七年级数学模拟试题1培训资料

合集下载

七年级数学模拟试卷电子版

七年级数学模拟试卷电子版

一、选择题(每题3分,共30分)1. 下列数中,哪个数是负数?A. -5B. 0C. 5D. -2.52. 下列各数中,绝对值最小的是:A. -3B. 2C. -2D. 13. 若a=3,b=-2,则a-b的值是:A. 5B. -5C. 1D. -14. 下列方程中,解为整数的是:A. x + 2 = 5B. 2x + 1 = 7C. 3x - 4 = 11D. 4x + 3 = 105. 下列图形中,不是平行四边形的是:A. 矩形B. 正方形C. 平行四边形D. 梯形6. 在直角三角形ABC中,∠C=90°,AC=3cm,BC=4cm,则AB的长度是:A. 5cmB. 6cmC. 7cmD. 8cm7. 下列不等式中,正确的是:A. 2x > 4B. 3x < 9C. 4x ≤ 16D. 5x ≥ 208. 下列函数中,y随x增大而减小的函数是:A. y = 2x + 1B. y = -3x + 2C. y = 4x - 5D. y = x^2 + 19. 若一个数的3倍与5的和等于22,则这个数是:A. 3B. 4C. 5D. 610. 下列数据中,众数是:A. 2, 3, 3, 4, 5B. 1, 2, 3, 4, 4C. 3, 3, 4, 5, 6D. 2, 3, 5, 6, 7二、填空题(每题3分,共30分)11. -7的相反数是______。

12. 若a=5,b=-3,则a-b的值是______。

13. 下列图形中,是轴对称图形的是______。

14. 在直角三角形中,若一个锐角的度数是45°,则另一个锐角的度数是______。

15. 若一个数的5倍与7的差等于18,则这个数是______。

16. 下列数据中,中位数是______。

17. 下列方程中,解为x=2的是______。

18. 若一个数的平方是16,则这个数是______。

19. 下列函数中,是反比例函数的是______。

七年级数学试卷模拟题人教版

七年级数学试卷模拟题人教版

七年级数学试卷模拟题人教版一、选择题(每题3分,共30分)1. -2的相反数是()A. 2B. -2C. 公式D. -公式解析:相反数是指绝对值相等,正负号相反的两个数。

所以 -2的相反数是2,答案为A。

2. 下列式子中,是单项式的是()A. 公式B. 公式C. 公式D. 公式解析:单项式是只有一个项的整式,即由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。

A选项公式是多项式;C选项公式是分式;D选项公式是多项式。

而公式是单项式,答案为B。

3. 计算公式的结果是()A. -2B. 2C. 8D. -8解析:异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。

公式,所以公式,答案为B。

4. 化简公式的结果是()A. 公式B. 公式C. 公式D. 公式解析:合并同类项,公式,公式,所以结果为公式,答案为A。

5. 方程公式的解是()A. 公式B. 公式C. 公式D. 公式解析:首先将方程公式移项,得到公式,即公式,然后两边同时除以2,解得公式,答案为C。

6. 一个角的度数是公式,则它的余角的度数是()A. 公式B. 公式C. 公式D. 公式解析:如果两个角的和为公式,那么这两个角互为余角。

所以公式,答案为A。

7. 若公式是关于公式的方程公式的解,则公式的值为()A. 2B. -2C. 1D. -1解析:把公式代入方程公式,得到公式,移项可得公式,即公式,解得公式,答案为A。

8. 如图,直线公式、公式相交于点公式,公式,则公式的度数是()A. 公式B. 公式C. 公式D. 公式解析:对顶角相等,公式与公式是对顶角,所以公式,答案为B。

9. 把方程公式变形为用公式表示公式的形式,正确的是()A. 公式B. 公式C. 公式D. 公式解析:首先对原方程公式进行变形,公式,两边同时乘以公式得到公式,答案为B。

10. 下列说法正确的是()A. 近似数公式与公式的精确度一样B. 近似数公式与公式的意义完全一样C. 公式精确到十位D. 公式万精确到百分位解析:A选项,近似数公式精确到百分位,公式精确到十分位,精确度不同;B选项,近似数公式表示的是精确到百位的数,与公式的意义不同;C选项,公式,5后面的0在十位上,所以精确到十位,正确;D选项,公式万公式,精确到百位。

七年级数学下册课后补习班辅导考前模拟讲学案1苏科版

七年级数学下册课后补习班辅导考前模拟讲学案1苏科版

考前模拟【本讲教育信息】 一. 教学内容:考前模拟【模拟试题】(答题时刻:90分钟) 一、选择题:1. 以劣等式不正确的选项是( ) A. ()()63242623ba ab ba =B. ()111342332221n m mn n m -=-⎪⎭⎫⎝⎛- C. ()()()151143322y x xy xy yx -=---D. ()()()21615.025.0125.0632=2. 用平方差公式计算()()()1112++-x x x 结果正确的选项是( )A. 14-xB. 14+xC. ()41-xD. ()41+x3. 如图,以下判定正确的选项是( )A. 4对同位角,4对内错角,4对同旁内角B. 4对同位角,4对内错角,2对同旁内角C. 6对同位角,4对内错角,4对同旁内角D. 6对同位角,4对内错角,2对同旁内角4. 如图,∠1=∠2,DE ∥BC ,∠B =75°,∠ACB =44°,那么∠BDC 为( )A. ︒83B. ︒88C. ︒90D. ︒785. 三角形两边为7和2,其周长为偶数,那么第三边的长为( ) A. 3B. 6C. 7D. 86. 如图,D 在AB 上,E 在AC 上,且∠B=∠C ,那么在以下条件中无法判定△ABE ≌△ACD 的是( )A. AD=AEB. ∠AEB=∠ADCC. BE=CDD. AB=AC7. 如图,一架云梯长25米,斜靠在一面墙上,梯子底端离墙7米,当梯子的顶端下滑了4米时,梯子的底端在水平方向上滑动了( )A. 4米B. 7米C. 8米D. 以上答案均不对8. 在等边三角形所在平面内有一点P ,使得△PBC. △PAC. △PAB 都是等腰三角形,那么具有该性质的点有( ) A. 1个B. 7个C. 10个D. 无数个9. 以下说法正确的选项是( ) A. 很有可能与必然发生是有区别的 B. 确信事件为必然事件C. 若是一个事件的发生机遇为99.99%,那么它必然发生D. 若是一个事件的发生机遇为0.1%,那么它不可能发生10. 如图,△ABC 的高AD. BE 相交于点O ,那么∠C 与∠BOD 的关系是( )A. 相等B. 互余C. 互补D. 不互余. 不互补也不相等11. 以下抽样调查选取样本的方式较为适合的是( )A. 为估量盐城市2005年的平均气温,小丽查询了盐城市2005年2月份的平均气温;B. 为了解全班同窗期末考试的平均成绩,教师抽查了成绩前5名同窗的平均成绩;C. 妈妈为了检查烤箱里的饼是不是熟了,顺手掏出一块尝试;D. 为了解七年级学生的平均体重,小红选取了即将参加校运会的运动员做调查12. 一组数据的最大值与最小值之差为80,假设取组距为9,那么分成的组数应是( ) A. 7 B. 8 C. 9 D. 12二. 填空题:13. 计算)8)(4(22+++-mx x n x x 的结果不含2x 和3x 的项,那么m= ;n= .14. 若22419y Mxy x ++是完全平方式,那么M= . 15. “推三角尺画平行线”的理论依据是 . 16. 已知 A. B 互为相反数,C. D 互为倒数,M 的相反数是21的倒数,那么MB A CD M ++-22的值为 .17. 已知二元一次方程03=+y x 的一个解是⎩⎨⎧==b y ax 其中0≠a 那么239-+b a 的值为 .18. 某课外爱好小组外出活动,假设每组7人,那么余下3人;假设每组8人,那么不足5人,求那个课外小组分成几组?解:设 .列出方程组为 .19. 如图AB ∥CD ,直线EF 别离交AB. CD 于E. F ,EG 平分∠BEF ,假设∠1=72°,那么∠2= °.20. 如图,已知AB=AC ,CD=BD ,E 在线段AD 上,那么图中全等三角形有 对.21. 已知等腰三角形的两边a. b 知足等式()033222=--+--b a b a ,那么该等腰三角形的周长为 .22. 如图,已知AB=AC ,用“SAS ”定理证明△ABD ≌△ACE ,还需添加条件 ;假设用“ASA ”证明,还需添加条件 ;假设用“AAS ”证明,还需添加条件 ;图中除△ABD ≌△ACE 之外,还有△ ≌△ .三. 解答题23. 已知:3=+y x ,7-=xy .求:①22y x +的值; ②22y xy x +-的值; ③()2y x -的值24. 用乘法公式计算:①2003200120022⨯-; ②()()()12121242+++…()122+n25. 假设方程组⎩⎨⎧-=-=+1y 3ax 3y x 4与⎩⎨⎧-=++=by 1x 2y35x 2有相同的解,求a ,b 的值。

最新2019-2020年度人教版七年级数学上学期期中复习考试模拟试题1及答案解析-经典试题

最新2019-2020年度人教版七年级数学上学期期中复习考试模拟试题1及答案解析-经典试题

第Ⅰ卷一、选择题:(本题共10小题,每小题3分,共30分)1.2016年9月15日22时04分,中国在酒泉卫星发射中心用长征二号FT2运载火箭将天宫二号空间实验室发射升空。

次日,天宫二号于成功实施了两次轨道控制,顺利进入运行轨道。

天宫二号空间实验室将开展的实验中,包括了空间科学物理领域重点项目——空间冷原子钟实验,有望实现3千万年误差一秒的超高精度,对卫星定位导航等生产生活及引力波探测等空间科学研究将产生重大影响。

空间冷原子钟可以将航天器自主守时精度提高两个数量级,大幅提高导航定位精度。

3000用科学记数法表示为()A.3 B. 0.3 C. 0.3D.2.下列算式中,运算结果为负数的是().A. (2)-- B. 3(2)- C.2- D. 2(2)-3.下列计算正确的是().A. 22232x y x y x y-= B. 277a a a+=C. 532y y-= D. 325a b ab+=4.已知1a b-=,则代数式223a b--的值是().A. 1-B. 1C. 5D.5-5.实数a,b在数轴上的对应点的位置如图所示,则正确的结论是()A.aB.C.D.6.若21(2)02x y-++=,则( )的值为()A.1-B.1C.D. 20167.人口自然增长率是指在一定时期内(通常为一年)人口增加数与该时期内平均人数之比。

人口自然增长率是反映人口发展速度和制定人口计划的重要指标,用来表明人口自然增长的程度和趋势。

2015年,一些国家的人口自然增长率(%)如下表所示,人口自然增长趋势最慢的国家是()美国日本中国印度德国卡塔尔0.9 -0.0772 0.48 1.312 -0.2 4.93A.卡塔尔B.中国C.日本D.德国8.历史上,数学家欧拉最先把关于x的多项式用记号()f x来表示,把x等于某数a时的多项式的值用()f a来表示,例如1x=-时,多项式2()35f x x x=+-的值记为(1)f-,那么(1)f-等于().A. 1-B. 3-C.7-D. 9-考生须知1.本试卷分为第Ⅰ卷和第Ⅱ卷,第Ⅰ卷共2页,第Ⅱ卷共4页。

期末模拟试题(一)- 2022-2023学年七年级上册数学同步培优题库(浙教版)(原卷)

期末模拟试题(一)- 2022-2023学年七年级上册数学同步培优题库(浙教版)(原卷)

2022-2023学年七年级上期期末模拟试题(一)注意事项:本试卷满分120分,考试时间120分钟,试题共24题.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2022·四川成都·七年级期末)目前,成都市已累计改造的老旧小区惠及居民约45万户,大力促进了人居环境有机更新,提升了市民幸福指数.将数据45万用科学记数法表示为( ) A .4.5×105B .4.5×104C .45×104D .0.45×1062.(2022·浙江·七年级期末)在实数−1,3-,0,15中,最小的实数是( ) A .−1B .3-C .0D .153.(2022·山东威海·期末)小明在设计黑板报时,想在黑板上画出一条笔直的参照线,由于尺子不够长,他想出了如下方法:①在一根长度合适的毛线上涂满粉笔末;②由两个同学分别按住毛线两端,并绷紧;③捏起毛线后松开,便可在黑板上弹出一条笔直的参照线.上述方法的数学依据是( ) A .两点之间,线段最短 B .两点确定一条直线 C .线段中点的定义D .两点间距离的定义4.(2022·江西南昌·二模)已知一种户外帐篷的几何体及其主视图如图所示,则它的左视图为( )A .B .C .D .5.(2022·浙江·七年级期末)下列说法正确的是( ) A .2mn 与212n m -是同类项B .单项式x 没有系数C .33x y 的次数是3D .多项式2321x x --的项是23x ,2x ,16.(2022·河南南阳·七年级期末)已知等式325m n =+,则下列等式变形不正确的是( ) A .3126m n +=+B .352m n -=C .645m n =+D .2533m n =+7.(2022·浙江金华·七年级期末)将一副三角尺按下列三种位置摆放,其中能使α∠和∠β相等的摆放方式是( )A .B .C .D .8.(2022·广东广州·七年级期末)下列结论:①射线OP 和射线PO 是同一条射线;②如果线段AM =MC ,则M 是线段AC 的中点;③在同一平面内,已知∠AOB =60°,∠AOC =30°,则∠BOC =30°;④等角的余角相等.其中正确的结论有( ) A .4个B .3个C .2个D .1个9.(2022·浙江·七年级专题练习)将连续奇数1,3,5,7,9,…排成如图所示的数表,若将十字形框上下左右移动,可框出另外五个数,则框出的五个数之和可以是( )A .2020B .2022C .2023D .202510.(2022·江苏·无锡市江南中学七年级期中)如图为甲、乙、丙三根笔直的钢管平行摆放在地面上的情形.已知乙有一部分只与甲重叠,其余部分只与丙重叠,甲没有与乙重叠的部分的长度为3m ,丙没有与乙重叠的部分的长度为4m .若乙的长度最长且甲、乙的长度相差x m ,乙、丙的长度相差y m ,则乙的长度为(用含有x 、y 的代数式表示)( )A .()7m x y -+B .()7m x y ++C .()27m x y +-D .()27m x y +-二、填空题(本大题共6小题,每小题3分,共18分.不需写出解答过程,请把答案直接填写在横线上)11.(2021·山东·七年级期末七年级期末)如图,把一副七巧板按如图进行1~7编号,1~7号分别对应着七巧板的七块,如果编号5对应的面积等于5cm 2,则由这幅七巧板拼得的“房子”的面积等于______cm 2.12.(2022·河北·威县七年级期末)2的算术平方根是_____;2是____的算术平方根.13.(2022·江苏扬州·七年级阶段练习)在数轴上表示a ,0,1,b 四个数的点如图所示,已知=OA OB ,则化简:1aa b a b++++=______.14.(2022·广东茂名·七年级阶段练习)如图,每个小正方形边长都为1的3×3方格纸中,3个白色小正方形已被剪掉,现需在编号为①~⑥的小正方形中,再剪掉一个小正方形,从而使余下的5个小正方形恰好能折成一个棱长为1的无盖正方体,则需要再剪掉的小正方形可能是 _____.(请填写所有可能的小正方形的编号)15.(2022·浙江·宁波市七年级期末)点O 为直线l 上一点,射线OA 、OB 均与直线l 重合,将射线OB 绕点O 逆时针旋转α(0≤α≤90°),过点O 作射线OC 、OD 、OM 、ON ,使得∠BOC =90°,∠COD =2α,∠COM =13∠AOC ,∠CON =13∠COD (OM 在∠AOC 内部,ON 在∠COD 内部),当∠MON=12α时,则α=_____.16.(2022·浙江温州·七年级期末)商品条形码是商品的“身份证”,共有13位数字.它是由前12位数字和校验码构成,其结构分别代表“国家代码、厂商代码、商品代码和校验码”.校验码是用来校验商品条形码中前12位数字代码的正确性,具有特定的算法.如图1是某商品条形码,从左至右偶数位数字为9,2,2,5,0,6,奇数位数字为6,4,7,2,0,1,校验码的算法为: 步骤1:计算偶数位数字之和a ,即a =9+2+2+5+0+6=24; 步骤2:计算奇数位数字之和b ,即b =6+4+7+2+0+1=20; 步骤3:计算3a 与b 的和c ,即c =3×24+20=92; 步骤4:取c 的个位数d ,d =2;步骤5:计算10与d 的差就是校验码X ,即X =10-2=8.若某条形码为690128599121M ,则校验码M 的值为 _____;如图2,某条形码中的两位数字被墨水污染了,已知这两个数字相同,则这个数字是 _____.三、解答题(本大题共8小题,共72分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)17.(2022·浙江杭州·七年级期末)计算:(1)()()42015--+--; 32716- (3)()()32132232÷---⨯; (4)11632⎛⎫÷- ⎪⎝⎭.18.(2022·江苏·七年级期末)(1)先化简,再求值:4y ﹣(3x 2+5y ﹣3)﹣(﹣2x 2﹣5y +5),其中x =﹣3,y =﹣4;(2)若关于x ,y 的多项式3(x 2﹣2xy +y 2)﹣2(2x 2﹣kxy +2y 2)中不含xy 项,求k 的值.19.(2022·广东·九年级专题练习)解方程: (1)()319x +=; (2)12123x x-+-=;(3))1(32)1(2121-=⎥⎦⎤⎢⎣⎡--x x x ; (4)3213(1)(32)(1)45102x x x --+=--.20.(2022·四川成都·七年级期末)先观察下列各式,再完成题后问题:1112323=-⨯;1113434=-⨯;1114545=-⨯ (1)①请仿照上面各式的结构写出:156=⨯__________; ②1111122334(1)n n +++⋅⋅⋅+=⨯⨯⨯+__________;(其中,n 为整数,且满足1n ≥) (2)运用以上方法思考:求1111111141224406084112144+++++++的值.21.(2022·云南临沧市·七年级期中)若整数m 的两个平方根为63a -,22a -;b (1)求a 及m 的值;(2)求275m b ++的立方根.22.(2022·浙江·七年级期末)“双十一”期间,某电商城销售一种空调和立式风扇,空调每台定价3000元,立式风扇每台定价600元.商场决定开展促销活动,活动期间向客户提供两种优惠方案.方案一:买一台空调送一台立式风扇;方案二:空调和立式风扇都按定价的90%付款.现某客户要到该卖场购买空调5台,立式风扇x台(x>5).(1)若该客户按方案一购买,需付款元,(用含x的代数式表示)若该客户按方案二购买,需付款元.(用含x的代数式表示)(2)若x=10,通过计算说明此时按哪种方案购买较为合算?(3)当x=10时,你能给出一种更为省钱的购买方案吗?试写出你的购买方法,并计算需付款多少元?23.(2022·河北·七年级期末)如图,已知点C在线段AB上,AB=20,BC=13AC,点D,E在射线AB上,点D在点E的左侧.(1)DE在线段AB上,当E为BC中点时,求CE的长;(2)在(1)的条件下,点F在线段AB上,CF=3,求EF的长;(3)若AB=2DE,线段DE在射线AB上移动,且满足关系式4BE=3(AD+CE),求CDAC的值.24.(2022·浙江宁波·七年级期末)如图①.直线DE上有一点O,过点O在直线DE上方作射线OC,将一直角三角板AOB(其中45OAB∠=)的直角顶点放在点O处,一条直角边OB在射线OE上,另一边OA在直线DE的上方,将直角三角形绕着点O按每秒15的速度顺时针旋转一周,设旋转时间为t 秒.(1)当直角三角板旋转到图②的伩置时, 射线OB 恰好平分COE ∠, 此时, AOC ∠与AOD ∠ 之间的数量关系为____________.(2)若射线OC 的位置保持不变, 且120COD ∠=,①在旋转过程中,是否存在某个时刻,使得射线OB , 射线OC , 射线OE 中的某一条射线是另外两条射线所夹锐角的角平分线? 若存在,请求出t 的值; 若不存在, 请说明理由;②在旋转过程中, 当边AB 与射线OD 相交时, 如图③, 请直接写出BOC AOD ∠∠-的值_______.。

