3. 软件开发3.1 脉搏信号处理算法在软件开发方面,我们需要实现一些脉搏信号处理算法,以提取和分析脉搏信号中的相关特征。

常见的脉搏信号处理算法包括脉率计算、心率变异性分析等。

3.2 数据可视化界面设计为了方便用户理解和使用脉搏测量仪,我们需要设计一个用户友好的数据可视化界面。

该界面可以实时显示脉搏数据,并提供相应的数据分析和报告功能。

3.3 脉搏测量仪的控制逻辑在软件开发过程中,我们需要设计脉搏测量仪的控制逻辑。

脉搏测量仪设计方案

脉搏测量仪设计方案

脉搏测量仪设计方案脉搏测量仪是一种用于测量人体脉搏的仪器,具有重要的医疗和健康监测功能。

下面是一个脉搏测量仪的设计方案,包括主要功能、硬件设计和软件设计。

1. 主要功能:- 测量人体脉搏:使用传感器检测人体脉搏,并将数据转化为数字信号。

- 显示脉搏数据:通过液晶显示屏显示当前的脉搏数据,以便用户实时获知自己的脉搏情况。

- 存储数据:将脉搏数据存储在内部存储器中,为用户提供历史脉搏数据的查询。

- 分析数据:对存储的脉搏数据进行分析,并生成相应的报告,帮助用户了解自己的脉搏状况。

2. 硬件设计:- 传感器:采用光电传感器,通过感应人体血流的反射光强度变化来测量脉搏。

- 微控制器:选择一款高性能的微控制器作为主控芯片,负责数据采集、信号处理、通信和显示控制等功能。

- 显示屏:选用高分辨率的液晶显示屏,可以显示脉搏数据和其他相关信息。

- 存储器:选择大容量的闪存作为数据存储器,并考虑使用可拓展的存储器接口,方便用户扩展存储容量。

- 电源:采用可充电电池供电,确保仪器长时间的使用时间,并考虑添加低电量提醒功能。

3. 软件设计:- 数据采集和处理:通过光电传感器采集到的模拟信号经过采样和放大处理,并转化为数字信号,以便于后续的数据处理和分析。

- 数据显示和存储:将测量到的脉搏数据显示在液晶屏上,并同时将数据存储在内部存储器中。

- 用户交互:设计使用友好的用户界面,并增加触摸屏等交互方式,使用户操作更加方便、直观。

- 脉搏数据分析:对存储的脉搏数据进行分析,可将数据进行图表化显示,以便用户更加直观地了解自己的身体健康状况。

- 数据传输:可考虑添加数据传输功能,如蓝牙或USB接口,以便用户将数据导出到电脑或其他设备进行进一步分析和储存。

以上是一个脉搏测量仪的设计方案,旨在提供一个可靠、精确且易于使用的脉搏测量解决方案,以满足用户的医疗和健康监测需求。

具体的技术细节和设计参数需要在实际设计过程中进一步完善。

血氧仪的原理

血氧仪的原理

血氧仪的原理血氧仪,又称脉搏血氧仪,是一种用于测量人体血液中氧气饱和度的医疗设备。

它通过非侵入式的方式,即通过指尖或耳垂等部位的皮肤表面,测量人体血液中的氧气饱和度。

血氧仪的原理是基于光电测量技术,利用红外光和红外光之间的吸收差异来测量血液中的氧气饱和度。

在血氧仪的工作过程中,首先是通过发射一束红外光和一束红外光到人体皮肤表面,这两束光穿过皮肤并被血液吸收。

血液中的氧气和血红蛋白会对这两束光产生不同的吸收作用,而这种差异正是血氧仪测量氧气饱和度的基础。

