对数与对数运算的教案

合集下载

教学:高中数学 2.2.1 对数与对数运算教案 新人教A版必修1

教学:高中数学 2.2.1 对数与对数运算教案 新人教A版必修1

2.2.1 对数与对数运算第一课时 对数的概念 三维目标定向 〖知识与技能〗理解对数的概念,掌握对数恒等式及常用对数的概念,领会对数与指数的关系。

〖过程与方法〗 从指数函数入手,引出对数的概念及指数式与对数式的关系,得到对数的三条性质及对数恒等式。

〖情感、态度与价值观〗增强数学的理性思维能力及用普遍联系、变化发展的眼光看待问题的能力,体会对数的价值,形成正确的价值观。

教学重难点:指、对数式的互化。

教学过程设计 一、问题情境设疑引例1:已知2524,232==,如果226x =,则x = ? 引例2、改革开放以来,我国经济保持了持续调整的增长,假设2006年我国国内生产总值为a 亿元,如果每年平均增长8%,那么经过多少年国内生产总值比2006年翻两番?分析:设经过x 年国内生产总值比2006年翻两番,则有a a x4%)81(=+,即1.08 x = 4。

这是已知底数和幂的值,求指数的问题,即指数式ba N =中,求b 的问题。

能否且一个式子表示出来?可以,下面我们来学习一种新的函数,他可以把x 表示出来。

二、核心内容整合1、对数:如果)10(≠>=a a N a x且,那么数x 叫做以a 为底N 的对数,记作Nx a log =。

其中a 叫做对数的底数,N 叫做真数。

根据对数的定义,可以得到对数与指数间的关系:当 a > 0且1a ≠时,Nx N a a x log =⇔=(符号功能)——熟练转化如:1318log 131801.101.1=⇔=x x ,4 2 = 16 ⇔ 2 = log 4 162、常用对数:以10为底10log N写成lg N ;自然对数:以e 为底log e N写成ln N (e = 2.71828…)3、对数的性质:(1)在对数式中N = a x > 0(负数和零没有对数);(2)log a 1 = 0 , log a a = 1(1的对数等于0,底数的对数等于1);(3)如果把b a N =中b 的写成log a N ,则有N a N a =log (对数恒等式)。

对数与对数运算教案

对数与对数运算教案

对数与对数运算教案一、教学目标1.了解对数的概念和性质。

2.掌握对数的换底公式。

3.能够运用对数运算解决实际问题。

二、教学重点1.对数的换底公式的掌握。

2.对数运算的实际应用。

三、教学难点1.对数的换底公式的理解与应用。

2.对数运算在实际问题中的灵活运用。

四、教学过程1.导入(5分钟)通过提问的方式引入对数的概念,例如:什么是指数?怎样求指数运算的结果?对数与指数有何关系等。

2.知识讲解与演示(25分钟)(1)对数的概念与性质:先简要介绍对数的概念,即以一些数为底,使结果等于一些数的指数运算。

然后讲解对数的性质,包括对数的唯一性、对数的基本法则等。

3.练习与巩固(25分钟)(1)讲解练习题:组织学生进行对数运算的练习,包括计算对数的值、利用对数解决方程等。

逐步提高题目的难度,以巩固学生的基本技能。

(2)拓展练习:根据实际问题设置应用题,引导学生运用对数解决实际问题,如物种数量的估算、露营地数量的计算等。

培养学生的问题解决能力和分析能力。

4.深化与延伸(20分钟)(1)对数运算的实际意义:通过一些具体的实际例子,讲解对数运算在生活中的应用,如音量的计算、地震强度的测量等。

让学生感受到对数运算在实际问题中的重要性。

(2)拓展延伸:引导学生深入思考对数的概念和性质,并做一些拓展性的练习,如求对数的近似值、应用对数解决复杂方程等。

拓宽学生的数学思维。

五、课堂小结与展望(5分钟)对本节课的内容进行小结,回顾所学的知识点和技能。

展望下节课的内容,为下一步学习打下基础。

六、作业布置布置适量的练习题作业,巩固对数与对数运算的知识与技能的掌握。

七、教学反思通过本节课的教学,学生对对数和对数运算有了初步的了解。

对数的换底公式的掌握是此节课的难点和重点,需要进行反复的练习和巩固。

通过设置实际问题的应用题,培养学生的问题解决能力和应用能力。

同时,教师需要耐心引导学生思考和讨论,帮助学生更好地理解和掌握数学知识。

高中数学必修一《对数与对数运算》教学设计

高中数学必修一《对数与对数运算》教学设计

高中数学必修一《对数与对数运算》教学设计一、教学背景分析:(一)教材地位与作用我们在前面的学习过程中,已了解了指数函数的概念和性质,它是后续学习的基础,从本节开始我们学习对数及其运算.使学生认识引进对数的必要性,理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用.(二)学情分析学生刚开始接触对数,从指数函数到对数函数的过渡,学生在学习上可能会有些困难,转化能力有待提高。

而且学生学习的主动意识不强,自主探究能力也有待提高。

(三)设计思想教材注重从现实生活的事例中引出对数概念,所举例子比较全面,有利于培养学生的思想素质和激发学生学习数学的兴趣和欲望.教学中要充分发挥课本的这些材料的作用,并尽可能联系一些熟悉的事例,以丰富教学的情景创设.教材安排了“阅读与思考”的内容,有利于加强数学文化的教育,应指导学生认真研读.根据本节内容的特点,教学中要注意发挥信息技术的力量,使学生进一步体会到信息技术在数学学习中的作用,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持.注重引导学生通过自己观察、操作交流、讨论、有条理的思考和推理,让学生通过自主探索、合作交流,进一步认识和掌握对数式与指数式的互化,积累数学活动的经验。

(四)教法分析和学法指导掌握对数的双基,即对数产生的意义、概念等基础知识,求对数及对数式与指数式间转化等基本技能的掌握在本课的教学设计中,注重“引、思、探、练”的结合。

引导学生学习方式发生转变,采用激发兴趣、主动参与、积极体验、自主探究的学习,形成师生互动的教学氛围。

在学习方法上,指导学生:通过实例启发学生产生主动运用的意识;通过解题思路的脉络分析,对学生进行解题思路的指导;通过对学生发言的点评,规范语言表达,指导学生进行交流和讨论。

(五)教具设备:多媒体课件.二、教学目标(一)知识与能力1.理解对数的概念,了解对数与指数的关系;2.理解和掌握对数的性质;3.掌握对数式与指数式的关系。

高中数学《对数的概念与运算性质》教学设计

高中数学《对数的概念与运算性质》教学设计

《对数与对数运算》(第一课时)(人教A版普通高中课程标准实验教科书数学必修1第二章第二节)一、教学内容解析《对数与对数运算》选自人教A版高中数学必修一第二章,共分两小节,第一小节主要内容是对数的概念、对数式与指数式的互化,第二小节内容是对数的运算性质,本课时为第一小节内容.16、17世纪之交,随着天文、航海、工程、贸易以及军事的发展,改进数字计算方法成为当务之急.苏格兰数学家纳皮尔正是在研究天文学的过程中,为了简化其中的计算而发明了对数.与传统教科书相比,教材从具体问题引进对数概念,加强了对数的实际应用与数学文化背景,强调“对数源于指数”以及指数运算与对数运算的互逆关系,将对数安排在指数运算及指数函数之后进行学习,实现对数与原有知识体系的对接,有利于学生学习时发现与论证对数的运算性质.基于以上分析,本课时的教学重点是:对数概念的理解以及指数式与对数式的互化.二、教学目标设置1.感受引入对数的必要性,理解对数的概念;2.能够说出对数与指数的关系,能根据定义进行互化和求值;3.感受数学符号的抽象美、简洁美.本课时落实以上三个教学目标:通过“推断化石年代”和“解指数方程”两个实例,认识到引入对数,研究对数是基于实际需求的。

