2017年上海市黄浦区初三一模(含答案)
最新届黄浦区中考数学一模及答案
黄浦区2017学年度第一学期九年级期终调研测试 数学试卷 2018.1(考试时间:100分钟 总分:150分)考生注意:1. 本试卷含三个大题,共25题;2. 答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1、已知二次函数2y ax bx c =++的图像大致如图所示,则下列关系式中成立的是( ) (A )0a >; (B )0b <; (C )0c <; (D )20b a +>.(第1题)2、若将抛物线向右平移2个单位后,所得抛物线的表达式为22y x =,则原来抛物线的表达式为( )(A )222y x =+; (B )222y x =-; (C )()222y x =+; (D )()222y x =-. 3、在ABC △中,=90C ∠︒,则下列等式成立的是( ) (A )sin AC A AB =; (B )sin BC A AB =; (C )sin AC A BC =; (D )sin BCA AC=. 4、如图,线段AB 与CD 交于点O ,下列条件中能判定AC BD ∥的是( )(A )1OC =,2OD =,3OA =,4OB =; (B )1OA =,2AC =,3AB =,4BD =; (C )1OC =,2OA =,3CD =,4OB =; (D )1OC =,2OA =,3AB =,4CD =. 5、如图,向量OA 与OC 均为单位向量,且OA OB ⊥,令n OA OB =+,则||n =( )(A )1; (B (C (D )2.6、如图,在ABC △中,80B ∠=︒,40C ∠=︒,直线l 平行于BC ,现将直线l 绕点A 逆时针旋转,所得直线分别交边AB 和AC 于点M 、N ,若AMN △和ABC △相似,则旋转角为( ) (A )20︒; (B )40︒; (C )60︒; (D )80︒.二、填空题(本大题共12题,每题4分,满分48分) 【请将结果直接填入答题纸的相应位置】 7、已知a 、b 、c 满足346a b c ==,则a bc b+-= .8、如图,点D 、E 、F 分别位于ABC △的三边上,满足DE BC ∥,EF AB ∥,如果:3:2AD DB =,那么:BF FC = .9、已知向量e 为单位向量,如果向量n 与向量e 方向相反,且长度为3,那么向量n = .(用单位向量e 表示)10、已知ABC DEF △∽△,其中顶点A 、B 、C 分别对应顶点D 、E 、F ,如果40A ∠=︒,60E ∠=︒,那么C ∠= 度.11、已知锐角α,满足tan 2α=,则sin α= .12、已知点B 位于点A 北偏东30︒方向,点C 位于点A 北偏西30︒方向,且8AB AC ==千米,那么 BC = 千米.13、已知二次函数的图像开口向下,且其图像顶点位于第一象限,请写出一个满足上述条件的二次函数解析式为 (表示为()2y a x m k =++的形式)14、已知抛物线2y ax bx c =++开口向上,一条平行于x 轴的直线截此抛物线于M 、N 两点,那么线段MN 的长度随直线向上平移而变 .(填“大”或“小”)15、如图,矩形DEFG 的边EF 在ABC △的边BC 上,顶点D 、G 分别在边AB 、AC 上.已知6AC =,8AB =,10BC =,设E F x =,矩形DEFG 的面积为y ,则y 关于x 的函数关系式为 (不必写出定义域).16、如图,在ABC △中,90C ∠=︒,6BC =,9AC =,将ABC △平移使其顶点C 位于ABC △的重心G 处,则平移后所得三角形与原ABC △的重叠部分面积是 .17、如图,点E 为矩形ABCD 边BC 上一点,点F 在边CD 的延长线上,EF 与AC 交于点O ,若:1:2CE EB =,:3:4BC AB =,AE AF ⊥,则:CO OA = .18、如图,平面上七个点A 、B 、C 、D 、E 、F 、G ,图中所有的连线长均相等,则cos BAF ∠= .三、解答题(本大题共7题,满分78分) 19、(本题满分10分) 计算:2cot 452cos 30sin60tan301︒︒+-︒︒+.20、(本题满分10分)用配方法把二次函数2264y x x =-++化为()2y a x m k =++的形式,再指出该函数图像的开口方向、对称轴和顶点坐标.21、(本题满分10分)如图,在ABC △中,90ACB ∠=︒,4AC =,3BC =,D 是边AC 的中点,CE BD ⊥交AB 于点E . (1)求tan ACE ∠; (2)求:AE EB .22、(本题满分10分)如图,坡AB 的坡比为1:2.4,坡长130AB =米,坡AB 的高为BT .在坡AB 的正面有一栋建筑物CH ,点H 、A 、T 在同一条地平线MN 上.(1)试问坡AB 的高BT 为多少米?EDCBA(2)若某人在坡AB的坡脚A处和中点D处,观测到建筑物顶部C处的仰角分别为60︒和30︒,试求建筑物的高度CH.(精确到米, 1.73≈,1.41≈)23、(本题满分12分)如图,BD是ABC△的角平分线,点E位于边BC上,已知BD是BA与BE的比例中项.(1)求证:12CDE ABC∠=∠(2)求证:AD CD AB CE⋅=⋅NEB24、(本题满分12分)在平面直角坐标系xOy 中,对称轴为直线1x =的抛物线28y ax bx =++过点()2,0-. (1)求抛物线的表达式,并写出其顶点坐标;(2)现将此抛物线沿y 方向平移若干个单位,所得抛物线的顶点为D ,与y 轴的交点为B ,与x 轴负半轴交于点A ,过点B 作x 轴的平行线交所得抛物线于点C ,若AC BD ∥,试求平移后所得抛物线的表达式.25、(本题满分14分)如图,线段5AB =,4AD =,90A ∠=︒,DP AB ∥,点C 为射线DP 上一点,BE 平分ABC ∠交线段AD 于点E (不与端点A 、D 重合).(1)当ABC ∠为锐角,且tan 2ABC ∠=时,求四边形ABCD 的面积; (2)当ABE △与BCE △相似时,求线段CD 的长;(3)设DC x =,DE y =,求y 关于x 的函数关系式,并写出定义域.PDBA P EDC BA参考答案1-6、DCBCBB7、738、3:2 9、3e - 10、80 11 12、813、()211y x =--+ 14、大 15、21224255y x x =-+ 16、3 17、113018、5619、320、2317222y x ⎛⎫=--+ ⎪⎝⎭,对称轴32x =,开口向下,顶点317,22⎛⎫ ⎪⎝⎭21、(1)23(2)8:922、(1)50米;(2)89米23、(1)证明略;(2)证明略24、(1)228y x x =-++,顶点()1,9;(2)223y x x =-++25、(1)16;(2)2或45;(3)415410410x y x --⎛⎫=<< ⎪⎝⎭学习-----好资料更多精品文档。
2017年上海市黄浦区中考化学一模试卷(解析版)
2017年上海市黄浦区中考化学一模试卷一、选择题(每小题1分,共20分)1.(1分)元素符号“Ag”对应的名称是()A.银B.铝C.镁D.汞2.(1分)食物加工过程中发生化学变化的是()A.碾米B.淘米C.洗菜D.酿酒3.(1分)氮化碳(C3N4)可做切割工具.C3N4中,C的化合价为+4,N的化合价是()A.﹣3B.+1C.+3D.+54.(1分)物质用途只利用了其物理性质的是()A.二氧化碳灭火B.木炭吸附色素C.生石灰作干燥剂D.液氢用作燃料5.(1分)将空的矿泉水瓶从高原地区带到平原,瓶子变瘪,瓶内气体分子()A.物质的量减少B.质量变小C.数目减少D.间隔变小6.(1分)关于氧气的说法正确的是()A.摩尔质量为32B.抢救病人不能用纯氧C.密度小于氢气D.占空气质量分数为21%7.(1分)如图关于四种液体的pH测定结果说法正确的是()A.a点对应的液体是食盐水B.a点对应的液体是水C.b点对应的液体是白醋D.b点对应的液体是澄清石灰水8.(1分)与物质的溶解性无关的是()A.温度B.溶质性质C.溶剂种类D.溶剂体积9.(1分)森林失火时,通常砍伐掉一些树木,开辟“防火隔离带”,其主要目的是()A.隔离空气B.开辟运输水的道路C.隔离可燃物D.降低温度到着火点以下10.(1分)硫在氧气中燃烧,现象描述正确的是()A.产生黑色固体B.产生蓝紫色火焰C.产生大量白雾D.