当血氧饱和度高时,血液中的血红蛋白会更多地吸收红外光,而当血氧饱和度低时,血液中的血红蛋白会更多地吸收红外光。

血氧仪通过检测这两束光的吸收情况,就可以计算出血液中的氧气饱和度。

血氧仪的原理基于光电测量技术,它的核心部件是光电传感器。

光电传感器是一种能够将光信号转换为电信号的器件,它可以精确地测量光的强度和波长。

在血氧仪中,光电传感器起到了关键的作用,它可以将通过皮肤表面的红外光和红外光的吸收情况转换为电信号,并传输给血氧仪的处理器进行处理和计算。

除了光电传感器,血氧仪中还包括显示屏和处理器等部件。

显示屏用于显示测量结果,而处理器则用于对光电传感器传输的信号进行处理和计算。

通过这些部件的协同工作,血氧仪可以准确地测量血液中的氧气饱和度,并将结果显示在显示屏上,为医护人员提供重要的参考信息。

总的来说,血氧仪的原理是基于光电测量技术,利用红外光和红外光之间的吸收差异来测量血液中的氧气饱和度。

它通过光电传感器、显示屏和处理器等部件的协同工作,实现了对血氧饱和度的精确测量。

血氧仪在临床医疗、家庭护理等领域有着广泛的应用,对于监测患者的健康状况和疾病诊断具有重要意义。

血氧仪的原理虽然复杂,但其实现的功能却是简单而重要的,为医疗保健事业做出了重要贡献。

基于光电技术的心率测量仪

基于光电技术的心率测量仪

p n e t id mi n r r d l h ,a d t e c a g fi r n mi a c a e e t h y l a c a g f e d n o e e t if e i t n h h n e o sta s t n e c n r f c e c ci l h n e o d s a g t t l t c b o d v l me i sd n e ,t e e e t n d o e r c i e e mo u a e p i a s n 1 T i i n l ih l o o u n i ef g r h n r c p i id e ev st d ltd o t l i a. h s s a c i o h c g g wh
v na e . a tg s
Ke r y wo ds: a —ae;i fa e he r r t t n r rd;me s r a ue
1 信 号拾取原理
血 液是 一种 高度不 透 明液体 。近 红外光 在一般 组 织 中的 穿 透 性 比在 血 液 中 大几 十 倍 。指 头 内 部 的血 液容积 在 心脏 搏 动 下 呈周 期 性 变 化 , 心脏 舒 张时手 指 中血容 量减小 , 红外 光透 过率增 大 , 心脏 收 缩 时相 反 。因此 , 以将 红 外 光 强 的变 化 反 映 脉搏 可
i ftrda da l e s ei rddrc yt teMC 8 C 1 3 0 ob rcse , n ecr n si ee n mpi di d l ee i t U( 0 5 F 1 )t epoesd a dt ur t l i f v el oh h e
L e , I n , O U0 W n L U Ya g XI NG u q a J n io