人教版七年级上册数学期中模拟卷(一)含答案解析

人教版七年级上册数学期中模拟卷(一)含答案解析

人教版七年级上册期中模拟卷一考试范围:第1-2章 ;考试时间:120分钟;姓名:注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题 1.(2022·河南·商水县希望初级中学七年级阶段练习)下列等式正确的是( ) A .99-=- B .133-= C .77--=D .()22-+=-A .2365x y -π的系数是65-B .233x y 的次数是6C .2.46万精确到百分位D .222x xy y ++是二次三项式A .一个有理数不是正数就是负数B .最小的整数是0C .有理数包括正有理数、零和负有理数D .数轴上的点都表示有理数【答案】C【分析】根据有理数的定义对各选项分析判断求解.【详解】解:A 、一个有理数,不是正数,有可能是负数或零,故本选项错误; B 、整数分为正整数,0,负整数,所以没有最小的整数,故本选项错误; C 、有理数包括正有理数、零和负有理数,故本选项正确;D 、有理数可以用数轴上的点表示,但数轴上的点不一定都表示有理数,故本选项错误. 故选:C .【点睛】本题考查了有理数的定义,是基础题,熟记概念是解题的关键.4.(2021·黑龙江·哈尔滨市萧红中学校七年级阶段练习)用四舍五入法对0.1508按不同要求取近似数,其中错误的是( ) A .0.2(精确到0.1) B .0.16(精确到0.01) C .0.151(精确到千分位) D .0.15(精确到百分位)【答案】B【分析】根据近似数的精确度对各选项进行判断.【详解】解:A .0.15080.2≈(精确到0.1),所以A 选项的计算正确; B .0.15080.15≈(精确到0.01),所以B 选项的计算错误; C .0.15080.151≈(精确到千分位),所以C 选项的计算正确; D .0.15080.15≈(精确到百分位),所以D 选项的计算正确. 故选:B .【点睛】本题考查了近似数:“精确到第几位”和“有几个有效数字”是精确度的两种常用的表示形式,它们实际意义是不一样的,前者可以体现出误差值绝对数的大小,而后者往往可以比较几个近似数中哪个相对更精确一些.5.(2022·湖南·长沙市开福区青竹湖湘一外国语学校七年级阶段练习)下列各对数中,是互为相反数的是( ) A .()0.01--与1100⎛⎫- ⎪⎝⎭B .12-与(0.5)+-C .(5)-+与(5)+-D .13-与0.3的x值为18,我们发现第1次输出的结果为9,第2次输出的结果为12,……则第2022次输出的结果为()A.3B.6C.9D.18形的数量是()A.2019B.2020C.3032D.30338.(2020·浙江杭州·七年级期末)若230-+-=,则b a=()a bA.9B.9-C.8D.8-+-+-时运算律用9.(2021·山西·介休市第三中学校七年级阶段练习)计算3(2)5+(7)4545得恰当的是()A .13323(2)5(7)4545⎡⎤⎡⎤+-++-⎢⎥⎢⎥⎣⎦⎣⎦B .133235274455⎡⎤⎛⎫⎛⎫⎛⎫++-+- ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦C .12333(7)(2)54554⎡⎤⎡⎤++-+-+⎢⎥⎢⎥⎣⎦⎣⎦D .3312(2)53(7)5445⎡⎤⎡⎤-+++-⎢⎥⎢⎥⎣⎦⎣⎦滚动(无滑动)两周到达点B ,则点B 表示的数是( )A .2πB .4-πC .4+1-πD .41-π-【答案】D【分析】先求出滚动两周的距离,然后根据数轴上的点与实数一一对应,可得B 点表示的数.【详解】解:滚动两周的距离为221=4ππ⨯⨯, ∵点B 表示的数是41-π-, 故选:D .【点睛】本题考查了数轴上的动点问题,求出滚动两周的距离是解题的关键.第II 卷(非选择题)二、填空题11.(2021·山东·青岛爱迪学校七年级期中)若单项式23m n x y ﹣与单项式22n n x y 的和是25m n x y ﹣,则m +n =_____. 【答案】8【分析】根据题意可知单项式23m n x y ﹣与单项式22n n x y 是同类项,根据同类项的特点,列出方程组,解方程即可求解.【详解】解:∵单项式23m n x y ﹣与单项式22n n x y 的和是25m n x y ﹣, ∵单项式23m n x y ﹣与单项式22n n x y 是同类项,∵22m n n n -=⎧⎨=⎩,解得62m n =⎧⎨=⎩,∵m +n =6+2=8. 故答案为:8.【点睛】本题考查了同类项的定义以及整式的加法等知识,掌握同类项的定义是解答本题的关键.同类项:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项. 12.(2022·黑龙江·兰西县红星乡第一中学校期中)若a ,b 互为相反数,m ,n 互为倒数,则2020(a +b )﹣9mn 的值为 _____. 【答案】﹣9【分析】根据互为相反数、互为倒数的概念得到a +b =0,mn =1,代入2020(a +b )﹣9mn 计算即可得到答案.【详解】解:∵a 与b 互为相反数, ∵a +b =0, ∵m 和n 互为倒数, ∵mn =1,∵2020(a +b )﹣9mn =2020×0﹣9×1 =0﹣9 =﹣9, 故答案为:﹣9.【点睛】本题考查互为相反数及互为倒数的概念、有理数的计算,熟练掌握知识点是解题的关键.13.(2021·江苏·涟水县第四中学七年级阶段练习)如果代数式225a a +=,则代数式2243a a +-=_____.【答案】7【分析】首先提公因式把2243a a +-变形为()2223a a +-,然后将225a a +=整体代入求值即可得到答案.【详解】解:()22243223a a a a +-=+-,∴将225a a +=代入可得,原式2537=⨯-=,故答案为:7.【点睛】本题考查了求代数式的值,运用整体代入求值法:整体代入求值法是将已知条件适当变形,然后作为一个整体,代入到经过变形的待求的代数式中去求值的一种方法. 14.(2021·江苏·无锡市华庄中学七年级期中)点A 在数轴上表示数﹣3,点B 距离点A 有2个单位长度,则点B 表示的数为___________. 【答案】﹣1或﹣5#-5或-1【分析】设点B 表示的数为x ,再由数轴上两点间的距离公式即可得出结论. 【详解】解:设点B 表示的数为x ,则 |x +3|=2,解得x =﹣1或x =﹣5. 故答案为:﹣1或﹣5.【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.三、解答题15.(2021·辽宁·大连市第八十中学七年级阶段练习)把下列各数在数轴上表示,并从小到大的顺序用<连接起来.+(-4),122,0, 1.5--,-(-5).1(1)4.7(8.9)7.4(6)---+-; (2)311(1)2824-⨯÷.(1)222322(3())a a a a a +---; (2)2237(43)2[]x x x x ----. 【答案】(1)5a (2)2533--x x【分析】(1)直接去括号进而合并同类项得出答案; (2)直接去括号进而合并同类项得出答案. (1)解:222322(3())a a a a a +---2223223a a a a a -+=+-5a =;(2)解:2237(43)2[]x x x x ---- 22374[]32x x x x =-+-- 2237432=-+-+x x x x 2533=--x x .【点睛】此题考查整式的加减,掌握整式的加减混合运算法则是解题关键.18.(2022·全国·七年级课时练习)用黑白两种颜色的正六边形地面砖中力所示的规律,拼成若干图案.(1)第1个图形中有白色地砖 块; 第2个图形中有白色地砖 块; 第3个图形中有白色地砖 块; 第4个图形中有白色地砖 块;(2)求第n 个图案中有白色地砖的块数,并求出n =100时白色地砖的块数. 【答案】(1)6;10;14;18; (2)402块.【分析】(1)观察前3个图形的变化即可得结论; (2)结合(1)得到规律,进而运用规律即可得结论. (1)解:第1个图形中有白色地砖6块,即4×1+2=6; 第2个图形中有白色地砖10块,即4×2+2=10; 第3个图形中有白色地砖14块,即4×3+2=14. 第4个图形中有白色地砖4×4+2=18(块); 故答案为:6;10;14;18; (2)解:根据(1)可知:第n 个图案中,白色地砖共(4n +2)块. 所以n =100时,白色地砖共4×100+2=402(块).【点睛】本题考查了规律型:图形的变化类,解决本题的关键是根据图形的变化寻找规律,总结规律,运用规律.19.(2020·安徽安庆·七年级期中)小丽放学回家后准备完成下面的题目:化简()()226+8+652x x x x ---,发现系数“□”印刷不清楚 (1)她把“□”猜成3,请你化简()()2236+8+652x x x x ---(2)她妈妈说:你猜错了.我看到该题的答案是6.通过计算说明原题中“□”是几? 【答案】(1)226x -+ (2)5【分析】(1)去括号,合并同类项即可;(2)设“□”为a ,去括号化简,可知化简结果与二次项无关,即可求解. (1)解:()()2268652x x x x 3-++--22368652x x x x =-++--226x =-+;(2) 设“□”为a ,即有:()()()2226865256ax x x x a x -++--=-+,∵化简的结果为6,∵()256a x -+的结果与二次项无关,即二次项的系数为0,∵50a -=,即5a =, 答:“□”是5.【点睛】本题主要考查了整式的加减以及合并同类项的知识,灵活运用合并同类项的知识是解答本题的关键.20.(2021·内蒙古·霍林郭勒市第五中学七年级阶段练习)某电路检修小组在东西方向的一道路上检修用电线路,检修车辆从该道路P 处出发,如果规定检修车辆向东行驶为正,向西行驶为负,某一天施工过程中七次车辆行驶记录如下(单位:千米):(1)问检修小组收工时在P 的哪个方位?距P 处多远?(2)若检修车辆每千米耗油0.2升,每升汽油需6元,问这一天检修车辆所需汽油费多少元? 【答案】(1)检修小组收工时在P 的正东方,距P 处2千米 (2)50.4元【分析】(1)通过计算这七次车辆行驶记录结果的和就能得到答案;(2)计算出该天检修车辆走的路程之和,再乘以每千米耗油量和每升汽油的价格. (1)解:389104622-+-++--=(千米),答:检修小组收工时在P 的正东方,距P 处2千米.(2) 解:()60.2|3||8||9||10||4||6||2|⨯⨯-+++-+++++-+-()60.238910462=⨯⨯++++++=6×0.2×42=50.4(元).答:这一天检修车辆所需汽油费50.4元.【点睛】此题考查正负号的实际应用、绝对值的应用以及有理数的混合运算,理解正负号的意义是解题的关键.21.(2022·全国·七年级专题练习)观察下列等式:112⨯=1−12,123⨯=12−13,134⨯=13−14 将以上三个等式两边分别相加得:112⨯+123⨯+134⨯=1−12+12−13+13−14=1−14=34 (1)猜想写出()11n n += ; (2)直接写出下列各式的计算结果112⨯+123⨯+134⨯+…+()11n n += ; (3)探究计算1123⨯⨯+1234⨯⨯+1345⨯⨯+…+1201820192020⨯⨯.11111111223341n n111n =-+ 1n n =+; (3)解题的关键.22.(2021·河北唐山·七年级期中)已知:222232,432A a b ab abcB a b ab abc=--=--(1)求A B+的结果:(2)说明2A B-的结果和c的取值无关,并求1,62a b=-=时,2A B-的值(1)按图示规律完成下表:(2)按照这种方式搭下去,搭第n 个图形需要多少根火柴棒?(3)搭第2020个图形需要多少根火柴棒?(2)搭第n 个图形需要火柴棒根数为:5(1)41n n n --=+.(3)当2020n =时,414202018081n +=⨯+=,所以搭第2020个图形需要8081根火柴棒.【点睛】考查了规律型:图形的变化.注意:∵本题是规律性题目,要求具备较高的观察总结能力,合理利用所学知识求解.∵在做题过程中要合理利用转换思想,可以简化求解.。

初一数学七模试题及答案

初一数学七模试题及答案

初一数学七模试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是正数?A. -3B. 0C. 5D. -2答案:C2. 一个数的相反数是-4,这个数是:A. 4B. -4C. 0D. 8答案:A3. 绝对值等于5的数是:A. 5B. -5C. 5或-5D. 以上都不是答案:C4. 计算下列表达式的结果:A. 2 + 3 = 5B. 2 × 3 = 6C. 2 - 3 = -1D. 2 ÷ 3 = 0.6答案:B5. 下列哪个分数是最简分数?B. 6/8C. 8/12D. 5/7答案:D6. 一个数的平方是25,这个数是:A. 5B. -5C. 5或-5D. 以上都不是答案:C7. 一个数的立方是-8,这个数是:A. 2B. -2D. -8答案:B8. 下列哪个不等式是正确的?A. 3 > 2B. 3 < 2C. 3 = 2D. 3 ≥ 2答案:A9. 下列哪个是等式?A. 3 + 2 = 5B. 3 + 2 > 5C. 3 + 2 < 5D. 3 + 2 ≠ 5答案:A10. 一个数除以-2等于3,这个数是:A. -6B. 6C. -3D. 3答案:A二、填空题(每题3分,共30分)11. 一个数的相反数是-7,这个数是______。

答案:712. 绝对值等于7的数是______。

答案:7或-713. 计算表达式 4 × (-2) + 3 的结果是______。

答案:-514. 一个数的平方是36,这个数是______。

答案:6或-615. 一个数的立方是27,这个数是______。

答案:316. 一个数除以-3等于-2,这个数是______。

答案:617. 计算表达式 (-4) ÷ (-2) 的结果是______。

答案:218. 一个数的平方根是4,这个数是______。

答案:1619. 一个数的立方根是-2,这个数是______。

(必考题)人教版初中七年级数学上册第一章《有理数》模拟测试卷(含答案解析)(3)

(必考题)人教版初中七年级数学上册第一章《有理数》模拟测试卷(含答案解析)(3)