产生耀眼的白光11.(1分)只用水无法鉴别的一组物质是()A.炭粉、二氧化锰B.淀粉、氯化钠C.冰糖粉、硫酸铜D.碳酸钙、氯化钙12.(1分)氯酸钾制氧气的化学方程式书写正确的是()A.2KClO32KCl+3O2B.2KClO32KCl+O2↑C.2KClO32KCl+3O2↑D.2KClO32KCl+3O2↑13.(1分)有关如图溶液说法正确的是()A.存放溶液的是广口瓶B.溶质的俗名是烧碱C.溶质与溶剂的质量比为1:5D.溶液能使无色酚酞试液变红14.(1分)某化合物与硫酸反应生成硫酸钾、水、二氧化碳,该化合物可能是()A.氢氧化钾B.碳酸钙C.碳酸钾D.硝酸铜15.(1分)电解水实验如图所示,以下说法正确的是()A.a中生成的气体是氢气B.b中生成气体的质量大于a中生成的气体的质量C.该实验证明水是由氢气和氧气组成D.生成氢气和氧气的分子个数比为2:116.(1分)关于一氧化碳和二氧化碳说法正确的是()A.都可以冶炼金属B.都是有毒性的气体C.互为同素异形体D.具有相同元素组成17.(1分)分类是化学常用的研究方法.如图有关物质分类叙述错误的是()A.甲有固定的元素组成B.混合物中可能只含一种分子C.I是按物质的种类进行分类D.II是按元素的种类进行分类18.(1分)同为1mol的物质,所含碳元素质量最多的是()A.CH3COCH3B.CH3COOH C.CH4D.C 19.(1分)化学概念在逻辑上存在如图所示关系的是()A.A B.B C.C D.D20.(1分)碳与氧化铜恰好完全反应,有关量的变化见图,分析正确的是()A.(a﹣b)表示反应消耗的碳的质量B.(a﹣b)表示反应前后固体中氧元素的质量C.b表示生成的铜的质量D.b表示生成的二氧化碳的质量七、填空题(共19分)请将结果填入答题纸的相应位置21.(5分)甲、乙、丙、丁是几种常见的物质,分别由氢、碳、氧中的1~3种元素组成.①甲是自然界中最硬的物质,其名称为.②乙是最常用的溶剂,化学式为,2摩尔乙中约含个乙分子.③丙是密度最小的气体,它在空气中燃烧的化学方程式为.④气体丁与氧气在点燃的条件下发生反应,其对应的微观示意图如下,请在方框中补全相应微粒的图示.22.(7分)利用如图装置证明一氧化碳的部分性质并验证产物.①氧化铜为色粉末,其中氧元素以态存在.②加热玻璃管后,a中发生反应的化学方程式是,反应后a中固体的质量(选填“变大”“变小”或“不变”).③b中盛放的液体所含的溶质是.④c处点燃后,火焰呈色.⑤a中发生的反应证明了一氧化碳具有性.23.(7分)t℃时,烧杯中盛有20g水.对其进行如下操作,分别得到t℃时溶液A和溶液B.①上述溶液中溶质的化学式是.②充分搅拌使用的仪器名称是.③溶液A是(选填“饱和”或“不饱和”)溶液.④要使部分硝酸钾固体全部溶解,还可以采用的方法为.⑤t℃,未溶解的硝酸钾为1g,则该温度下,硝酸钾的溶解度为g/100g水.⑥请写出溶液A与溶液B的溶质质量分数的大小关系并分析理由.八、简答题(共21分)请根据要求在答题纸相应的位置作答.24.(10分)牙膏中常用的摩擦剂有碳酸钙粉末.用含碳酸钙90%的石灰石作为原料,制得碳酸钙粉末(杂质不参与反应),生产流程如下:①氧化钙的俗名是.②石灰乳属于.A.悬浊液B.乳浊液C.溶液③步骤II包含的操作名称是.④请写出上述流程中发生化合反应的化学方程式.⑤理论上得到碳酸钙质量(选填“>”“<”或“=”)石灰石中碳酸钙的质量.⑥上述过程中如产生9mol二氧化碳,则消耗该石灰石的质量为多少g?(根据化学方程式列式计算)25.(11分)实验室制备气体并验证其性质是初中化学重要的活动.(一)氧气的制取及性质(如图1)①请写出I中发生反应的化学方程式.②用II收集氧气是利用了氧气的性质.③制备完毕.用铁丝在氧气中燃烧,该实验的现象是.(二)二氧化碳的制取及性质①选择药品.适合实验室制取二氧化碳且操作正确的是图2中的(选填编号).②制取装置如图3所示i 仪器a的名称是.ii加入盐酸的量应在(选填“x”“y”或“z”)处.iii请写出证明二氧化碳集满的方法.③将二氧化碳通入滴有紫色石蕊试液的水中,石蕊试液变红,说明溶液呈性.④为使二氧化碳在水中的溶解度增大,可采用的一种方法是.(三)比较装置I和IV,有关说法正确的是(选填编号).A.都能随时控制滴加液体的量B.都能随时控制反应的发生和停止C.都适用于常温下的反应D.都只能制备密度比空气大的气体E.都是反应过程中装置内气体压强大于外界大气压.2017年上海市黄浦区中考化学一模试卷参考答案与试题解析一、选择题(每小题1分,共20分)1.(1分)元素符号“Ag”对应的名称是()A.银B.铝C.镁D.汞【解答】解:A、Ag是银元素的元素符号,故选项正确。
上海市黄浦区2017届中考数学一模试题附答案
2017年上海市黄浦区中考数学一模试卷一.选择题(本大题共6题,每题4分,共24分)1.下列抛物线中,与抛物线y=x2﹣2x+4具有相同对称轴的是()A.y=4x2+2x+1 B.y=2x2﹣4x+1 C.y=2x2﹣x+4 D.y=x2﹣4x+22.如图,点D、E位于△ABC的两边上,下列条件能判定DE∥BC的是()A.AD•DB=AE•EC B.AD•AE=BD•EC C.AD•CE=AE•BD D.AD•BC=AB•DE3.已知一个坡的坡比为i,坡角为α,则下列等式成立的是()A.i=sinαB.i=cosαC.i=tanαD.i=cotα4.已知向量和都是单位向量,则下列等式成立的是()A. B.C. D.||﹣||=05.已知二次函数y=x2,将它的图象向左平移2个单位,再向上平移3个单位,则所得图象的表达式为()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣36.Word文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如图①、②、③是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有△ABC,已知AB=AC,当它以底边BC水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC以腰AB水平放置时(如图⑤),它所显示的绝对高度和绝对宽度分别是()图形图①图②图③图④图⑤绝对高度 1.50 2.01.22.4?绝对宽度 2.0 1.5 2.5 3.6?0 0 0 0A.3.60和2.40 B.2.56和3.00 C.2.56和2.88 D.2.88和3.00二.填空题(本大题共12题,每题4分,共48分)7.已知线段a是线段b、c的比例中项,如果a=3,b=2,那么c= .8.化简: = .9.已知点P是线段AB的黄金分割点(AP>BP),若AB=2,则AP﹣BP= .10.已知二次函数y=f(x)的图象开口向上,对称轴为直线x=4,则f(1)f(5)(填“>”或“<”)11.求值:sin60°•tan30°=.12.已知G是等腰直角△ABC的重心,若AC=BC=2,则线段CG的长为.13.两个相似三角形的相似比为2:3,则它们的面积之比为.14.等边三角形的周长为C,面积为S,则面积S关于周长C的函数解析式为.15.如图,正方形ABCD的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知BC=6,△ABC的面积为9,则正方形DEFG的面积为.16.如图,小明家所在小区的前后两栋楼AB、CD,小明在自己所住楼AB的底部A处,利用对面楼CD墙上玻璃(与地面垂直)的反光,测得楼AB顶部B处的仰角是α,若tanα=0.45,两楼的间距为30米,则小明家所住楼AB的高度是米.17.如图,在△ABC中,∠C=90°,AC=8,BC=6,D是边AB的中点,现有一点P位于边AC上,使得△ADP 与△ABC相似,则线段AP的长为.18.如图,菱形ABCD内两点M、N,满足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四边形BMDN的面积是菱形ABCD面积的,则cosA= .三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.用配方法把二次函数y=x2﹣4x+5化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.20.