光电容积脉搏法

光电容积脉搏法

光电容积脉搏法简介光电容积脉搏法是一种非侵入性的心率和脉搏波形监测技术,通过检测光线在血液中的吸收变化来间接测量心率和血流动力学参数。

本文将对光电容积脉搏法的原理、应用以及优势进行详细探讨。

原理光电容积脉搏法基于光吸收定律,利用LED光源发射的光线经过血液时会被不同程度地吸收,血红蛋白对红光和红外光的吸收率不同,这种差异可用于测量心率和脉搏波形。

光电容积脉搏法使用传感器(通常为光电二极管)将反射或透射回的光信号转化为电信号。

通过分析这些电信号的幅度和周期变化,可以计算出心率和血流动力学参数。

应用1. 临床监护光电容积脉搏法可用于监测患者的心率和脉搏波形,有助于了解患者的血流动力学状态。

在手术室、重症监护室和康复病房等环境中,通过光电容积脉搏法可以对患者的心脏功能进行实时监测,并及时判断和处理心脏相关的问题。

2. 运动生理学研究光电容积脉搏法可以在运动过程中实时监测运动员的心率和血流动力学参数,帮助了解运动员的心血管适应性和疲劳状况。

这对于制定科学合理的训练计划和提高运动表现具有重要意义。

3. 心血管疾病诊断光电容积脉搏法可以用于心血管疾病的早期诊断,通过监测脉搏波形的变化,可以判断是否存在心血管疾病风险。

同时,光电容积脉搏法还可以对患者的血流动力学参数进行动态监测,及时发现心血管疾病的变化。

优势1.非侵入性:光电容积脉搏法不需要插管或穿刺,通过对皮肤表面的光信号进行监测,避免了传统测量心率和血流动力学参数的不便和不适。

2.实时性:光电容积脉搏法可以实时监测心率和血流动力学参数的变化,提供即时的生理数据,有助于及时调整治疗方案或训练计划。

3.精确度:光电容积脉搏法具有较高的测量精度,可靠地反映心脏功能和血流动力学状态的变化。

使用步骤1.安装传感器:将光电二极管传感器安装在需要监测的部位,通常是手指或耳垂。

2.连接设备:将传感器与监测设备连接,确保信号传输的稳定和可靠。

3.启动设备:启动监测设备,等待信号稳定后开始测量。

基于 AT89 S51的光电脉搏测量仪的设计

基于 AT89 S51的光电脉搏测量仪的设计

基于 AT89 S51的光电脉搏测量仪的设计
兰羽
【期刊名称】《工业仪表与自动化装置》
【年(卷),期】2013(000)004
【摘要】为了提高脉搏测量的简便性和精确度,设计了以AT89 S51单片机为核心,红外二极管和光敏三极管为传感器的光电脉搏测量仪。

单片机通过对光敏三极管感应脉冲累加得到脉搏跳动次数,时间由单片机定时器来计算,数据由液晶LCD1602显示。

经实验测试,系统性能稳定,误差小于2%。

【总页数】3页(P105-107)
【作者】兰羽
【作者单位】陕西工业职业技术学院电气学院,陕西咸阳,712000
【正文语种】中文
【中图分类】TN353
【相关文献】
1.基于 AT89 S51的双红外激光对射开关实现智能照明控制 [J], 姚正武
2.基于AT89 S51单片机的风板摆向控制系统研究与设计 [J], 尚坡利;赵锡英
3.基于近红外光谱与光电容积脉搏波技术的毛细血管再充盈时间测量仪的设计与开发 [J], 陈瑞;陈晔;谷源涛;谢志毅;王仲
4.一种低功耗高精度光电容积脉搏波测量仪的设计与实现 [J], 王月海;吕恒宇
5.微功耗光电式脉搏测量仪 [J], 刘云丽;徐可欣;王玉祥;蒋诚志
因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光电脉搏测量仪设计报告一、设计意义从脉搏波中提取人体的生理病理信息作为临Array床诊断和治疗的依据,历来都受到中外医学界的重视。

目前医院的护士每天都要给住院的病人把脉记录病人每分钟脉搏数,方法是用手按在病人腕部的动脉上,根据脉搏的跳动进行计数。

为了节省时间,一般不会作1分钟的测量,通常是测量10秒钟时间内心跳的数,再把结果乘以6即得到每分钟的心跳数,即使这样做还是比较费时,而且精度也不高,因此,需要有使用更加方便,测量精度更高的设备。

二、关键技术脉搏检测中关键技术是传感器的设计与传感器输出的微弱信号提取问题, 本文设计的脉搏波检测系统以光电检测技术为基础,并采用了脉冲振幅光调制技术消除周围杂散光、暗电流等各种干扰的影响。

并利用过采样技术和数字滤波等数字信号处理方法,代替实现模拟电路中的放大滤波电路的功能。

本系统模拟电路简单,由ADC841芯片实现脉搏信号采集,信号处理和脉搏次数的计算等功能,因此体积小,功耗低,系统稳定性高。

本系统可实现脉搏波的实时存储并可实现与上位机(PC 机)的实时通讯, 因此可作为多参数病人中心监护系统的一个模块完成心率检测和脉搏波形显示。

三、硬件设计3.1 设计框图光电脉搏测量仪是利用光电传感器作为变换原件,把采集到的用于检测脉搏跳动的红外光转换成电信号,用电子仪表进行测量和显示的装置。

本系统的组成包括光电传感器、信号处理、单片机电路、数码显示、电源等部分。

脉搏测量仪硬件框图如图1所示。

当手指放在红外线发射二极管和接收三极管中间,随着心脏的跳动,血管中血液的流量将发生变换。

由于手指放在光的传递路径中,血管中血液饱和程度的变化将引起光的强度发生变化,因此和心跳的节拍相对应,红外接收三极管的电流也跟着改变,这就导致红外接收三极管输出脉冲信号。