根据底数、指数与幂之间的关系,通过“知二求一”的分析,引导学生借助指数函数图象,分析问题中幂指数的存在性,以及为了表示指数的准确值,引入了对数符号,从而引出对数概念.通过图示连线,对指数式和对数式中各字母进行对比分析,来认识对数与指数的相互联系;利用指数式与对数式的互化,来帮助学生理解对数概念,体会转化思想在对数计算中的作用.对数源于指数,本课时中,对数问题往往回归本源,转化为指数问题来解决,因而要在理解对数概念的基础上学会互化和求值.恰当的数学符号,对数学发展起着巨大的推动作用,对数符号抽象而简洁,学生需要在不断的学习中逐渐体验对数符号的重要性.三、学生学情分析1.认知基础从运算的角度来讲,加、乘、乘方运算中只有乘方的逆运算对数运算还没有学习.从函数的角度来说,高一的学生刚刚学习了集合、函数的概念、函数的表示方法和函数的一般性质,对函数有了初步的认识,在此基础上又学习了指数运算和指数函数,了解了研究函数的一般方法,经历过从特殊到一般,具体到抽象的研究过程,之后将在学习对数的基础上继续学习对数函数.2.问题诊断对数的概念对于学生来说,是全新的.形式地进行指数式与对数式之间的互化是容易的,在真正理解对数概念的基础上进行解题是有一定难度的,表现在两个方面:(1)不能将对数与普通的数平等对待,不理解对数的概念,只能够进行表面上的形式转换;(2)不能把“对数的实质是指数”应用在数学问题的解决中.基于以上分析,本节的教学难点是:(1)对数概念的理解;(2)对数的常用性质的概括.为了突破第一个难点,要在引入对数概念时,通过不同的实例,让学生感受到为什么要学习对数,是基于研究指数的需求才引入对数,因此对数的实质是指数;在形成概念时,要引导学生明确“对数是数”这一事实;在引入对数概念后,学生通过自主举例,具体感知个例,从对数概念外延的角度进行理解.本节的第二个难点是:“0和负数没有对数”这一性质的深入认识.在教学中最明显的例证是涉及到求定义域时,看到对数符号,不能如同看到分母一样,瞬间闪现出真数要大于0的限制,因此应该在学习对数伊始,就打好“0和负数没有对数”的认识基础.为了突破第二个难点,不要急于将现成的结论抛出,可以让学生在自主举例(感受个例)的基础上,尝试思考(分析通例)对数中的底数和真数可以取什么样的数,引导学生思考是不是所有的实数都有对数,哪些数有对数?为什么?通过互化和求值的练习,让学生逐渐地从内涵和外延两方面加深对数概念的理解.四、教学策略分析本节教学中,学习对数概念的过程就是认识的辨证发展过程:从实践到认识:通过具体情境,具体问题,具体对数的体验感知,遵循从具体到抽象的过程,来建立对数概念,从概念内涵的角度学习;再实践:形成概念之后,遵循从一般到特殊的思路,进行自主举例,感知个例,从概念外延的角度加深概念理解;再认识:理性分析通例(思考底数和真数的范围),又从特殊到一般进行概念的再认识;循环往复:在随后的练习巩固中,认识两种特殊的对数(常用对数和自然对数)和两种特殊的对数值(1的对数和底数的对数),来获得基于对数概念的运算性质,从而丰富学生对于对数概念的认知.突破难点的策略为:旧知新悟,适度模仿,归纳概括,自主举例.五、教学过程设计1.对数概念的形成1.1创设情境,引发思考【实际情境】网上的一则消息:有驴友挖到几枚恐龙蛋,送到权威机构做了碳14同位素鉴定,结果是白垩纪的恐龙蛋化石,现坐等博物馆上门收购.生物死亡后,它机体内原有的碳14含量,每经过大约6000年,会衰减为原来的一半,这个时间称为“半衰期”,研究人员常常根据机体内碳14的含量来推断生物体的年代,其中半衰次数x与碳14的含量P间的关系为:1()2x P.但是,当生物组织内的碳14含量低于千分之一时(这里我们按11024来计算),一般的放射性探测器就测不到碳14了.众所周知,恐龙生活在距今大约一亿年前的地球上,那么用碳14同位素法能推断出恐龙蛋化石的年代吗?问题1:(1)经过1次半衰期,碳14的含量会变为原来的多少?3次呢?(2)经过几次半衰期,一般的放射性探测器就测不到碳14了呢?(3)用碳14同位素法能推断出恐龙蛋化石的年代吗?【预设的答案】12,18;10;不能【设计意图】对数概念不是凭空产生的,用考古鉴定这一实例,让学生感受“求指数”这样的问题是客观存在的,是源于实际生活的.【数学情境】解方程:(1)2x=2;(2)2x=3;(3)2x=4.【设计意图】创设数学情境,通过指数方程的实例,让学生感受在数学学习中,“求指数”这样的问题也是存在的,有必要研究这一类问题.问题2:以上几个问题的共同特征是什么?【活动预设】引导学生归纳概括出问题的共同特征:已知底数和幂,求指数x .1.2探究典例,形成概念活动:解方程:(1)2x =2; (2)2x =3; (3)2x =4.【活动预设】感受在求指数的过程中,有的指数可以直接写出结果,有的指数却不好表示.【设计意图】为引入对数符号表示指数做铺垫.问题3:以引例中的2x =3为例,分析x 的值存在吗?如果存在,符合条件的x 的值有几个?能估计出x 的大致范围吗?【活动预设】(1)根据函数图象,思考等式2x =3中指数x 的存在性,唯一性和大致范围;(2)类比:在学习求方程x 3=2的根时,为了表示底数x ,引入了数学符号:√,表示3次方为2的数;这里,我们引入对数符号来表示指数x ,将x 记作log 23.【设计意图】从引例中的具体问题入手,思考指数x 的存在性,唯一性和大致范围,为了表示指数,引入对数符号,在具体问题中体验用对数符号表示指数的过程.问题4:结合方程2x =3来思考,x =log 23中log 23表示什么?【活动预设】(1)分析log 23表示的含义;(2)感受:以2x =4为例,分析指数x 可以怎样用对数符号表示,以及该符号表示什么. 教师讲授:若a x =N (a >0,a ≠1),那么数x 叫做以a 为底N 的对数,记作:N x a log ,其中a 叫做对数的底数,N 叫做真数.【设计意图】理解具体的对数符号所表示的含义,并且在探究特例的基础上,遵循从具体到抽象的思路,形成对数概念.问题5:指数式与对数式是等价的,但a ,x ,N 在两个式子中的名称一样吗?【预设的答案】此处画上连线图,呈现指数式与对数式之间的关系。

教学设计3:3.2.1 对数及其运算

教学设计3:3.2.1 对数及其运算

3.2.1对数及其运算一、教学内容解析本节课是人教B版第三章第二节对数与对数函数中第一小节对数及其运算的第一课时。

对数对学生来说是一个全新的概念,学习起来略显困难,不过在此之前,学生已学习了指数和指数函数的有关知识,这为过渡到本节的学习起着铺垫的作用;本章后面的对数函数对于学生来说是一个全新的函数模型,而对数函数又是本章的重要内容,在高考中占有一定的分量,它是在指数函数的基础上,对函数类型的拓广。

本节内容的学习主要是为让学生理解对数的概念,为学习对数函数作好准备。

同时,通过对数概念的学习,对培养学生对立统一,相互联系、相互转化,数形结合的思想,培养学生的逻辑思维能力都具有重要的意义。

二、教学目标设置通过对本节课教材的分析,考虑到学生已有的认知结构和心理特征,依据新课标制定出如下三个方面的教学目标:1、知识与技能目标:理解对数的概念,了解对数与指数的关系;掌握对数式与指数式的互化;理解对数的性质。

2、过程与方法目标:通过实例使学生认识对数的模型,体会引入对数的必要性;通过师生观察分析得出对数的概念及对数式与指数式的互化。

小组交流对对数的理解和认识,培养学生合作学习的能力,使学生经历认知逐渐深入的过程。

3、情感态度与价值观:积极引导学生主动参与学习的过程,激发他们研究数学问题的兴趣,形成主动学习的态度,培养学生自主探究以及合作交流的能力。

三、学生学情分析我校在营口市学生层次较好,我所授课的班级是我校的实验班,学生数学能力很强,思维较活跃。

我校的教学模式为小组合作交流学习模式,学生已经养成了小组合作学习的习惯。

即学生通过预习,结合学案,自主学习、探究的模式。

前面学生已经学习了指数和指数函数的有关知识。

在对教材和教学目标及学情分析后,我确定出本节课的教学重点是:重点:对数的概念,对数式与指数式的相互转化。

难点:对数概念的理解,对数性质的理解。

四、教学策略分析为了最大程度发挥学生的主观能动性,实践人本教育,我校采用“主动、合作、交流”学习方法学习,把学生分成四人小组,分工合作,进行讨论探究逐渐培养学生“会观察”、 “会分析”、“会论证” 、“会合作”的能力。

高中数学教学课例《对数与对数运算》课程思政核心素养教学设计及总结反思

高中数学教学课例《对数与对数运算》课程思政核心素养教学设计及总结反思

知识并形成技能.
2.通过实例使学生认识对数模型,体会引入对数 教学目标
的必要性;通过师生观察分析得出对数的概念及对数式
与指数式的互化.
3.通过学生分组进行探究活动,掌握对数的重要
性质.通过做练习,使学生感受到理论与实践的统一.
现阶段大部分学生学习的自主性较差,主动性不
够,学习有依赖性,且学习的信心不足,对数学存在或 学生学习能
课例研究综 要突出的是不同轮次的教学中学生表现的变化情况。另

一方面也叫以对学生实施教学后测,根据学生教学后测
中的表现以及与前测情况的比较,来推断课堂是否有效
地帮助学生掌握了学习内容。
多或少的恐惧感.通过对指数与指数幂的运算的学习, 力分析
学生已多次体会了对立统一、相互联系、相互转化的思
想,并且探究能力、逻辑思维能力得到了一定的锻炼.
教学策略选
本教学设计先由引例出发,创设情境,激发学生对
择与设计 对数的学习兴趣;在讲授新课部分,通过结合多媒体教
学以及一系列的课堂探究活动,加深学生对对数的认
识;最后通过课堂练习来巩固学生对对数的掌握.
探究活动时,学生独立完成后,通过思考,然后分
小组进行讨论,最后得出结论.我针对问题补充,通过
教学过程 练习与讨论的方式,让学生自己得出结论,从而能更好
地理解和掌握对数的性质.培养学生类比、分析、归纳
的能力.
根据观察记录说明他们在课堂上的参与程度和具
体表现(参与状态、思维发展、学习体验等方面),尤其
高中数学教学课例《对数与对数运算》教学设计及总结反思
学科
高中数学
教学课例名
《对数与对数运算》

重点:(1)对数的概念;(2)对数式与指数式的相互

对数运算法则教案

对数运算法则教案

§2.2.1 对数与对数运算(第2课时)--对数的运算法则一、教学内容分析:本节课课程标准要求理解对数的运算法则,能灵活运用对数运算法则进行对数运算.本节课是在学习了“对数的概念"后进行的,它是上节内容的延续与深入,同时也是研究学习后续知识对数函数的必备基础知识.高考大纲中要求要理解对数的概念及其运算法则。

二、教学目标:知识与技能目标:理解并掌握对数法则及运算法则,能初步运用对数的法则和运算法则解题.过程与方法目标:通过法则的探究与推导,培养从特殊到一般的概括思想,渗透化归思想及逻辑思维能力. 情感态度与价值观目标:通过法则探究,激发学习的积极性.培养大胆探索,实事求是的科学精神.三、教学重难点:教学重点:对数的运算法则及推导和应用;教学难点:对数运算法则的探究与证明.四、教具准备:幻灯片、课件、多媒体五、教学方法本课采用“探究——发现”教学模式六、 教学过程:(一)复习引入1、对数的定义及对数恒等式log b a N b a N =⇔= (a >0,且a ≠1,N >0)2、指数的运算法则;m n m n m n m na a a a a a +-⋅=÷= ()mn n m a a =我们知道,对数式可看作指数运算的逆运算,你能从指数与对数的关系以及指数运算法则,得出相应的对数运算法则吗?(二)运算法则(1)我们知道m n m n a a a +⋅=,那m n +如何表示,能用对数式运算吗?解: ,,m n m n m n a a a M a N a +⋅===设 于是,m n MN a +=由对数的定义得到log ,m a M a m M =⇔=log n a N a n N =⇔=log m n a MN a m n MN +=⇔+=N M MN a a a log log log +=即:两数积的对数,等于各数的对数的和。

提问:你能根据指数的法则按照以上的方法推出对数的其它法则吗?(2)我们知道 ,那m n -如何表示,能用对数式运算吗?即:两数商的对数,等于被除数的对数减去除数的对数。