一、选择题1.(0分)[ID :67647]下列计算中,错误的是( ) A .(2)(3)236-⨯-=⨯= B .()144282⎛⎫÷-=⨯-=- ⎪⎝⎭C .363(6)3--=-++=D .()()2399--=--=2.(0分)[ID :67635]下列说法正确的是( ) A .近似数1.50和1.5是相同的 B .3520精确到百位等于3600 C .6.610精确到千分位D .2.708×104精确到千分位 3.(0分)[ID :67631]据报通,国家计划建设港珠澳大桥,估解该项工程总报资726亿元,用科学记数法表示726亿正确的是 A .B .C .D .4.(0分)[ID :67621]下列有理数大小关系判断正确的是( ) A .11910⎛⎫-->- ⎪⎝⎭B .010>-C .33-<+D .10.01->-5.(0分)[ID :67613]正方形ABCD 在数轴上的位置如图所示,点D 、A 对应的数分别为0和1,若正方形ABCD 绕着顶点顺时针方向在数轴上连续翻转,翻转1次后,点B 所对应的数为2;则翻转2016次后,数轴上数2016所对应的点是( )A .点CB .点DC .点AD .点B6.(0分)[ID :67610]下列有理数的大小比较正确的是( ) A .1123< B .1123->- C .1123->- D .1123-->-+ 7.(0分)[ID :67603]下列各组数中,互为相反数的是( ) A .(﹣3)2和﹣32B .(﹣3)2和32C .(﹣2)3和﹣23D .|﹣2|3和|﹣23|8.(0分)[ID :67601]下列结论错误的是( ) A .若a ,b 异号,则a ·b <0,ab <0 B .若a ,b 同号,则a ·b >0,a b>0 C .a b -=a b-=-a bD .a b--=-ab9.(0分)[ID :67595]若a ,b 互为相反数,则下面四个等式中一定成立的是( )A .a+b=0B .a+b=1C .|a|+|b|=0D .|a|+b=0 10.(0分)[ID :67588]若|x|=7|y|=5x+y>0,,且,那么x-y 的值是 ( ) A .2或12B .2或-12C .-2或12D .-2或-1211.(0分)[ID :67582]下列说法中正确的是( ) A .a -表示的数一定是负数 B .a -表示的数一定是正数 C .a -表示的数一定是正数或负数D .a -可以表示任何有理数12.(0分)[ID :67562]已知有理数a ,b 满足0ab ≠,则||||a b a b+的值为( ) A .2±B .±1C .2±或0D .±1或013.(0分)[ID :67576]计算 -2的结果是( )A .0B .-2C .-4D .414.(0分)[ID :67575]据中国电子商务研究中心() 发布2017《年度中国共享经济发展报告》显示,截止2017年12月,共有190家共享经济平台获得1159.56亿元投资,数据1159.56亿元用科学记数法可表示为( )A .81159.5610⨯元B .1011.595610⨯元C .111.1595610⨯元D .81.1595610⨯元 15.(0分)[ID :67571]计算(-2)2018+(-2)2019等于( ) A .-24037B .-2C .-22018D .22018二、填空题16.(0分)[ID :67758]把67.758精确到0.01位得到的近似数是__.17.(0分)[ID :67754]绝对值小于2的整数有_______个,它们是______________. 18.(0分)[ID :67742]一条数轴上有点A 、B 、C ,其中点A 、B 表示的数分别是16-、9,现以点C 为折点,将放轴向右对折,若点A 对应的点A '落在点B 的右边,若3A B '=,则C 点表示的数是______.19.(0分)[ID :67729]全球平均每年发生雷电次数约为16000000次,将16000000用科学记数法表示是_____.20.(0分)[ID :67716]若230x y ++-= ,则x y -的值为________.21.(0分)[ID :67714]按下面程序计算,若开始输入x 的值为正数,最后输出的结果为656,则满足条件所有x 的值是___.22.(0分)[ID :67713]数轴上A 、B 两点所表示的有理数的和是 ________.23.(0分)[ID :67712]截至格林尼治标准时间2020年6月7日10时,全球累计报告新冠肺炎确诊病例达7000000例;其中累计死亡病例超过40万例,数据7000000科学记数法表示为_____.24.(0分)[ID :67711]若有理数a ,b 满足()26150a b -+-=,则ab =__________. 25.(0分)[ID :67749]如果点A 表示+3,将A 向左移动7个单位长度,再向右移动3个单位长度,则终点表示的数是__________.26.(0分)[ID :67746]点A ,B 表示数轴上互为相反数的两个数,且点A 向左平移8个单位长度到达点B ,则这两点所表示的数分别是____________和___________.27.(0分)[ID :67704](1)圆周率π=3.141 592 6…,取近似值3.142,是精确到____位; (2)近似数2.428×105精确到___位;(3)用四舍五入法把3.141 592 6精确到百分位是____,近似数3.0×106精确到____位.三、解答题28.(0分)[ID :67923]把4-,4.5,0,12-四个数在数轴上分别表示出来,再用“<”把它们连接起来.29.(0分)[ID :67920]计算: (1)()()3122021π--+---; (2)()41151123618⎛⎫---+÷⎪⎝⎭. 30.(0分)[ID :67902]计算: (1)()4235524757123⎛⎫÷--⨯-÷- ⎪⎝⎭; (2)()3218223427⎛⎫-⨯+-⨯- ⎪⎝⎭.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题1.C2.C3.A4.A5.B6.B7.A8.D9.A10.A11.D12.C13.A14.C15.C二、填空题16.76【分析】根据要求进行四舍五入即可【详解】解:把67758精确到001位得到的近似数是6776故答案是:6776【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数17.3;-101等【分析】当一个数为非负数时它的绝对值是它本身;当这个数是负数时它的绝对值是它的相反数【详解】绝对值小于2的整数包括绝对值等于0的整数和绝对值等于1的整数它们是0±1共有3个故答案为(118.【分析】根据可得点为12再根据与以为折点对折即为中点即可求解【详解】解:翻折后在右侧且所以点为12∵与以为折点对折则为中点即【点睛】本题考查数轴上两点间的距离得到为中点是解题的关键19.【解析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值大于10时n是正数;当原数的绝对20.【分析】先利用绝对值的非负性求出xy的值代入求解即可【详解】解:由题意得解得∴故答案为:【点睛】本题考查了绝对值的非负性解题的关键是熟练掌握绝对值的非负性21.131或26或5或【分析】利用逆向思维来做分析第一个数就是直接输出656可得方程5x+1=656解方程即可求得第一个数再求得输出为这个数的第二个数以此类推即可求得所有答案【详解】用逆向思维来做:第一22.-1【解析】由数轴得点A表示的数是﹣3点B表示的数是2∴AB两点所表示的有理数的和是﹣3+2=﹣1故答案为-123.7×106【分析】根据科学记数法形式:a×10n其中1≤a<10n为正整数即可求解【详解】解:7000000科学记数法表示为:7×106故答案为:7×106【点睛】本题考查科学记数法解决本题的关键是24.90【分析】本题可根据非负数的性质两个非负数相加和为0这两个非负数的值都为0解出ab的值再把ab的值代入ab中即可解出本题【详解】解:依题意得:|a-6|=0(b-15)2=0∴a-6=0b-15=25.-1【分析】根据向右为正向左为负根据正负数的意义列式计算即可【详解】根据题意得终点表示的数为:3-7+3=-1故答案为-1【点睛】本题考查了数轴正负数在实际问题中的应用在本题中向左向右具有相反意义可26.-4【解析】试题27.(1)千分(2)百(3)314十万【分析】(1)根据精确到哪位就是对它后边的一位进行四舍五入即可解答;(2)根据一个数精确到了哪一位应当看这个数的末位数字实际在哪一位解答即可;(3)根据精确到哪位就三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题 1.C 解析:C 【分析】根据有理数的运算法则逐一判断即可. 【详解】(2)(3)236-⨯-=⨯=,故A 选项正确;()144282⎛⎫÷-=⨯-=- ⎪⎝⎭,故B 选项正确; 363(6)9--=-+-=-,故C 选项错误; ()()2399--=--=,故D 选项正确;故选C . 【点睛】本题考查了有理数的运算,重点是去括号时要注意符号的变化.2.C解析:C 【分析】相似数和原值是不相同的;3520精确到百位是3500;2.708×104精确到十位. 【详解】A 、近似数1.50和1.5是不同的,A 错B 、3520精确到百位是3500,B 错 D 、2.708×104精确到十位. 【点睛】本题考察相似数的定义和科学计数法.3.A解析:A 【解析】 【分析】用科学记数法表示较大的数时,一般形式为a ×10n ,其中1≤|a |<10,n 为整数,据此判断即可. 【详解】726亿=7.26×1010. 故选A .本题考查了用科学记数法表示较大的数,一般形式为a ×10n ,其中1≤|a |<10,确定a 与n 的值是解题的关键.4.A解析:A 【分析】先化简各式,然后根据有理数大小比较的方法判断即可. 【详解】 ∵1199⎛⎫--=⎪⎝⎭,111010--=-,11910>-, ∴11910⎛⎫-->--⎪⎝⎭,故选项A 正确; ∵1010-=,010<, ∴010<-,故选项B 不正确; ∵33-=,33+=,∴33-=+,故选项C 不正确; ∵11-=,0.010.01-=,10.01>, ∴10.01-<-,故选项D 不正确. 故选:A . 【点睛】本题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.5.B解析:B 【分析】由题意可知转一周后,A 、B 、C 、D 分别对应的点为1、2、3、4,可知其四次一次循环,由此可确定出2016所对应的点. 【详解】当正方形在转动第一周的过程中,1对应的点是A ,2所对应的点是B ,3对应的点是C ,4对应的点是D ,∴四次一循环,∵2016÷4=504,∴2016所对应的点是D ,故答案选B. 【点睛】本题主要考查了数轴的应用,解本题的要点在于找出问题中的规律,根据发现的规律可以推测出答案.6.B解析:B根据有理数大小的比较方法逐项判断即得答案.【详解】解:A、1123>,故本选项大小比较错误,不符合题意;B、因为1122-=,1133-=,1123>,所以1123->-,故本选项大小比较正确,符合题意;C、因为1122-=,1133-=,1123>,所以1123-<-,故本选项大小比较错误,不符合题意;D、因为1122--=-,1133-+=-,1123-<-,所以1123--<-+,故本选项大小比较错误,不符合题意.故选:B.【点睛】本题考查了有理数的大小比较和有理数的绝对值,属于基础题型,掌握比较大小的方法是解题的关键.7.A解析:A【分析】各项中两式计算得到结果,即可作出判断.【详解】A、(﹣3)2=9,﹣32=﹣9,互为相反数;B、(﹣3)2=32=9,不互为相反数;C、(﹣2)3=﹣23=﹣8,不互为相反数;D、|﹣2|3=|﹣23|=8,不互为相反数,故选:A.【点睛】此题考查了有理数的乘方,相反数,以及绝对值,熟练掌握运算法则是解本题的关键.8.D解析:D【解析】根据有理数的乘法和除法法则可得选项A、B正确;根据有理数的除法法则可得选项C正确;根据有理数的除法法则可得选项D原式=ab,选项D错误,故选D.9.A 解析:Aa ,b 互为相反数0a b ⇔+= ,易选B. 10.A解析:A 【分析】由绝对值性质可知x 和y 均有两种可能取值,再根据x+y>0排除不可能取值,代入求值即可. 【详解】由x 7=可得x=±7,由y 5=可得y=±5, 由x+y>0可知:当x=7时,y=5;当x=7时,y=-5, 则x y 75122-=±=或, 故选A 【点睛】绝对值具有非负性,因此去绝对值时要根据题干条件全面考虑.11.D解析:D 【分析】直接根据有理数的概念逐项判断即可. 【详解】解:A. a -表示的数不一定是负数,当a 为负数时,-a 就是正数,故该选项错误; B. a -表示的数不一定是正数,当a 为正数时,-a 就是负数,故该选项错误; C. a -表示的数不一定是正数或负数,当a 为0时,-a 也为0,故该选项错误; D. a -可以表示任何有理数,故该选项正确. 故选:D . 【点睛】此题主要考查有理数的概念,熟练掌握有理数的概念是解题关键.12.C解析:C 【分析】根据题意得到a 与b 同号或异号,原式利用绝对值的代数意义化简即可得到结果. 【详解】 ∵0ab ≠,∴当0a >,0b <时,原式110=-=; 当0a >,0b >时,原式112=+=; 当0a <,0b <时,原式112=--=-; 当0a <,0b >时,原式110=-+=. 故选:C . 【点睛】本题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.13.A解析:A【详解】解:因为|-2|-2=2-2=0,故选A.考点:绝对值、有理数的减法14.C解析:C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】1159.56亿=115956000000,所以1159.56亿用科学记数法表示为1.15956×1011,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.15.C解析:C【分析】直接利用偶次方,奇次方的性质化简各数得出答案.【详解】解:(-2)2018+(-2)2019=(-2)2018+(-2)2018·(-2)=(-2)2018·(1-2)=-22018故选:C.【点睛】此题主要考查了偶次方的性质,正确化简各数是解题关键.二、填空题16.76【分析】根据要求进行四舍五入即可【详解】解:把67758精确到001位得到的近似数是6776故答案是:6776【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数解析:76.【分析】根据要求进行四舍五入即可.【详解】解:把67.758精确到0.01位得到的近似数是67.76.故答案是:67.76.【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数.17.3;-101等【分析】当一个数为非负数时它的绝对值是它本身;当这个数是负数时它的绝对值是它的相反数【详解】绝对值小于2的整数包括绝对值等于0的整数和绝对值等于1的整数它们是0±1共有3个故答案为(1解析:3; -1,0,1等.【分析】当一个数为非负数时,它的绝对值是它本身;当这个数是负数时,它的绝对值是它的相反数.【详解】绝对值小于2的整数包括绝对值等于0的整数和绝对值等于1的整数,它们是0,±1,共有3个.故答案为(1). 3; (2). -1,0,1等.【点睛】本题考查了绝对值,熟悉掌握绝对值的定义是解题的关键.18.【分析】根据可得点为12再根据与以为折点对折即为中点即可求解【详解】解:翻折后在右侧且所以点为12∵与以为折点对折则为中点即【点睛】本题考查数轴上两点间的距离得到为中点是解题的关键解析:2-【分析】根据3A B'=可得点A'为12,再根据A与A'以C为折点对折,即C为A,A'中点即可求解.【详解】解:翻折后A'在B右侧,且3A B'=.所以点A'为12,∵A与A'以C为折点对折,则C为A,A'中点,即1216:22C-=-.【点睛】本题考查数轴上两点间的距离,得到C为A,A'中点是解题的关键.19.【解析】科学记数法的表示形式为a×10n的形式其中1≤|a|<10n为整数确定n的值时要看把原数变成a时小数点移动了多少位n的绝对值与小数点移动的位数相同当原数绝对值大于10时n是正数;当原数的绝对解析:71.610⨯【解析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.16000000 =71.610⨯.20.【分析】先利用绝对值的非负性求出xy 的值代入求解即可【详解】解:由题意得解得∴故答案为:【点睛】本题考查了绝对值的非负性解题的关键是熟练掌握绝对值的非负性解析:5-【分析】先利用绝对值的非负性求出x 、y 的值,代入求解即可.【详解】解:由题意得,230x y ++-=20,30x y +=-=解得 2x =-, 3y =,∴235-=--=-x y ,故答案为: 5.-【点睛】本题考查了绝对值的非负性,解题的关键是熟练掌握绝对值的非负性.21.131或26或5或【分析】利用逆向思维来做分析第一个数就是直接输出656可得方程5x+1=656解方程即可求得第一个数再求得输出为这个数的第二个数以此类推即可求得所有答案【详解】用逆向思维来做:第一解析:131或26或5或45. 【分析】利用逆向思维来做,分析第一个数就是直接输出656,可得方程5x+1=656,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【详解】用逆向思维来做:第一个数就是直接输出其结果的:5x+1=656,解得:x=131;第二个数是(5x+1)×5+1=656,解得:x=26;同理:可求出第三个数是5;第四个数是45,∴满足条件所有x的值是131或26或5或45.故答案为131或26或5或45.【点睛】此题考查了方程与不等式的应用.注意理解题意与逆向思维的应用是解题的关键.22.-1【解析】由数轴得点A表示的数是﹣3点B表示的数是2∴AB两点所表示的有理数的和是﹣3+2=﹣1故答案为-1解析:-1【解析】由数轴得,点A表示的数是﹣3,点B表示的数是2,∴ A,B两点所表示的有理数的和是﹣3+2=﹣1,故答案为-1.23.7×106【分析】根据科学记数法形式:a×10n其中1≤a<10n为正整数即可求解【详解】解:7000000科学记数法表示为:7×106故答案为:7×106【点睛】本题考查科学记数法解决本题的关键是解析:7×106【分析】根据科学记数法形式:a×10n,其中1≤a<10,n为正整数,即可求解.【详解】解:7000000科学记数法表示为:7×106.故答案为:7×106.【点睛】本题考查科学记数法,解决本题的关键是把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.[科学记数法形式:a×10n,其中1≤a<10,n为正整数.24.90【分析】本题可根据非负数的性质两个非负数相加和为0这两个非负数的值都为0解出ab的值再把ab的值代入ab中即可解出本题【详解】解:依题意得:|a-6|=0(b-15)2=0∴a-6=0b-15=解析:90【分析】本题可根据非负数的性质“两个非负数相加,和为0,这两个非负数的值都为0”解出a,b 的值,再把a、b的值代入ab中即可解出本题.【详解】解:依题意得:|a-6|=0,(b-15)2=0,∴a-6=0,b-15=0,∴a=6,b=15,∴ab=90.故答案是:90.【点睛】本题考查了非负数的性质,两个非负数相加,和为0,这两个非负数的值都为0.25.-1【分析】根据向右为正向左为负根据正负数的意义列式计算即可【详解】根据题意得终点表示的数为:3-7+3=-1故答案为-1【点睛】本题考查了数轴正负数在实际问题中的应用在本题中向左向右具有相反意义可解析:-1【分析】根据向右为正,向左为负,根据正负数的意义列式计算即可.【详解】根据题意得,终点表示的数为:3-7+3=-1.故答案为-1.【点睛】本题考查了数轴,正负数在实际问题中的应用,在本题中向左、向右具有相反意义,可以用正负数来表示,从而列出算式求解.26.-4【解析】试题解析:-4【解析】试题两点的距离为8,则点A、B距离原点的距离是4,∵点A,B互为相反数,A在B的右侧,∴A、B表示的数是4,-4.27.(1)千分(2)百(3)314十万【分析】(1)根据精确到哪位就是对它后边的一位进行四舍五入即可解答;(2)根据一个数精确到了哪一位应当看这个数的末位数字实际在哪一位解答即可;(3)根据精确到哪位就解析:(1)千分 (2)百 (3)3.14 十万【分析】(1)根据精确到哪位,就是对它后边的一位进行四舍五入即可解答;(2)根据一个数精确到了哪一位,应当看这个数的末位数字实际在哪一位解答即可;(3)根据精确到哪位,就是对它后边的一位进行四舍五入以及科学记数法的精确方法解答即可.【详解】解:(1)圆周率π=3.141 592 6…,取近似值3.142,是精确到千分位;(2)近似数2.428×105中,2.428的小数点前面的2表示20万,则这一位是十万位,因而2.428的最后一位8应该是在百位上,因而这个数是精确到百位;(3)用四舍五入法把3.141 592 6精确到百分位是3.14,近似数3.0×106精确到十万位.故答案为: (1)千分; (2)百; (3)3.14、十万.【点睛】本题考查了近似数,掌握确定近似数精确的位数和科学记数法的精确方法是解答本题的关键.三、解答题28. 数轴表示见解析,140 4.52-<-<<. 【分析】先根据数轴的定义将这四个数表示出来即可,再根据数轴上的表示的数,左边的总小于右边的用“<”将它们连接起来即可得.【详解】将这四个数在数轴上分别表示出来如下所示:则140 4.52-<-<<. 【点睛】本题考查了数轴,熟练掌握数轴的定义是解题关键. 29.(1)18-;(2)-17. 【分析】(1)原式第一项利用绝对值代数意义进行化简,第二项利用负整数指数幂的运算法则进行计算,第三项利用零指数幂的运算法则进行化简,最后进行加减运算即可得到答案;(2)原式先计算有理数的乘方,再把除法转化为乘法去括号进行乘法运算,最后进行加减运算即可得到答案. 【详解】解:(1)()()30122021π--+--- =1118-- =18-; (2)()41151123618⎛⎫---+÷⎪⎝⎭ =115118236⎛⎫--+⨯ ⎪⎝⎭=115118+1818236-⨯⨯-⨯ =1-9+6-15=-17. 【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键. 30.(1)0;(2)1-.【分析】(1)原式先把除法转换为乘法,再逆用乘法分配律进行计算即可得到答案; (2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【详解】解:(1)()4235524757123⎛⎫÷--⨯-÷- ⎪⎝⎭ 45355171271234⎛⎫=⨯--⨯+⨯ ⎪⎝⎭ 4535571271212=-⨯-⨯+ 43517712⎛⎫=--+⨯ ⎪⎝⎭ 5012=⨯ 0=;(2)()3218223427⎛⎫-⨯+-⨯- ⎪⎝⎭ ()98427427⎛⎫-⨯+-⨯- ⎝=⎪⎭98=-+1=-.【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.。

七年级数学培优专题1(含答案)

七年级数学培优专题1(含答案)

专题01质数那些事阅读与思考一个大于1的自然数如果只能被1和本身整除,就叫作质数(也叫素数);如果能被1和本身以外的自然数整除,就叫作合数;自然数1既不是质数,也不是合数,叫作单位数.这样,我们可以按约数个数将正整数分为三类:1⎧⎪⎨⎪⎩单位正整数质数合数关于质数、合数有下列重要性质:1.质数有无穷多个,最小的质数是2,但不存在最大的质数,最小的合数是4. 2.1既不是质数,也不是合数;2是唯一的偶质数.3.若质数p |ab ,则必有p |a 或p |b .4.算术基本定理:任意一个大于1的整数N 能唯一地分解成k 个质因数的乘积(不考虑质因数之间的顺序关系):N= 1212k aa a k P P P L ,其中12k P P P <<<L ,i P 为质数,i a 为非负数(i =1,2,3,…,k ).正整数N 的正约数的个数为(1+1a )(1+1a )...(1+1a ),所有正约数的和为(1+1P + (11)P )(1+2P +…+22a P )…(1+k P +…+k ak P ).例题与求解【例1】已知三个质数a ,b ,c 满足a +b +c +abc =99,那么a b b c c a -+-+-的值等于_________________.(江苏省竞赛试题)解题思想:运用质数性质,结合奇偶性分析,推出a ,b ,c 的值.【例2】若p 为质数,3p +5仍为质数,则5p +7为( ) A .质数 B .可为质数,也可为合数C .合数D .既不是质数,也不是合数(湖北省黄冈市竞赛试题)解题思想:从简单情形入手,实验、归纳与猜想.【例3】求这样的质数,当它加上10和14时,仍为质数.(上海市竞赛试题)解题思想:由于质数的分布不规则,不妨从最小的质数开始进行实验,另外,需考虑这样的质数是否唯一,按剩余类加以深入讨论.【例4】⑴将1,2,…,2 004这2 004个数随意排成一行,得到一个数n,求证:n一定是合数.⑵若n是大于2的正整数,求证:2n-1与2n+1中至多有一个质数.⑶求360的所有正约数的倒数和.(江苏省竞赛试题) 解题思想:⑴将1到2 004随意排成一行,由于中间的数很多,不可能一一排出,不妨找出无论怎样排,所得数都有非1和本身的约数;⑵只需说明2n-1与2n+1中必有一个是合数,不能同为质数即可;⑶逐个求解正约数太麻烦,考虑整体求解.【例5】设x和y是正整数,x≠y,p是奇质数,并且112x y p+=,求x+y的值.解题思想:由题意变形得出p整除x或y,不妨设x tp=.由质数的定义得到2t-1=1或2t-1= p.由x≠y及2t-1为质数即可得出结论.【例6】若一个质数的各位数码经任意排列后仍然是质数,则称它是一个“绝对质数”[如2,3,5,7,11,13(31),17(71),37(73),79(97),113(131,311),199(919,991),337(373,733),…都是质数].求证:绝对质数的各位数码不能同时出现数码1,3,7,9.(青少年国际城市邀请赛试题) 解题思想:一个绝对质数如果同时含有数字1,3,7,9,则在这个质数的十进制表示中,不可能含有数字0,2,4,5,6,8,否则,进行适当排列后,这个数能被2或5整除.能力训练A 级1.若a ,b ,c ,d 为整数,()()2222a b cd ++=1997,则2222a b c d +++=________.2.在1,2,3,…,n 这个n 自然数中,已知共有p 个质数,q 个合数,k 个奇数,m 个偶数,则(q -m )+(p -k )=__________.3.设a ,b 为自然数,满足1176a =3b ,则a 的最小值为__________.(“希望杯”邀请赛试题)4.已知p 是质数,并且6p +3也是质数,则11p -48的值为____________.(北京市竞赛试题)5.任意调换12345各数位上数字的位置,所得的五位数中质数的个数是 ( )A .4B .8C .12D .0 6.在2 005,2 007,2 009这三个数中,质数有 ( ) A .0个 B .1个 C .2个 D .3个(“希望杯”邀请赛试题)7.一个两位数的个位数字和十位数字变换位置后,所得的数比原来的数大9,这样的两位中,质数有( )A .1个B .3 个C .5个D .6 个(“希望杯”邀请赛试题)8.设p ,q ,r 都是质数,并且p +q =r ,p <q .求p .9.写出十个连续的自然数,使得个个都是合数.(上海市竞赛试题)10.在黑板上写出下面的数2,3,4,…,1 994,甲先擦去其中的一个数,然后乙再擦去一个数,如此轮流下去,若最后剩下的两个数互质,则甲胜;若最后剩下的两个数不互质,则乙胜,你如果想胜,应当选甲还是选乙?说明理由.(五城市联赛试题) 11.用正方形的地砖不重叠、无缝隙地铺满一块地,选用边长为x cm规格的地砖,恰用n块,若选用边长为y cm规格的地砖,则要比前一种刚好多用124块,已知x,y,n都是正整数,且(x,y)=1,试问这块地有多少平方米?(湖北省荆州市竞赛试题)B级1.若质数m,n满足5m+7n=129,则m+n的值为__________.2.已知p,q均为质数,并且存在两个正整数m,n,使得p=m+n,q=m×n,则p qn m p q m n++的值为__________.3.自然数a,b,c,d,e都大于1,其乘积abcde=2 000,则其和a+b+c+d+e的最大值为__________,最小值为____________.(“五羊杯”竞赛试题)4.机器人对自然数从1开始由小到大按如下的规则染色:凡能表示为两个合数之和的自然数都染成红色,不合上述要求的自然数都染成黄色,若被染成红色的数由小到大数下去,则第 1 992个数是_______________.(北京市“迎春杯”竞赛试题)5.若a,b均为质数,且满足11a+b=2 089,则49b-a=_________.A.0B.2 007C.2 008D.2 010(“五羊杯”竞赛试题)6.设a 为质数,并且72a +8和82a +7也都为质数,记x =77a +8,y =88a +7,则在以下情形中,必定成立的是( )A .x ,y 都是质数B .x ,y 都是合数C .x ,y 一个是质数,一个是合数D .对不同的a ,以上皆可能出现(江西省竞赛试题)7.设a ,b ,c ,d 是自然数,并且2222a b c d +=+,求证:a +b +c +d 一定是合数.(北京市竞赛试题)8.请同时取六个互异的自然数,使它们同时满足: ⑴ 6个数中任意两个都互质;⑵ 6个数任取2个,3个,4个,5个,6个数之和都是合数,并简述选择的数符合条件的理由.9.已知正整数p ,q 都是质数,并且7p +q 与pq +11也都是质数,试求qpp q +的值.(湖北省荆州市竞赛试题)10. 41名运动员所穿运动衣号码是1,2,…,40,41这41个自然数,问:(l) 能否使这41名运动员站成一排,使得任意两个相邻运动员的号码之和是质数? (2) 能否让这41名运动员站成一圈,使得任意两个相邻运动员的号码之和都是质数?若能办到,请举出一例;若不能办到,请说明理由.专题01 质数那些事例1 34 例2 C例3 3符合要求 提示:当p =3k +1时,p +10=3k +11,p +14=3(k +5),显然p +14是合数,当p =3k+2时,p +10=3(k +4)是合数,当p =3k 时,只有k =1才符合题意. 例4 (1)因1+2+ (2004)21×2004×(1+2004)=1002×2005为3的倍数,故无论怎样交换这2004个数的顺序,所得数都有3这个约数.(2)因n 是大于2的正整数,则n2-1≥7,n2-1、n2、n2+1是不小于7的三个连续的正整数,其中必有一个被3整除,但3不整除n2,故n2-1与n2+1中至多有一个数是质数.(3)设正整数a 的所有正约数之和为b ,1d ,2d ,3d ,…,n d 为a 的正约数从小到大的排列,于是1d =1,n d =a .由于nd d d d S 1111321+⋅⋅⋅+++=中各分数分母的最小公倍数n d =a ,故S =n n n n n d d d d d d 11⋅⋅⋅++-=n n d d d d ⋅⋅⋅++21=ab ,而a =360=53223⨯⨯,故b =(1+2+22+32)×(1+3+23)×(1+5)=1170.a b =3601170=413. 例5 由xy y x +=p 2,得x +y =pxy2=k .(k 为正整数),可得2xy =kp ,所以p 整除2xy 且p 为奇质数,故p 整除x 或y ,不放设x =tp ,则tp +y =2ty ,得y =12-t tp为整数.又t 与2t -1互质,故2t -1整除p ,p 为质数,所以2t -1=1或2t -1=p .若2t -1=,得t =1,x =y =p ,与x ≠y 矛盾;若2t -1=p ,则xyy x +=p 2,2xy =p (x +y ).∵p 是奇质数,则x +y 为偶数,x 、y 同奇偶性,只能同为xy =()2y x p +必有某数含因数p .令x =ap ,ay =2y ap +,2ay =ap +y .∴y =12-a ap,故a ,2a -1互质,2a -1整除p ,又p 是质数,则2a -1=p ,a =21+p ,故x =p p ⋅+21=()21+p p ,∴x +y =()21+p p +21+p =()212+p 。

湘教版2020-2021学年度第一学期七年级数学期中模拟测试题1(附答案)

湘教版2020-2021学年度第一学期七年级数学期中模拟测试题1(附答案)
A.c+b>a+bB.cb<abC.﹣c+a>﹣b+aD.ac>ab
8.当 分别取值 , , , , ,1,2, ,2017,2018,2019时,计算代数式 的值,将所得结果相加,其和等于
A.1B. C.1009D.0
9.一个机器人从数轴原点出发,沿数轴正方向,以每前进3步后退2步的程序运动,设该机器人每秒钟前进或后退1步,并且每步的距离为1个单位长,xn表示第n秒时机器人在数轴上的位置所对应的数,给出下列结论(1)x3=3,(2)x5=1,(3)x76>x77,(4)x103<x104,(5)x2018>x2019其中,正确结论的个数是( )
方法一 将条件变形.因x= ,得x﹣1= .再把所求的代数式变形为关于(x﹣1)的表达式.
原式= (x3﹣2x2﹣2x)+2
= [x2(x﹣1)﹣x(x﹣1)﹣3x]+2
= [x(x﹣1)2﹣3x]+2
= (3x﹣3x)+2
=2
方法二 先将条件化成整式,再把等式两边同时平方,把无理数运算转化为有理数运算.由x﹣1= ,可得x2﹣2x﹣2=0,即,x2﹣2x=2,x2=2x+2.
1、-5、7、-17、31、-65、127、……③
(1)第①行的第8个数是___________,第①行第n个数是___________(用n的式子表示)
(2)取第①、②、③行的第10个数分别记为a、b、c,求a-b+c的值
(3)取每行数的第n个数,这三个数中任意两数之差的最大值为6146,则n=__________
(1)根据记录的数据可知小明妈妈星期三生产玩具__________个;
(2)根据记录的数据可知小明妈妈本周实际生产玩具__________个;