该信号经放大、滤波、整形后输出,输出的脉冲信号作为单片机的外部中断信号。

单片机电路对输入的脉冲信号进行计算处理后把结果送到数码管显示。

3.2脉搏信号采集与放大整形目前脉搏波检测系统有以下几种检测方法:光电容积脉搏波法、液体耦合腔脉搏传感器、压阻式脉搏传感器以及应变式脉搏传感器。

近年来, 光电检测技术在临床医学应用中发展很快, 这主要是由于光能避开强烈的电磁干扰, 具有很高的绝缘性, 且可非侵入地检测病人各种症状信息,具有结构简单、无损伤、精度高、可重复好等优点。

用光电法提取指尖脉搏光信息受到了从事生物医学仪器工作的专家和学者的重视。

3.2.1脉搏信号介绍由于光电传感器所输出的信号波源强度比较弱,且为类似于正弦波波形,如图2所示,所以对信号进行放大整形处理,使其以较强方波形式输出。

图2 脉搏仿真信号正弦波3.2.2 放大整形电路图3 信号采集放大整形电路图4为正弦信号通过放大整形电路之后得到的方型波。

图4整形后的方波图5 脉搏信号对比3.3单片机处理电路如图6所示,本部分运用了89C51单片机作为核心元件,在这里运用单片机能更快更准确地对数据进行运算,而且可以根据实际情况进行编程,所用外围元件少,轻巧省电,故障率低。

来自传感和整形输出电路的脉冲电平输入单片机89C51的P3.5/T1引脚,单片机设为下降沿中断触发模式,故每次脉冲下降沿到达时触发单片机产生中断并进行计时,来一个脉冲脉搏次数就加一;定时器中断主要完成十秒钟的定时功能。

单片机对十秒钟内的脉冲次数进行累加并进行计算得出所测人一分钟的脉搏次数,通过P0、P2口把测量过程和结果送到数码管显示出来。

图6 单片机处理电路3.4显示电路显示部分采用SMC 1602液晶屏进行数据显示,其主要技术参数如表1所示。

表1 液晶屏技术指标接口信号说明如表2所示。

表2 液晶屏接口信号说明与单片机接口电路如图7所示。

其中J2的3脚为背光引脚,R9和R10电阻用于调节背光亮度。

J2的4、5、6引脚分别接液晶的RS 、E/W 和E 控制引脚,J2的7—14引脚为数据引脚。

图7 LCD 与单片机接口电路 图8主程序流程图四、软件编程4.1 软件流程图系统初始化之后, 进行定时器中断、外部中断、显示等工作,不同的外部硬件控制不同的子程序。