掌握对数的基本运算法则——对数运算法则教案

掌握对数的基本运算法则——对数运算法则教案

掌握对数的基本运算法则——对数运算法则教案一、教学目标1.掌握对数的定义,了解对数的意义和应用。

2.掌握对数的基本运算法则,包括对数相乘、对数相除、对数的乘方和除方等四大基本运算规则。

3.发现和理解对数运算规则与指数运算规则之间的联系,形成对数与指数相互转化的思维方式。

二、知识点分析1.对数的定义对数是一个数对另一个数的幂的指数。

它的本质是求幂的逆运算了。

比如,对于某个数b (b>0且不为1),x是另一个正数,那么用y表示x的对数和b是底数,就是:$$ y=log_bx $$读作“以b为底,x的对数是y”。

例如,2^3 = 8,那么以2为底,8的对数是几呢?$$ log_2 8 = 3 $$因此,8的对数是3,可以写作log2 8 = 3。

2.对数的意义及应用对数与指数的重要性源于它们是描述倍增或倍减量级的理想工具。

对数函数不仅在数学中用得广泛,也被广泛地应用于其他各种领域,例如:也被广泛地用于科学研究(光谱学、热力学、电子学、天文学)到统计分析(比如标准正态分布)等等。

3.对数的基本运算法则(1)对数相乘$$ log_{b}x + log_{b}y = log_{b}(x * y) $$(2)对数相除$$ log_{b}x - log_{b}y = log_{b}(x / y) $$(3)对数的乘方$$ log_{b}x^n = n*log_{b}x $$(4)对数的除方$$ log_{b}(x/y) = log_{b}x - log_{b}y $$三、教学方法本课程采用交互式教学法与游戏式教学法相结合的方式,包括课堂讲解、小组讨论、互动游戏和练习测试等环节。

在课堂讲授中,教师通过生动形象的例子讲解,引发学生对于对数学习的兴趣和好奇心。

在小组讨论环节,鼓励学生交流思考,培养学生的合作精神和团队意识。

在互动游戏环节中,采用数字海战游戏,帮助学生快速掌握对数的基本运算法则,提高学生的课堂互动和兴趣。

对数与对数运算说课稿(精选5篇)

对数与对数运算说课稿(精选5篇)

对数与对数运算说课稿(精选5篇)以下是网友分享的关于对数与对数运算说课稿的资料5篇,希望对您有所帮助,就爱阅读感谢您的支持。

篇一§2.2.1对数与对数运算说课稿大家好,我是。

,我今天的讲课内容是对数与对数的运算。

我将从以下5个方面来进行今天的说课,第一是教学内容分析,第二是学生的学情分析,第三是教学方法的策略,第四是教学过程的设计,第五的教学反思。

一、教学内容分析对数与对数的运算是人教版高中教材必修一第二章第二节第一课时的内容。

本节课是第一课时,主要讲的就是认识对数和对数的一些基本运算性质。

本节课的学习蕴含着转化化规的数学思想,类比与对比等基本数学方法。

在上节课,我们学习了指数函数以及指数函数的性质,是本节课学习对数与对数的运算的基础,而下节课,我们又将学习对数函数与对数函数的性质,这节课恰好为下节课的学习做了一个铺垫。

二、学生学情分析接下来我将从认知、能力、情感三个方面来进行学生的学情分析。

首先是认知,该阶段的高中生已经学习了指数及指数函数的性质,具备了学习对数的基础知识;在能力方面,高一的学生已经初步具备运用所学知识解决问题的能力,但是大多数同学还缺乏类比迁移的能力;而在情感方面,大多数学生有积极的学习态度,能主动参与研究,但是还有部分的学生还是需要老师来加以引导的。

三、教学方法的策略根据教材的要求以及本阶段学生的具体学习情况,我制定了一下的教学目标。

首先是知识与技能,理解对数与指数的关系,能进行指对数互化并可利用对数的简单性质求值;接着是过程与方法,通过探究对数和指数之间的互化,培养发现问题、分析问题、解决问题的能力;最后是情感态度与价值观,通过对问题转化过程的引导,培养学生敢于质疑、勇于开拓的创新精神。

基于以上的分析,我制定了本节课的重难点。

本节课的教学重点是对数的定义,对数式与指数式的互化,对数的运算法则及其推导和应用;本节课的难点是对数概念的理解和对数运算法则的探究和证明;本节课我所采用的教学方法是探究式教学法,分为以下几个环节:教师创设问题情境,启发式地讲授,讲练结合,引导学生思考,最后鼓励学生自主探究学习。

对数与对数运算教

对数与对数运算教

对数与对数运算教教学目标1.并记忆对数的定义,对数与指数的互化,对数恒等式及对数的性质.2.并掌握对数运算法则的内容及推导过程.3.运用对数的性质和对数运算法则解题.教学重点与难点重点是对数定义、对数的性质和运算法则.难点是对数定义中涉及较多的难以记忆的名称,以及运算法则的推导.教学过程设计师:(板书)已知国民生产总值每年平均增长率为7.2%,求后国民生产总值是原来的多少倍?生:设原来国民生产总值为1,则后国民生产总值y=(1+7.2%)20=1.07220,所以后国民生产总值是原来的1.07220倍.师:这是个实际应用问题,我们把它转化为数学中知道底数和指数,求幂值的问题.也就是上面学习的指数问题.师:(板书)已知国民生产总值每年平均增长率为7.2%,问经过多年年后国民生产总值是原来的4倍?师:(分析)仿照上例,设原来国民生产总值为1,需经x年后国民生产总值是原来的4倍.列方程1.072x=4.我们把这个应用问题转化为知道底数和幂值,求指数的问题,这是上述问题的逆问题,即本节的对数问题.师:(板书)一般地,如果a(a>0,a≠1)的b次幂等于N,就是ab=N,那么数b就叫做以a为底N的对数,记作logaN=b,其中a叫做底数,N叫做真数,式子logaN叫做对数式.师:请同学谈谈对对数这个定义的认识.生:对数式logaN实际上就是指数式中的指数b的一种新的记法.生:对数是一种新的运算.是知道底和幂值求指数的运算.(此刻并不奢望学生能说出什么深刻认识,只是给他们自己一个去思维认识对数这个定义的机会.)师:他们说得都非常好.实际上ab=N这个式子涉及到了三个量a,b,N,由方程的观点可得“知二求一”.知道a,b可求N,即前面学过的指数运算;知道b(为自然数时),N可求a,即初中学过的开记作logaN=b.因此,对数是一种新的运算,一种知道底和幂值求指数的运算.而每学一种新的运算,首先要学习它的记法,对数运算的记法为logaN,读作:以a为底N的对数.请同学注意这种运算的写法和读法.师:实际上指数与对数只是数量间的同一关系的两种不同形式.为了更深入认识并记忆对数这个概念,请同学们填写下列表格.(打出幻灯)式子名称abN指数式对数式ab=NlogaN=b练习1 把下列指数式写成对数形式:练习2 把下列对数形式写成指数形式:练习3 求下列各式的值:(两名学生板演练习1,2题(过程略),一生板演练习三.)因为22=4,所以以2为底4的对数等于2.因为53=125,所以以5为底125的对数等于3.(注意纠正学生的错误读法和写法.)师:由定义,我们还应注意到对数式logaN=b中字母的取值范围是什么?生:a>0且a≠1;b∈R;N∈R.师:N∈R?(这是学生最易出错的地方,应一开始让学生牢牢记住真数大于零.)生:由于在实数范围内,正数的任何次幂都是正数,因而ab=N中N总是正数.师:要特别强调的是:零和负数没有对数.师:定义中为什么规定a>0,a≠1?(根据本班情况决定是否设置此问.)生:因为若a<0,则N取某些值时,b可能不存在,如b=log (-2)8不存在;若a=0,则当N不为0时,b不存在,如log02不存在;当N为0时,b可以为任何正数,是不唯一的,即log00有无数个值;若a=1,N不为1时,b不存在,如log13不存在,N为1时,b可以为任何数,是不唯一的,即log11有无数多个值.因此,我们规定:a>0,a≠1.(此回答能培养学生分类讨论的数学思想.这个问题从ab=N 出发回答较为简单.)师:下面我来介绍两个在对数发展过程中有着重要意义的对数.师:(板书)对数logaN(a>0且a≠1)在底数a=10时,叫做常用对数,简记lgN;底数a=e时,叫做自然对数,记作lnN,其中e是个无理数,即e≈2.718 28…….练习4计算下列对数:lg10000,lg0.01,2log24,3log327,10lg105,5log51125.师:请同学说出结果,并发现规律,大胆猜想.生:2log24=4.因为log24=2,而22=4.生:3log327=27.因为log327=3,而33=27.生:10lg105=105.生:我猜想alogaN=N,所以5log51125=1125.师:非常好.这就是我们下面要学习的对数恒等式.师:(板书)alogaN=N(a>0,a≠1,N>0).(用红笔在字母取值范围下画上曲线)(再次鼓励学生,并提出更高要求,给出严格证明.)(学生讨论,并口答.)生:(板书)证明:设指数等式ab=N,则相应的对数等式为logaN=b,所以ab=alogaN=N.师:你是根据什么证明对数恒等式的?生:根据对数定义.师:(分析小结)证明的关键是设指数等式ab=N.因为要证明这个对数恒等式,而现在我们有关对数的知识只有定义,所以显然要利用定义加以证明.而对数定义是建立在指数基础之上的,所以必须先设出指数等式,从而转化成对数等式,再进行证明.师:掌握了对数恒等式的推导之后,我们要特别注意此等式的适用条件.生:a>0,a≠1,N>0.师:接下来观察式子结构特点并加以记忆.(给学生一分钟时间.)师:(板书)2log28=?2log42=?生:2log28=8;2log42=2.师:第2题对吗?错在哪儿?师:(继续追问)在运用对数恒等式时应注意什么?(经历上面的错误,使学生更牢固地记住对数恒等式.)生:当幂的底数和对数的底数相同时,才可以用公式alogaN=N.(师用红笔在两处a上重重地描写.)师:最后说说对数恒等式的作用是什么?生:化简!师:请打开书74页,做练习4.(生口答.略)师:对对数的定义我们已经有了一定认识,现在,我们根据定义来进一步研究对数的性质.师:负数和零有没有对数?并说明理由.生:负数和零没有对数.因为定义中规定a>0,所以不论b 是什么数,都有ab>0,这就是说,不论b是什么数,N=ab永远是正数.因此,由等式b=logaN可以看到,负数和零没有对数.师:非常好.由于对数定义是建立在指数定义的基础之上,所以我们要充分利用指数的知识来研究对数.师:(板书)性质1:负数和零没有对数.师:1的对数是多少?生:因为a0=1(a>0,a≠1),所以根据对数定义可得1的对数是零.师:(板书)1的对数是零.师;底数的对数等于多少?生:因为a1=a,所以根据对数的定义可得底数的对数等于1.师:(板书)底数的对数等于1.师:给一分钟时间,请牢记这三条性质.师:在初中,我们学习了指数的运算法则,请大家回忆一下.生:同底数幂相乘,底数不变,指数相加,即am·an=am+n.同底数幂相除,底数不变,指数相减,即am÷an=am-n.还有(am)n=amn;师:下面我们利用指数的运算法则,证明对数的运算法则.(板书)(1)正因数积的对数等于同一底数各个因数的对数的和.即loga(MN)=logaM+logaN.(请两个同学读法则(1),并给时间让学生讨论证明.)师:(分析)我们要证明这个运算法则,用眼睛一瞪无从下手,这时我们该想到,关于对数我们只学了定义和性质,显然性质不能证明此式,所以只有用定义证明.而对数是由指数加以定义的,显然要利用指数的运算法则加以证明,因此,我们首先要把对数等式转化为指数等式.师:(板书)设logaM=p,logaN=q,由对数的定义可以写成M=ap,N=aq.所以M·N=ap·aq=ap+q,所以loga(M·N)=p+q=logaM+logaN.即师:这个法则的适用条件是什么?生:每个对数都有意义,即M>0,N>0;a>0且a≠1.师:观察法则(1)的结构特点并加以记忆.生:等号左端是乘积的对数,右端是对数的和,从左往右看是一个降级运算.师:非常好.例如,(板书)log2(32×64)=?生:log2(32×64)=log232+log264=5+6=11.师:通过此例,同学应体会到此法则的重要作用——降级运算.它使计算简化.师:(板书)log62+log63=?生:log62+log63=log6(2×3)=1.师:正确.由此例我们又得到什么启示?生:这是法则从右往左的使用.是升级运算.师:对.对于运算法则(公式),我们不仅要会从左往右使用,还要会从右往左使用.真正领会法则的作用!(2)两个正数的商的对数等于被除数的对数减去除数的对数.师:仿照研究法则(1)的四个步骤,自己学习.(给学生三分钟讨论时间.)生:(板书)设logaM=p,logaN=q.根据对数的定义可以写成M=ap,N=aq.所以师:非常好.他是利用指数的运算法则和对数的定义加以证明的.大家再想一想,在证明法则(2)时,我们不仅有对数的定义和性质,还有法则(1)这个结论.那么,我们是否还有其它证明方法?师:非常漂亮.他是运用转化归结的思想,借助于刚刚证明的法则(1)去证明法则(2).他的证法要比书上的更简单.这说明,转化归结的思想,在化难为易、化复杂为简单上的重要作用.事实上,这种思想不但在学习新概念、新公式时常常用到,而且在解题中的应用更加广泛.师:法则(2)的适用条件是什么?生:M>0,N>0;a>0且a≠1.(2)的结构特点并加以记忆.生:等号左端是商的对数,右端是对数的差,从左往右是一个降级运算,从右往左是一个升级运算.师:(板书)lg20-lg2=?师:可见法则(2)的作用仍然是加快计算速度,也简化了计算的方法.例1 计算:解(1)log93+log927=log93×27=log981=2;(3)log2(4+4)=log24+log24=4;(由学生判对错,并说明理由.)生:第(2)题错!在同底的情况下才能运用对数运算法则.(板书)(3)题错!法则(1)的内容是:(4)题错!法则(2)的内容是:师:通过前面同学出现的错误,我们在运用对数运算法则时要特别注意什么?生:首先,在同底的情况下才能从右往左运用法则(1)、(2);其次,只有在正因数的积或两个正数的商的对数的情况下,才能从左往右运用运算法则(2).(3)正数的幂的对数等于幂的底数的对数乘以幂指数.即loga(N)n=n·logaN.师:(分析)欲证loga(N)n=n·logaN,只需证Nn=an·logaN=(a·logaN)n,只需证N=alogaN.由对数恒等式,这是显然成立的.师:(板书)设N>0,根据对数恒等式有Nn=(alogaN)n=an·logaN.根据对数的定义有(3)的适用条件是什么?生:a>0,a≠1;N>0.师:观察式子结构特点并加以记忆.生:从左往右仍然是降级运算.师:例如,(板书)log332=log525=5log52.计算(log232)3.(找一好一差两名学生板书.)错解:(log232)3=log2(25)3=log2215=15.正确解:(log232)3=(log225)3=(5log22)3=53=125.(师再次提醒学生注意要准确记忆公式.)(4)正数的正的方根的对数等于被开方数的对数除以根指数.即(4)的适用条件是什么?(3)和法则(4)可以合在一起加以记忆.即logaNα=αlogaN(α∈R).(师板书)例2 用logax,logay,logaz表示下列各式:(生板书)(注意(3)的第二步不要丢掉小括号.)(师板书)例3 计算:(1)log2(47×25)=log247+log225=7log24+5log22=7×2+5×1=19.师:请大家在笔记本上小结这节课的主要内容.作业课本P78.第1,2,3,4题.课堂教学设计说明本节的教学过程是:1.际问题引入,给出对数定义;2.认识对数定义;3.式与指数式的互化;4.恒等式alogaN=N;5.的性质;6.运算法则;7.·小结·作业.。