2019-2020学年安徽省庐江县七年级数学上册期末模拟试题(1)含解析【精美本】

2019-2020学年安徽省庐江县七年级数学上册期末模拟试题(1)含解析【精美本】

2019-2020学年安徽省庐江县七年级数学(上)期末模拟试题一.选择题(共10小题,满分30分,每小题3分)1.﹣3的倒数是()A.3B.C.﹣D.﹣32.我县人口约为530060人,用科学记数法可表示为()A.53006×10人B.5.3006×105人C.53×104人D.0.53×106人3.下列运算结果正确的是()A.5x﹣x=5B.2x2+2x3=4x5C.﹣n2﹣n2=﹣2n2D.a2b﹣ab2=04.已知关于x的方程5x+3k=21与5x+3=0的解相同,则k的值是()A.﹣10B.7C.﹣9D.85.如图,M是线段AB的中点,NB为MB的四分之一,MN=a,则AB表示为()A.B.C.2a D.1.5a6.下列利用等式的性质,错误的是()A.由a=b,得到5﹣2a=5﹣2b B.由=,得到a=bC.由a=b,得到ac=bc D.由a=b,得到=7.多项式是关于x的四次三项式,则m的值是()A.4B.﹣2C.﹣4D.4或﹣48.如图是正方体的表面展开图,则与“前”字相对的字是()A.认B.真C.复D.习9.如图,将两块三角板的直角顶点重合后叠放在一起,若∠1=40°,则∠2的度数为()A.60°B.50°C.40°D.30°10.中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于()个正方体的重量.A.2B.3C.4D.5二.填空题(共10小题,满分30分,每小题3分)11.计算:|﹣3|=.12.4.5983精确到十分位的近似值是.13.用代数式表示:x的30%除5a的商.14.如图,A、O、B在一直线上,∠1=∠2,则与∠1互补的角是.若∠1=28°32′35″,则∠1的补角=.15.已知4x2m y m+n与﹣3x6y2是同类项,则mn=.16.如图,在利用量角器画一个40°的∠AOB的过程中,对于先找点B,再画射线OB 这一步骤的画图依据,喜羊羊同学认为是两点确定一条直线,懒羊羊同学认为是两点之间线段最短.你认为同学的说法是正确的.17.如图,已知直线AB与CD相交于点O,OA平分∠COE,若∠DOE=70°,则∠BOD=.18.如图,已知C为线段AB的中点,D在线段CB上.若DA=6,DB=4,则CD=.19.【阅读材料】“九宫图”源于我国古代夏禹时期的“洛书”(图1所示),是世界上最早的矩阵,又称“幻方”,用今天的数学符号翻译出来,“洛书”就是一个三阶“幻方”(图2所示).【规律总结】观察图1、图2,根据“九宫图”中各数字之间的关系,我们可以总结出“幻方”需要满足的条件是;若图3,是一个“幻方”,则a=.20.点C在射线AB上,若AB=3,BC=2,则AC为.三.解答题(共6小题,满分60分)21.计算:(1);(2)90°﹣(23°16′+17°23′)+19°40′÷6;(3);(4)(x3﹣2y3﹣3x2y)﹣(3x3﹣3y3﹣7x2y).22.解方程:(1)x﹣7=10﹣4(x+0.5)(2)﹣=1.23.已知:多项式A=2x2﹣xy,B=x2+xy﹣6,求:(1)4A﹣B;(2)当x=1,y=﹣2时,4A﹣B的值.24.某商场新进一种服装,每套服装售价100元,若将裤子降价10%,上衣涨价5%,调价后这套服装的单价和比原来提高了2%,这套服装原来裤子和上衣的单价分别是多少?25.如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠AOC=40°,求∠COD的度数.26.探索性问题:已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0,请回答问题:(1)请直接写出a、b、c的值.a=,b=,c=;(2)数轴上a、b、c三个数所对应的点分别为A、B、C,点A、B、C同时开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒1个单位长度和3个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC.①t秒钟过后,AC的长度为(用t的关系式表示);②请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.2019-2020学年安徽省庐江县七年级数学(上)期末模拟试题参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.﹣3的倒数是()A.3B.C.﹣D.﹣3【分析】利用倒数的定义,直接得出结果.【解答】解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:C.【点评】主要考查倒数的定义,要求熟练掌握.需要注意的是负数的倒数还是负数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.我县人口约为530060人,用科学记数法可表示为()A.53006×10人B.5.3006×105人C.53×104人D.0.53×106人【分析】根据科学记数法的定义及表示方法进行解答即可.【解答】解:∵530060是6位数,∴10的指数应是5,故选:B.【点评】本题考查的是科学记数法的定义及表示方法,熟知以上知识是解答此题的关键.3.下列运算结果正确的是()A.5x﹣x=5B.2x2+2x3=4x5C.﹣n2﹣n2=﹣2n2D.a2b﹣ab2=0【分析】根据合并同类项法则判断即可.【解答】解:A、5x﹣x=4x,错误;B、2x2与2x3不是同类项,不能合并,错误;C、﹣n2﹣n2=﹣2n2,正确;D、a2b与ab2不是同类项,不能合并,错误;故选:C.【点评】此题主要考查了合并同类项知识,正确掌握相关运算法则是解题关键.4.已知关于x的方程5x+3k=21与5x+3=0的解相同,则k的值是()A.﹣10B.7C.﹣9D.8【分析】根据解方程,可得方程的解,再根据方程的解满足方程,可得关于k的一元一次方程,根据解方程,可得答案.【解答】解:5x+3=0,解得x=﹣0.6,把x=﹣0.6代入5x+3k=21,得5×(﹣0.6)+3k=21,解得k=8,故选:D.【点评】本题考查了一元一次方程的解,利用了解一元一次方程的方法.5.如图,M是线段AB的中点,NB为MB的四分之一,MN=a,则AB表示为()A.B.C.2a D.1.5a【分析】根据M是线段AB的中点可知,MB=,再由NB为MB的可知,MN=MB =a,再把两式相乘即可得出答案.【解答】解:∵M是线段AB的中点,∴MB=,∵NB为MB的,∴MN=MB=a,∴×=a,∴AB=.故选:A.【点评】本题考查的是线段上两点间的距离,比较简单.6.下列利用等式的性质,错误的是()A.由a=b,得到5﹣2a=5﹣2b B.由=,得到a=bC.由a=b,得到ac=bc D.由a=b,得到=【分析】根据等式的基本性质对各选项进行逐一分析即可.【解答】解:A、∵a=b,∴﹣2a=﹣2b,∴5﹣2a=5﹣2b,故本选项正确;B、∵=,∴c×=c×,∴a=b,故本选项正确;C、∵a=b,∴ac=bc,故本选项正确;D、∵a=b,∴当c=0时,无意义,故本选项错误.故选:D.【点评】本题考查的是等式的性质,熟知等式的基本性质是解答此题的关键.7.多项式是关于x的四次三项式,则m的值是()A.4B.﹣2C.﹣4D.4或﹣4【分析】根据四次三项式的定义可知,该多项式的最高次数为4,项数是3,所以可确定m的值.【解答】解:∵多项式是关于x的四次三项式,∴|m|=4,﹣(m﹣4)≠0,∴m=﹣4.故选:C.【点评】本题考查了与多项式有关的概念,解题的关键理解四次三项式的概念,多项式中每个单项式叫做多项式的项,有几项叫几项式,这些单项式中的最高次数,就是这个多项式的次数.8.如图是正方体的表面展开图,则与“前”字相对的字是()A.认B.真C.复D.习【分析】由平面图形的折叠及正方体的展开图解题.对于正方体的平面展开图中相对的面一定相隔一个小正方形.【解答】解:由图形可知,与“前”字相对的字是“真”.故选:B.【点评】本题考查了正方体的平面展开图,注意正方体的空间图形,从相对面入手,分析及解答问题.9.如图,将两块三角板的直角顶点重合后叠放在一起,若∠1=40°,则∠2的度数为()A.60°B.50°C.40°D.30°【分析】根据同角的余角相等,可知∠2=∠1.【解答】解:如图.∵∠1+∠BOC=90°,∠2+∠BOC=90°,∴∠2=∠1=40°.故选:C.【点评】本题主要考查了余角的性质:同角的余角相等.题中∠2和∠1都是∠BOC 的余角,因而它们相等.10.中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于()个正方体的重量.A.2B.3C.4D.5【分析】由图可知:2球体的重量=5圆柱体的重量,2正方体的重量=3圆柱体的重量.可设一个球体重x,圆柱重y,正方体重z.根据等量关系列方程即可得出答案.【解答】解:设一个球体重x,圆柱重y,正方体重z.根据等量关系列方程2x=5y;2z=3y,消去y可得:x=z,则3x=5z,即三个球体的重量等于五个正方体的重量.故选:D.【点评】此题的关键是找到球,正方体,圆柱体的关系.二.填空题(共10小题,满分30分,每小题3分)11.计算:|﹣3|=3.【分析】根据负数的绝对值等于这个数的相反数,即可得出答案.【解答】解:|﹣3|=3.故答案为:3.【点评】此题主要考查了绝对值的性质,正确记忆绝对值的性质是解决问题的关键.12.4.5983精确到十分位的近似值是 4.6.【分析】根据近似数的定义和题目中的要求可以解答本题.【解答】解:4.5983≈4.6(精确到十分位),故答案为:4.6.【点评】本题考查近似数和有效数字,解答本题的关键是明确近似数和有效数字的定义.13.用代数式表示:x的30%除5a的商.【分析】根据题意列出代数式即可得出答案【解答】解:x的30%可表示为30%x,x的30%除5a的用代数式可表示为:.故答案为:可表示为:.【点评】本题主要考查了列代数式,正确理解题意是关键.14.如图,A、O、B在一直线上,∠1=∠2,则与∠1互补的角是∠AOD.若∠1=28°32′35″,则∠1的补角=151°27′25″.【分析】根据互补和互余解答即可.【解答】解:∵∠1=∠2,∴与∠1互补的角是∠AOD,∵∠1=28°32′35″,∴∠1的补角=151°27′25″,故答案为:∠AOD;151°27′25″【点评】此题考查余角与补角,关键是根据互补和互余解答.15.已知4x2m y m+n与﹣3x6y2是同类项,则mn=﹣3.【分析】根据同类项的定义列出关于m、n的方程组,求出m、n的值,再代入所求代数式进行计算即可.【解答】解:∵4x2m y m+n与﹣3x6y2是同类项,∴,解得,∴mn=3×(﹣1)=﹣3.故答案为:﹣3.【点评】本题考查的是同类项的定义,根据题意列出关于m、n的方程组,求出m、n 的值是解答此题的关键.16.如图,在利用量角器画一个40°的∠AOB的过程中,对于先找点B,再画射线OB 这一步骤的画图依据,喜羊羊同学认为是两点确定一条直线,懒羊羊同学认为是两点之间线段最短.你认为喜羊羊同学的说法是正确的.【分析】根据直线的性质,可得答案.【解答】解:在利用量角器画一个40°的∠AOB的过程中,对于先找点B,再画射线OB这一步骤的画图依据,喜羊羊同学认为是两点确定一条直线,懒羊羊同学认为是两点之间线段最短.你认为喜羊羊同学的说法是正确的,故答案为:喜羊羊.【点评】本题考查了直线的性质,利用直线的性质是解题关键.17.如图,已知直线AB与CD相交于点O,OA平分∠COE,若∠DOE=70°,则∠BOD=55°.【分析】首先利用邻补角的定义得出∠COE,利用相交线的性质确定对顶角相等,然后根据角平分线定义得出所求角与已知角的关系转化求解.【解答】解:由邻补角的定义,得∠COE=180﹣∠DOE=110°∵∠COE=110°且OA平分∠COE,∴∠COA=∠AOE=55°,又∵∠COA与∠BOD是对顶角,∴∠BOD=∠COA=55°,故答案为:55°.【点评】本题是对角的平分线与对顶角的性质的考查,角平分线的性质是将两个角分成相等的两个角,对顶角相等.18.如图,已知C为线段AB的中点,D在线段CB上.若DA=6,DB=4,则CD=1.【分析】先根据DA=6,DB=4求出线段AB的长,再由C为线段AB的中点求出BC 的长,根据CD=BC﹣DB即可得出结论.【解答】解:∵DA=6,DB=4,∴AB=DB+DA=4+6=10,∵C为线段AB的中点,∴BC=AB=×10=5,∴CD=BC﹣DB=5﹣4=1.故答案为:1.【点评】本题考查的是两点间的距离,熟知各线段之间的和、差及倍数关系是解答此题的关键.19.【阅读材料】“九宫图”源于我国古代夏禹时期的“洛书”(图1所示),是世界上最早的矩阵,又称“幻方”,用今天的数学符号翻译出来,“洛书”就是一个三阶“幻方”(图2所示).【规律总结】观察图1、图2,根据“九宫图”中各数字之间的关系,我们可以总结出“幻方”需要满足的条件是每一行、每一列和每条对角线上各个数之和都相等;若图3,是一个“幻方”,则a=﹣3.【分析】根据题意确定出“幻方”需要的条件,确定出a的值即可.【解答】解:【阅读材料】“九宫图”源于我国古代夏禹时期的“洛书”(图1所示),是世界上最早的矩阵,又称“幻方”,用今天的数学符号翻译出来,“洛书”就是一个三阶“幻方”(图2所示).【规律总结】观察图1、图2,根据“九宫图”中各数字之间的关系,我们可以总结出“幻方”需要满足的条件是每一行、每一列和每条对角线上各个数之和都相等;若图3,是一个“幻方”,则4+1+(﹣2)=4+2+a,即a=﹣3,故答案为:每一行、每一列和每条对角线上各个数之和都相等;﹣3【点评】此题考查了有理数的加法,弄清题意是解本题的关键.20.点C在射线AB上,若AB=3,BC=2,则AC为1或5.【分析】分为两种情况,化成图形,根据图形和已知求出即可.【解答】解:当C在线段AB上时,AC=AB﹣BC=3﹣2=1,当C在线段AB的延长线时,AC=AB+BC=3+2=5,即AC=1或5,故答案为:1或5.【点评】本题考查了求出两点之间的距离,能求出符合的所有情况是解此题的关键,注意要进行分类讨论.三.解答题(共6小题,满分60分)21.计算:(1);(2)90°﹣(23°16′+17°23′)+19°40′÷6;(3);(4)(x3﹣2y3﹣3x2y)﹣(3x3﹣3y3﹣7x2y).【分析】(1)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.本题中﹣14表示1的4次方的相反数;(2)先算乘除最后算加减,有括号的先算括号里面的;(3)按照有理数混合运算的顺序,先乘方后乘除最后算加减,有括号的先算括号里面的.本题中﹣22表示2的平方的相反数;(4)运用整式的加减运算顺序,先去括号,再合并同类项.【解答】解:(1)原式=﹣1﹣0.5××(﹣7)=﹣1+=;(2)原式=90°﹣40°39′+3°16′40″=93°16′40″﹣40°39′=52°37′40″;(3)原式=﹣4××(﹣)=;(4)原式=x 3﹣2y 3﹣3x 2y ﹣3x 3+3y 3+7x 2y=(1﹣3)x 3+(﹣2+3)y 3+(﹣3+7)x 2y=﹣2x 3+y 3+4x 2y .【点评】在混合运算中要特别注意运算顺序:先三级,后二级,再一级;熟记去括号法则:﹣﹣得+,﹣+得﹣,++得+,+﹣得﹣;及熟练运用合并同类项的法则:字母和字母的指数不变,只把系数相加减.22.解方程:(1)x ﹣7=10﹣4(x +0.5)(2)﹣=1.【分析】(1)方程去括号,移项合并,把x 系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x 系数化为1,即可求出解.【解答】解:(1)去括号得:x ﹣7=10﹣4x ﹣2,移项合并得:5x =15,解得:x =3;(2)去分母得:10x +2﹣2x +1=6,移项合并得:8x =3,解得:x =.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.23.已知:多项式A=2x2﹣xy,B=x2+xy﹣6,求:(1)4A﹣B;(2)当x=1,y=﹣2时,4A﹣B的值.【分析】根据整式的运算法则即可求出答案.【解答】解:(1)∵多项式A=2x2﹣xy,B=x2+xy﹣6,∴4A﹣B=4(2x2﹣xy)﹣(x2+xy﹣6)=8x2﹣4xy﹣x2﹣xy+6=7x2﹣5xy+6(2)∵由(1)知,4A﹣B=7x2﹣5xy+6,∴当x=1,y=﹣2时,原式=7×12﹣5×1×(﹣2)+6=7+10+6=23【点评】本题考查整式的运算法则,解题的关键是熟练运用整式的运算法则,本题属于基础题型.24.某商场新进一种服装,每套服装售价100元,若将裤子降价10%,上衣涨价5%,调价后这套服装的单价和比原来提高了2%,这套服装原来裤子和上衣的单价分别是多少?【分析】设裤子单价是x元,上衣原来的单价是y元,那么根据“每套服装售价100元”可得出方程为x+y=100,根据“将裤子降价10%,上衣涨价5%,调价后这套服装的单价和比原来提高了2%”,可得出方程为x(1﹣10%)+y(1+5%)=100(1+2%),联立求解即可.【解答】解:设裤子单价是x元,上衣原来的单价是y元,依题意得:,解得:.答:这套服装原来裤子的单价为20元,上衣的单价是80元.【点评】本题考查了二元一次方程组的应用,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.25.如图,已知∠BOC=2∠AOC,OD平分∠AOB,且∠AOC=40°,求∠COD的度数.【分析】求出∠BOC,求出∠AOB,根据角平分线求出∠AOD,代入∠COD=∠AOD ﹣∠AOC求出即可.【解答】解:∵∠BOC=2∠AOC,∠AOC=40°,∴∠BOC=2×40°=80°,∴∠AOB=∠BOC+∠AOC=80°+40°=120°,∵OD平分∠AOB,∴∠AOD=∠AOB=×120°=60°,∴∠COD=∠AOD﹣∠AOC=60°﹣40°=20°.【点评】本题考查了角的平分线定义和角的计算,关键是求出∠AOD的度数和得出∠COD=∠AOD﹣∠AOC.26.探索性问题:已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0,请回答问题:(1)请直接写出a、b、c的值.a=﹣1,b=1,c=5;(2)数轴上a、b、c三个数所对应的点分别为A、B、C,点A、B、C同时开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒1个单位长度和3个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC.①t秒钟过后,AC的长度为6+4t(用t的关系式表示);②请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.【分析】(1)根据b为最小的正整数求出b的值,再由非负数的和的性质建立方程就可以求出a、b的值;(2)①先分别表示出t秒钟过后A、C的位置,根据数轴上两点之间的距离公式就可以求出结论;②先根据数轴上两点之间的距离公式分别表示出BC和AB就可以得出BC﹣AB的值的情况.【解答】解:(1)∵b是最小的正整数,∴b=1.∵(c﹣5)2+|a+b|=0,∴,∴.故答案为:a=﹣1,b=1,c=5;(2)①由题意,得t秒钟过后A点表示的数为:﹣1﹣t,C点表示的数为:5+3t,∴AC=5+3t﹣(﹣1﹣t)=6+4t;故答案为:6+4t;②由题意,得BC=4+2t,AB=2+2t,∴BC﹣AB=4+2t﹣(2+2t)=2.∴BC﹣AB的值是不随着时间t的变化而改变,其值为2.【点评】本题考查了数轴的运用,数轴上任意两点间的距离的运用,代数式表示数的运用,非负数的性质的运用,一元一次方程的运用,解答时求出弄清楚数轴上任意两点间的距离公式是关键.。

初一数学模拟试题及答案

初一数学模拟试题及答案

初一数学模拟试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. -1D. 2答案:B2. 计算下列哪个选项的结果等于5?A. 2 + 3B. 3 + 2C. 4 - 1D. 5 - 2答案:A3. 一个数的相反数是-8,那么这个数是:A. 8B. -8C. 0D. 16答案:A4. 一个数的绝对值是5,这个数可以是:A. 5B. -5C. 0D. 5或-5答案:D5. 以下哪个选项是不等式?A. 2x = 5B. 2x > 5C. 2x < 5D. 2x答案:B6. 一个三角形的两个内角分别是30°和60°,第三个内角是:A. 30°B. 60°C. 90°D. 120°答案:C7. 一个圆的半径是5,那么它的直径是:A. 10B. 15C. 20D. 25答案:A8. 以下哪个选项是质数?A. 2B. 4C. 6D. 8答案:A9. 一个数乘以0的结果是多少?A. 0B. 1C. 该数D. 无法确定答案:A10. 以下哪个选项是偶数?A. 2B. 3C. 5D. 7答案:A二、填空题(每题3分,共30分)1. 一个数的平方是16,这个数是______。

答案:±42. 一个数的立方是-8,这个数是______。

答案:-23. 一个数的倒数是2,这个数是______。

答案:1/24. 一个数的绝对值是3,这个数是______。

答案:±35. 一个三角形的三个内角分别是40°、70°和______。

答案:70°6. 一个圆的周长是31.4,那么它的半径是______。

答案:57. 一个数的平方根是3,这个数是______。

答案:98. 一个数的立方根是2,这个数是______。

答案:89. 一个数除以0.5等于10,这个数是______。

《常考题》人教版初中七年级数学上册第一章《有理数》模拟测试(答案解析)(1)

《常考题》人教版初中七年级数学上册第一章《有理数》模拟测试(答案解析)(1)