如图,在梯形ABCD中,AD∥BC,AD=3,BC=2,点E、F分别在两腰上,且EF∥AD,AE:EB=2:1;(1)求线段EF的长;(2)设=, =,试用、表示向量.21.如图,在△ABC中,∠ACB=90°,AB=5,tanA=,将△ABC沿直线l翻折,恰好使点A与点B重合,直线l分别交边AB、AC于点D、E;(1)求△ABC的面积;(2)求sin∠CBE的值.22.如图,在坡AP的坡脚A处竖有一根电线杆AB,为固定电线杆在地面C处和坡面D处各装一根等长的引拉线BC和BD,过点D作地面MN的垂线DH,H为垂足,已知点C、A、H在一直线上,若测得AC=7米,AD=12米,坡角为30°,试求电线杆AB的高度;(精确到0.1米)23.如图1,点D位于△ABC边AC上,已知AB是AD与AC的比例中项.(1)求证:∠ACB=∠ABD;(2)现有点E、F分别在边AB、BC上如图2,满足∠EDF=∠A+∠C,当AB=4,BC=5,CA=6时,求证:DE=DF.24.平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C(4,6);(1)求抛物线的表达式;(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC(顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.25.如图,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.2017年上海市黄浦区中考数学一模试卷参考答案与试题解析一.选择题(本大题共6题,每题4分,共24分)1.下列抛物线中,与抛物线y=x2﹣2x+4具有相同对称轴的是()A.y=4x2+2x+1 B.y=2x2﹣4x+1 C.y=2x2﹣x+4 D.y=x2﹣4x+2【考点】二次函数的性质.【分析】根据对称轴方程分别确定各个抛物线的对称轴后即可作出判断.【解答】解:抛物线y=x2﹣2x+4的对称轴为x=1;A、y=4x2+2x+1的对称轴为x=﹣,不符合题意;B、y=2x2﹣4x+1的对称轴为x=1,符合题意;C、y=2x2﹣x+4的对称轴为x=,不符合题意;D、y=x2﹣4x+2的对称轴为x=2,不符合题意,故选B.【点评】此题考查了二次函数的性质,牢记对称轴方程公式是解答本题的关键,难度不大.2.如图,点D、E位于△ABC的两边上,下列条件能判定DE∥BC的是()A.AD•DB=AE•EC B.AD•AE=BD•EC C.AD•CE=AE•BD D.AD•BC=AB•DE【考点】平行线分线段成比例.【分析】根据选项选出能推出对应线段成比例的即可.【解答】解:∵AD•CE=AE•BD,∴,∴DE∥BC,故选C.【点评】本题考查了平行线分线段成比例定理,熟练掌握平行线分线段成比例定理是解题的关键.3.已知一个坡的坡比为i,坡角为α,则下列等式成立的是()A.i=sinαB.i=cosαC.i=tanαD.i=cotα【考点】解直角三角形的应用-坡度坡角问题.【分析】根据坡比的定义:斜坡垂直高度与水平宽度的比值,即坡角的正弦值,据此即可判断.【解答】解:i=tanα.故选C.【点评】本题考查了坡比的定义,理解坡比是斜坡垂直高度与水平宽度的比值,即坡角的正弦值,是关键.4.已知向量和都是单位向量,则下列等式成立的是()A. B.C. D.||﹣||=0【考点】*平面向量.【专题】推理填空题.【分析】根据向量和都是单位向量,可知||=||=1,由此即可判断.【解答】解:∵已知向量和都是单位向量,∴||=||=1,∴||﹣||=0,故选D.【点评】本题考查平面向量、单位向量,属于概念题目,记住概念是解题的关键.5.已知二次函数y=x2,将它的图象向左平移2个单位,再向上平移3个单位,则所得图象的表达式为()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3【考点】二次函数图象与几何变换.【分析】直接根据“上加下减、左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,二次函数y=x2的图象向左平移个单位得到y=(x+2)2,由“上加下减”的原则可知,将二次函数y=(x+2)2的图象向上平移3个单位可得到函数y=(x+2)2+3,故选:A.【点评】本题考查的是二次函数的图象与几何变换,熟知“上加下减、左加右减”的原则是解答此题的关键.6.Word文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如图①、②、③是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有△ABC,已知AB=AC,当它以底边BC水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC以腰AB水平放置时(如图⑤),它所显示的绝对高度和绝对宽度分别是()图形图①图②图③图④图⑤绝对高度 1.50 2.01.22.4?绝对宽度 2.00 1.52.53.6?A.3.60和2.40 B.2.56和3.00 C.2.56和2.88 D.2.88和3.00【考点】勾股定理;等腰三角形的性质.【分析】根据等腰三角形的性质,勾股定理可求AB,即图⑤绝对宽度,再根据三角形面积公式可求图⑤绝对高度.【解答】解:图④,过A点作AD⊥BC于D,BD=3.60÷2=1.80,在Rt△ABD中,AB==3,图⑤绝对宽度为3;图⑤绝对高度为:2.40×3.60÷2×2÷3=4.32×2÷3=2.88.故选:D.【点评】此题考查了勾股定理,等腰三角形的性质,解题的关键是熟练掌握图形的绝对高度和绝对宽度的定义.二.填空题(本大题共12题,每题4分,共48分)7.已知线段a是线段b、c的比例中项,如果a=3,b=2,那么c= .【考点】比例线段.【分析】根据比例中项的定义可得b2=ac,从而易求c.【解答】解:∵线段a是线段b、c的比例中项,∴a2=bc,即32=2×c,∴c=.故答案是:.【点评】本题考查了比例线段,解题的关键是理解比例中项的定义.8.化简: = ﹣﹣7.【考点】*平面向量.【分析】直接利用平面向量的加减运算法则求解即可求得答案.【解答】解: =2﹣4﹣3﹣3=﹣﹣7.故答案为:.【点评】此题考查了平面向量的运算法则.注意掌握去括号时的符号变化是解此题的关键.9.已知点P是线段AB的黄金分割点(AP>BP),若AB=2,则AP﹣BP= 2﹣4 .【考点】黄金分割.【分析】根据黄金分割的概念、黄金比值计算即可.【解答】解:∵点P是线段AB的黄金分割点,AP>BP,∴AP=AB=﹣1,则BP=2﹣AP=3﹣,∴AP﹣BP=(﹣1)﹣(3﹣)=2﹣4,故答案为:2﹣4.【点评】本题考查的是黄金分割的概念和性质,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB 和BC的比例中项,叫做把线段AB黄金分割.10.已知二次函数y=f(x)的图象开口向上,对称轴为直线x=4,则f(1)>f(5)(填“>”或“<”)【考点】二次函数的性质.【分析】根据对称轴及开口方向确定其增减性即可确定答案.【解答】解:∵二次函数y=f(x)的图象开口向上,对称轴为直线x=4,∴当x的取值越靠近4函数值就越小,反之越大,∴f(1)>f(5),故答案为:>.【点评】考查了二次函数的性质,解题的关键是根据对称轴及开口方向确定其增减性,难度不大.11.求值:sin60°•tan30°=.【考点】特殊角的三角函数值.【专题】计算题.【分析】先根据特殊角的三角函数值计算出各数,再根据二次根式的乘法进行计算即可.【解答】解:原式=×=.故答案为:.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.12.已知G是等腰直角△ABC的重心,若AC=BC=2,则线段CG的长为.【考点】三角形的重心;等腰直角三角形.【分析】根据三角形的重心到顶点的距离等于到对边中点的距离的2倍解答即可.【解答】解:∵G是等腰直角△ABC的重心,AC=BC=2,∴CG=,故答案为:【点评】本题考查了三角形的重心,熟记三角形的重心到顶点的距离等于到对边中点的距离的2倍是解题的关键.13.两个相似三角形的相似比为2:3,则它们的面积之比为4:9 .【考点】相似三角形的性质.【专题】探究型.【分析】直接根据相似三角形的性质进行解答即可.【解答】解:∵两个相似三角形的相似比为2:3,∴它们的面积之比为4:9.