高中数学对数计算教案大全

高中数学对数计算教案大全

高中数学对数计算教案大全一、教学内容:对数的概念和基本计算二、教学目标:1. 了解对数的概念和性质;2. 能够熟练地进行对数的基本运算;3. 能够应用对数计算解决实际问题。

三、教学重点和难点:1. 对数的概念和性质;2. 对数的基本运算;3. 对数计算在实际问题中的应用。

四、教学方法:1. 讲授法:通过教师讲解和示范,让学生掌握对数的概念和基本运算;2. 案例演练法:通过实例演练,让学生熟练掌握对数的应用方法;3. 课堂互动法:通过提问、讨论和小组合作等形式,激发学生学习的兴趣和动力。

五、教学内容和方法:1. 对数的定义和性质(10分钟)- 讲解对数的定义,解释对数的含义和特点;- 讲解对数的性质,包括对数的唯一性、对数的运算规则等。

2. 对数的基本运算(20分钟)- 讲解对数的加法、减法、乘法和除法的运算规则;- 给出相关示例,让学生进行练习。

3. 对数计算的应用(30分钟)- 讲解对数在实际问题中的应用,如物理、化学、生物等领域;- 给出一些实际问题,让学生应用对数进行计算和解答。

4. 讲解课后作业(10分钟)- 布置相关的课后作业,加强学生对对数计算的练习和巩固。

六、教学评估:1. 学生课堂表现:包括学生在课堂上的参与度、思维活跃度等方面;2. 学生作业完成情况:评价学生对对数计算的掌握和运用能力;3. 学生学习成绩:通过考试和测验等形式,检查学生的学习效果和掌握程度。

七、教学反思:教师应及时总结教学效果,分析学生的学习情况,及时调整教学方法和内容,不断提高教学质量和效果。

同时,鼓励学生主动思考和探索,培养其对数计算能力,提高其数学素养和实际运用能力。

高中数学教案:对数与对数运算

高中数学教案:对数与对数运算

高中数学教案:对数与对数运算教学目标:1. 理解对数的定义和性质;2. 掌握对数的运算法则;3. 能够利用对数解决实际问题。

教学重点:1. 对数的定义和性质;2. 对数的运算法则。

教学难点:对数运算的应用。

教学准备:教师准备好黑板、白板、彩色粉笔、教科书、练习册等教材。

教学过程:Step1 导入教师可以通过提问激发学生对对数的了解和认识,如:你们知道什么是对数吗?对数有哪些性质呢?Step2 引入教师在黑板上写下对数的定义:如果a^x=b,那么x就是以a为底b的对数,记作x=log_a b,其中a是底数,b是真数。

让学生进行解读和理解。

Step3 对数的性质1. 对数的底数必须大于0且不等于1;2. log_a a=1;3. log_a 1=0;4. log_a (m*n)=log_a m + log_a n;5. log_a (m/n) = log_a m - log_a n;6. log_a m^p = p * log_a m;教师可以结合教材上的例题来讲解这些性质,并通过示意图等方式帮助学生理解。

Step4 对数的运算法则教师介绍对数的运算法则,如:log_a (mn) = log_a m + log_a n,log_a (m/n) = log_a m - log_a n,log_a m^p = p * log_a m,等等。

通过实例演示和练习,帮助学生掌握这些运算法则。

Step5 解决实际问题教师通过一些实际问题的例子,如物种繁殖问题、地震震级问题等,引导学生使用对数进行运算,解决问题。

Step6 练习教师布置一些练习题,让学生在课下巩固对对数和对数运算的理解和掌握。

Step7 总结与拓展教师对本节课的内容进行总结,并对下一节课的内容进行预告和拓展,如指数函数的概念和性质。

Step8 课堂作业布置课堂作业,让学生对本节课所学内容进行巩固和复习。

Step9 教学反思教师对本节课上的教学进行反思,并做好备课记录,以便下次备课和教学参考。

《对数运算与对数函数》教学设计

《对数运算与对数函数》教学设计

《对数运算与对数函数》教学设计对数运算与对数函数教学设计一、教学目标1. 了解对数的定义和基本性质;2. 掌握对数运算的计算方法;3. 理解对数函数的概念及其图像特性;4. 能够应用对数函数解决实际问题。