一、选择题1.(0分)[ID :67656]若12a = ,3b =,且0a b <,则+a b 的值为( ) A .52 B .52- C .25± D .52± 2.(0分)[ID :67652]13-的倒数的绝对值( )A .-3B .13- C .3 D .133.(0分)[ID :67649]若b<0,刚a ,a+b ,a-b 的大小关系是( )A .a<a <+b -b aB .<a<a-b a+bC .a<<a-b a+bD .<a<a+b a-b 4.(0分)[ID :67648]如果a =14-,b =-2,c =324-,那么︱a ︱+︱b ︱-︱c ︱等于( )A .-12B .112C .12D .-112 5.(0分)[ID :67647]下列计算中,错误的是( )A .(2)(3)236-⨯-=⨯=B .()144282⎛⎫÷-=⨯-=- ⎪⎝⎭C .363(6)3--=-++=D .()()2399--=--=6.(0分)[ID :67645]某测绘小组的技术员要测量A ,B 两处的高度差(A ,B 两处无法直接测量),他们首先选择了D ,E ,F ,G 四个中间点,并测得它们的高度差如下表:根据以上数据,可以判断A ,B 之间的高度关系为( )A .B 处比A 处高B .A 处比B 处高C .A ,B 两处一样高D .无法确定 7.(0分)[ID :67633]定义一种新运算2x y x y x+*=,如:2212122+⨯*==.则()(42)1**-=( ) A .1 B .2C .0D .-2 8.(0分)[ID :67624]若一个数的绝对值的相反数是17-,则这个数是( ) A .17- B .17+ C .17± D .7± 9.(0分)[ID :67606]在快速计算法中,法国的“小九九”从“一一得一”到“五五二十五”和我国的“小九九”算法是完全一样的,而后面“六到九”的运算就改用手势了.如计算8×9时,左手伸出3根手指,右手伸出4根手指,两只手伸出手指数的和为7,未伸出手指数的积为2,则8×9=10×7+2=72.那么在计算6×7时,左、右手伸出的手指数应该分别为( ) A .1,2B .1,3C .4,2D .4,3 10.(0分)[ID :67605]下列正确的是( )A .5465-<-B .()()2121--<+-C .1210823-->D .227733⎛⎫--=-- ⎪⎝⎭ 11.(0分)[ID :67593]如果a ,b ,c 为非零有理数且a + b + c = 0,那么a b c abc a b c abc +++的所有可能的值为(A .0B .1或- 1C .2或- 2D .0或- 2 12.(0分)[ID :67580]据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm (1nm=10﹣9m ),主流生产线的技术水平为14~28nm ,中国大陆集成电路生产技术水平最高为28nm .将28nm 用科学记数法可表示为( ) A .28×10﹣9m B .2.8×10﹣8m C .28×109m D .2.8×108m 13.(0分)[ID :67565]6-的相反数是( )A .6B .-6C .16D .16- 14.(0分)[ID :67577]下面说法中正确的是 ( )A .两数之和为正,则两数均为正B .两数之和为负,则两数均为负C .两数之和为0,则这两数互为相反数D .两数之和一定大于每一个加数 15.(0分)[ID :67573]有理数a ,b 在数轴上表示如图所示,则下列各式中正确的是( )A .0ab >B .b a >C .a b ->D .b a <二、填空题16.(0分)[ID :67755]在有理数3.14,3,﹣12 ,0,+0.003,﹣313,﹣104,6005中,负分数的个数为x ,正整数的个数为y ,则x+y 的值等于__.17.(0分)[ID :67745]计算(﹣1)÷6×(﹣16)=_____. 18.(0分)[ID :67744]23(2)0x y -++=,则x y 为______.19.(0分)[ID :67712]截至格林尼治标准时间2020年6月7日10时,全球累计报告新冠肺炎确诊病例达7000000例;其中累计死亡病例超过40万例,数据7000000科学记数法表示为_____.20.(0分)[ID :67699]绝对值不大于2.1的所有整数是____,其和是____.21.(0分)[ID :67690]若两个不相等的数互为相反数,则两数之商为____.22.(0分)[ID :67684]填空:(1)____的平方等于9;(2)(-2)3=____;(3)-14+1=____;(4)23×212⎛⎫ ⎪⎝⎭=____. 23.(0分)[ID :67677]某商店营业员每月的基本工资为4000元,奖金制度是每月完成规定指标10000元营业额,发奖金300元;若营业额超过规定指标,另奖超额部分营业额的5%.该商店的一名营业员九月份完成营业额13200元,则他九月份的收入为________元. 24.(0分)[ID :67666]阅读理解:根据乘方的意义,可得:22×23=(2×2)×(2×2×2)=25.请你试一试,完成以下题目:(1)a 3•a 4=(a•a•a )•(a•a•a•a )=__;(2)归纳、概括:a m •a n =__;(3)如果x m =4,x n =9,运用以上的结论,计算:x m+n =__.25.(0分)[ID :67665]把点P 从数轴的原点开始,先向右移动2个单位长度,再向左移动7个单位长度,此时点P 所表示的数是______.26.(0分)[ID :67750]一个跳蚤在一条数轴上,从0开始,第1次向右跳1单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,依此规律下去,当它跳第100落下时,落点在数轴上表示的数是_________ .27.(0分)[ID :67721]已知2x =,3y =,且x y <,则34x y -的值为_______.三、解答题28.(0分)[ID :67956]计算:2334[28(2)]--⨯-÷-29.(0分)[ID :67949]一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,﹣4,+10,﹣8,﹣6,+13,﹣10.(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?30.(0分)[ID :67874]计算(1)28()5(0.4)5+----;(2)1571361236⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭; (3)2336()(2)()(6)575⨯---⨯-+-⨯; (4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦;(5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦.【参考答案】2016-2017年度第*次考试试卷 参考答案**科目模拟测试一、选择题1.D2.C3.D4.A5.C6.B7.C8.C9.A10.A11.A12.B13.B14.C15.C二、填空题16.4【解析】负分数为:﹣﹣3共2个;正整数为:36005共2个则x+y=2+2=4故答案为4【点睛】本题主要考查了有理数的分类熟记有理数的分类是解决此题的关键17.【分析】根据有理数乘除法法则进行计算【详解】解:(-1)÷6×(-)=-×(−)=故答案为【点睛】此题考查了有理数的乘除法熟练掌握法则是解本题的关键18.﹣8【分析】根据绝对值的非负性和偶次方的非负性求出xy的值然后代入代数式中计算即可【详解】解:∵∴x-3=0y+2=0解得:x=3y=﹣2∴==﹣8故答案为:﹣8【点睛】本题考查代数式求值绝对值乘方19.7×106【分析】根据科学记数法形式:a×10n其中1≤a<10n为正整数即可求解【详解】解:7000000科学记数法表示为:7×106故答案为:7×106【点睛】本题考查科学记数法解决本题的关键是20.﹣2﹣10120【分析】找出绝对值不大于21的所有整数求出之和即可【详解】绝对值不大于21的所有整数有﹣2﹣1012之和为﹣2﹣1+0+1+2=0故答案为:﹣2﹣1012;0【点评】此题考查了绝对值21.-1【分析】设其中一个数为a(a≠0)它的相反数为-a然后作商即可【详解】解:设其中一个数为a(a≠0)则它的相反数为-a所以这两个数的商为a÷(-a)=-1故答案为:-1【点睛】本题考查了相反数和22.3或-3-802【分析】根据乘方的法则计算即可【详解】解:(1)32=9(-3)2=9所以3或-3的平方等于9;(2)(-2)3=-2×2×2=-8;(3)-14+1=-1+1=0;(4)23×=823.4460【分析】工资应分两个部分:基本工资+奖金而奖金又分区间所以分段计算最后求和【详解】根据题意得他九月份工资为(元)故答案为:4460【点睛】主要考查了有理数的混合运算解题的关键是正确理解文字语24.a7am+n36【分析】(1)根据题意乘方的意义7个a相乘可以写成a7即可解决;(2)根据题意总结规律可以知道是几个相同的数相乘指数相加即可解决;(3)运用以上的结论可以知道:xm+n=xm•xn即25.【分析】根据向右移动加向左移动减进行解答即可【详解】因为点P从数轴的原点开始先向右移动2个单位长度再向左移动7个单位长度所以点P所表示的数是0+2-7=-5故答案为:-5【点睛】本题考查的是数轴熟知26.-50【分析】根据题意列出式子然后计算即可【详解】根据题意落点在数轴上表示的数是0+1-2+3-4+……+99-100=(1-2)+(3-4)+……+(99-100)===-50故答案为:-50【点27.-6或-18【分析】先依据绝对值的性质求得xy的值然后再代入计算即可【详解】解:∵∴∵∴当x=2y=3时;当x=-2y=3时故答案为:-6或-18【点睛】此题考查了有理数的混合运算以及绝对值熟练掌握三、解答题28.29.30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题1.D解析:D【分析】 根据a b判断出a 和b 异号,然后化简绝对值,分两种情况求解即可. 【详解】 ∵0a b< ∴a 和b 异号又∵12a =,3b = ∴12a =,3b =-或12a =-,3b = 当12a =,3b =-时,15322+-=-a b = 当12a =-,3b =时,15322+-+=a b = 故选D .【点睛】本题考查了绝对值,有理数的除法,和有理数的加法,关键是根据a b判断出a 和b 异号. 2.C解析:C【分析】 首先求13-的倒数,然后根据绝对值的含义直接求解即可.【详解】 13-的倒数为-3,-3绝对值是3, 故答案为:C .【点睛】本题考查了倒数和绝对值的概念,熟练掌握概念是解题的关键.3.D解析:D【分析】根据有理数减法法则,两两做差即可求解.【详解】∵b<0∴()0a a b b -+=->,()0a b a b --=->∴()a a b >+,()a b a ->∴()()a b a a b ->>+故选D .【点睛】本题考查了有理数减法运算,减去一个负数等于加上这个数的相反数.4.A解析:A【分析】逐一求出三个数的绝对值,代入原式即可求解.【详解】1144a =-=,22b =-=,332244c =-= ∴原式=13122442+-=- 故答案为A .【点睛】 本题考查了求一个数的绝对值,有理数加减法混合运算,正数的绝对值为本身,0的绝对值为0,负数的绝对值是它的相反数.5.C解析:C【分析】根据有理数的运算法则逐一判断即可.【详解】(2)(3)236-⨯-=⨯=,故A 选项正确;()144282⎛⎫÷-=⨯-=- ⎪⎝⎭,故B 选项正确; 363(6)9--=-+-=-,故C 选项错误;()()2399--=--=,故D 选项正确;故选C .【点睛】本题考查了有理数的运算,重点是去括号时要注意符号的变化. 6.B解析:B【分析】根据题意列出算式,A ,B 之间的高度差A B h h -,结果大于0,则A 处比B 处高,结果小于0,则B 处比A 处高,结果等于0,则A ,B 两处一样高.【详解】根据题意,得:()()()()()A D E D F E G F B G h h h h h h h h h h ---------=A D E D F E G F B G h h h h h h h h h h --+-+-+-+=A B h h -将表格中数值代入上式,得()()4.5 1.70.8 1.9 3.6 1.5A B h h -=------= ∵1.5>0∴A B h h >故选B .【点睛】本题考查了有理数的加减混合运算,根据题意列出算式,去括号时注意符号变号问题是本题的关键.7.C解析:C【分析】先根据新定义计算出4*2=2,然后再根据新定义计算2*(-1)即可.【详解】4*2=4224+⨯ =2, 2*(-1)= ()2212+⨯- =0. 故(4*2)*(-1)=0.故答案为C .【点睛】定义新运算是近几年的热门题型,首先要根据新运算正确列出算式,本题考查了有理数混合运算,根据新运算定义正确列出算式并熟练掌握有理数的运算法则是解答本题的关键. 8.C解析:C【分析】根据绝对值的代数意义和相反数的定义进行分析解答即可.【详解】∵相反数为17-的数是17,而17-或17的绝对值都是17, ∴这个数是17-或17. 故选C.【点睛】熟知“绝对值的代数意义和相反数的定义”是解答本题的关键. 9.A解析:A【解析】试题分析:通过猜想得出数据,再代入看看是否符合即可.解:一只手伸出1,未伸出4,另一只手伸出2,未伸出3,伸出的和为3×10=30, 30+4×3=42,故选A .点评:此题是定义新运算题型.通过阅读规则,得出一般结论.解题关键是对号入座不要找错对应关系.10.A解析:A【分析】根据不等式的性质对各选项进行判断即可.【详解】解:(1)∵5465>,∴5465-<-,故选项A 符合题意; (2)∵-(-21)=21,+(-21)=-21,21>-21,∴()()2121--+->,故选项B 错误; (3)∵11210=108223---<,故选项C 错误;(4)∵227=-733--,227=733⎛⎫-- ⎪⎝⎭,∴227733⎛⎫---- ⎪⎝⎭<;故选:A.【点睛】此题主要考查了有理数的大小比较,熟练掌握有理数比较大小的方法是解答此题的关键.11.A解析:A【分析】根据题意确定出a,b,c中负数的个数,原式利用绝对值的代数意义化简,计算即可得到结果.【详解】解:∵a、b、c为非零有理数,且a+b+c=0∴a、b、c只能为两正一负或一正两负.①当a、b、c为两正一负时,设a、b为正,c为负,原式=1+1+(-1)+(-1)=0,②当a、b、c为一正两负时,设a为正,b、c为负原式1+(-1)+(-1)+1=0,综上,a b c abca b c abc+++的值为0,故答案为:0.【点睛】此题考查了绝对值,有理数的混合运算,熟练掌握运算法则是解本题的关键.12.B解析:B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】28nm =28×10﹣9m = 2.8×10﹣8m ,所以28nm用科学记数法可表示为:2.8×10﹣8m,故选B.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.B解析:B【详解】先根据绝对值的定义化简|-6|,再由相反数的概念解答即可.解:∵|-6|=6,6的相反数是-6,∴|-6|的相反数是-6.故选B .14.C解析:C【详解】A. 两数之和为正,则两数均为正,错误,如-2+3=1;B. 两数之和为负,则两数均为负,错误,如-3+1=-2;C. 两数之和为0,则这两数互为相反数,正确;D. 两数之和一定大于每一个加数,错误,如-1+0=-1,故选C.【点睛】根据有理数加法法则:绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0.可得出结果.15.C解析:C【分析】根据数轴可得0a b <<且a b >,再逐一分析即可.【详解】由题意得0a <,0b >,a b >,A 、0ab <,故本选项错误;B 、a b >,故本选项错误;C 、a b ->,故本选项正确;D 、b a >,故本选项错误.故选:C .【点睛】本题考查数轴,由数轴观察出0a b <<且a b >是解题的关键.二、填空题16.4【解析】负分数为:﹣﹣3共2个;正整数为:36005共2个则x+y=2+2=4故答案为4【点睛】本题主要考查了有理数的分类熟记有理数的分类是解决此题的关键解析:4【解析】 负分数为:﹣12 ,﹣313,共2个;正整数为: 3, 6005共2个, 则x+y=2+2=4,故答案为4. 【点睛】本题主要考查了有理数的分类,熟记有理数的分类是解决此题的关键. 17.【分析】根据有理数乘除法法则进行计算【详解】解:(-1)÷6×(-)=-×(−)=故答案为【点睛】此题考查了有理数的乘除法熟练掌握法则是解本题的关键 解析:136. 【分析】 根据有理数乘除法法则进行计算.【详解】解:(-1)÷6×(-16), =-16×(−16), =136. 故答案为136. 【点睛】 此题考查了有理数的乘除法,熟练掌握法则是解本题的关键.18.﹣8【分析】根据绝对值的非负性和偶次方的非负性求出xy 的值然后代入代数式中计算即可【详解】解:∵∴x-3=0y+2=0解得:x=3y=﹣2∴==﹣8故答案为:﹣8【点睛】本题考查代数式求值绝对值乘方解析:﹣8【分析】根据绝对值的非负性和偶次方的非负性求出x 、y 的值,然后代入代数式中计算即可.【详解】解:∵23(2)0x y -++=,∴x-3=0,y+2=0,解得:x=3,y=﹣2,∴x y =3(2)-=﹣8,故答案为:﹣8.【点睛】本题考查代数式求值、绝对值、乘方运算,熟练掌握绝对值和偶次方的非负性是解答的关键. 19.7×106【分析】根据科学记数法形式:a×10n 其中1≤a <10n 为正整数即可求解【详解】解:7000000科学记数法表示为:7×106故答案为:7×106【点睛】本题考查科学记数法解决本题的关键是解析:7×106【分析】根据科学记数法形式:a×10n ,其中1≤a <10,n 为正整数,即可求解.【详解】解:7000000科学记数法表示为:7×106.故答案为:7×106.【点睛】本题考查科学记数法,解决本题的关键是把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.[科学记数法形式:a×10n,其中1≤a<10,n为正整数.20.﹣2﹣10120【分析】找出绝对值不大于21的所有整数求出之和即可【详解】绝对值不大于21的所有整数有﹣2﹣1012之和为﹣2﹣1+0+1+2=0故答案为:﹣2﹣1012;0【点评】此题考查了绝对值解析:﹣2,﹣1,0,1,2 0【分析】找出绝对值不大于2.1的所有整数,求出之和即可.【详解】绝对值不大于2.1的所有整数有﹣2、﹣1、0、1、2,之和为﹣2﹣1+0+1+2=0,故答案为:﹣2,﹣1,0,1,2;0【点评】此题考查了绝对值的意义和有理数的加法,熟练掌握运算法则是解本题的关键.21.-1【分析】设其中一个数为a(a≠0)它的相反数为-a然后作商即可【详解】解:设其中一个数为a(a≠0)则它的相反数为-a所以这两个数的商为a÷(-a)=-1故答案为:-1【点睛】本题考查了相反数和解析:-1【分析】设其中一个数为a(a≠0),它的相反数为-a,然后作商即可.【详解】解:设其中一个数为a(a≠0),则它的相反数为-a,所以这两个数的商为a÷(-a)=-1.故答案为:-1.【点睛】本题考查了相反数和除法法则,根据题意设出这两个数是解决此题的关键.22.3或-3-802【分析】根据乘方的法则计算即可【详解】解:(1)32=9(-3)2=9所以3或-3的平方等于9;(2)(-2)3=-2×2×2=-8;(3)-14+1=-1+1=0;(4)23×=8解析:3或-3 -8 0 2【分析】根据乘方的法则计算即可.【详解】解:(1)32=9,(-3)2=9,所以3或-3的平方等于9;(2)(-2)3=-2×2×2=-8;(3)-14+1=-1+1=0;(4)23×212⎛⎫⎪⎝⎭=8×14=2.故答案为:3或-3;-8;0;2.【点睛】本题考查了有理数乘方运算,熟记法则和乘方的意义是解决此题的关键.23.4460【分析】工资应分两个部分:基本工资+奖金而奖金又分区间所以分段计算最后求和【详解】根据题意得他九月份工资为(元)故答案为:4460【点睛】主要考查了有理数的混合运算解题的关键是正确理解文字语解析:4460【分析】工资应分两个部分:基本工资+奖金,而奖金又分区间,所以分段计算,最后求和.【详解】根据题意,得他九月份工资为4000300(1320010000)5%4460++-⨯=(元).故答案为:4460.【点睛】主要考查了有理数的混合运算,解题的关键是正确理解文字语言中的关键词,找到其中的数量关系,列出式子计算即可.24.a7am+n36【分析】(1)根据题意乘方的意义7个a相乘可以写成a7即可解决;(2)根据题意总结规律可以知道是几个相同的数相乘指数相加即可解决;(3)运用以上的结论可以知道:xm+n=xm•xn即解析:a7 a m+n 36【分析】(1)根据题意,乘方的意义,7个a相乘可以写成a7即可解决;(2)根据题意,总结规律,可以知道是几个相同的数相乘,指数相加即可解决;(3)运用以上的结论,可以知道:x m+n=x m•x n,即可解决问题.【详解】解:(1)根据材料规律可得a3•a4=(a•a•a)•(a•a•a•a)=a7;(2)归纳、概括:a m•a n=m na a a a⎛⎫⎛⎫⎪⎪⎪⎪⎝⎭⎝⎭=a m+n;(3)如果x m=4,x n=9,运用以上的结论,计算:x m+n=x m•x n=4×9=36.故答案为:a7,a m+n,36.【点睛】本题主要考查了有理数的乘方的认识,能够读懂乘方的意义并且能够仿照例题写出答案是解决本题的关键.25.【分析】根据向右移动加向左移动减进行解答即可【详解】因为点P从数轴的原点开始先向右移动2个单位长度再向左移动7个单位长度所以点P 所表示的数是0+2-7=-5故答案为:-5【点睛】本题考查的是数轴熟知解析:5-【分析】根据向右移动加,向左移动减进行解答即可.【详解】因为点P 从数轴的原点开始,先向右移动2个单位长度,再向左移动7个单位长度, 所以点P 所表示的数是 0+2-7=-5.故答案为:-5.【点睛】本题考查的是数轴,熟知数轴的特点是解答此题的关键.26.-50【分析】根据题意列出式子然后计算即可【详解】根据题意落点在数轴上表示的数是0+1-2+3-4+……+99-100=(1-2)+(3-4)+……+(99-100)===-50故答案为:-50【点解析:-50【分析】根据题意,列出式子,然后计算即可.【详解】根据题意,落点在数轴上表示的数是0+1-2+3-4+……+99-100=(1-2)+(3-4)+……+(99-100)=()()()10021111÷--+-+-个=150-⨯=-50故答案为:-50.【点睛】此题考查的是有理数的加减法的应用,掌握有理数的加、减法法则和加法结合律是解决此题的关键.27.-6或-18【分析】先依据绝对值的性质求得xy 的值然后再代入计算即可【详解】解:∵∴∵∴当x=2y=3时;当x=-2y=3时故答案为:-6或-18【点睛】此题考查了有理数的混合运算以及绝对值熟练掌握解析:-6或-18【分析】先依据绝对值的性质求得x 、y 的值,然后再代入计算即可.【详解】解:∵2x =,3y =,∴2x =±,3=±y .∵x y <,∴2x =±,3y =,当x=2,y=3时,346x y -=-;当x=-2,y=3时,3418x y -=-.故答案为:-6或-18.【点睛】此题考查了有理数的混合运算以及绝对值,熟练掌握绝对值的代数意义是解本题的关键.三、解答题28.21-.【分析】先计算有理数的乘方,再计算括号内的除法与减法,然后计算有理数的乘法,最后计算有理数的减法即可得.【详解】解:原式[]9428(8)=--⨯-÷-, []942(1)=--⨯--, 943=--⨯,912=--,21=-.【点睛】本题考查了含乘方的有理数混合运算,熟练掌握各运算法则是解题关键.29.(1)回到了球门线的位置;(2)11米;(3)56米【分析】(1)由于守门员从球门线出发练习折返跑,问最后是否回到了球门线的位置,只需将所有数加起来,看其和是否为0即可;(2)计算每一次跑后的数据,绝对值最大的即为所求;(3)求出所有数的绝对值的和即可.【详解】解:(1)(+5)+(﹣4)+(+10)+(﹣8)+(﹣6)+(+13)+(﹣10)=(5+10+13)-(4+8+6+10)=28-28=0.答:守门员最后回到了球门线的位置;(2)(3)|+5|+|﹣4|+|+10|+|﹣8|+|﹣6|+|+13|+|﹣10|=5+4+10+8+6+13+10 =56(米).答:守门员全部练习结束后,他共跑了56米.【点睛】本题考查了正数和负数以及有理数加减运算的应用等知识点,解题的关键是理解“正”和“负”的相对性,确定具有相反意义的量.30.(1)3;(2)3;(3)667-;(4)3-;(5)315.4【分析】(1)先把运算统一为省略加号的和的形式,再利用加法的运算律,把互为相反数的两数先加,从而可得答案;(2)先把除法转化为乘法,再利用乘法的分配律把运算化为:()()()1573636363612-⨯-+⨯--⨯-,再计算乘法运算,最后计算加减运算即可得到答案;(3)把原式化为:()233662557-⨯+-⨯-⨯,逆用乘法的分配律,同步进行乘法运算,最后计算减法即可得到答案; (4)先计算小括号内的运算与乘方运算,再计算中括号内的运算,再计算乘法运算,最后计算加减运算即可得到答案;(5)先计算乘方运算,同步把除法转化为乘法,再计算小括号内的减法运算,同步进行乘法运算,最后计算加法运算即可得到答案.【详解】解:(1)28()5(0.4)5+---- 2850.45=--+ 3.=(2)1571361236⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭ ()157363612⎛⎫=-+-⨯- ⎪⎝⎭()()()1573636363612=-⨯-+⨯--⨯-123021=-+3.=(3)2336()(2)()(6)575⨯---⨯-+-⨯ ()233662557=-⨯+-⨯-⨯ 2366557⎛⎫=-⨯+- ⎪⎝⎭ 667=-- 667=- (4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦()()1132212⎡⎤⎛⎫=---+-⨯--- ⎪⎢⎥⎝⎭⎣⎦ ()313212⎛⎫=---+⨯-+ ⎪⎝⎭ ()31212⎛⎫=---⨯-+ ⎪⎝⎭131=--+3.=-(5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦ ()()1=2.5101632100⨯-⨯-- ()1164=--- 1164=-+ 315.4= 【点睛】本题考查的是含乘方的有理数的混合运算,乘法分配律的应用,掌握运算法则与运算顺序是解题的关键.。