故答案为:4:9【点评】本题考查的是相似三角形的性质,即相似三角形面积的比等于相似比的平方.14.等边三角形的周长为C,面积为S,则面积S关于周长C的函数解析式为S=C2.【考点】根据实际问题列二次函数关系式.【分析】直接利用等边三角形的性质得出AD的长,再利用三角形面积求法得出答案.【解答】解:如图所示:过点A作AD⊥BC于点D,∵等边三角形的周长为C,∴AB=BC=AC=,∴DC=BD=,∴AD==C,∴S=×C×=C2.故答案为:S=×C×=C2.【点评】此题主要考查了等边三角形的性质以及三角形面积求法,正确表示出三角形的高是解题关键.15.如图,正方形ABCD的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知BC=6,△ABC的面积为9,则正方形DEFG的面积为 4 .【考点】相似三角形的判定与性质;正方形的性质.【分析】由DG∥BC得△ADG∽△ABC,利用相似三角形对应边上高的比等于相似比,列方程求解.【解答】解:作AH⊥BC于H,交DG于P,如图所示:∵△ABC的面积=BC•AH=9,BC=6,∴AH=3,设正方形DEFG的边长为x.由正方形DEFG得,DG∥EF,即DG∥BC,∵AH⊥BC,∴AP⊥DG.由DG∥BC得△ADG∽△ABC∴.∵PH⊥BC,DE⊥BC∴PH=ED,AP=AH﹣PH,即,由BC=6,AH=3,DE=DG=x,得,解得x=2.故正方形DEFG的面积=22=4;故答案为:4.【点评】本题考查了相似三角形的判定与性质、正方形的性质.关键是由平行线得到相似三角形,利用相似三角形的性质列方程.16.如图,小明家所在小区的前后两栋楼AB、CD,小明在自己所住楼AB的底部A处,利用对面楼CD墙上玻璃(与地面垂直)的反光,测得楼AB顶部B处的仰角是α,若tanα=0.45,两楼的间距为30米,则小明家所住楼AB的高度是27 米.【考点】解直角三角形的应用-仰角俯角问题.【分析】作PE⊥AB于点E,在直角△AEP中,利用三角函数求得AE的长,根据AB=2AE即可求解.【解答】解:作PE⊥AB于点E,在直角△AEP中,∠APE=∠α,则AE=PE•tan∠APE=30×0.45=13.5(米),则AB=2AE=27(米).故答案是:27.【点评】本题考查解直角三角形、仰角、俯角的定义,解题的关键是记住特殊三角形的边之间关系,学会把问题转化为方程解决,属于中考常考题型.17.如图,在△ABC中,∠C=90°,AC=8,BC=6,D是边AB的中点,现有一点P位于边AC上,使得△ADP与△ABC相似,则线段AP的长为4或.【考点】相似三角形的判定.【分析】先根据勾股定理求出AB的长,再分△ADP∽△ABC与△ADP∽△ACB两种情况进行讨论即可.【解答】解:∵在△ABC中,∠C=90°,AC=8,BC=6,∴AB==10.∵D 是边AB 的中点, ∴AD=5.当△ADP ∽△ABC 时, =,即=,解得AP=4;当△ADP ∽△ACB 时, =,即=,解得AP=.故答案为:4或.【点评】本题考查的是相似三角形的判定,在解答此题时要注意进行分类讨论,不要漏解.18.如图,菱形ABCD 内两点M 、N ,满足MB ⊥BC ,MD ⊥DC ,NB ⊥BA ,ND ⊥DA ,若四边形BMDN 的面积是菱形ABCD 面积的,则cosA=.【考点】菱形的性质;解直角三角形.【分析】如图,连接AN 、CM ,延长BM 交AD 于H .AN 是菱形ABCD 的角平分线,同理CM 也是菱形ABCD 的角平分线,设BD 与AC 交于点O ,易知四边形BMDN 是菱形,设S △OMB =S △ONB =S △OMD =S △OND =a ,因为四边形BMDN 的面积是菱形ABCD 面积的,所以S △AMB =S △AMD =S △CNB =S △CND =4a ,推出AM=4OM ,CN=4ON ,设ON=OM=k ,则AM=CN=4k ,由△ABO ∽△BNO ,推出OB 2=OA •ON=5k 2,推出OB=k ,AB=AD==k ,由AD •BH=•BD •AO ,推出BH==,再利用勾股定理求出AH 即可解决问题.【解答】解:如图,连接AN 、CM ,延长BM 交AD 于H .∵AB⊥BN,AD⊥DN,∴∠ABN=∠ADN=90°,在Rt△ANB和Rt△AND中,,∴△ABN≌△ADN,∴∠BAN=∠DAN,∴AN是菱形ABCD的角平分线,同理CM也是菱形ABCD的角平分线,设BD与AC交于点O,易知四边形BMDN是菱形,设S△OMB=S△ONB=S△OMD=S△OND=a,∵四边形BMDN的面积是菱形ABCD面积的,∴S△AMB=S△AMD=S△CNB=S△CND=4a,∴AM=4OM,CN=4ON,设ON=OM=k,则AM=CN=4k,∵△ABO∽△BNO,∴OB2=OA•ON=5k2,∴OB=k,AB=AD==k,∵AD•BH=•BD•AO,∴BH==,∴AH===k,∴cosA===.故答案为【点评】本题考查菱形的性质、全等三角形的判定和性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识,学会利用参数解决问题,学会利用面积法求线段,所以中考常考题型.三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.用配方法把二次函数y=x2﹣4x+5化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.【考点】二次函数的三种形式.【分析】利用配方法把一般式化为顶点式,根据二次函数的性质解答即可.【解答】解:y=x2﹣4x+5=(x﹣4)2﹣3,∴抛物线开口向上,对称轴x=4,顶点(4,﹣3).【点评】本题考查的是二次根式的三种形式,正确利用配方法把一般式化为顶点式是解题的关键.20.如图,在梯形ABCD中,AD∥BC,AD=3,BC=2,点E、F分别在两腰上,且EF∥AD,AE:EB=2:1;(1)求线段EF的长;(2)设=, =,试用、表示向量.【考点】*平面向量;梯形.【专题】计算题.【分析】(1)作BM∥CD交AD、EF于M、N两点,将问题转化到△ABM中,利用相似三角形的判定与性质求EN,由EF=EN+NF=EN+AD进行求解;(2)由=、=得BC=AD,EB=AB,根据=可得答案.【解答】解:(1)作BM∥CD交AD、EF于M、N两点,又AD∥BC,EF∥AD,∴四边形BCFN与MNFD均为平行四边形.∴BC=NF=MD=2,∴AM=AD﹣MD=1.又=2,∴=,∵EF∥AD,∴△BEN∽△BAM,∴,即,∴EN=,则EF=EN+NF=;(2)∵=, =,∴BC=AD,EB=AB,∴==, ==,则==+.【点评】本题主要考查了平行四边形的判定与性质、相似三角形的判定与性质及向量的运算,熟练掌握相似三角形的判定与性质得出对应边的长度之比和向量的基本运算是解题的关键.21.如图,在△ABC中,∠ACB=90°,AB=5,tanA=,将△ABC沿直线l翻折,恰好使点A与点B重合,直线l分别交边AB、AC于点D、E;(1)求△ABC的面积;(2)求sin∠CBE的值.【考点】翻折变换(折叠问题).【分析】(1)根据∠A的正切用BC表示出AC,再利用勾股定理列方程求出BC,再求出AC,然后根据直角三角形的面积公式列式计算即可得解;(2)设CE=x,表示出AE,再根据翻折变换的性质可得BE=AE,然后列方程求出x,再利用锐角的正弦等于对边比斜边列式计算即可得解.【解答】解:(1)∵∠ACB=90°,tanA=,∴=,∴AC=2BC,在Rt△ABC中,BC2+AC2=AB2,即BC2+4BC2=25,解得BC=,所以,AC=2,△ABC的面积=AC•BC=××2=5;(2)设CE=x,则AE=AC﹣CE=2﹣x,∵△ABC沿直线l翻折点A与点B重合,∴BE=AE=2﹣x,在Rt△BCE中,BC2+CE2=BE2,即2+x2=(2﹣x)2,解得x=,所以,CE=,BE=2﹣x=2﹣=,所以,sin∠CBE===.【点评】本题考查了翻折变换的性质,锐角三角函数的定义,此类题目,利用勾股定理列出方程求出相关的线段的长度是解题的关键.22.如图,在坡AP的坡脚A处竖有一根电线杆AB,为固定电线杆在地面C处和坡面D处各装一根等长的引拉线BC和BD,过点D作地面MN的垂线DH,H为垂足,已知点C、A、H在一直线上,若测得AC=7米,AD=12米,坡角为30°,试求电线杆AB的高度;(精确到0.1米)【考点】解直角三角形的应用-坡度坡角问题.