二、教学内容1. 对数的定义和基本性质;2. 对数运算的计算方法;3. 对数函数的定义和图像特性;4. 对数函数的应用。

三、教学过程1. 导入:通过引入实际问题,激发学生对对数的兴趣,引发思考。

2. 知识讲解:讲解对数的定义和基本性质,通过例题演示对数运算的计算方法。

3. 实例讲解:通过实例引入对数函数的概念,讲解对数函数的定义和图像特性,强调对数函数与指数函数的关系。

4. 练与应用:学生进行对数函数的计算练,结合实际问题应用对数函数解决问题。

5. 总结与归纳:总结对数运算和对数函数的要点和特性,澄清常见问题。

6. 拓展与展望:介绍对数在其他学科领域的应用,展望对数研究的发展前景。

四、教学评价1. 参与度评价:观察学生的思考和回答问题的积极程度、课堂表现等。

2. 理解程度评价:通过讲解和练的效果判断学生对对数运算和对数函数的理解程度。

3. 应用能力评价:通过实际问题解决的情况评估学生的对数函数的应用能力。

五、教学资源1. PPT课件:包含对数的定义、示例和计算方法等内容。

2. 题集:提供对数运算和对数函数的练题,供学生课后巩固。

六、教学反思对数运算与对数函数是高中数学的重要内容,但往往被学生认为比较抽象和难理解。

本次教学设计通过引入实际问题、讲解和实例讲解的方式,让学生更容易理解对数的概念,掌握对数运算和对数函数的计算方法,并能够应用到实际问题中。

同时,通过对学生的参与度、理解程度和应用能力进行评价,可以及时了解学生的学习情况,调整教学策略,提高教学效果。

对数与对数运算教案

对数与对数运算教案

对数与对数运算教案对数与对数运算教案对数与对数运算教案1一、教学目标1、知识与技能(1)理解对数的概念,了解对数与指数的关系;(2)能够进行指数式与对数式的互化;(3)理解对数的性质,掌握以上知识并培养类比、分析、归纳能力;2、过程与方法3、情感态度与价值观(1)通过本节的学习体验数学的严谨性,培养细心观察、认真分析分析、严谨认真的良好思维习惯和不断探求新知识的精神;(2)感知从具体到抽象、从特殊到一般、从感性到理性认知过程;(3)体验数学的科学功能、符号功能和工具功能,培养直觉观察、探索发现、科学论证的良好的数学思维品质、二、教学重点、难点教学重点(1)对数的定义;(2)指数式与对数式的互化;教学难点(1)对数概念的理解;(2)对数性质的理解;三、教学过程:四、归纳总结:1、对数的概念一般地,如果函数ax=n(a0且a≠1)那么数x叫做以a为底n 的对数,记作x=logan,其中a叫做对数的底数,n叫做真数。

2、对数与指数的互化ab=n?logan=b3、对数的基本性质负数和零没有对数;loga1=0;logaa=1对数恒等式:alogan=n;logaa=nn五、课后作业课后练习1、2、3、4六、板书设计对数与对数运算教案21教学目标1、理解对数的概念,了解对数与指数的关系;掌握对数式与指数式的互化;理解对数的性质,掌握以上知识并形成技能。

2、通过事例使学生认识对数的模型,体会引入对数的必要性;通过师生观察分析得出对数的概念及对数式与指数式的互化。

3、通过学生分组探究进行活动,掌握对数的重要性质。

通过做练习,使学生感受到理论与实践的统一。

4、培养学生的类比、分析、归纳能力,严谨的思维品质以及在学习过程中培养学生探究的意识。

2学情分析现阶段大部分学生学习的自主性较差,主动性不够,学习有依赖性,且学习的'信心不足,对数学存在或多或少的恐惧感。

通过对指数与指数幂的运算的学习,学生已多次体会了对立统一、相互联系、相互转化的思想,并且探究能力、逻辑思维能力得到了一定的锻炼。

[数学教案-对数]对数

[数学教案-对数]对数

[数学教案-对数]对数1.理解对数的概念,掌握对数的运算性质.(1) 了解对数式的由来和含义,清楚对数式中各字母的取值范围及与指数式之间的关系.能认识到指数与对数运算之间的互逆关系.(2) 会利用指数式的运算推导对数运算性质和法则,能用符号语言和文字语言描述对数运算法则,并能利用运算性质完成简单的对数运算.(3) 能根据概念进行指数与对数之间的互化.2.通过对数概念的学习和对数运算法则的探究及证明,培养学生从特殊到一般的概括思维能力,渗透化归的思想,培养学生的逻辑思维能力.3.通过对数概念的学习,培养学生对立统一,相互联系,相互转化的思想.通过对数运算法则的探究,使学生善于发现问题,揭示数学规律从而调动学生思维的积极参与,培养学生分析问题,解决问题的能力及大胆探索,实事求是的科学精神.教学建议教材分析(1) 对数既是一个重要的概念,又是一种重要的运算,而且它是与指数概念紧密相连的.它们是对同一关系从不同角度的刻画,表示为当<sub> </sub>时,<sub> </sub>.所以指数式<sub> </sub>中的底数,指数,幂与对数式<sub> </sub>中的底数,对数,真数的关系可以表示如下:(2) 本节的教学重点是对数的定义和运算性质,难点是对数的概念.对数首先作为一种运算,由<sub> </sub>引出的,在这个式子中已知一个数<sub> </sub>和它的指数求幂的运算就是指数运算,而已知一个数和它的幂求指数就是对数运算(而已知指数和幂求这个数的运算就是开方运算),所以从方程角度来看待的话,这个式子有三个量,知二求一.恰好可以构成以上三种运算,所以引入对数运算是很自然的,也是很重要的,也就完成了对<sub> </sub>的全面认识.此外对数作为一种运算除了认识运算符号“<sub> </sub>”以外,更重要的是把握运算法则,以便正确完成各种运算,由于对数与指数在概念上相通,使得对数法则的推导应借助指数运算法则来完成,脱到过程又加深了指对关系的认识,自然应成为本节的重点,特别予以关注.对数运算的符号的认识与理解是学生认识对数的一个障碍,其实<sub> </sub>与+,<sub> </sub>等符号一样表示一种运算,不过对数运算的符号写在前面,学生不习惯,所以在认识上感到有些困难.教法建议(1)对于对数概念的学习,一定要紧紧抓住与指数之间的关系,首先从指数式中理解底数<sub> </sub>和真数<sub> </sub>的要求,其次对于对数的性质<sub> </sub>及零和负数没有对数的理解也可以通过指数式来证明,验证.同时在关系的指导下完成指数式和对数式的互化.(2)对于运算法则的探究,对层次较高的学生可以采用“概念形成”的学习方式通过对具体例子的提出,让形式的认识由感性上升到理性,由特殊到一般归纳出法则,再利用指数式与对数式的关系完成证明,而其他法则的证明应引导学生利用已证结论完成,强化“用数学”的意识.(3)对运算法则的认识,首先可以类比指数运算法则对照记忆,其次强化法则使用的条件或者说成立的条件是保证左,右两边同时都有意义,因此要注意每一个对数式中字母的取值范围.最后还要让学生认清对数运算法则可使高一级的运算转化为低一级的运算,这样不仅加快了计算速度,也简化了计算方法,显示了对数计算的优越性.教学设计示例对数的运算法则教学目标1.理解并掌握对数性质及运算法则,能初步运用对数的性质和运算法则解题.2.通过法则的探究与推导,培养学生从特殊到一般的概括思想,渗透化归思想及逻辑思维能力.3.通过法则探究,激发学生学习的积极性.培养大胆探索,实事求是的科学精神.教学重点,难点重点是对数的运算法则及推导和应用难点是法则的探究与证明.教学方法引导发现法教学用具投影仪教学过程()一. 引入新课我们前面学习了对数的概念,那么什么叫对数呢?通过下面的题目来回答这个问题.如果看到<sub> </sub>这个式子会有何联想?由学生回答(1)<sub> </sub>(2) <sub> </sub>(3)<sub> </sub> (4)<sub> </sub>.也就要求学生以后看到对数符号能联想四件事.从式子中,可以出从概念上讲,对数与指数就是一码事,从运算上讲它们互为逆运算的关系.既然是一种运算,自然就应有相应的运算法则,所以我们今天重点研究对数的运算法则.二.对数的运算法则(板书)对数与指数是互为逆运算的,自然应把握两者的关系及已知的指数运算法则来探求对数的运算法则,所以我们有必要先回顾一下指数的运算法则.由学生回答后教师可用投影仪打出让学生看:<sub> </sub>,<sub> </sub>,<sub> </sub>.然后直接提出课题:若<sub> </sub>是否成立?由学生讨论并举出实例说明其不成立(如可以举<sub> </sub>而<sub> </sub>),教师在肯定结论的正确性的同时再提出<sub> </sub>可提示学生利用刚才的反例,把<sub> </sub>5改写成<sub> </sub>应为<sub> </sub>,而32=2<sub> </sub>,还可以让学生再找几个例子,<sub> </sub>.之后让学生大胆说出发现有什么规律?由学生回答应有<sub> </sub>成立.现在它只是一个猜想,要保证其对任意<sub> </sub>都成立,需要给出相应的证明,怎么证呢?你学过哪些与之相关的证明依据呢?学生经过思考后找出可以利用对数概念,性质及与指数的关系,再找学生提出证明的基本思路,即对数问题先化成指数问题,再利用指数运算法则求解.找学生试说证明过程,教师可适当提示,然后板书.证明:设<sub> </sub>则<sub> </sub>,由指数运算法则得<sub> </sub><sub> </sub>,即<sub> </sub>.(板书)法则出来以后,要求学生能从以下几方面去认识:(1) 公式成立的条件是什么?(由学生指出.注意是每个真数都大于零,每个对数式都有意义为使用前提条件).(2)能用文字语言叙述这条法则:两个正数的积的对数等于这两个正数的对数的和.(3)若真数是三个正数,结果会怎样?很容易可得<sub> </sub>.(条件同前)(4)能否利用法则完成下面的运算:例1:计算(1)<sub> </sub> (2)<sub> </sub> (3)<sub> </sub>由学生口答答案后,总结法则从左到右使用运算的级别降低了,从右到左运算是升级运算,要求运算从双向把握.然后提出新问题:<sub> </sub>.可由学生说出<sub> </sub>.得到大家认可后,再让学生完成证明.证明:设<sub> </sub>则<sub> </sub>,由指数运算法则得<sub> </sub><sub></sub>.教师在肯定其证明过程的同时,提出是否还有其它的证明方法?能否用上刚才的结论?有的学生可能会提出把<sub> </sub>看成<sub> </sub>再用法则,但无法解决<sub> </sub>计算问题,再引导学生如何回避<sub> </sub>的问题.经思考可以得到如下证法<sub> </sub>.或证明如下<sub> </sub>,再移项可得证.以上两种证明方法都体现了化归的思想,而且后面的证法中使用的拆分技巧“化减为加”也是会经常用到的.最后板书法则2,并让学生用文字语言叙述法则2.(两个正数的商的对数等于这两个正数的对数的差)请学生完成下面的计算(1)<sub> </sub> (2)<sub> </sub>.计算后再提出刚才没有解决的问题即<sub> </sub>并将其一般化改为<sub></sub> 学生在说出结论的同时就可给出证明如下:设<sub> </sub>则<sub> </sub><sub> </sub>,<sub> </sub>.教师还可让学生思考是否还有其它证明方法,可在课下研究.将三条法则写在一起,用投影仪打出,并与指数的法则进行对比.然后要求学生从以下几个方面认识法则(1) 了解法则的由来.(怎么证)(2) 掌握法则的内容.(用符号语言和文字语言叙述)(3) 法则使用的条件.(使每一个对数都有意义)(4) 法则的功能.(要求能正反使用)三.巩固练习例2.计算(1)<sub> </sub>(2)<sub> </sub>(3)<sub> </sub> (4)<sub> </sub>(5)<sub> </sub> (6)<sub> </sub>解答略对学生的解答进行点评.例3.已知<sub> </sub> ,用<sub> </sub>的式子表示(1)<sub> </sub>(2)<sub> </sub>(3) <sub> </sub>.由学生上黑板写出求解过程.四.小结1.运算法则的内容2.运算法则的推导与证明3.运算法则的使用五.作业略六.板书设计二.对数运算法则例1 例31. 内容(1)(2)(3)例2 小结2. 证明3. 对法则的认识(1)条件(2)功能探究活动试研究如下问题.(1)已知<sub> </sub>求证:<sub> </sub>或<sub> </sub> (2)若<sub> </sub>都是正数且至少有一个不为1,且<sub></sub><sub> </sub>,则<sub> </sub>之间的关系是_____________________.。