(必考题)人教版初中七年级数学上册第一章《有理数》模拟检测题(答案解析)(2)

(必考题)人教版初中七年级数学上册第一章《有理数》模拟检测题(答案解析)(2)

一、选择题1.(0分)[ID:67646]一个因数扩大到原来的10倍,另一个因数缩小到原来的120,积()A.缩小到原来的12B.扩大到原来的10倍C.缩小到原来的110D.扩大到原来的2倍2.(0分)[ID:67643]在-1,2,-3,4,这四个数中,任意三数之积的最大值是()A.6 B.12 C.8 D.243.(0分)[ID:67626]已知a、b在数轴上的位置如图所示,将a、b、-a、-b从小到排列正确的一组是()A.-a<-b<a<b B.-b<-a<a<bC.-b<a<b<-a D.a<-b<b<-a4.(0分)[ID:67611]下列说法:①a-一定是负数;②||a一定是正数;③倒数等于它本身的数是±1;④绝对值等于它本身的数是l;⑤平方等于它本身的数是1.其中正确的个数是()A.1个B.2个C.3个D.4个5.(0分)[ID:67601]下列结论错误的是( )A.若a,b异号,则a·b<0,ab<0B.若a,b同号,则a·b>0,ab>0C.ab-=ab-=-abD.ab--=-ab6.(0分)[ID:67600]计算2136⎛⎫---⎪⎝⎭的结果为()A.-12B.12C.56D.567.(0分)[ID:67598]绝对值大于1且小于4的所有整数的和是()A.6 B.–6 C.0 D.4 8.(0分)[ID:67595]若a,b互为相反数,则下面四个等式中一定成立的是()A.a+b=0 B.a+b=1C .|a|+|b|=0D .|a|+b=09.(0分)[ID :67584]下列四个式子,正确的是( ) ①33.834⎛⎫->-+ ⎪⎝⎭;②3345⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭;③ 2.5 2.5->-;④125523⎛⎫-->+ ⎪⎝⎭. A .③④B .①C .①②D .②③ 10.(0分)[ID :67566]按键顺序是的算式是( )A .(0.8+3.2)÷45= B .0.8+3.2÷45= C .(0.8+3.2)÷45= D .0.8+3.2÷45= 11.(0分)[ID :67578]把实数36.1210-⨯用小数表示为() A .0.0612B .6120C .0.00612D .61200012.(0分)[ID :67577]下面说法中正确的是 ( ) A .两数之和为正,则两数均为正 B .两数之和为负,则两数均为负 C .两数之和为0,则这两数互为相反数 D .两数之和一定大于每一个加数13.(0分)[ID :67573]有理数a ,b 在数轴上表示如图所示,则下列各式中正确的是( )A .0ab >B .b a >C .a b ->D .b a <14.(0分)[ID :67568]下列各式计算正确的是( ) A .826(82)6--⨯=--⨯ B .434322()3434÷⨯=÷⨯ C .20012002(1)(1)11-+-=-+D .-(-22)=-415.(0分)[ID :67567]若2020M M +-=+,则M 一定是( ) A .任意一个有理数B .任意一个非负数C .任意一个非正数D .任意一个负数二、填空题16.(0分)[ID :67758]把67.758精确到0.01位得到的近似数是__.17.(0分)[ID :67757]若a 、b 、c 、d 、e 都是大于1、且是不全相等的五个整数,它们的乘积2000abcde =,则它们的和a b c d e ++++的最小值为__. 18.(0分)[ID :67726]已知|a |=3,|b |=2,且ab <0,则a ﹣b =_____. 19.(0分)[ID :67725]数轴上表示 1 的点和表示﹣2 的点的距离是_____.20.(0分)[ID :67712]截至格林尼治标准时间2020年6月7日10时,全球累计报告新冠肺炎确诊病例达7000000例;其中累计死亡病例超过40万例,数据7000000科学记数法表示为_____.21.(0分)[ID :67710]在如图所示的运算流程中,若输出的数y=5,则输入的数x=_____.22.(0分)[ID :67692]计算3253.1410.31431.40.284⨯+⨯-⨯=__. 23.(0分)[ID :67680]有下列数据:我国约有14亿人口;第一中学有68个教学班;直径10 cm 的圆,它的周长约31.4 cm ,其中是准确数的有_____,是近似数的有_____. 24.(0分)[ID :67676]定义一种正整数的“H 运算”:①当它是奇数时,则该数乘3加13;②当它是偶数时,则取该数的一半,一直取到结果为奇数停止.如:数3经过1次“H 运算”的结果是22,经过2次“H 运算”的结果为11,经过3次“H 运算”的结果为46,那么数28经过2020次“H 运算”得到的结果是_________.25.(0分)[ID :67748]A ,B ,C 三地的海拔高度分别是50-米,70-米,20米,则最高点比最低点高______米.26.(0分)[ID :67746]点A ,B 表示数轴上互为相反数的两个数,且点A 向左平移8个单位长度到达点B ,则这两点所表示的数分别是____________和___________. 27.(0分)[ID :67732]给下面的计算过程标明运算依据: (+16)+(-22)+(+34)+(-78) =(+16)+(+34)+(-22)+(-78)① =[(+16)+(+34)]+[(-22)+(-78)]② =(+50)+(-100)③ =-50.④①______________;②______________;③______________;④______________.三、解答题28.(0分)[ID :67956]计算:2334[28(2)]--⨯-÷- 29.(0分)[ID :67861]计算:(1)()2411(10.5)2--23⎡⎤---⨯⨯⎣⎦(2)6÷(-2)3-|-22×3|+3÷2×12+1; 30.(0分)[ID :67921]如图,在数轴上有三个点,,A B C ,回答下列问题:(1)若将点B 向右移动5个单位长度后,三个点所表示的数中最小的数是多少? (2)在数轴上找一点D ,使点D 到,A C 两点的距离相等,写出点D 表示的数;(3)在数轴上找出点E,使点E到点A的距离等于点E到点B的距离的2倍,写出点E 表示的数.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.A2.B3.D4.A5.D6.A7.C8.A9.D10.B11.C12.C13.C14.C15.B二、填空题16.76【分析】根据要求进行四舍五入即可【详解】解:把67758精确到001位得到的近似数是6776故答案是:6776【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数17.【分析】先把abcde=2000化为abcde=2000=24×53的形式再根据整数abcde都大于1得到使a+b+c+d+e尽可能小时各未知数的取值求出最小值即可【详解】解:abcde=2000=18.5或﹣5【分析】先根据绝对值的定义求出ab的值然后根据ab<0确定ab的值最后代入a﹣b中求值即可【详解】解:∵|a|=3|b|=2∴a=±3b=±2;∵ab<0∴当a=3时b=﹣2;当a=﹣3时b19.3【分析】直接根据数轴上两点间的距离公式求解即可【详解】∵|1-(-2)|=3∴数轴上表示-2的点与表示1的点的距离是3故答案为3【点睛】本题考查的是数轴熟知数轴上两点间的距离公式是解答此题的关键20.7×106【分析】根据科学记数法形式:a×10n其中1≤a<10n为正整数即可求解【详解】解:7000000科学记数法表示为:7×106故答案为:7×106【点睛】本题考查科学记数法解决本题的关键是21.910【详解】试题分析:由运算流程可以得出有两种情况当输入的x为偶数时就有y=x 当输入的x为奇数就有y=(x+1)把y=5分别代入解析式就可以求出x的值而得出结论解:由题意得当输入的数x是偶数时则y22.0【分析】先把0314314都转化为314然后逆运用乘法分配律进行计算即可得解【详解】解:故答案为:0【点睛】本题考查了有理数的乘法运算把算式进行转化逆运用乘法分配律运算更加简便23.68和1014亿和314【分析】准确数是指对事物进行计数时能确切表示一个量的真正值的数;近似数是指跟一个数量的准确值相接近并且用来代替准确值的数值;据此直接进行判断【详解】我国约有14亿人口;第一中24.16【分析】从28开始分别按照偶数和奇数的计算法则依次计算直到出现循环即可得解【详解】解:第1次:;第2次:;第3次:;第4次:;第5次:;第6次:;第7次:等于第5次所以从第5次开始奇数次等于1偶25.90【分析】先根据有理数的大小比较法则得出最高点和最低点再列出运算式子计算有理数的减法即可得【详解】因为所以最高点的海拔高度为20米最低点的海拔高度米则(米)即最高点比最低点高90米故答案为:90【26.-4【解析】试题27.①加法互换律;②加法结合律;③有理数的加法法则;④有理数的加法法则【分析】根据有理数加法法则相关运算律:交换律:a+b=b+a;结合律(a+b)+c=a+(b+c)依此即可求解【详解】第①步交换了加三、解答题28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.A解析:A【分析】根据题意列出乘法算式,计算即可.【详解】设一个因数为a,另一个因数为b∴两数乘积为ab根据题意,得11 10202a b ab故选A.【点睛】本题考查了有理数乘法运算,根据有理数乘法运算法则计算即可.2.B解析:B【分析】三个数乘积最大时一定为正数,二2和4的积为8,因此一定要根据-1和-3相乘,积为3,然后和4相乘,此时三数积最大.【详解】∵乘积最大时一定为正数∴-1,-3,4的乘积最大为12故选B.【点睛】本题考查了有理数的乘法,两个负数相乘积为正数,先将两个负数化为正数是本题的关键.3.D解析:D【解析】【分析】根据数轴表示数的方法得到a<0<b,且|a|>b,则-a>b,-b>a,然后把a,b,-a,-b从大到小排列.【详解】∵a<0<b,且|a|>b,∴a<-b<b<-a,故选D.【点睛】本题考查了数轴、有理数大小比较,解题的关键是熟知正数大于0,负数小于0;负数的绝对值越大,这个数越小.4.A解析:A【分析】根据正数与负数的意义对①进行判断即可;根据绝对值的性质对②与④进行判断即可;根据倒数的意义对③进行判断即可;根据平方的意义对⑤进行判断即可.【详解】①a-不一定是负数,故该说法错误;②||a一定是非负数,故该说法错误;③倒数等于它本身的数是±1,故该说法正确;④绝对值等于它本身的数是非负数,故该说法错误;⑤平方等于它本身的数是0或1,故该说法错误.综上所述,共1个正确,故选:A.【点睛】本题主要考查了有理数的性质,熟练掌握相关概念是解题关键.5.D解析:D【解析】根据有理数的乘法和除法法则可得选项A、B正确;根据有理数的除法法则可得选项C正确;根据有理数的除法法则可得选项D原式=ab,选项D错误,故选D.6.A解析:A 【分析】根据有理数加减法法则计算即可得答案. 【详解】2136⎛⎫--- ⎪⎝⎭=2136-+ =12-. 故选:A . 【点睛】本题考查有理数的加减,有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,一个数同零相加,仍得这个数,有理数减法法则:减去一个数,等于加上这个数的相反数.7.C解析:C 【解析】绝对值大于1且小于4的整数有:±2;±3,–2+2+3+(–3)=0.故选C .8.A解析:A 【解析】a ,b 互为相反数0a b ⇔+= ,易选B. 9.D解析:D 【分析】利用绝对值的性质去掉绝对值符号,再根据正数大于负数,两个负数比较大小,大的数反而小,可得答案. 【详解】①∵33 3.754⎛⎫-+=- ⎪⎝⎭,33.833.754>=, ∴33.834⎛⎫-<-+ ⎪⎝⎭,故①错误;②∵33154420⎛⎫--==⎪⎝⎭,21335502⎛⎫--==⎪⎝⎭,1512 2020>,∴3345⎛⎫⎛⎫-->--⎪ ⎪⎝⎭⎝⎭,故②正确;③∵ 2.5 2.5-=,2.5 2.5>-,∴ 2.5 2.5->-,故③正确;④∵111523623⎛⎫--==⎪⎝⎭,217533346+==,3334 66<,∴125523⎛⎫-->+⎪⎝⎭,故④错误.综上,正确的有:②③.故选:D.【点睛】本题考查了绝对值的化简以及有理数大小比较,两个负数比较大小,绝对值大的数反而小.10.B解析:B【分析】根据计算器的使用方法,结合各项进行判断即可.【详解】解:按下列按键顺序输入:则它表达的算式是0.8+3.2÷45=,故选:B.【点睛】此题主要考查了计算器的应用,根据有理数的输入方法正确输入数据是解题关键.11.C解析:C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定. 【详解】6.12×10−3=0.00612, 故选C . 【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.12.C解析:C 【详解】A. 两数之和为正,则两数均为正,错误,如-2+3=1;B. 两数之和为负,则两数均为负,错误,如-3+1=-2;C. 两数之和为0,则这两数互为相反数,正确;D. 两数之和一定大于每一个加数,错误,如-1+0=-1, 故选C. 【点睛】根据有理数加法法则:绝对值不相等的异号两数相加,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0.可得出结果.13.C解析:C 【分析】根据数轴可得0a b <<且a b >,再逐一分析即可. 【详解】由题意得0a <,0b >,a b >,A 、0ab <,故本选项错误;B 、a b >,故本选项错误;C 、a b ->,故本选项正确;D 、b a >,故本选项错误. 故选:C . 【点睛】本题考查数轴,由数轴观察出0a b <<且a b >是解题的关键.14.C解析:C 【分析】原式各项根据有理数的运算法则计算得到结果,即可作出判断. 【详解】A 、82681220--⨯=--=-,错误,不符合题意;B 、433392234448÷⨯=⨯⨯=,错误,不符合题意;C 、20012002(1)(1)110-+-=-+=,正确,符合题意;D 、-(-22)=4,错误,不符合题意;故选:C .【点睛】本题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.15.B解析:B【分析】直接利用绝对值的性质即可解答.【详解】解:∵M +|-20|=|M |+|20|,∴M≥0,为非负数.故答案为B .【点睛】本题考查了绝对值的应用,灵活应用绝对值的性质是正确解答本题的关键.二、填空题16.76【分析】根据要求进行四舍五入即可【详解】解:把67758精确到001位得到的近似数是6776故答案是:6776【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数解析:76.【分析】根据要求进行四舍五入即可.【详解】解:把67.758精确到0.01位得到的近似数是67.76.故答案是:67.76.【点睛】本题考查了近似数:经过四舍五入得到的数称为近似数.17.【分析】先把abcde=2000化为abcde=2000=24×53的形式再根据整数abcde 都大于1得到使a+b+c+d+e 尽可能小时各未知数的取值求出最小值即可【详解】解:abcde=2000=解析:【分析】先把abcde=2000化为abcde=2000=24×53的形式,再根据整数a ,b ,c ,d ,e 都大于1,得到使a+b+c+d+e 尽可能小时各未知数的取值,求出最小值即可.【详解】解:abcde=2000=24×53,为使a+b+c+d+e 尽可能小,显然应取a=23,b=2,c=d=e=5或a=22,b=22,c=d=e=5,前者S=8+2+15=25,后者S=4+4+15=23,故最小值S=23.故答案为:23.【点睛】本题考查的是质因数分解,能把原式化为abcde=2000=24×53的形式是解答此题的关键.18.5或﹣5【分析】先根据绝对值的定义求出ab的值然后根据ab<0确定ab 的值最后代入a﹣b中求值即可【详解】解:∵|a|=3|b|=2∴a=±3b=±2;∵ab<0∴当a=3时b=﹣2;当a=﹣3时b解析:5或﹣5【分析】先根据绝对值的定义,求出a、b的值,然后根据ab<0确定a、b的值,最后代入a﹣b中求值即可.【详解】解:∵|a|=3,|b|=2,∴a=±3,b=±2;∵ab<0,∴当a=3时b=﹣2;当a=﹣3时b=2,∴a﹣b=3﹣(﹣2)=5或a﹣b=﹣3﹣2=﹣5.故填5或﹣5.【点睛】本题主要考查的是有理数的乘法、绝对值、有理数的减法,熟练掌握相关法则是解题的关键.19.3【分析】直接根据数轴上两点间的距离公式求解即可【详解】∵|1-(-2)|=3∴数轴上表示-2的点与表示1的点的距离是3故答案为3【点睛】本题考查的是数轴熟知数轴上两点间的距离公式是解答此题的关键解析:3【分析】直接根据数轴上两点间的距离公式求解即可.【详解】∵|1-(-2)|=3,∴数轴上表示-2的点与表示1的点的距离是3.故答案为3.【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.20.7×106【分析】根据科学记数法形式:a×10n其中1≤a<10n为正整数即可求解【详解】解:7000000科学记数法表示为:7×106故答案为:7×106【点睛】本题考查科学记数法解决本题的关键是解析:7×106【分析】根据科学记数法形式:a×10n,其中1≤a<10,n为正整数,即可求解.【详解】解:7000000科学记数法表示为:7×106.故答案为:7×106.【点睛】本题考查科学记数法,解决本题的关键是把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.[科学记数法形式:a×10n,其中1≤a<10,n为正整数.21.910【详解】试题分析:由运算流程可以得出有两种情况当输入的x为偶数时就有y=x当输入的x为奇数就有y=(x+1)把y=5分别代入解析式就可以求出x的值而得出结论解:由题意得当输入的数x是偶数时则y解析:9,10【详解】试题分析:由运算流程可以得出有两种情况,当输入的x为偶数时就有y=12x,当输入的x为奇数就有y=12(x+1),把y=5分别代入解析式就可以求出x的值而得出结论.解:由题意,得当输入的数x是偶数时,则y=12x,当输入的x为奇数时,则y=12(x+1).当y=5时,∴5=12x或5=12(x+1).∴x=10或9故答案为9,10考点:一元一次方程的应用;代数式求值.22.0【分析】先把0314314都转化为314然后逆运用乘法分配律进行计算即可得解【详解】解:故答案为:0【点睛】本题考查了有理数的乘法运算把算式进行转化逆运用乘法分配律运算更加简便解析:0【分析】先把0.314,31.4都转化为3.14,然后逆运用乘法分配律进行计算即可得解.【详解】解:3253.1410.31431.40.284⨯+⨯-⨯,353.141 3.14 3.14288=⨯+⨯-⨯,353.14(12)88=⨯+-,3.140=⨯,=.故答案为:0.本题考查了有理数的乘法运算,把算式进行转化,逆运用乘法分配律运算更加简便.23.68和1014亿和314【分析】准确数是指对事物进行计数时能确切表示一个量的真正值的数;近似数是指跟一个数量的准确值相接近并且用来代替准确值的数值;据此直接进行判断【详解】我国约有14亿人口;第一中解析:68和10 14亿和31.4【分析】准确数是指对事物进行计数时,能确切表示一个量的真正值的数;近似数是指跟一个数量的准确值相接近,并且用来代替准确值的数值;据此直接进行判断.【详解】我国约有14亿人口;第一中学有68个教学班;直径10 cm的圆,它的周长约31.4 cm,其中准确数的有68和10;近似数的有14亿和31.4故答案为:68和10;14亿和31.4【点睛】理解“准确数”和“近似数”的意义是解决此题的关键.24.16【分析】从28开始分别按照偶数和奇数的计算法则依次计算直到出现循环即可得解【详解】解:第1次:;第2次:;第3次:;第4次:;第5次:;第6次:;第7次:等于第5次所以从第5次开始奇数次等于1偶解析:16【分析】从28开始,分别按照偶数和奇数的计算法则依次计算,直到出现循环即可得解.【详解】⨯⨯=;解:第1次:280.50.57⨯+=;第2次:371334⨯=;第3次:340.517⨯+=;第4次:3171364⨯⨯⨯⨯⨯⨯=;第5次:640.50.50.50.50.50.51⨯+=;第6次:311316⨯⨯⨯⨯=,等于第5次.第7次:160.50.50.50.51所以从第5次开始,奇数次等于1,偶数次等于16.因为2020是偶数,所以数28经过2020次“H运算”得到的结果是16.故答案为16.【点睛】本题考查了有理数的乘法,发现循环规律,是解题的关键.25.90【分析】先根据有理数的大小比较法则得出最高点和最低点再列出运算式子计算有理数的减法即可得【详解】因为所以最高点的海拔高度为20米最低点的海拔高度米则(米)即最高点比最低点高90米故答案为:90【【分析】先根据有理数的大小比较法则得出最高点和最低点,再列出运算式子,计算有理数的减法即可得.【详解】>->-,因为205070-米,所以最高点的海拔高度为20米,最低点的海拔高度70--=+=(米),则20(70)207090即最高点比最低点高90米,故答案为:90.【点睛】本题考查了有理数的大小比较法则、有理数减法的实际应用,依据题意,正确列出运算式子是解题关键.26.-4【解析】试题解析:-4【解析】试题两点的距离为8,则点A、B距离原点的距离是4,∵点A,B互为相反数,A在B的右侧,∴A、B表示的数是4,-4.27.①加法互换律;②加法结合律;③有理数的加法法则;④有理数的加法法则【分析】根据有理数加法法则相关运算律:交换律:a+b=b+a;结合律(a+b)+c=a+(b+c)依此即可求解【详解】第①步交换了加解析:①加法互换律;②加法结合律;③有理数的加法法则;④有理数的加法法则【分析】根据有理数加法法则,相关运算律:交换律:a+b=b+a;结合律(a+b)+c=a+(b+c).依此即可求解.【详解】第①步,交换了加数的位置;第②步,将符号相同的两个数结合在一起;第③步,利用了有理数加法法则;第④步,同样应用了有理数的加法法则.故答案为加法交换律;加法结合律;有理数加法法则;有理数加法法则.【点睛】考查了有理数的加法,关键是熟练掌握计算法则,灵活运用运算律简便计算.三、解答题28.【分析】先计算有理数的乘方,再计算括号内的除法与减法,然后计算有理数的乘法,最后计算有理数的减法即可得.【详解】解:原式[]9428(8)=--⨯-÷-, []942(1)=--⨯--, 943=--⨯,912=--,21=-.【点睛】本题考查了含乘方的有理数混合运算,熟练掌握各运算法则是解题关键.29.(1)23-;(2)-11 【分析】(1)先计算乘方及括号,再计算乘法,最后计算加减法;(2)先计算乘方和绝对值,再计算乘除法,最后计算加减法.【详解】(1)()2411(10.5)2--23⎡⎤---⨯⨯⎣⎦=111(2)23--⨯⨯- =113-+=23-; (2)6÷(-2)3-|-22×3|+3÷2×12+1 =116(8)123122÷--+⨯⨯+ =3312144--++ =-11.【点睛】此题考查含乘方的有理数的混合运算,掌握运算顺序及运算法则是解题的关键. 30.(1)1- (2)0.5 (3)3-或7-(1)根据移动的方向和距离结合数轴即可回答;(2)根据题意可知点D是线段AC的中点;(3)在点B左侧找一点E,点E到点A的距离是到点B的距离的2倍,依此即可求解.【详解】解:(1)点B表示的数为-4+5=1,∵-1<1<2,∴三个点所表示的数最小的数是-1;(2)点D表示的数为(-1+2)÷2=1÷2=0.5;(3)点E在点B的左侧时,根据题意可知点B是AE的中点,AB=|-1+4|=3则点E表示的数是-4-3=-7.点E在点B的右侧时,即点E在AB上,则点E表示的数为-3.【点睛】本题主要考查的是有理数大小比较,数轴的认识,找出各点在数轴上的位置是解题的关键.。