【分析】作BE⊥AD于点E,设AB=x米,在直角△ABE中,根据三角函数,利用x表示出AE和BE的长,则在直角△BED中,利用勾股定理表示出BD的长,在直角△ABC中利用勾股定理表示出BC,根据BC=BD即可列方程求解.【解答】解:作BE⊥AD于点E,设AB=x米,在直角△ABE中,∠BAE=90°﹣∠DAH=90°﹣30°=60°,则AE=AB•cos∠BAE=xcos60°=x(米),BE=AB•sin∠BAE=x sin60°=x(米).则DE=AD﹣AE=12﹣x,在直角△BED中,BD2=BE2+DE2=(x)2+(12﹣x)2=144+x2﹣12x,在直角△ABC中,BC2=AC2+AB2=72+x2=49+x2.∵BC=BD,∴144+x2﹣12x=49+x2.解得x=≈7.9答:电线杆AB的高度约是7.9米.【点评】本题考查了解直角三角形的应用,坡度坡角问题,正确作出辅助线,利用AB的长表示抽BD和BC 是关键.23.如图1,点D位于△ABC边AC上,已知AB是AD与AC的比例中项.(1)求证:∠ACB=∠ABD;(2)现有点E、F分别在边AB、BC上如图2,满足∠EDF=∠A+∠C,当AB=4,BC=5,CA=6时,求证:DE=DF.【考点】相似三角形的判定与性质.【分析】(1)证出△ABD∽△ACB,得出对应角相等即可;(2)由相似三角形的性质得出对应边成比例求出AD=,BD=,得出BD=CD,由等腰三角形的性质得出∠DBC=∠ACB,证出∠ABD=∠BDC,再证明点B、E、D、F四点共圆,由圆周角定理得出,即可得出结论.【解答】(1)证明:∵AB是AD与AC的比例中项.∴,又∵∠A=∠A,∴△ABD∽△ACB,∴∠ACB=∠ABD;(2)证明:∵△ABD∽△ACB,∴,即,解得:AD=,BD=,∴CD=AC﹣AD=6﹣=,∴BD=CD,∴∠DBC=∠ACB,∵∠ACB=∠ABD,∴∠ABD=∠BDC,∵∠EDF=∠A+∠C,∠A+∠C=180°﹣∠ABC,∴∠EDF+∠ABC=180°,∴点B、E、D、F四点共圆,∴,∴DE=DF.【点评】本题考查了相似三角形的判定与性质、等腰三角形的判定与性质、四点共圆、圆周角定理等知识;熟练掌握相似三角形的判定与性质,证明四点共圆是解决问题(2)的关键.24.平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C(4,6);(1)求抛物线的表达式;(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC(顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.【考点】二次函数综合题.【分析】(1)利用待定系数法直接求出抛物线的解析式;(2)设出D,E坐标,根据平移,用k表示出平移后的抛物线解析式,利用坐标轴上点的特点得出m+n=16,mn=63﹣,进而利用相似三角形得出比例式建立方程即可求出k【解答】解:(1)∵抛物线过点A(1,0)、B(3,0),∴设抛物线的解析式为y=a(x﹣1)(x﹣3),∵C(4,6),∴6=a(4﹣1)(4﹣3),∴a=2,∴抛物线的解析式为y=2(x﹣1)(x﹣3)=2x2﹣8x+6;(2)如图,设点D(m,0),E(n,0),∵A(1,0),∴AD=m﹣1,AE=n﹣1由(1)知,抛物线的解析式为y=2x2﹣8x+6=2(x﹣2)2﹣2;∴将此抛物线先沿x轴方向向右平移6个单位,得到抛物线的解析式为y=2(x﹣8)2﹣2;∴再沿y轴方向平移k个单位,得到的抛物线的解析式为y=2(x﹣8)2﹣2﹣k;令y=0,则2(x﹣8)2﹣2﹣k=0,∴2x2﹣32x+126﹣k=0,根据根与系数的关系得,∴m+n=16,mn=63﹣,∵A(1,0),C(4,6),∴AC2=(4﹣1)2+62=45,∵△ACD∽△AEC,∴,∴AC2=AD•AE,∴45=(m﹣1)(n﹣1)=mn﹣(m+n)+1,∴45=63﹣﹣16+1,∴k=6,即:k=6,向下平移6个单位.【点评】此题是二次函数综合题,主要考查了待定系数法,平移的性质,相似三角形的性质,根与系数的关系,解本题的关键是设出了点D,E的坐标,借助韦达定理直接求出k.25.如图,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.【考点】三角形综合题;等腰三角形的性质;勾股定理;相似三角形的判定与性质;解直角三角形.【专题】压轴题;面积法.【分析】(1)先根据∠ACB=90°,AC=3,BC=4,求得AB=5,sinA=,tanB=,再根据△ACD为直角三角形,求得AD,在Rt△CDE中,求得DE,最后根据BE=AB﹣AD﹣DE进行计算即可;(2)当△CDE时等腰三角形时,可知∠CDE>∠A>∠B=∠DCE,∠CED>∠B=∠DCE,进而得出∠CED=∠CDE,再根据∠B=∠DCE,∠CDE=∠BDC,得到∠BCD=∠CED=∠CDE=∠BDC,最后求得AD的长;(3)先作CH ⊥AB 于H ,Rt △ACH 中,求得CH 和AH 的长,在Rt △CDH 中,根据勾股定理得出:CD 2=x 2﹣x+9,再判定△BDC ∽△CDE ,得出CD 2=DE •DB ,即x 2﹣x+9=(5﹣x ﹣y )(5﹣x ),最后求得y 关于x 的函数解析式,并写出定义域.【解答】(1)在△ABC 中,∠ACB=90°,AC=3,BC=4,∴AB=5,sinA=,tanB=,如图,当CD ⊥AB 时,△ACD 为直角三角形,∴CD=AC •sinA=,∴AD==, 又∵∠DCE=∠ABC ,∴在Rt △CDE 中,DE=CD •tan ∠DCE=×=,∴BE=AB ﹣AD ﹣DE=5﹣﹣=;(2)当△CDE 时等腰三角形时,可知∠CDE >∠A >∠B=∠DCE ,∠CED >∠B=∠DCE ,∴唯有∠CED=∠CDE ,又∵∠B=∠DCE ,∠CDE=∠BDC ,∴∠BCD=∠CED=∠CDE=∠BDC ,∴BD=BC=4,∴AD=5﹣4=1;(3)如图所示,作CH ⊥AB 于H ,∵×BC ×AC=AB ×CH ,∴CH=,∴Rt △ACH 中,AH==,∴在Rt △CDH 中,CD 2=CH 2+DH 2=()2+(﹣x )2=x 2﹣x+9, 又∵∠CDE=∠BDC ,∠DCE=∠B ,∴△BDC ∽△CDE ,∴CD 2=DE •DB ,即x2﹣x+9=(5﹣x﹣y)(5﹣x),解得.【点评】本题属于三角形综合题,主要考查了相似三角形的判定与性质,等腰三角形的性质,勾股定理以及解直角三角形的综合应用,解决问题的关键是中辅助线构造直角三角形,根据勾股定理以及面积法进行求解.。
届黄浦区中考数学一模及答案
6、如图,在 中, , ,直线 平行于 ,现将直线 绕点 逆时针旋转,所得直线分别交边 和 于点 、 ,若 和 相似,则旋转角为()
(A) ;(B) ;(C) ;(D) .
二、填空题(本大题共12题,每题4分,满分48分)
【请将结果直接填入答题纸的相应位置】
7、已知 、 、 满足 ,则 =.
届黄浦区中考数学一模及答案
黄浦区2017学年度第一学期九年级期终调研测试
数学试卷
(考试时间:100分钟总分:150分)
考生注意:
1.本试卷含三个大题,共25题;
2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;
3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.
16、如图,在 中, , , ,将 平移使其顶点 位于 的重心 处,则平移后所得三角形与原 的重叠部分面积是.
17、如图,点 为矩形 边 上一点,点 在边 的延长线上, 与 交于点 ,若 , , ,则 =.
18、如图,平面上七个点 、 、 、 、 、 、 ,图中所有的连线长均相等,则 =.
三、解答题(本大题共7题,满分78分)
一、选择题(本大题共6题,每题4分,满分24分)
【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】
1、已知二次函数 的图像大致如图所示,则下列关系式中成立的是()
(A) ;(B) ;(C) ;(D) .
2、若将抛物线向右平移2个单位后,所得抛物线的表达式为 ,则原来抛物线的表达式为()
=千米.