§2.2.1对数与对数运算

§2.2.1对数与对数运算

第二章基本初等函数(I)2.2.1 对数与对数运算本节教学分析 (1)三维目标知识与技能 理解对数的概念,了解对数与指数的关系;掌握对数式与指数式的互化;理解对数的性质,掌握以上知识并形成技能.过程与方法 通过实例使学生认识对数的模型,体会引入对数的必要性;通过师生观察分析得出对数的概念及对数式与指数式的互化.通过学生分组探究进行活动,掌握对数的重要性质.通过做练习,使学生感受到理论与实践的统一.情感态度与价值观 培养学生的类比、分析、归纳能力,严谨的思维品质以及在学习过程中培养学生探究的意识. (2)教学重点 1.对数的概念;2.对数式与指数式的相互转化. (3)教学难点对数性质的推导 (4)教学建议大部分学生学习的自主性较差,主动性不够,学习有依赖性,且学习的信心不足,对数学存在或多或少的恐惧感,通过对指数与指数幂的运算的学习,学生已多次体会了对立统一、相互联系、相互转化的思想,并且探究能力、逻辑思维能力得到了一定的锻炼.因此,学生已具备了探索、发现、研究对数定义的认识基础,故应通过指导,教会学生独立思考、大胆探索和灵活运用类比、转化、归纳等数学思想的学习方法.学生是教学的主体,本节课要给学生提供各种参与机会.为了调动学生学习的积极性,使学生化被动为主动,本节课可利用多媒体辅助教学,引导学生从实例出发,从中认识对数的模型,体会引入对数的必要性.在教学重难点上,步步设问、启发学生的思维,通过课堂练习、探究活动、学生讨论的方式来加深理解,很好地突破难点和提高教学效率,让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权。

新课导入设计导入一 思考:(P 62思考题)13 1.01xy =⨯中,哪一年的人口数要达到18亿、20亿、30亿……,该如何解决?即:1820301.01, 1.01, 1.01,131313x x x ===在个式子中,x 分别等于多少? 象上面的式子,已知底数和幂的值,求指数,这就是我们这节课所要学习的对数(引出对数的概念).导入二 1.问题1:庄子:一尺之棰,日取其半,万世不竭(1)取4次,还有多长?(2)取多少次,还有0.125尺? (得到:41()2=?,1()2x =0.125⇒x =?)2.问题2:假设2002年我国国民生产总值为a 亿元,如果每年平均增长8%,那么经过多少年国民生产总值是2002年的2倍? ( 得到:(18%)x +=2⇒x =? )问题共性:已知底数和幂的值,求指数 怎样求呢?例如:课本实例由1.01x m =求x 。

对数教学设计优秀10篇

对数教学设计优秀10篇

对数教学设计优秀10篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、总结计划、心得体会、演讲致辞、策划方案、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, summary plans, insights, speeches, planning plans, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!对数教学设计优秀10篇《对数与对数函数》教学计划篇一指对数的运算教案设计一、反思数学符号:“”“”出现的背景1.数学总是在不断的发明创造中去解决所遇到的问题。

《对数与对数运算》教案(第1课时)

《对数与对数运算》教案(第1课时)