人教版(五四制)2020-2021学年度第一学期七年级数学期中模拟测试题1(附答案)

人教版(五四制)2020-2021学年度第一学期七年级数学期中模拟测试题1(附答案)

人教版(五四制)2020-2021学年度第一学期七年级数学期中模拟测试题1(附答案)一、单选题1.下列说法不正确的是()A.过任意一点可作已知直线的一条平行线B.在同一平面内两条不相交的直线是平行线C.在同一平面内,过直线外一点只能画一条直线与已知直线垂直D.直线外一点与直线上各点连接的所有线段中,垂线段最短2.①如图1,AB∥CD,则∠A +∠E +∠C=180°;②如图2,AB∥CD,则∠E =∠A +∠C;③如图3,AB∥CD,则∠A +∠E-∠1=180° ;④如图4,AB∥CD,则∠A=∠C +∠P.以上结论正确的个数是( )A.、1个B.2个C.3个D.4个3.如图a是长方形纸带,∠DEF=26°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是()A.102°B.108°C.124°D.128°4.如图,BD是△ABC的角平分线,DE∥BC,DE交AB于E,若AB=BC,则下列结论中错误的是()A.BD⊥AC B.∠A=∠EDA C.2AD=BC D.BE=ED 5.对一个正整数x进行如下变换:若x是奇数,则结果是31x ;若x是偶数,则结果是12x.我们称这样的操作为第1次变换,再对所得结果进行同样的操作称为第2次变换,……以此类推.如对6第1次变换的结果是3,第2次变换的结果是10,第3次变换的结果是5……若正整数a第6次变换的结果是1,则a可能的值有()A.1种B.4种C.32种D.64种6.如图,直线AB、CD相交于点E,DF∥AB.若∠AEC=100°,则∠D等于()A.70°B.80°C.90°D.100°7.某原料供应商对购买其原料的顾客实行如下优惠办法:(1)一次购买金额不超过1万元,不予优惠;(2)一次购买金额超过1万元,但不超过3万元,九折优惠;(3)一次购买超过3万元的,其中3万元九折优惠,超过3万元的部分八折优惠.某公司分两次在该供应商处购买原料,分别付款7800元和25200元.如果该公司把两次购买的原料改为一-次购买的话,那么该公司一共可少付款()A.3360 元B.2780 元C.1460 元D.1360元8.某同学晚上6点多钟开始做作业,他家墙上时钟的时针和分针的夹角是120°,他做完作业后还是6点多钟,且时针和分针的夹角还是120°,此同学做作业大约用了()A.40分钟B.42分钟C.44分钟D.46分钟9.下列说法中,错误的有( )①若a与c相交,b与c相交,则a与b相交;②若a∥b,b∥c,那么a∥c;③过直线外一点有且只有一条直线与已知直线平行;④在同一平面内,两条直线的位置关系有平行、相交、垂直三种.A.3个B.2个C.1个D.0个10.A,B两地相距100km,甲车以30km/h的速度由A地出发驶向B地,同一时间乙车以40km/h的速度由B地驶向A地,两车中途相遇后继续前行,直到其中一辆车先到达终点时,两车停止运动,下列选项中,能正确反映两车离A地的距离s(km)与时间t(h)函数关系的图象是()A.B.C.D.二、填空题 11.方程2019121231220182019x x x x +++⋅⋅⋅+=+++++⋅⋅⋅++的解是x =____. 12.如图,直线,将含有角的三角板的直角顶点放在直线上,若,则的度数为________13.若方程(m ﹣1)x 2|m|﹣1=2是一元一次方程,则m=________.14.甲乙两车分别从A ,B 两地同时相向匀速行驶,甲车每小时比乙车快20千米,行驶3小时两车相遇,乙车到达A 地后未作停留,继续保持原速向远离B 地的方向行驶,而甲车在相遇后又行驶了2小时到达B 地后休整了半小时,然后调头并保持原速与乙车同向行驶,经过一段时间后两车同时到达C 地.则A ,C 两地相距_____________千米. 15.如图,AB ∥CD ,CF 平分∠DCG ,GE 平分∠CGB 交FC 的延长线于点E ,若∠E =34°,则∠B 的度数为____________.16.某书城开展学生优惠售书活动,凡一次性购买不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算.某学生第一次去购书付款72元,第二次又去购书享受了八折优惠,他查看了所买书的定价,发现两次共节省了36元,则该学生第二次购书实际付款_______元.17.数轴上点 A ,B 到表示−2 的点的距离都为 9,P 为线段 AB 上任一点,C ,D 两点分别从 P ,B 同时向 A 点移动,且 C 点运动速度为每秒 3 个单位长度,D 点运动速度为每秒 4 个单位长度,运动 3 秒时,CD =4,则 P 点表示的数为 .18.如图,甲、乙两动点分别从正方形ABCD 的顶点A .C 同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行.若甲的速度是乙的速度的3倍,则它们第2015次相遇在边________上.19.在方程2223303x x x x-++=-中,如果设23y x x =-,那么原方程可化为关于y 的整式方程是______ .20.长为2,宽为a 的长方形纸片(12a <<),用如图所示的方法折叠,剪下折叠所得的正方形纸片(称为第一次操作);再把剩下的长方形同样的方法折叠,剪下折叠所得的正方形纸片(称为第二次操作);如此反复操作下去.若在第n 次操作后,剩下的纸片为正方形,则操作终止,当3n =时,a 的值为__________.三、解答题21.定义☆运算观察下列运算:(+3)☆(+15)=+18(﹣14)☆(﹣7)=+21,(﹣2)☆(+14)=﹣16(+15)☆(﹣8)=﹣23,0☆(﹣15)=+15(+13)☆0=+13.(1)请你认真思考上述运算,归纳☆运算的法则:两数进行☆运算时,同号_____,异号______.特别地,0和任何数进行☆运算,或任何数和0进行☆运算,______.(2)计算:(+11)☆[0☆(﹣12)]=_____.(3)若2×(2☆a )﹣1=3a ,求a 的值.22.如图,点C 、M 、N 在射线DQ 上,点B 在射线AP 上,且AP ∥DQ ,∠D =∠ABC =80°,∠1=∠2,AN 平分∠DAM .(1)试说明AD ∥BC 的理由;(2)试求∠CAN 的度数;(3)平移线段BC .①试问∠AMD :∠ACD 的值是否发生变化?若不会,请求出这个比值;若会,请找出相应变化规律;②若在平移过程中存在某种位置,使得∠AND =∠ACB ,试求此时∠ACB 的度数. 23.已知关于x 的方程2a(x -1)=(5-a)x+3b 有无数多个解,那么a 2-5+b 的值是多少? 24.问题情境(1)如图1,已知//AB CD ,125PBA ︒∠=,155PCD ︒∠=,求BPC ∠的度数.佩佩同学的思路:过点P 作PG//AB ,进而//PG CD ,由平行线的性质来求BPC ∠,求得BPC ∠=________.问题迁移(2)图2.图3均是由一块三角板和一把直尺拼成的图形,三角板的两直角边与直尺的两边重合,90ACB ︒∠=,//DF CG ,AB 与FD 相交于点E ,有一动点P 在边BC 上运动,连接PE ,PA ,记PED α∠=∠,PAC β∠=∠.①如图2,当点P 在C ,D 两点之间运动时,请直接写出AOE ∠与α∠,β∠之间的数量关系;②如图3,当点P 在B ,D 两点之间运动时,APE ∠与α∠,β∠之间有何数量关系?请判断并说明理由;拓展延伸(3)当点P 在C ,D 两点之间运动时,若PED ∠,PAC ∠的角平分线EN ,AN 相交于点N ,请直接写出ANE ∠与α∠,β∠之间的数量关系.25.如图,已知直线AB ∥CD ,∠A=∠C=100°,E ,F 在CD 上,且满足∠DBF=∠ABD ,BE 平分∠CBF .(1)求证:AD ∥BC ;(2)求∠DBE 的度数;(3)若平行移动AD ,在平行移动AD 的过程中,是否存在某种情况,使∠BEC=∠ADB ?若存在,求出其度数;若不存在,请说明理由.26.一般情况下2323a b a b ++=+不成立,但有些数可以使得它成立,例如:0a b .我们称使得2323a b a b ++=+成立的一对数,a b 为“相伴数对”,记为(,)a b (1)若(1,)b 是“相伴数对”,求b 的值;(2)写出一个“相伴数对”(,)a b ,并说明理由.(其中0a ≠,且1a ≠)(3)若(,)m n 是“相伴数对”,求代数式22[42(31)]3m n m n ----的值. 27.下表是某市青少年业余体育健身运动中心的三种消费方式.(1)设一年内参加健身运动的次数为t 次(t 为正整数).试用t 表示大于180次时,三种方式分别如何计费.(2)试计算t 为何值时,方式A 与方式B 的计费相等?方式A 与方式C 呢?(3)请你根据参加运动的次数,设计最省钱的消费方式.28.解一元一次方程:()()23273523x x x +-=- 29.一列火车匀速行驶经过一条隧道,从车头进入隧道到车尾离开隧道共需45 s ,而整列火车在隧道内的时间为33 s ,火车的长度为180 m ,求隧道的长度和火车的速度. 30.(阅读理解)如果点,M N 在数轴上分别表示实数,m n ,在数轴上,M N 两点之间的距离表示为()MN m n m n =->或()MN n m n m =->或||m n -.利用数形结合思想解决下列问题:已知数轴上点A 与点B 的距离为12个单位长度,点A 在原点的左侧,到原点的距离为24个单位长度,点B 在点A 的右侧,点C 表示的数与点B 表示的数互为相反数,动点P 从A 出发,以每秒2个单位的速度向终点C 移动,设移动时间为t 秒.(1)点A 表示的数为____,点B 表示的数为____.(2)用含t 的代数式表示P 到点A 和点C 的距离:PA =____,PC ____.(3)当点P 运动到B 点时,点Q 从A 点出发,以每秒4个单位的速度向C 点运动,Q、两点之间的距离能否为2个单位?如点到达C点后停止.在点Q开始运动后,P Q果能,请求出此时点P表示的数:如果不能,请说明理由.参考答案1.A【解析】试题分析:平面内,过直线外一点有且只有一条直线与已知直线平行,故A不正确;在同一平面内两条不相交的直线是平行线,这是平行线的概念,故B正确;在同一平面内,过直线外一点只能画一条直线与已知直线垂直,故C正确;直线外一点与直线上各点连接的所有线段中,垂线段最短,故D正确;故选:A.2.C【解析】【分析】【详解】①如图1,过点E作EF∥AB,因为AB∥CD,所以AB∥EF∥CD,所以∠A+∠AEF=180°,∠C+∠CEF=180°,所以∠A+∠AEC+∠C=∠A+∠AEF+∠C+∠CEF=180°+180°=360°,则①错误;②如图2,过点E作EF∥AB,因为AB∥CD,所以AB∥EF∥CD,所以∠A=∠AEF,∠C=∠CEF,所以∠A+∠C=∠AEC+∠AEF=∠AEC,则②正确;③如图3,过点E作EF∥AB,因为AB∥CD,所以AB∥EF∥CD,所以∠A+∠AEF=180°,∠1=∠CEF,所以∠A+∠AEC-∠1=∠A+∠AEC-∠CEF=∠A+∠AEF=180°,则③正确;④如图4,过点P作PF∥AB,因为AB∥CD,所以AB∥PF∥CD,所以∠A=∠APF,∠C=∠CPF,所以∠A=∠CPF+∠APC=∠C+∠APC,则④正确;故选C.3.A【解析】【分析】先由矩形的性质得出∠BFE=∠DEF=26°,再根据折叠的性质得出∠CFG=180°-2∠BFE,∠CFE=∠CFG-∠EFG即可.【详解】∵四边形ABCD是矩形,∴AD∥BC,∴∠BFE=∠DEF=26°,∴∠CFE=∠CFG-∠EFG=180°-2∠BFE-∠EFG=180°-3×26°=102°,故选:A.【点睛】本题考查了翻折变换(折叠问题)、矩形的性质、平行线的性质;熟练掌握翻折变换和矩形的性质,弄清各个角之间的关系是解决问题的关键.4.C【解析】试题分析:BD是△ABC的角平分线,AB=BC,则BD是AC边上的高及中线,所以∠ABD=∠DBC ,BD⊥AC,2AD=AC, ∠A=∠BCA;因为DE∥BC,所以∠EDA=∠BCA, ∠EDB=∠DBC,所以∠A=∠EDA, ∠ABD=∠EDB,所以BE=ED。

24-25学年七年级数学期中模拟卷01(全解全析)【测试范围:七年级上册第1章-第4章】(人教版)

24-25学年七年级数学期中模拟卷01(全解全析)【测试范围:七年级上册第1章-第4章】(人教版)

2024-2025学年七年级数学上学期期中模拟卷01(人教版2024)(考试时间:120分钟试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:人教版2024七年级上册第一章~第四章。