13、已知二次函数的图像开口向下,且其图像顶点位于第一象限,请写出一个满足上述条件的二次函数解析式为(表示为 的形式)
上海市2017黄浦区初三语文一模试卷(含答案)
中 8、选文作者_____(人名)和《醉翁亭记》的作者______(人名)同属“唐宋八大家”。(2 分)
9、用现代汉语翻译文中划线句。(3 分)
虎因喜,计之曰:‚技止此耳!‛_________________________________________
10、文中的驴子看上去是“____________”(用文中语句),而实际上却很无能,我们常用成语“外
学 ⑤王大爷老两口只有一个儿子,大院里的人都知道,儿子是领养的。那时,儿子将近三十,还没
有结婚,是一名火车司机,和王大爷两口挤在一间东厢房里。小摊挣钱多少,王大爷倒不在意,让他 头疼的是房子住得太挤,儿子以后找个媳妇,可怎么住呀?一提起这事,王大爷就‚嘬牙花子‛。
⑥那是我读四年级的时候,我之所以记得这么清楚,是因为正值‚大跃进‛,全院的人家都不再
由于平常大门不开,平台便显得很宽敞。王大爷的小摊就摆在那里,很是显眼,街上走动的人们,一
眼就能够望见他的小摊。
升 ②王大爷的小摊,卖些糖块儿、洋画片和泥玩具之类的东西。特别是泥玩具,大多是些小动物,
是王大爷自己捏的,再在上面涂上颜色,活灵活现,非常好看,卖得也不贵,因此,很受小孩子们欢 迎。有时候,放学后,走到大院门口,我常是先不回家,站在王大爷的小摊前,看一会儿,玩一会儿, 王大爷望着我笑,任我随便摸他的玩具,也不管我。如果赶上王大爷正在捏他的小泥玩具,我便会站
个小铜铃铛,风一吹,铃铛不住地响,小斑马像活了一样。
⑧我太喜欢那匹小斑马了。每次路过小摊都会站住脚,反复地看,好像它也在看我。那一阵子,
我满脑子都是这个小斑马,可惜没有钱买。几次想张嘴跟家人要钱。接着又想,小斑马的脖子上系着
个小铜铃铛,比起一般的泥玩具,钱稍微多了点儿,便把冒到嗓子眼儿的话,又咽了下去。
黄浦区中考数学一模及答案
黄浦区2017学年度第一学期九年级期终调研测试数学试卷 (考试时间:100分钟 总分:150分)考生注意:1. 本试卷含三个大题,共25题;2. 答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1、已知二次函数2y ax bx c =++的图像大致如图所示,则下列关系式中成立的是( )(A )0a >; (B )0b <; (C )0c <; (D )20b a +>.222y x =,则原来抛物线的222y x =-; (C )()222y x =+; (D )()222y x =-.3 )sin BC A AB =; (C )sin AC A BC =; (D )sin BC A AC=. 4O ,下列条件中能判定AC BD ∥的是( )(A )1OC =,2OD =,3OA =,4OB =; (B )1OA =,2AC =,3AB =,4BD =;(C )1OC =,2OA =,3CD =,4OB =; (D )1OC =,2OA =,3AB =,4CD =.5、如图,向量OA u u u r 与OC u u u r 均为单位向量,且OA OB ⊥,令n OA OB =+r u u u r u u u r ,则||n r =( )(A )1; (B (C (D )2.6、如图,在ABC △中,80B ∠=︒,40C ∠=︒,直线l 平行于BC ,现将直线l 绕点A 逆时针旋转,所得直线分别交边AB 和AC 于点M 、N ,若AMN △和ABC △相似,则旋转角为( )(A )20︒; (B )40︒; (C )60︒; (D )80︒.二、填空题(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置】7、已知a 、b 、c 满足346ab c ==,则a b c b+-= . 8、如图,点D 、E 、F 分别位于ABC △的三边上,满足DE BC ∥,EF AB ∥,如果:3:2AD DB =,那么:BF FC = .(第1题)9、已知向量e r 为单位向量,如果向量n r 与向量e r 方向相反,且长度为3,那么向量nr = .(用单位向量e r 表示)10、已知ABC DEF △∽△,其中顶点A 、B 、C 分别对应顶点D 、E 、F ,如果40A ∠=︒,60E ∠=︒,那么C ∠= 度.11、已知锐角α,满足tan 2α=,则sin α= .12、已知点B 位于点A 北偏东30︒方向,点C 位于点A 北偏西30︒方向,且8AB AC ==千米,那么BC = 千米.13、已知二次函数的图像开口向下,且其图像顶点位于第一象限,请写出一个满足上述条件的二次函数解析式为 (表示为()2y a x m k =++的形式)14、已知抛物线2y ax bx c =++开口向上,一条平行于x 轴的直线截此抛物线于M 、N 两点,那么线段MN 的长度随直线向上平移而变 .(填“大”或“小”)15、如图,矩形DEFG 的边EF 在ABC △的边BC 上,顶点D 、G 分别在边AB 、AC 上.已知6AC =,8AB =,10BC =,设EF x =,矩形DEFG 的面积为y ,则y 关于x 的函数关系式为 (不必写出定义域).16、如图,在ABC △中,90C ∠=︒,6BC =,9AC =,将ABC △平移使其顶点C 位于ABC △的重心G 处,则平移后所得三角形与原ABC △的重叠部分面积是 .17、如图,点E 为矩形ABCD 边BC 上一点,点F 在边CD 的延长线上,EF 与AC 交于点O ,若:1:2CE EB =,:3:4BC AB =,AE AF ⊥,则:CO OA = .18、如图,平面上七个点A 、B 、C 、D 、E 、F 、G ,图中所有的连线长均相等,则cos BAF ∠= .三、解答题(本大题共7题,满分78分)19、(本题满分10分) 计算:2cot 452cos 30sin60tan301︒︒+-︒︒+. 20、(本题满分10分) 用配方法把二次函数2264y x x =-++化为()2y a x m k =++的形式,再指出该函数图像的开口方向、对称轴和顶点坐标.21、(本题满分10分)如图,在ABC △中,90ACB ∠=︒,4AC =,3BC =,D 是边AC 的中点,CE BD ⊥交AB 于点E .(1)求tan ACE ∠;(2)求:AE EB .22、(本题满分10分) 如图,坡AB 的坡比为1:2.4,坡长130AB =米,坡AB 的高为BT .在坡AB 的正面有一栋建筑物CH ,点H 、A 、T 在同一条地平线MN 上. (1)试问坡AB 的高BT 为多少米?E D C BA(2)若某人在坡AB 的坡脚A 处和中点D 处,观测到建筑物顶部C 处的仰角分别为60︒和30︒,试求建筑物的高度CH .(精确到1.73≈, 1.41≈)23、(本题满分12分)如图,BD 是ABC △的角平分线,点E 位于边BC 上,已知BD 是BA 与BE 的比例中项.(1)求证:12CDE ABC ∠=∠(2)求证:AD CD AB CE ⋅=⋅24、(本题满分12分)在平面直角坐标系xOy 中,对称轴为直线1x =的抛物线28y ax bx =++过点()2,0-. (1)求抛物线的表达式,并写出其顶点坐标;(2)现将此抛物线沿y 方向平移若干个单位,所得抛物线的顶点为D ,与y 轴的交点为B ,与x 轴负半轴交于点A ,过点B 作x 轴的平行线交所得抛物线于点C ,若AC BD ∥,试求平移后所得抛物线的表达式.25、(本题满分14分)如图,线段5AB =,4AD =,90A ∠=︒,DP AB ∥,点C 为射线DP 上一点,BE 平分ABC ∠交线段AD 于点E (不与端点A 、D 重合).(1)当ABC ∠为锐角,且tan 2ABC ∠=时,求四边形ABCD 的面积;(2)当ABE △与BCE △相似时,求线段CD 的长;(3)设DC x =,DE y =,求y 关于x 的函数关系式,并写出定义域.参考答案1-6、DCBCBB 7、738、3:2 9、3e -r 10、80 11、5 12、8 13、()211y x =--+ 14、大 15、21224255y x x =-+ 16、3 17、1130 18、5619、320、2317222y x ⎛⎫=--+ ⎪⎝⎭,对称轴32x =,开口向下,顶点317,22⎛⎫ ⎪⎝⎭21、(1)23(2)8:9 22、(1)50米;(2)89米23、(1)证明略;(2)证明略24、(1)228y x x =-++,顶点()1,9;(2)223y x x =-++25、(1)16;(2)2或45;(3)41010y x ⎫=<<⎪⎝⎭。
上海市黄浦区2017届中考数学一模试题(含解析)