2.2 对数函数 2.2.1 对数与对数运算整体设计教学分析我们在前面的学习过程中,已了解了指数函数的概念和性质,它是后续学习的基础,从本节开始我们学习对数及其运算.使学生认识引进对数的必要性,理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用.教材注重从现实生活的事例中引出对数概念,所举例子比较全面,有利于培养学生的思想素质和激发学生学习数学的兴趣和欲望.教学中要充分发挥课本的这些材料的作用,并尽可能联系一些熟悉的事例,以丰富教学的情景创设.教师要尽量发挥电脑绘图的教学功能,教材安排了“阅读与思考”的内容,有利于加强数学文化的教育,应指导学生认真研读.根据本节内容的特点,教学中要注意发挥信息技术的力量,使学生进一步体会到信息技术在数学学习中的作用,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持. 三维目标1.理解对数的概念,了解对数与指数的关系;理解和掌握对数的性质;掌握对数式与指数式的关系;通过实例推导对数的运算性质,准确地运用对数运算性质进行运算,并掌握化简求值的技能;运用对数运算性质解决有关问题.培养学生分析、综合解决问题的能力;培养学生数学应用的意识和科学分析问题的精神和态度.2.通过与指数式的比较,引出对数的定义与性质;让学生经历并推理出对数的运算性质;让学生归纳整理本节所学的知识.3.学会对数式与指数式的互化,从而培养学生的类比、分析、归纳能力;通过对数的运算法则的学习,培养学生的严谨的思维品质;在学习过程中培养学生探究的意识;让学生感受对数运算性质的重要性,增加学生的成功感,增强学习的积极性. 重点难点教学重点:对数式与指数式的互化及对数的性质,对数运算的性质与对数知识的应用. 教学难点:对数概念的理解,对数运算性质的推导及应用. 课时安排 3课时教学过程第1课时 对数与对数运算(1)导入新课思路1.1.庄子:一尺之棰,日取其半,万世不竭.(1)取4次,还有多长?(2)取多少次,还有0.125尺?2.假设2002年我国国民生产总值为a 亿元,如果每年平均增长8%,那么经过多少年国民生产总值是2002年的2倍? 抽象出:1.(21)4=?(21)x =0.125⇒x=? 2.(1+8%)x =2⇒x=?都是已知底数和幂的值,求指数.你能看得出来吗?怎样求呢?像上面的式子,已知底数和幂的值,求指数,这就是我们这节课所要学习的对数〔引出对数的概念,教师板书课题:对数与对数运算(1)〕.思路2.我们前面学习了指数函数及其性质,同时也会利用性质解决问题,但仅仅有指数函数还不够,为了解决某些实际问题,还要学习对数函数,为此我们先学习对数〔引出对数的概念,教师板书课题:对数与对数运算(1)〕.新知探究 提出问题(对于课本P 572.1.2的例8) ①利用计算机作出函数y=13×1.01x 的图象.②从图象上看,哪一年的人口数要达到18亿、20亿、30亿…? ③如果不利用图象该如何解决,说出你的见解? 即1318=1.01x ,1320=1.01x ,1330=1.01x ,在这几个式子中,x 分别等于多少? ④你能否给出一个一般性的结论?活动:学生讨论并作图,教师适时提示、点拨.对问题①,回忆计算机作函数图象的方法,抓住关键点.对问题②,图象类似于人的照片,从照片上能看出人的特点,当然从函数图象上就能看出函数的某些点的坐标.对问题③,定义一种新的运算.对问题④,借助③,类比到一般的情形. 讨论结果:①如图2-2-1-1.图2-2-1-1②在所作的图象上,取点P,测出点P 的坐标,移动点P,使其纵坐标分别接近18,20,30,观察这时的横坐标,大约分别为32.72,43.29,84.04,这就是说,如果保持年增长率为1个百分点,那么大约经过33年,43年,84年,我国人口分别约为18亿,20亿,30亿.③1318=1.01x ,1320=1.01x ,1330=1.01x ,在这几个式子中,要求x 分别等于多少,目前我们没学这种运算,可以定义一种新运算,即若1318=1.01x ,则x 称作以1.01为底的1318的对数.其他的可类似得到,这种运算叫做对数运算.④一般性的结论就是对数的定义:一般地,如果a(a>0,a≠1)的x 次幂等于N,就是a x =N,那么数x 叫做以a 为底N 的对数(logarithm),记作x=log a N,其中a 叫做对数的底数,N 叫做真数. 有了对数的定义,前面问题的x 就可表示了: x=log 1.011318,x=log 1.011320,x=log 1.011330. 由此得到对数和指数幂之间的关系:例如:42=16⇔2=log 416;102=100⇔2=log 10100;421=2⇔21=log 42;10-2=0.01⇔-2=log 100.01①为什么在对数定义中规定a>0,a≠1?②根据对数定义求log a 1和log a a(a>0,a≠1)的值. ③负数与零有没有对数? ④Na alog =N 与log a a b =b(a>0,a≠1)是否成立?讨论结果:①这是因为若a <0,则N 为某些值时,b 不存在,如log (-2)21; 若a=0,N 不为0时,b 不存在,如log 03,N 为0时,b 可为任意正数,是不唯一的,即log 00有无数个值;若a=1,N 不为1时,b 不存在,如log 12,N 为1时,b 可为任意数,是不唯一的,即log 11有无数个值.综之,就规定了a >0且a≠1. ②log a 1=0,log a a=1.因为对任意a>0且a≠1,都有a 0=1,所以log a 1=0. 同样易知:log a a=1.即1的对数等于0,底的对数等于1.③因为底数a >0且a≠1,由指数函数的性质可知,对任意的b ∈R ,a b >0恒成立,即只有正数才有对数,零和负数没有对数. ④因为a b =N,所以b=log a N,a b =a Na alog =N,即a Na alog =N.因为a b =a b ,所以log a a b =b.故两个式子都成立.(a Na alog =N 叫对数恒等式)思考我们对对数的概念和一些特殊的式子已经有了一定的了解,但还有两类特殊的对数对科学研究和了解自然起了巨大的作用,你们知道是哪两类吗? 活动:同学们阅读课本P 68的内容,教师引导,板书. 解答:①常用对数:我们通常将以10为底的对数叫做常用对数.为了简便,N 的常用对数log 10N 简记作lgN.例如:log 105简记作lg5;log 103.5简记作lg3.5. ②自然对数:在科学技术中常常使用以无理数e=2.718 28……为底的对数,以e 为底的对数叫自然对数,为了简便,N 的自然对数log e N 简记作lnN. 例如:log e 3简记作ln3;log e 10简记作ln10. 应用示例思路1例1将下列指数式写成对数式,对数式写成指数式: (1)54=625;(2)2-6=641;(3)(31)m =5.73; (4)log 2116=-4;(5)lg0.01=-2;(6)ln10=2.303.活动:学生阅读题目,独立解题,把自己解题的过程展示在屏幕上,教师评价学生,强调注意的问题.对(1)根据指数式与对数式的关系,4在指数位置上,4是以5为底625的对数. 对(2)根据指数式与对数式的关系,-6在指数位置上,-6是以2为底641的对数.对(3)根据指数式与对数式的关系,m 在指数位置上,m 是以31为底5.73的对数. 对(4)根据指数式与对数式的关系,16在真数位置上,16是21的-4次幂. 对(5)根据指数式与对数式的关系,0.01在真数位置上,0.01是10的-2次幂. 对(6)根据指数式与对数式的关系,10在真数位置上,10是e 的2.303次幂. 解:(1)log 5625=4;(2)log 2641=-6;(3)log 315.73=m; (4)(21)-4=16;(5)10-2=0.01;(6)e 2.303=10. 思考指数式与对数式的互化应注意哪些问题?活动:学生考虑指数式与对数式互化的依据,回想对数概念的引出过程,理清对数与指数幂的关系,特别是位置的对照.解答:若是指数式化为对数式,关键要看清指数是几,再写成对数式.若是对数式化为指数式,则要看清真数是几,再写成幂的形式.最关键的是搞清N 与b 在指数式与对数式中的位置,千万不可大意,其中对数的定义是指数式与对数式互化的依据. 变式训练课本P 64练习 1、2.例2求下列各式中x 的值: (1)log 64x=32-;(2)log x 8=6; (3)lg100=x;(4)-lne 2=x. 活动:学生独立解题,教师同时展示学生的作题情况,要求学生说明解答的依据,利用指数式与对数式的关系,转化为指数式求解.解:(1)因为log 64x=-32,所以x=6432-=(2))32(6-⨯=2-4=161.(2)因为log x 8=6,所以x 6=8=23=(2)6.因为x>0,因此x=2. (3)因为lg100=x,所以10x =100=102.因此x=2.(4)因为-lne 2=x,所以lne 2=-x,e -x =e 2.因此x=-2.点评:本题要注意方根的运算,同时也可借助对数恒等式来解. 变式训练求下列各式中的x : ①log 4x=21;②log x 27=43;③log 5(log 10x )=1. 解:①由log 4x=21,得x=421=2;②由log x 27=43,得x 43=27,所以x=2734=81;③由log 5(log 10x )=1,得log 10x=5,即x=105.点评:在解决对数式的求值问题时,若不能一下子看出结果,根据指数式与对数式的关系,首先将其转化为指数式,进一步根据指数幂的运算性质算出结果.思路2例1以下四个命题中,属于真命题的是( ) (1)若log 5x=3,则x=15 (2)若log 25x=21,则x=5 (3)若log x 5=0,则x=5 (4)若log 5x=-3,则x=1251 A.(2)(3) B.(1)(3) C.(2)(4) D.(3)(4) 活动:学生观察,教师引导学生考虑对数的定义. 对数式化为指数式,根据指数幂的运算性质算出结果. 对于(1)因为log 5x=3,所以x=53=125,错误;对于(2)因为log 25x=21,所以x=2521=5,正确;对于(3)因为log x 5=0,所以x 0=5,无解,错误; 对于(4)因为log 5x=-3,所以x=5-3=1251,正确. 总之(2)(4)正确. 答案:C点评:对数的定义是对数形式和指数形式互化的依据. 例2对于a >0,a≠1,下列结论正确的是( )(1)若M=N,则log a M=log a N (2)若log a M=log a N,则M=N (3)若log a M 2=log a N 2,则M=N(4)若M=N,则log a M 2=log a N 2 A.(1)(3) B.(2)(4) C.(2) D.(1)(2)(4) 活动:学生思考,讨论,交流,回答,教师及时评价. 回想对数的有关规定.对(1)若M=N,当M 为0或负数时log a M≠log a N,因此错误; 对(2)根据对数的定义,若log a M=log a N,则M=N,正确; 对(3)若log a M 2=log a N 2,则M=±N,因此错误;对(4)若M=N=0时,则log a M 2与log a N 2都不存在,因此错误. 综上,(2)正确. 答案:C点评:0和负数没有对数,一个正数的平方根有两个. 例3计算:(1)log 927;(2)log 4381;(3)log )32((2-3);(4)log 345625.活动:教师引导,学生回忆,教师提问,学生回答,积极交流,学生展示自己的解题过程,教师及时评价学生.利用对数的定义或对数恒等式来解.求式子的值,首先设成对数式,再转化成指数式或指数方程求解.另外利用对数恒等式可直接求解,所以有两种解法.解法一:(1)设x=log 927,则9x =27,32x =33,所以x=23; (2)设x=log 4381,则(43)x =81,34x =34,所以x=16; (3)令x=log )32(+(2-3)=log )32(+(2+3)-1,所以(2+3)x =(2+3)-1,x=-1; (4)令x=log 345625,所以(345)x =625,534x=54,x=3.解法二:(1)log 927=log 933=log 9923=23; (2)log 4381=log 43(43)16=16; (3)log )32(+(2-3)=log )32(+(2+3)-1=-1;(4)log 345625=log 345(345)3=3.点评:首先将其转化为指数式,进一步根据指数幂的运算性质算出结果,对数的定义是转化和对数恒等式的依据. 变式训练课本P 64练习 3、4. 知能训练1.把下列各题的指数式写成对数式:(1)42=16;(2)30=1;(3)4x =2;(4)2x =0.5;(5)54=625;(6)3-2=91;(7)(41)-2=16. 解:(1)2=log 416;(2)0=log 31;(3)x=log 42;(4)x=log 20.5;(5)4=log 5625; (6)-2=log 391;(7)-2=log 4116. 2.把下列各题的对数式写成指数式:(1)x=log 527;(2)x=log 87;(3)x=log 43;(4)x=log 731; (5)log 216=4;(6)log 3127=-3;(7)logx3=6;(8)log x 64=-6;(9)log 2128=7;(10)log 327=a.解:(1)5x =27;(2)8x =7;(3)4x =3;(4)7x =31;(5)24=16;(6)(31)-3=27;(7)(3)6 =x;(8)x -6=64;(9)27=128;(10)3a =27. 3.求下列各式中x 的值: (1)log 8x=32-;(2)log x 27=43;(3)log 2(log 5x )=1;(4)log 3(lgx )=0.解:(1)因为log 8x=32-,所以x=832-=(23)32-=)32(32-⨯=2-2=41;(2)因为log x 27=43,所以x 43=27=33,即x=(33)34=34=81;(3)因为log 2(log 5x )=1,所以log 5x=2,x=52=25; (4)因为log 3(lgx )=0,所以lgx=1,即x=101=10. 4.(1)求log 84的值;(2)已知log a 2=m,log a 3=n,求a 2m +n 的值.解:(1)设log 84=x,根据对数的定义有8x =4,即23x =22,所以x=32,即log 84=32; (2)因为log a 2=m,log a 3=n,根据对数的定义有a m =2,a n =3,所以a 2m +n =(a m )2·a n =(2)2·3=4×3=12.点评:此题不仅是简单的指数与对数的互化,还涉及到常见的幂的运算法则的应用. 拓展提升请你阅读课本75页的有关阅读部分的内容,搜集有关对数发展的材料,以及有关数学家关于对数的材料,通过网络查寻关于对数换底公式的材料,为下一步学习打下基础. 课堂小结(1)对数引入的必要性;(2)对数的定义;(3)几种特殊数的对数;(4)负数与零没有对数;(5)对数恒等式;(6)两种特殊的对数. 作业课本P 74习题2.2A 组 1、2. 【补充作业】1.将下列指数式与对数式互化,有x 的求出x 的值. (1)521-=51;(2)log 24=x;(3)3x =271; (4)(41)x=64;(5)lg0.000 1=x;(6)lne 5=x. 解:(1)521-=51化为对数式是log 551=21-; (2)x=log 24化为指数式是(2)x=4,即22x=22,2x=2,x=4; (3)3x =271化为对数式是x=log 3271,因为3x =(31)3=3-3,所以x=-3; (4)(41)x =64化为对数式是x=log 4164,因为(41)x =64=43,所以x=-3; (5)lg0.0001=x 化为指数式是10x =0.0001,因为10x =0.000 1=10-4,所以x=-4;(6)lne 5=x 化为指数式是e x =e 5,因为e x =e 5,所以x=5.2.计算51log 53log333+的值.解:设x=log 351,则3x =51,(321)x =(51)21,所以x=log513.所以351log 5log 3333+=513log 35+=515+=556. 3.计算Nc b c b a a log log log ∙∙(a>0,b>0,c>0,N>0).解:Nc b c b a alog log log ∙∙=Nc c b b log log ∙=Nc clog =N.设计感想本节课在前面研究了指数函数及其性质的基础上,为了运算的方便,引进了对数的概念,使学生感受到对数的现实背景,它有着丰富的内涵,和我们的实际生活联系密切,也是以后学习对数函数的基础,鉴于这种情况,安排教学时,无论是导入还是概念得出的过程,都比较详细,通俗易懂,要反复练习,要紧紧抓住它与指数概念之间的联系与区别,结合指数式理解对数式,强化对数是一种运算,并注意对数运算符号的理解和记忆,多运用信息化的教学手段,顺利完成本堂课的任务,为下一节课作准备. (设计者:路致芳)。

对数与对数运算教学设计

对数与对数运算教学设计

对数与对数运算教学设计《对数与对数运算》教学设计课题2.2.1对数与对数运算:第一课时三维目标:知识与技能1.理解对数的概念,了解对数与指数的关系;2.学会对数式与指数式的的互化,培养学生类比,分析,归纳的能力。

(二)过程与方法1.解自然对数和常用对数的概念,以及对数恒等式;2.通过实例推导对数运算性质,准确运用对数的运算性质进行计算,求值,化简。

并掌握化简,求值的技能。

(三)情感、态度和价值观1.培养学生分析,综合解决问题的能力;2.通过对数的运算法则的学习,培养学生的严谨的思维品质;3.在学习过程中培养学生探究的意识。

教学内容分析:教学重点对数式与指数式的互化以及对数性质加以灵活运用教学难点对数运算性质推导过程,以及分析过程课型:新授课新课讲解(一)创设情境,课题引入(学生活动)P72~P73页提出以下问题:对对数的发明有杰出贡献的科学家是谁发明对数的目的是什么?为什么说对数发明是17世纪重大数学成就?苏格兰数学家napier(纳皮尔)在研究天文学过程中,为了简化其中的计算发明了对数。