流程如图8所示。

4.2 定时器中断程序流程定时器中断服务程序由十秒钟钟计时、按键检测、有无测试信号判断等部分组成。

当定时器中断开始执行后,对十秒钟开始计时,50ms计时到之后继续检测下50ms,直到10s到了再停止并保存测得的脉搏次数。

同时可以对按键进行检测,只要复位测试值就可以重新开始测试。

主要完成一分钟的定时功能和保存测得的脉搏次数。

流程如图9所示。

4.3 INT中断程序流程外部中断服务程序完成对外部信号的测量和计算。

外部中断采用边沿触发的方式,当处于测量状态的时候,来一个脉冲脉搏次数就加一,由单片机内部定时器控制十秒钟,并通过计算得出一分钟内的脉搏次数。

流程如图10所示。

图10 INT中断程序流程图4.5 源程序#include<reg52.h> //头文件#define uchar unsigned char#define uint unsigned intuchar code table[]="Your Pulse-Rate";//15字符uchar code table1[]=" About "; //7字符uchar code table2[]="0123456789"; //显示3字符uchar code table3[]=" /Min";//5字符sbit lcden=P3^4; //液晶使能端sbit lcdrs=P3^5; //液晶数据命令选择端sbit key=P3^3;uchar count,num; //定义计数值uint n;void delay(uint z) //延时子函数{uint x,y;for(x=z;x>0;x--)for(y=110;y>0;y--);}void write_com(uchar com) //液晶显示器写命令函数{lcdrs=0;P0=com;delay(5);lcden=1;delay(5);lcden=0;}void write_data(uchar date) //液晶显示器写数据函数{lcdrs=1;P0=date;delay(5);lcden=1;delay(5);lcden=0;}void init() //初始化函数{TMOD= 0x21; //设置定时器模式TL0 = 0x00; //设置定时初值TH0 = 0xDC; //设置定时初值TL1=0xFd; //9600波特率的初值,板子使用12M晶振,初值=256-11059200/32/11.0592/9600 TH1=0xFd; //EA=1;TR1=1; //启动波特率发生SCON=0x50; //设置串口方式2ET0=1;lcden=0;write_com(0x38);//设置16X2显示,5X7点阵,8位数据接口write_com(0x0c);//设置开显示,不显示光标write_com(0x06);//写一个字符后地址指针加1write_com(0x01);//显示清零,数据指针清零write_com(0x80);for(num=0;num<15;num++){write_data(table[num]);delay(5);}write_com(0x80+0x40);for(num=0;num<7;num++){write_data(table1[num]);delay(5);}write_com(0x80+0x4A);for(num=0;num<5;num++){write_data(table3[num]);delay(5);}}void display(uint shu) //显示函数{uint ge,shi,bai;ge=shu%10;shi=shu%100/10;bai=shu/100;write_com(0x80+0x47);write_data(table2[bai]);delay(5);write_data(table2[shi]);delay(5);write_data(table2[ge]);delay(5);}void send(uint k) //串口发送函数(可选){uint ge,shi,bai;ge=k%10;shi=k%100/10;bai=k/100;SBUF=table2[bai];while(!TI);TI=0;SBUF=table2[shi];while(!TI);TI=0;SBUF=table2[ge];while(!TI);TI=0;}void T0_time() interrupt 1 //定时器中断,定时时间为1ms{n++;TL0 = 0x00; //重装定时初值TH0 = 0xDC; //重装定时初值}void main() //主函数{uint pulse;init();delay(5000);TR0 = 1; //定时器1开始计时while(1){if(count==0&n!=0)n=0;if(key==1) //接收到脉搏高电平就计数{delay(400);count++;}if(count==8)//每接收到8次就计算显示{TR0=0;pulse=48000/n;//n的值即为n毫秒,由于是计数8个就显示一次数,所以用48000毫秒除以n即可得到每分钟脉搏数display(pulse);//送去显示send(pulse); //发送每分钟脉搏数(可选)pulse=0;n=0;count=0;TL0 = 0x00; //重装定时初值TH0 = 0xDC; //重装定时初值TR0=1;}}}五、抗干扰措施及使用方法5.1抗干扰措施为了提高测量仪的精确度,系统首先要解决的是硬件方面的干扰问题。

光电式脉搏测量仪的测量过程中,前端测量到的脉搏信号十分微弱,容易受到外界环境干扰,其中主要的干扰源有测量环境光干扰、电磁干扰、测量运动噪声。

5.2环境光对脉搏传感器测量的影响在光电式脉搏传感器中,光敏器件接收到的光信号不仅包含脉搏信息的透射光的信号,而且包含测量环境下的背景光信号,由于动脉波动引起的光强变化比背景光的变化微弱得多,因此在测量过程当中要保持测量背景光的恒定,减少背景光的干扰。

测量环境下的背景光包含环境光和在测量过程中引起的二次反射光。

为了减少环境光对脉搏信号测量的影响,同时考虑到传感器使用的方便性,采用密封的指套式包装方式,整个外壳采用不透光的介质和颜色,尽量减小外界环境光的影响,为了避免测量过程中的二次反射光的影响,在指套式传感器的内层表面涂上一层吸光材料,这样能有效减少二次反射光的干扰。

相关文档
最新文档