2017年上海市黄浦区中考数学一模试卷一.选择题(本大题共6题,每题4分,共24分)1.下列抛物线中,与抛物线y=x 2﹣2x+4具有相同对称轴的是( ) A .y=4x 2+2x+1B .y=2x 2﹣4x+1C .y=2x 2﹣x+4D .y=x 2﹣4x+22.如图,点D 、E 位于△ABC 的两边上,下列条件能判定DE ∥BC 的是( )A .AD•DB=AE•ECB .AD•AE=BD•EC C .AD•CE=AE•BD D .AD•BC=AB•DE 3.已知一个坡的坡比为i ,坡角为α,则下列等式成立的是( ) A .i=sin α B .i=cos α C .i=tan α D .i=cot α4.已知向量和都是单位向量,则下列等式成立的是( ) A .B .C .D .||﹣||=05.已知二次函数y=x 2,将它的图象向左平移2个单位,再向上平移3个单位,则所得图象的表达式为( )A .y=(x+2)2+3B .y=(x+2)2﹣3C .y=(x ﹣2)2+3D .y=(x ﹣2)2﹣36.Word 文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如图①、②、③是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有△ABC ,已知AB=AC ,当它以底边BC 水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC 以腰AB 水平放置时(如图⑤),它所显示的绝对高度和绝对宽度分别是( )A .3.60和2.40B .2.56和3.00C .2.56和2.88D .2.88和3.00二.填空题(本大题共12题,每题4分,共48分)7.已知线段a 是线段b 、c 的比例中项,如果a=3,b=2,那么c= . 8.化简:= .9.已知点P 是线段AB 的黄金分割点(AP >BP ),若AB=2,则AP ﹣BP= .10.已知二次函数y=f (x )的图象开口向上,对称轴为直线x=4,则f (1) f (5)(填“>”或“<”)11.求值:sin60°•tan30°= .12.已知G 是等腰直角△ABC 的重心,若AC=BC=2,则线段CG 的长为 . 13.两个相似三角形的相似比为2:3,则它们的面积之比为 .14.等边三角形的周长为C ,面积为S ,则面积S 关于周长C 的函数解析式为 .15.如图,正方形ABCD 的边EF 在△ABC 的边BC 上,顶点D 、G 分别在边AB 、AC 上,已知BC=6,△ABC 的面积为9,则正方形DEFG 的面积为 .16.如图,小明家所在小区的前后两栋楼AB 、CD ,小明在自己所住楼AB 的底部A 处,利用对面楼CD 墙上玻璃(与地面垂直)的反光,测得楼AB顶部B 处的仰角是α,若tan α=0.45,两楼的间距为30米,则小明家所住楼AB 的高度是 米.17.如图,在△ABC 中,∠C=90°,AC=8,BC=6,D 是边AB 的中点,现有一点P 位于边AC 上,使得△ADP 与△ABC 相似,则线段AP 的长为 .18.如图,菱形ABCD内两点M、N,满足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四边形BMDN的面积是菱形ABCD面积的,则cosA= .三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.用配方法把二次函数y=x2﹣4x+5化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.20.如图,在梯形ABCD中,AD∥BC,AD=3,BC=2,点E、F分别在两腰上,且EF∥AD,AE:EB=2:1;(1)求线段EF的长;(2)设=, =,试用、表示向量.21.如图,在△ABC中,∠ACB=90°,AB=5,tanA=,将△ABC沿直线l翻折,恰好使点A与点B 重合,直线l分别交边AB、AC于点D、E;(1)求△ABC的面积;(2)求sin∠CBE的值.22.如图,在坡AP的坡脚A处竖有一根电线杆AB,为固定电线杆在地面C处和坡面D处各装一根等长的引拉线BC和BD,过点D作地面MN的垂线DH,H为垂足,已知点C、A、H在一直线上,若测得AC=7米,AD=12米,坡角为30°,试求电线杆AB的高度;(精确到0.1米)23.如图1,点D位于△ABC边AC上,已知AB是AD与AC的比例中项.(1)求证:∠ACB=∠ABD;(2)现有点E、F分别在边AB、BC上如图2,满足∠EDF=∠A+∠C,当AB=4,BC=5,CA=6时,求证:DE=DF.24.平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C(4,6);(1)求抛物线的表达式;(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC(顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.25.如图,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.2017年上海市黄浦区中考数学一模试卷参考答案与试题解析一.选择题(本大题共6题,每题4分,共24分)1.下列抛物线中,与抛物线y=x2﹣2x+4具有相同对称轴的是()A.y=4x2+2x+1 B.y=2x2﹣4x+1 C.y=2x2﹣x+4 D.y=x2﹣4x+2【考点】二次函数的性质.【分析】根据对称轴方程分别确定各个抛物线的对称轴后即可作出判断.【解答】解:抛物线y=x2﹣2x+4的对称轴为x=1;A、y=4x2+2x+1的对称轴为x=﹣,不符合题意;B、y=2x2﹣4x+1的对称轴为x=1,符合题意;C、y=2x2﹣x+4的对称轴为x=,不符合题意;D、y=x2﹣4x+2的对称轴为x=2,不符合题意,故选B.【点评】此题考查了二次函数的性质,牢记对称轴方程公式是解答本题的关键,难度不大.2.如图,点D、E位于△ABC的两边上,下列条件能判定DE∥BC的是()A.AD•DB=AE•EC B.AD•AE=BD•EC C.AD•CE=AE•BD D.AD•BC=AB•DE【考点】平行线分线段成比例.【分析】根据选项选出能推出对应线段成比例的即可.【解答】解:∵AD•CE=AE•BD,∴,∴DE∥BC,故选C.【点评】本题考查了平行线分线段成比例定理,熟练掌握平行线分线段成比例定理是解题的关键.3.已知一个坡的坡比为i,坡角为α,则下列等式成立的是()A.i=sinαB.i=cosαC.i=tanαD.i=cotα【考点】解直角三角形的应用-坡度坡角问题.【分析】根据坡比的定义:斜坡垂直高度与水平宽度的比值,即坡角的正弦值,据此即可判断.【解答】解:i=tanα.故选C.【点评】本题考查了坡比的定义,理解坡比是斜坡垂直高度与水平宽度的比值,即坡角的正弦值,是关键.4.已知向量和都是单位向量,则下列等式成立的是()A. B.C. D.||﹣||=0【考点】*平面向量.【专题】推理填空题.【分析】根据向量和都是单位向量,可知||=||=1,由此即可判断.【解答】解:∵已知向量和都是单位向量,∴||=||=1,∴||﹣||=0,故选D.【点评】本题考查平面向量、单位向量,属于概念题目,记住概念是解题的关键.5.已知二次函数y=x2,将它的图象向左平移2个单位,再向上平移3个单位,则所得图象的表达式为()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3【考点】二次函数图象与几何变换.【分析】直接根据“上加下减、左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,二次函数y=x2的图象向左平移个单位得到y=(x+2)2,由“上加下减”的原则可知,将二次函数y=(x+2)2的图象向上平移3个单位可得到函数y=(x+2)2+3,故选:A .【点评】本题考查的是二次函数的图象与几何变换,熟知“上加下减、左加右减”的原则是解答此题的关键.6.Word 文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如图①、②、③是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有△ABC ,已知AB=AC ,当它以底边BC 水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC 以腰AB 水平放置时(如图⑤),它所显示的绝对高度和绝对宽度分别是( )A .3.60和2.40B .2.56和3.00C .2.56和2.88D .2.88和3.00 【考点】勾股定理;等腰三角形的性质.【分析】根据等腰三角形的性质,勾股定理可求AB ,即图⑤绝对宽度,再根据三角形面积公式可求图⑤绝对高度.【解答】解:图④,过A 点作AD ⊥BC 于D , BD=3.60÷2=1.80, 在Rt △ABD 中,AB==3,图⑤绝对宽度为3; 图⑤绝对高度为: 2.40×3.60÷2×2÷3=4.32×2÷3=2.88.故选:D.【点评】此题考查了勾股定理,等腰三角形的性质,解题的关键是熟练掌握图形的绝对高度和绝对宽度的定义.二.填空题(本大题共12题,每题4分,共48分)7.已知线段a是线段b、c的比例中项,如果a=3,b=2,那么c= .【考点】比例线段.【分析】根据比例中项的定义可得b2=ac,从而易求c.【解答】解:∵线段a是线段b、c的比例中项,∴a2=bc,即32=2×c,∴c=.故答案是:.【点评】本题考查了比例线段,解题的关键是理解比例中项的定义.8.化简: = ﹣﹣7.【考点】*平面向量.【分析】直接利用平面向量的加减运算法则求解即可求得答案.【解答】解: =2﹣4﹣3﹣3=﹣﹣7.故答案为:.【点评】此题考查了平面向量的运算法则.注意掌握去括号时的符号变化是解此题的关键.9.已知点P是线段AB的黄金分割点(AP>BP),若AB=2,则AP﹣BP= 2﹣4 .【考点】黄金分割.【分析】根据黄金分割的概念、黄金比值计算即可.【解答】解:∵点P是线段AB的黄金分割点,AP>BP,∴AP=AB=﹣1,则BP=2﹣AP=3﹣,∴AP﹣BP=(﹣1)﹣(3﹣)=2﹣4,故答案为:2﹣4.【点评】本题考查的是黄金分割的概念和性质,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割.10.已知二次函数y=f(x)的图象开口向上,对称轴为直线x=4,则f(1)>f(5)(填“>”或“<”)【考点】二次函数的性质.【分析】根据对称轴及开口方向确定其增减性即可确定答案.【解答】解:∵二次函数y=f(x)的图象开口向上,对称轴为直线x=4,∴当x的取值越靠近4函数值就越小,反之越大,∴f(1)>f(5),故答案为:>.【点评】考查了二次函数的性质,解题的关键是根据对称轴及开口方向确定其增减性,难度不大.11.求值:sin60°•tan30°=.【考点】特殊角的三角函数值.【专题】计算题.【分析】先根据特殊角的三角函数值计算出各数,再根据二次根式的乘法进行计算即可.【解答】解:原式=×=.故答案为:.