恩格斯曾经把对数的发明与解析几何的创立、微积分的建立是并称为17世纪数学史上的3大成就。

伽利略也说过:“给我空间、时间及对数,我可以创造一个宇宙”;(老师引导:那么,什么是对数?对数式怎样简化运算的?对数真的有用吗?)教师:为了研究对数,我们先来研究下面这个问题?(学生活动)P72页思考:根据上一节的例1我们能从中算出任意一个某(经过的年份)的人口总数,可不可能哪一年人口数低于13亿?那么哪一年的人口达到18亿?可不可能哪一年人口达到1000亿?你会算吗(教师活动)由指数函数性质知,有,所以人口数达到18时候,,所以有在个式子中,等于多少?学生可能会说,解出即可。

实际不然,实际问题实际考虑,地球上供养不起这么多人,所以现在同学们们要珍惜现在资源,爱护地球。

对数概念(教师活动)(板书)一般地,若,那么数叫做以为底的对数,记作,叫做对数的底数,叫做真数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对数与对数运算的教案《对数与对数运算》教案授课教师:马吉艳课时:一个课时授课对象:高中一年级学生一.设计思想本节课是数学必修1第二章基本初等函数(I)2.2.1对数与对数运算的内容,它是研究学习后续知识对数函数与性质的必备基础知识。

通过与指数式的比较得出对数的定义与性质,让学生学会指数与对数的互化并能进行一些简单的对数式求值。

通过指数运算性质,根据对数定义,采用逆向思维对对数的乘法运算进行推导,从对数的积运算的推导过程中,用类似的方法得到其他运算性质。

在学生基本掌握这些性质后,通过练习与引导推导出换底公式。

运用观察、操作来领悟规律,能够使学生充分了解学习的方法和技巧,在交流中突破难点,打破传统教学的死记硬背,增强学生学习兴趣。

二.教学目标1.知识与技能(1)理解对数的概念,了解指数与对数的关系;(2)理解和掌握对数的性质,记住几个重要的公式;(3)能灵活运用对数运算性质和换底公式进行计算。

2.过程与方法通过与指数式的比较,引出对数定义与性质。

3.情感、态度、价值观(1)学会对数式与指数式的互化,从而培养学生的类比、分析、归纳的能力;(2)通过对数运算性质的学习,培养学生举一反三、严谨的思维态度;(3)在学习过程中,让学生树立探究、创新的意识,培养分析问题、解决问题的能力。

三.课程类型新授课四.教学重点与难点(1)重点:对数式与指数式的互化以及对数的运算性质。

(2)难点:对数运算性质的推导与运用。

五.教学方法讲授法、讨论法、类比分析与发现。

六.教学过程活动一创设情景引入新知教师活动学生活动教案设计说明复习引入:1.老师带领学生复习指数的定义。

2.复习2.1.2例题8的解答方法,提问“如果反过来求哪一年的人口数可以达到18亿,20亿,30亿……”该怎样解答呢?3.根据学生的回答,老师口述:非常好,我们要求x,其实就是知道了底数和幂的值,反过来求指数。

这就是我们今天要学习的内容之一对数。

4.老师讲解对数的概念并板书:一般地,如果1.学生回答根指数、分数指数幂、有理数指数幂的定义及表达式。

2.学生在草稿本上写下计算表达式分析,回答:知道了某一个年头的人口总数y,实际就是要求x,根据指数的定义,可以求1.01的几次方等于y,即指数x。

3.学生记忆与理解对数的定义。

4.学生回答:理解了。

现代教育心理学认为任何新知识的学习、新发现的创造都得以现有的认知水平和经验为基础。

因此,设计旧知识的复习是有必要的,通过已学知识,引导学生运用所学探索新问题的解决方法,让学生有一个清晰的思路,这不仅巩固了所学的知识,也让学生学以致用,更有利于新课的开展。

a x=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=㏒a N,其中a叫做对数的底数,N叫做幂数。

特殊地,以10为底的对数叫做常用对数,记作lg;以无理数e为底的叫做自然对数,把㏒e N记作㏑N。

5.老师问:对数的定义理解了吗?活动二合作交1.老师口述:对数源出于指数,下面我们来看看对数与指数之间有什么关系?2.老师板书并口述:当a>0,a≠1时,a x=N等价于x=㏒a N。

由此关系同学们可以得出些什么结论呢?1.学生领悟对数与指数之间的关系,回答:a0=1,那么㏒a1=0,同理,㏒a a=1。

2.学生回答:它们没有对数。

3.学生推导:∵㏒a N=x通过对数与指数关系的对比,引导学生去思考,培养学生自主发现问题、提出问题的能力,并为下一步的探究指明方向,故可以推流探索新知活动二合作交流探索新2.老师问:那负数和零的对数是多少呢?3.老师出题:请同学们推导a㏒a N=?4.老师与同学一起总结所得结论并板书:结论:(1)负数和零没有对数;(2)㏒a1=0,㏒a a=1;(3)对数恒等式:a㏒a N=N。

5.老师讲解例题1中的(1)、(3)、(5)、(6)和例题2中的(3)、(4)。

6.老师对错的课堂题进行纠正与讲解。

7.老师抽点学生回答指数运算的几个∴a x=N即a㏒a N=N。

并回答等于N。

4.学生自己解答例题1中的(2)、(4)以及例题2中的(1)、(3)、(4)。

5.学生课堂练习:第1题中的(3)、(4),第2题中的(1)、(4),第4题中的(1)、(2)。

6.六个同学到黑板上练习,其他的用课堂作业本做。

7.学生回答: a m×a n=a m+n,(a m)n=a mn,(ab)n=a n×b n。

导对数的恒等式。

通过对例题的讲解,寻找规律,让学生在实践与探索中学会学习,对所讲内容加深印象与理解。

知重要性质。

8.老师和学生一起推导对数的运算性质,推导如下:∵ a m×a n=a m+n,设 M=a m,N=a n,∴MN= a m+n。

由对数的定义,得㏒a M=m,㏒a N=n,㏒a(M×N)=m+n,也就是,㏒a(M×N)=㏒a M+㏒a N。

9.老师给出a m÷a n=a m-n和(a m)n=a mn要求学生小组讨论推导出对数运算的其他两个性质。

10.老师和学生一起总结并板书对数运算的所有性质:如果a>0,且a≠1,M>0,N>0,那么:8.学生看过老师的推导过程后,推导老师给出的题目。

9.学生推导如下:∵a m÷a n=a m-n,设 M=a m,N=a n,∴M÷N= a m-n。

由对数的定义,得㏒aNM=m-n,又∵㏒a M=m,㏒a N=n,∴㏒aNM=㏒a M-㏒a N。

同理,∵(a m)n=a mn,设M=a m,N=a n,∴M n= a mn,由对数的定义,小组讨论,培养学生的团队合作精神,让学生对所学知识记忆与巩固,培养学生分析、归纳总结的能力。

(1)㏒a(M×N)=㏒a M+㏒a N;(2)㏒aNM=㏒a M-㏒a N ;(3)㏒a M n=n㏒a M(n ∈R)。

老师口述总结对数运算性质的规律:积的对数等于对数的和,商的对数等于对数的差。

11.趁热打铁,老师给出换底公式:㏒a b=㏒c b/㏒c a (a>0,且a≠1;c>0,且c≠1;b>0)要求学生根据对数的定义及性质推导该公式。

12.举一反三,老师给出另外两个公式:得㏒a M n=mn,又∵㏒a M=m,∴㏒a M n=n㏒a M。

10.学生记忆并巩固。

11.学生证明:设㏒c b/㏒c a=x,则㏒c b=x㏒c a由对数的性质,得x㏒c a=㏒c a x∴㏒c a x=㏒c b即a x=b由对数的定义,得x=㏒a b也就是,㏒a b=㏒c b/㏒c a。

12.学生跟着老启发学生举一反三,开阔学生的思路,发挥学生的创造性以及解决问题的能力。

(1)㏒a b=1/㏒b a;(2)㏒a n b m=nm ㏒a b.要求学生课外推导验证。

13.老师讲解例题3和4。

14.老师对对数的应用做介绍,讲解例题5。

师用课堂作业本练习例题。

13.学生根据老师讲解的例题5自己完成例题6。

活动三小试牛刀实战课堂练习1.老师讲解习题1第3小题和习题4第1小题:(3)lgzxy3;解:lgzxy3=lg(xy3)-lgz0.5=lgx+3lgy-0.5lgz1.学生用课堂作业本练习。

2.学生跟着老师的步骤和方法一同检验自己做的是否正确,并能及时找到自己做错的原因。

让学生运用所学知识,结合习题加强练习,做到学以致用,并从练习中学会反思。

演练(1)㏒a c×㏒c a; 解:㏒a c×㏒c a=㏒a c×㏒a a/㏒a c=12.师生共同检验,并对容易出现错误的地方进行强调和纠正。

课堂小结请同学们回顾本节课所学的内容,有哪些收获?师生活动:学生思考后,用自己语言归纳,教师适时点评。

通过总结,使学生对本节内容有一个整体把握,理清这节课的重难点。

布置作业1.64页习题2和3大题。

2.68页习题1的(2)、(4)小题,习题2,习题3的(1)、(3)小题和习题4的(2)、(3)小题。

3.证明两个公式:(1)㏒a b=1/㏒b a;(2)㏒a n b m=nm㏒a b。

根据对数定义与性质,将每个知识点贯彻到习题中,加强练习与巩固。

板书设计2.2.1 对数与对数运算1.对数定义;2.几个重要结论:(1)负数和零没有对数;(2)㏒a1=0,㏒a a=1;(3)对数恒等式:a㏒a N=N。

3.对数的运算性质:如果a>0,且a≠1,M>0,N>0,那么:(1)㏒a(M×N)=㏒a M+㏒a N;(2)㏒aNM=㏒a M-㏒a N;(3)㏒a M n=n老师例题与习题讲解和学生课堂演练与证明板块让学生更清楚的知道本节课所学知识点。

㏒a M(n∈R)。

4.换底公式:㏒a b=㏒c b/㏒a(a>0,且a≠c1;c>0,且c≠1;b>0)教学反思。

相关文档
最新文档