5.难度系数:0.85。

一、选择题(本题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1.规定:(→2)表示向右移动2,记作+2,则(←5)表示向左移动5,记作()A.+5B.-5C.15D.-152.2023年9月23日-10月8日,第19届亚运会在杭州举办,据浙江省统计局基于GDP模型预测,亚运会为杭州带来的GDP拉动量约为4141亿元人民币.请将4141亿用科学记数法表示为()A.4.141×1012B.4.141×1011C.0.4141×1012D.41.41×1010【答案】B【详解】解:4141亿=4141×108=4.141×1011,故选B3.如图,检测5个排球,其中超过标准的克数记为正数,不足的克数记为负数.从轻重的角度看,A、B、C、D哪个球最接近标准( )A .-3.5B .+0.7C .-2.5D .-0.6【答案】D【详解】通过求五个排球的绝对值得:|-0.6|=0.6,|+0.7|=0.7,|-2.5|=2.5,|-3.5|=3.5,|5|=5,-0.6的绝对值最小.所以最后一个球是接近标准的球.故选D .4.在式子5mn 2,x ―1,―3,ab +a 2,―p ,2x 2―x +3中,是单项式的有( )A .1个B .2个C .3个D .4个5.下列能够表示比x 的12倍多5的式子为( )A .12x +5B .12(x +5)C .12x ―5D .12(x ―5)6.单项式﹣2x 2yz 3的系数、次数分别是( )A .2,5B .﹣2,5C .2,6D .﹣2,6【答案】D【详解】单项式﹣2x 2yz 3的系数是﹣2,次数是2+1+3=6.故选:D .7.在一个多项式中,与2ab2为同类项的是( )A.ab B.ab2C.a2b D.a2b2【答案】B【详解】解:与2ab2为同类项的是ab2,故选:B.8.已知|x―5|+(y+4)2=0,则xy的值为( )A.9B.―9C.20D.―20【答案】D【详解】解:∵|x―5|+(y+4)2=0,∴x=5,y=―4∴xy=―20,故选:D.9.飞机无风时的速度是a km/h,风速为15km/h,飞机顺风飞行4小时比无风飞行3小时多飞的航程为( )A.(a+60)km B.60km C.(4a+15)km D.(a+15)km10.下列各式去括号正确的是()A.―(2x+y)=―2x+y B.3x―(2y+z)=3x―2y―zC.x―(―y)=x―y D.2(x―y)=2x―y【答案】B【详解】A、括号前为“-”号,去括号时括号里的第二项没有变号,故错误;B、正确;C、括号前为“-”号,去括号时括号里的项没有变号,故错误;D、括号里的第二项没有乘2,出现了漏乘的现象,故错误.故选:B.11.如图,则下列判断正确()A.a+b>0B.a<-1C.a-b>0D.ab>0【答案】A【详解】解:选项A:a为大于-1小于0的负数,b为大于1的正数,故a+b>0,选项A正确;选项B:a为大于-1小于0的负数,故选项B错误;选项C:a小于b,故a-b<0,选项C错误;选项D:a为负数,b为正数,故ab<0,故选项D错误;故选:A.12.计算机是将信息转化成二进制进行处理的,二进制即“逢二进一”.将二进制数转化成十进制数,例如:(1)2=1×20=1;(10)2=1×21+0×20=2;(101)2=1×22+0×21+1×20=5.则将二进制数(1101)2转化成十进制数的结果为()A.8B.13C.15D.16二、填空题(本题共6小题,每小题2分,共12分.)13.﹣7的相反数是.【答案】7【详解】﹣7的相反数是-(-7)=7.故答案是:7.14.比较大小:―13―23(用“>”“<”或“=”填空).故答案是:>.15.近似数12.336精确到百分位的结果是.【答案】12.34【详解】解:12.336≈12.34(精确到百分位),故答案为:12.34.16.规定符号“⊙”的意义是a⊙b=a2―b,例如2⊙1=22―1=3,则4⊙2=.【答案】14【详解】解:由题意得:4⊙2=42―2=16―2=14,故答案为:14.17.如图,自左至右,第1个图由1个正六边形、6个正方形和6个等边三角形组成;第2个图由2个正六边形、11个正方形和10个等边三角形组成;第3个图由3个正六边形、16个正方形和14个等边三角形组成;…按照此规律,第n个图中正方形和等边三角形的个数之和为个.18.把1~9这9个数填入3×3的方格中,使其任意一行,任意一列及两条对角线上的数之和都等于15,这样便构成了一个“九宫格”,它源于我国古代的“洛书”(图1),是世界上最早的“幻方”.图2是仅可以看到部分数值的“九宫格”,则其中m的值为.三、解答题(本题共8小题,共72分.解答应写出文字说明、证明过程或演算步骤.)19.(6分)计算:(1)(―8)+10+2+(―1);(2)4+(―2)3×5―(―28)÷4.【详解】(1)(―8)+10+2+(―1)=2+2―1(1)=4―1(2分)=3;(3分)(2)4+(―2)3×5―(―28)÷4=4+(―8)×5―(―28)÷4(4分)=4―40+7(5分)=―29.(6分)20.(6分)计算:(1)m―n2―m―n2;(2)―x+(2x―2)―(3x+5).【详解】(1)解:m―n2―m―n2=―2n2;(3分)(2)解:―x+(2x―2)―(3x+5)=―x+2x―2―3x―5(2分)=―2x―7.(6分)21.(6分)先化简,再求值:3x2―3y―3x2+y―x,其中x=―3,y=2.22.(10分)【知识呈现】我们可把5(x―2y)―3(x―2y)+8(x―2y)―4(x―2y)中的“x―2y”看成一个字母a,使这个代数式简化为5a―3a+8a―4a,“整体思想”是中学数学解题中的一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.在数学中,常常用这样的方法把复杂的问题转化为简单问题.【解决问题】(1)上面【知识呈现】中的问题的化简结果为;(用含x、y的式子表示)(2)若代数式x2+x+1的值为3,求代数式2x2+2x―5的值为;【灵活运用】应用【知识呈现】中的方法解答下列问题:(3)已知a―2b=7,2b―c的值为最大的负整数,求3a+4b―2(3b+c)的值.【详解】解:(1)∵5a―3a+8a―4a=6a,∴5(x―2y)―3(x―2y)+8(x―2y)―4(x―2y)=6(x―2y)=6x―12y,(3分)故答案为:6x―12y;(2)∵x2+x+1=3,∴x2+x=2,(4分)∴2x2+2x―5=2(x2+x)―5=2×2―5=―1,(6分)故答案为:―1;(3)∵2b―c的值为最大的负整数,∴2b―c=―1,(7分)∴3a+4b―2(3b+c)(8分)=3a+4b―6b―2c,=3(a―2b)+2(2b―c),=3×7+2×(―1),=19.(10分)23.(10分)综合与实践【问题情景】七年级(1)班的同学们在劳动课上采摘红薯叶,通过对红薯叶的称重感受“正数与负数”在生活中的应用.【实践探索】同学们一共采摘了10筐红薯叶,以每筐15kg为标准,超过的千克数记作正数,不足的千克数记作负数,称重后记录如下:【问题解决】(1)求这10筐红薯叶的总重量为多少千克?(2)若市场上红薯叶售价为每千克5元,则这10筐红薯叶价值多少元?【详解】(1)―2.5+(―1.5)+(―3)+(―2)+0.5+1+(―2)+2+(―1.5)+2=―7,(4分)15×10―7=143(千克);(6分)答:这10筐红薯叶的总重量为143千克.(7分)(2)143×5=715(元);(9分)答:这10筐红薯叶全部售出可获得715元.(10分)24.(10分)将连续的奇数1,3,5,7,9,…排成如图所示的数表.(1)十字框中的五个数之和与中间数15有什么关系?(2)设中间数为a,如何用代数式表示十字框中五个数之和?(3)若将十字框上下左右移动,可框住另外五个数,这五个数还有上述的规律吗?(4)十字框中的五个数之和能为2018吗?能为2025吗?【详解】(1)解:(5+13+15+17+25)÷15=75÷15=5,(2分)则十字框中的五个数之和与中间数15的5倍;(2)解:设中间数为a,则其余的4个数分别为a―2,a+2,a―10,a+10,(3分)由题意,得a+a―2+a+2+a―10+a+10=5a,(4分)因此十字框中的五个数之和为5a.(3)解:设移动后中间数为b,则其余的4个数分别为b―2,b+2,b―10,b+10,(5分)由题意,得b+b―2+b+2+b―10+b+10=5b,(6分)因此这五个数之和还是中间数的5倍.(4)解:由(3)知,十字框中五个数之和总为中间数的5倍,2018÷5=403.6,(7分)因为403.6是小数,所以十字框中五个数之和不能为2018,(8分)2025÷5=405,(9分)因为405是整数,且405在第三列,所以十字框中五个数之和能为2025.(10分)25.(12分)秋风起,桂花飘香,也就进入了吃螃蟹的最好季节,清代文人李渔把秋天称作“蟹秋”.意为错过了螃蟹,便是错过了整个秋季,小贤去水产市场采购大闸蟹,极品母蟹每只30元,至尊公蟹每只20元.商家在开展促销活动期间,向客户提供以下两种优惠方案:方案①极品母蟹和至尊公蟹都按定价的8折销售;方案②买一只极品母蟹送一只至尊公蟹.现小贤要购买极品母蟹30只,至尊公蟹a(a>30)只.(1)按方案①购买极品母蟹和至尊公蟹共需付款______元(用含a的式子表示);按方案②购买极品母蟹和至尊公蟹共需付款______元(用含a的式子表示).(2)当a=40时,通过计算说明此时按上述哪种方案购买较合算.(3)若两种优惠方案可同时使用,当a=40时,你能通过计算给出一种最为省钱的购买方案吗?【详解】(1)解:由题意得:按方案①购买极品母蟹和至尊公蟹共需付款=0.8×(30×30+20a)=0.8×(900+20a)=(720+16a)元,按方案②购买极品母蟹和至尊公蟹共需付款=30×30+20(a―30)=900+20a―600=(300+20a)元,∴按方案①购买极品母蟹和至尊公蟹共需付款(720+16a)元;按方案②购买极品母蟹和至尊公蟹共需付款(300+20a)元,故答案为:(720+16a),(300+20a);(4分)(2)当a=40时,按方案①购买极品母蟹和至尊公蟹共需付款=720+16×40=720+640=1360(元),(6分)按方案②购买极品母蟹和至尊公蟹共需付款=300+20×40=300+800=1100(元),(8分)∵1100<1360,∴按方案②购买较为合算;(9分)(3)若两种优惠方案可同时使用,则可先按方案②购买30极品母蟹,再送30只至尊公蟹,然后按方案①购买10只至尊公蟹,理由:30×30+(40―30)×20×0.8=900+10×20×0.8=900+160=1060(元),(10分)∵1060<1100<1360,(11分)∴最为省钱的购买方案是:先按方案②购买30极品母蟹,再送30只至尊公蟹,然后按方案①购买10只至尊公蟹.(12分)26.(12分)综合实践【背景知识】数轴是初中数学的一个重要工具,利用数轴可以将数与形完美地结合.研究数轴我们发现了许多重要的规律:如图1,若数轴上点A、点B表示的数分别为a,b(b>a),则线段AB的长(点A到点B的距离)可表示为b―a,请用上面材料中的知识解答下面的问题:【问题情境】如图,一个点从数轴上的原点开始,先向左移动2个单位长度到达点A,再向右移动3个单位长度到达点B,然后再向右移动5个单位长度到达点C.(1)【问题探究】请在图2中表示出A、B、C三点的位置:(2)【问题探究】若点P从点A出发,以每秒1个单位长度的速度沿数轴向左匀速运动,同时点M、N从点B、点C分别以每秒23个单位长度速度沿数轴向右匀速运动.设移动时间为t秒(t>0).①A,B两点间的距离AB=______;②用含t的代数式表示:t秒时,点P表示的数为______,点M表示的数为______,点N表示的数为______;③试探究在移动的过程中,3PN―4PM的值是否随着时间t的变化而变化?若变化说明理由:若不变,请求其值.【详解】(1)解:A、B、C三点的位置在数轴上表示如图1所示:(3分)(2)①AB=1―(―2)=3,(4分)②如图2,由题意得:PA=t,BM=2t,CN=3t,∴t秒时,点P表示的数为―t―2,点M表示的数为2t+1,点N表示的数为3t+6,(7分)③在移动的过程中,3PN―4PM的值不随着时间t的变化而变化,理由如下:PN=(3t+6)―(―t―2)=4t+8,PM=(2t+1)―(―t―2)=3t+3,∴3PN―4PM=3(4t+8)―4(3t+3)=12t+24―12t―12=12.(11分)∴在移动的过程中,3PN―4PM的值总等于12,保持不变.(12分)。

七年级数学上学期辅导试题1 试题

七年级数学上学期辅导试题1  试题

七年级数学辅导〔1〕时间:2022.4.12 单位:……*** 创编者:十乙州姓名评价一、选择题:1.身份证号码告诉我们很多信息,某人的身份证号码是××××××A.5月22日 B.6月08 日 C.8月22日 D.2月24日2.将如下图的图案通过平移后可以得到的图案是 ( )3.如图,有一个棱长是4 cm的正方体,从它的一个顶点处挖去一个棱长是1 cm的正方体后,剩下物体的外表积和原来的外表积相比拟 ( )A.变大了 B.变小了 C.没变 D.无法确定变化4.一只小狗正在平面镜前欣赏自己的全身像(如图),此时,它所看到的全身像是( )5.假设把面值为1元的纸币换成面值为1角或者5角的硬币,那么换法的种数为 ( ) A.4 B.3 C.2 D.16.在下边的日历中,任意圈出一竖列上相邻的三个数,这三个数之和不可能为不( )A.60 B.40 C.36 D.277.挑游戏棒是一种好玩的游戏,游戏规那么:当一根棒条没有被其他棒条压着时,就可以把它往上拿走.如图,按照这一规那么,第1次应拿走⑨号棒,第2次应拿走⑤号棒,…,第6次应拿走 ( )A.②号棒 B.⑦号棒 C.⑧号棒 D.⑩号棒8.用火柴棒按如下图方式搭图形,按照这种方式搭下去,搭第8个图形需火柴棒的根数是( )A.48 B.50 C.52 D.549.观察图中正方形四个顶点所标的数字规律,可知,数2021应标在〔〕A.第504个正方形的左下角B.第504个正方形的右下角C.第505个正方形的左上角 D.第505个正方形的右下角10.如图,用黑白两种颜色的菱形纸片,按黑色纸片数逐渐增加1的规律拼成以下图案,假设第n个图案中有2021个白色纸片,那么n的值是〔〕A.671 B.672 C.673 D.674二、填空题:11.假设电影票上“4排5号〞记作(4,5),那么(8,11)对应的座位是.12.春秋时代,人们用算筹摆放图形来表示1,2,3,4,5,6,7.你认为他们用来表示“8”的图是,表示“9”的图是.13.小敏中午放学回家自己煮面条吃.有下面几道工序:①洗锅盛水2 min;②洗菜3 min;③准备面条及佐料2 min;④用锅把水烧开7 min;⑤用烧开的水煮面条和菜要3 min.以上各道工序,除④外,一次只能进展一道工序.小敏要将面条煮好,最少需要 min.14.4个矿泉水空瓶可以换矿泉水1瓶,现有12个矿泉水空瓶,假设不另外付钱,那么最多可以换矿泉水瓶.15.“井底之蛙〞要爬出井来,它每小时爬上5 m,休息一小时又下滑3 m,假设井深11 m,那么它爬出井来需 h.16.一根长80 cm、底面积是30 cm2的圆柱形钢材,假设把它截成相等的两段,那么外表积增加了 cm2.17.用48 m长的竹篱笆在空地上围成一个绿化场地,假设现有两种设计方案:一种是围成正方形场地,另一种是围成圆形场地,那么围成场地面积较大.(填“圆形〞或者“正方形〞)18.以下图中每个小玻璃球的体积是 cm3,大玻璃球的体积是 cm3.19.有一种“抢30”的游戏,规那么是:甲先说“1”或者“1,2”,当甲先说“1”时,乙接着说“2”或者“2,3”;当甲先说“1,2”时,乙接着说“3”或者“3,4”,然后甲再接着按次序往下说一个或者两个数,这样两个人反复轮流,每次每人说一个或者两个数都可以,但不可以连说三个数,谁先抢到30,谁就获胜.那么采取适当策略,其结果是胜.(填“甲〞或者“乙〞)20.观察以下等式:在上述数字宝塔中,从上往下数,2021在第层.三、解答题:21.某汽车站有三条道路通往不同的地方,第一条道路每隔15 min发车一次,第二条道路每隔20 min发车一次,第三条道路每隔50 min发车一次.三条道路的汽车在同一时间是发车后,试问至少再经过多长时间是又同时发车?22.甲和乙从东、西两地同时出发,相对而行,两地相距20 km.甲每小时走6 km,乙每小时走4 km,几小时两人相遇? 假如甲带了一只狗,和甲同时出发,狗以每小时10 km的速度向乙跑去,遇到乙后即回头向甲跑去,遇到甲又回头向乙跑去,直到甲、乙两人相遇时狗才停住.问这只狗一共跑了多少千米的路?23.如图,有一堆土,甲处比乙处高50 cm,如今要把这堆土推平整,使甲处和乙处一样高,要从甲处取多少厘米厚的土填在乙处?24.容积为200L的水箱上装有两根进水管A,B和一根排水管C.如图,先由A,B两根进水管同时向水箱内注水,再由B管单独向水箱内注水,最后由C管将水箱内的水排完.(1) 水箱内原有水 L,B进水管每分钟向水箱内注水 L,A,B两根进水管中工作效率较高的是 (填“A〞或者“B〞) 进水管;(2) 假设一开场只由B管单独注水,那么注满水箱要多少分钟?(3) 假设一开场只由B管单独注水,同时翻开C管排水,那么多少分钟后水箱内的水被排完?25.有26个好朋友去公园划船,有两种船可以租用.一种是大船,每只可坐5 人;一种是小船,每只可坐3人.大船每只的租金为20元,小船每只的租金为14元.(1) 你有哪几种租船方案? 请至少写出3种.(2) 怎样租船费用最少? 最少费用为多少元?26.观察如下图的图形,答复以下问题:(1) 图中的点被线段隔开分成四层,第一层有1个点,第二层有3个点,第三层有5个点,第四层有个点.(2) 假如要你继续画下去,那么第五层有多少个点? 第n层呢?(3) 某一层上有77个点,你知道这是第几层吗?(4) 第一层与第二层的和是多少? 前三层的和是多少? 前四层呢? 你有没有发现什么规律(用含n的代数式表示)? 根据你的推测,前十二层的和是多少?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

word 可编辑
2018—2019学年度第二学期期末考试
七年级数学模拟试题(1)
一、选择题(每小题3分,共36分)
1.下列说法正确的有( )
①在平面内,过直线上一点有且只有一条直线垂直于已知直线;
②在平面内,过直线外一点有且只有一条直线垂直于已知直线; ③在平面内,可以过任意一点画一条直线垂直于已知直线; ④在平面内,有且只有一条直线垂直于已知直线.
A.1个
B.2个
C.3个
D.4个 2.如图所示,∠1与∠2不是同位角的是(
)
3.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向平行行驶,那么这两个拐弯的角度可能是( )
A.先向左转130°,再向左转50°
B.先向左转50°,再向右转50°
C.先向左转50°,再向右转40°
D.先向左转50°,再向左转40°
4.在实数5,22
7,π-2,3-27,0.121 221 222 1…(相邻两个“1”之间依次多一个“2”)中,无理数有( )
A.1个
B.2个
C.3个
D.4个
5.一个正方体的水晶砖,体积为100 cm 3,它的棱长大约在( )
A.4 cm ~5 cm 之间
B.5 cm ~6 cm 之间
C.6 cm ~7 cm 之间
D.7 cm ~8 cm 之间
6. 在平面直角坐标系中,将点A(x ,y)向左平移5个单位长度,再向上平移3个单位
长度后与点B(-3,2)重合,则点A 的坐标是( )
A.(2,5)
B.(-8,5)
C.(-8,-1)
D.(2,-1)
7.如图是某游乐城的平面示意图,用(8,2)表示入口处的位置,用(6,-1)表示球幕电影的位置,那么坐标原点表示的位置是( )
A.太空秋千
B.梦幻艺馆
C.海底世界
D.激光战车
7题图
word 可编辑
8.今年我市有近5万名考生参加中考,为了解这些考生的数学成绩,从中抽取1 000名考生的数学成绩进行统计分析,以下说法正确的是( ) A.这1 000名考生是总体的一个样本 B.近5万名考生是总体
C.每位考生的数学成绩是个体
D.1 000名学生的数学成绩是样本容量 9.“双11”促销活动中,小芳的妈妈计划用1 000元(全花完)在唯品会购买价格分别为80元和120元的两种商品,则可供小芳妈妈选择的购买方案有( ) A.4种 B.5种 C.6种 D.7种 10.若|m -n -3|+(m +n +1)2
=0,则m +2n 的值为( )
A.-1
B.-3
C.0
D.3
11.关于x 的一元一次不等式m -2x
3≤-2的解集为x ≥4,则m 的值为(D) A.14 B.7 C.-2 D.2 12.若不等式组⎩⎨⎧x +a ≥0,
1-2x>x -2无解,则实数a 的取值范围是( )
A.a ≥-1
B.a <-1
C.a ≤1
D.a ≤-1
答题卡
二、填空题(每小题4,共40分)
13.命题“同角的补角相等”,题设是_____________________,结论是________________________;
把它写成“如果......,那么.....”的形式为___________________________________________________.
14.某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图所示,那么报名参加甲组和丙组的
人数之和占所有报名人数的百分比为___________.
14题图 15题图
15. 如图,张三打算在院落里种上蔬菜,已知院落为东西长32 m ,南北宽20 m 的长方形,为了行走方便,要修筑同样宽的三条道路:东西两条,南北一条,南北道路垂直于东西道路,余下的部分要分别种上西红柿、青椒、菜豆、黄瓜等蔬菜.若每条道路的宽均为1 m ,则蔬菜的总种植面积是
______________平方米。

16. 端午节前夕,某超市用1 680元购进A ,B 两种商品共60件,其中A 型商品每件24元,B 型
商品每件36元.设购买A 型商品x 件,B 型商品y 件,依题意列方程组______________________.
17.已知点A(-1,0),C(1,4),点B 在x 轴上,且AB =3.则点B 的坐标为___________________ 18.我们知道:3是一个无理数,它是一个无限不循环小数,且1<3<2,我们把1叫做3的整
数部分,3-1叫做3的小数部分。

则88.的整数部分为_____________,小数部分为___________.
word 可编辑
19.如图,将两个边长为3的正方形对角线剪开,将所得的四个三角形拼成一个大的正方形,则这
个大正方形的边长是
____________.
19题图 20题图
20.如图,直线AB ,CD 相交于点O ,OE 平分∠AOC ,∠EOA ∶∠AOD =1∶4,则∠EOB 的度
数为_____________.
21..已知方程组⎩⎪⎨⎪⎧ax -by =4,ax +by =6与方程组⎩
⎪⎨⎪⎧3x -y =5,
4x -7y =1的解相同,则a=_________,b=_________.
22.某种商品的进价为每件100元,商场按进价提高50%后标价,为增加销量,准备打折销售,但
要保证利润率不低于20%,则至多可以打____________折.
三、解答题
23.(12分)(1)已知2a -1的平方根是±3,3a +b -1的平方根是±4,求a +2b 的平方根.
(2)请先观察下列等式:
3
227=2327, 33326=33326, 34463=43463
, …
(1)请再举两个类似的例子;
(2)经过观察,写出满足上述各式规则的一般公式________________________(用含n 的式子表示)
24. (14分)解方程组(不等式组)
(1) ⎩
⎪⎨⎪⎧2x -5y =-21,①
4x +3y =23.②
word 可编辑
(2)解不等式组⎩⎪⎨⎪
⎧2x +5≤3(x +2),①2x -1+3x
2<1,②把不等式组的解集在数轴上表示出来,并写出不等式组的非负整数解.
25.(10分)为了了解同学们每月零花钱的数额,校园小记者随机调查了本校部分同学,根据调
查结果,绘制出了如下两个尚不完整的统计图表.
调查结果统计表
调查结果扇形统计图
请根据以上图表,解答下列问题:
(1)填空:这次被调查的同学共有____________人,a+b=________,m=________;
(2)求扇形统计图中扇形C的圆心角度数;
(3)该校共有学生1 000人,请估计每月零花钱的数额x在60≤x<120范围的人数. 26.(12分)若关于x,y的二元一次方程组
⎩⎪

⎪⎧2x+y=-3m+2,
x+2y=4
的解满足x+y>-
3
2,求出满足条件的m的所有正整数值.
27.(12分)学校“百变魔方”社团准备购买A,B两种魔方,已知购买2个A种魔方和6个B 种魔方共需130元,购买3个A种魔方和4个B种魔方所需款数相同.
(1)求这两种魔方的单价;
(2)结合社员们的需求,社团决定购买A,B两种魔方共100个.某商店有两种优惠活动,如图所示.
word可编辑
word 可编辑
请根据以上信息,购进A 种魔方多少个时,两种活动费用相同?
28.(14分)已知:如图,AE ⊥BC ,FG ⊥BC ,∠1=∠2,∠D =∠3+60°,∠CBD =70°.
(1)求证:AB ∥CD ; (2)求∠C 的度数
.
word 可编辑
(选做题)
1.如图所示,在平面直角坐标系中,点A ,B 的坐标分别为A(a ,0),B(b ,0),且a ,b 满足 |a +
2|+b -4=0,点C 的坐标为(0,3). (1)求a ,b 的值及S 三角形ABC ;
(2)若点M 在x 轴上,且S 三角形ACM =1
3
S 三角形ABC ,试求点M 的坐标
.
2.已知关于x ,y 的二元一次方程组⎩⎪⎨⎪
⎧x +y =1,x +2y =4.
(1)解该方程组;
(2)若上述方程组的解是关于x ,y 的二元一次方程ax +by =2的一组解,求代数式6b -4a 的值.
3.请你根据王老师所给的内容,完成下列各小题.
(1)如果x =-5,2◎4=-18,求y 的值; (2)若1◎1=8,4◎2=20,求x ,y 的值
.
word 可编辑
4.已知关于x ,y 的方程组⎩
⎪⎨⎪⎧x +2y =1,
x -y =m.
(1)求这个方程组的解;
(2)当m 取何值时,这个方程组的解中,x 大于1,y 不小于-1.
5.已知:2a -3x +1=0,3b -2x -16=0,且a ≤4<b ,求x 的取值范围.
word 可编辑
6.已知式子1-3x
2
与x -2的差是负数,求x 的取值范围.
word 可编辑
7.已知关于x 的方程4(x +2)-2=5+3a 的解不小于方程(3a +1)x 3=a (2x +3)
2的解,试求a 的
取值范围.
8.如图,∠AEF +∠CFE =180°,∠1=∠2,EG 与HF 平行吗?为什么?。

相关文档
最新文档