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.12.已知G是等腰直角△ABC的重心,若AC=BC=2,则线段CG的长为.【考点】三角形的重心;等腰直角三角形.【分析】根据三角形的重心到顶点的距离等于到对边中点的距离的2倍解答即可.【解答】解:∵G是等腰直角△ABC的重心,AC=BC=2,∴CG=,故答案为:【点评】本题考查了三角形的重心,熟记三角形的重心到顶点的距离等于到对边中点的距离的2倍是解题的关键.13.两个相似三角形的相似比为2:3,则它们的面积之比为4:9 .【考点】相似三角形的性质.【专题】探究型.【分析】直接根据相似三角形的性质进行解答即可.【解答】解:∵两个相似三角形的相似比为2:3,∴它们的面积之比为4:9.故答案为:4:9【点评】本题考查的是相似三角形的性质,即相似三角形面积的比等于相似比的平方.14.等边三角形的周长为C,面积为S,则面积S关于周长C的函数解析式为S=C2.【考点】根据实际问题列二次函数关系式.【分析】直接利用等边三角形的性质得出AD的长,再利用三角形面积求法得出答案.【解答】解:如图所示:过点A作AD⊥BC于点D,∵等边三角形的周长为C,∴AB=BC=AC=,∴DC=BD=,∴AD==C,∴S=×C×=C2.故答案为:S=×C×=C2.【点评】此题主要考查了等边三角形的性质以及三角形面积求法,正确表示出三角形的高是解题关键.15.如图,正方形ABCD的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知BC=6,△ABC的面积为9,则正方形DEFG的面积为 4 .【考点】相似三角形的判定与性质;正方形的性质.【分析】由DG∥BC得△ADG∽△ABC,利用相似三角形对应边上高的比等于相似比,列方程求解.【解答】解:作AH⊥BC于H,交DG于P,如图所示:∵△ABC的面积=BC•AH=9,BC=6,∴AH=3,设正方形DEFG的边长为x.由正方形DEFG得,DG∥EF,即DG∥BC,∵AH⊥BC,∴AP⊥DG.由DG∥BC得△ADG∽△ABC∴.∵PH⊥BC,DE⊥BC∴PH=ED,AP=AH﹣PH,即,由BC=6,AH=3,DE=DG=x,得,解得x=2.故正方形DEFG的面积=22=4;故答案为:4.【点评】本题考查了相似三角形的判定与性质、正方形的性质.关键是由平行线得到相似三角形,利用相似三角形的性质列方程.16.如图,小明家所在小区的前后两栋楼AB、CD,小明在自己所住楼AB的底部A处,利用对面楼CD墙上玻璃(与地面垂直)的反光,测得楼AB顶部B处的仰角是α,若tanα=0.45,两楼的间距为30米,则小明家所住楼AB的高度是27 米.【考点】解直角三角形的应用-仰角俯角问题.【分析】作PE⊥AB于点E,在直角△AEP中,利用三角函数求得AE的长,根据AB=2AE即可求解.【解答】解:作PE⊥AB于点E,在直角△AEP中,∠APE=∠α,则AE=PE•tan∠APE=30×0.45=13.5(米),则AB=2AE=27(米).故答案是:27.【点评】本题考查解直角三角形、仰角、俯角的定义,解题的关键是记住特殊三角形的边之间关系,学会把问题转化为方程解决,属于中考常考题型.17.如图,在△ABC中,∠C=90°,AC=8,BC=6,D是边AB的中点,现有一点P位于边AC上,使得△ADP与△ABC相似,则线段AP的长为4或.【考点】相似三角形的判定.【分析】先根据勾股定理求出AB的长,再分△ADP∽△ABC与△ADP∽△ACB两种情况进行讨论即可.【解答】解:∵在△ABC中,∠C=90°,AC=8,BC=6,∴AB==10.∵D是边AB的中点,∴AD=5.当△ADP∽△ABC时, =,即=,解得AP=4;当△ADP∽△ACB时, =,即=,解得AP=.故答案为:4或.【点评】本题考查的是相似三角形的判定,在解答此题时要注意进行分类讨论,不要漏解.18.如图,菱形ABCD内两点M、N,满足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四边形BMDN的面积是菱形ABCD面积的,则cosA= .【考点】菱形的性质;解直角三角形.【分析】如图,连接AN、CM,延长BM交AD于H.AN是菱形ABCD的角平分线,同理CM也是菱形ABCD 的角平分线,设BD与AC交于点O,易知四边形BMDN是菱形,设S△OMB=S△ONB=S△OMD=S△OND=a,因为四边形BMDN的面积是菱形ABCD面积的,所以S△AMB=S△AMD=S△CNB=S△CND=4a,推出AM=4OM,CN=4ON,设ON=OM=k,则AM=CN=4k,由△ABO∽△BNO,推出OB2=OA•ON=5k2,推出OB=k,AB=AD==k,由AD•BH=•BD•AO,推出BH==,再利用勾股定理求出AH即可解决问题.【解答】解:如图,连接AN、CM,延长BM交AD于H.∵AB⊥BN,AD⊥DN,∴∠ABN=∠ADN=90°,在Rt△ANB和Rt△AND中,,∴△ABN≌△ADN,∴∠BAN=∠DAN,∴AN是菱形ABCD的角平分线,同理CM也是菱形ABCD的角平分线,设BD与AC交于点O,易知四边形BMDN是菱形,设S△OMB=S△ONB=S△OMD=S△OND=a,∵四边形BMDN的面积是菱形ABCD面积的,∴S△AMB=S△AMD=S△CNB=S△CND=4a,∴AM=4OM,CN=4ON,设ON=OM=k,则AM=CN=4k,∵△ABO∽△BNO,∴OB2=OA•ON=5k2,∴OB=k,AB=AD==k,∵AD•BH=•BD•AO,∴BH==,∴AH===k,∴cosA===.故答案为【点评】本题考查菱形的性质、全等三角形的判定和性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识,学会利用参数解决问题,学会利用面积法求线段,所以中考常考题型.三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.用配方法把二次函数y=x2﹣4x+5化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.【考点】二次函数的三种形式.【分析】利用配方法把一般式化为顶点式,根据二次函数的性质解答即可.【解答】解:y=x2﹣4x+5=(x﹣4)2﹣3,∴抛物线开口向上,对称轴x=4,顶点(4,﹣3).【点评】本题考查的是二次根式的三种形式,正确利用配方法把一般式化为顶点式是解题的关键.20.如图,在梯形ABCD中,AD∥BC,AD=3,BC=2,点E、F分别在两腰上,且EF∥AD,AE:EB=2:1;(1)求线段EF的长;(2)设=, =,试用、表示向量.【考点】*平面向量;梯形.【专题】计算题.【分析】(1)作BM∥CD交AD、EF于M、N两点,将问题转化到△ABM中,利用相似三角形的判定与性质求EN,由EF=EN+NF=EN+AD进行求解;(2)由=、=得BC=AD,EB=AB,根据=可得答案.【解答】解:(1)作BM∥CD交AD、EF于M、N两点,又AD∥BC,EF∥AD,∴四边形BCFN与MNFD均为平行四边形.∴BC=NF=MD=2,∴AM=AD﹣MD=1.又=2,∴=,∵EF∥AD,∴△BEN∽△BAM,∴,即,∴EN=,则EF=EN+NF=;(2)∵=, =,∴BC=AD,EB=AB,∴==, ==,则==+.【点评】本题主要考查了平行四边形的判定与性质、相似三角形的判定与性质及向量的运算,熟练掌握相似三角形的判定与性质得出对应边的长度之比和向量的基本运算是解题的关键.21.如图,在△ABC中,∠ACB=90°,AB=5,tanA=,将△ABC沿直线l翻折,恰好使点A与点B 重合,直线l分别交边AB、AC于点D、E;(1)求△ABC的面积;(2)求sin∠CBE的值.【考点】翻折变换(折叠问题).【分析】(1)根据∠A的正切用BC表示出AC,再利用勾股定理列方程求出BC,再求出AC,然后根据直角三角形的面积公式列式计算即可得解;(2)设CE=x,表示出AE,再根据翻折变换的性质可得BE=AE,然后列方程求出x,再利用锐角的正弦等于对边比斜边列式计算即可得解.【解答】解:(1)∵∠ACB=90°,tanA=,∴=,∴AC=2BC,在Rt△ABC中,BC2+AC2=AB2,即BC2+4BC2=25,解得BC=,所以,AC=2,△ABC的面积=AC•BC=××2=5;(2)设CE=x,则AE=AC﹣CE=2﹣x,∵△ABC沿直线l翻折点A与点B重合,∴BE=AE=2﹣x,在Rt△BCE中,BC2+CE2=BE2,即2+x2=(2﹣x)2,解得x=,所以,CE=,BE=2﹣x=2﹣=,所以,sin∠CBE===.【点评】本题考查了翻折变换的性质,锐角三角函数的定义,此类题目,利用勾股定理列出方程求出相关的线段的长度是解题的关键.22.如图,在坡AP的坡脚A处竖有一根电线杆AB,为固定电线杆在地面C处和坡面D处各装一根等长的引拉线BC和BD,过点D作地面MN的垂线DH,H为垂足,已知点C、A、H在一直线上,若测得AC=7米,AD=12米,坡角为30°,试求电线杆AB的高度;(精确到0.1米)【考点】解直角三角形的应用-坡度坡角问题.【分析】作BE⊥AD于点E,设AB=x米,在直角△ABE中,根据三角函数,利用x表示出AE和BE的长,则在直角△BED中,利用勾股定理表示出BD的长,在直角△ABC中利用勾股定理表示出BC,根据BC=BD即可列方程求解.【解答】解:作BE⊥AD于点E,设AB=x米,在直角△ABE中,∠BAE=90°﹣∠DAH=90°﹣30°=60°,则AE=AB•cos∠BAE=xcos60°=x(米),BE=AB•sin∠BAE=xsi n60°=x(米).则DE=AD﹣AE=12﹣x,在直角△BED中,BD2=BE2+DE2=(x)2+(12﹣x)2=144+x2﹣12x,在直角△ABC中,BC2=AC2+AB2=72+x2=49+x2.∵BC=BD,∴144+x2﹣12x=49+x2.解得x=≈7.9答:电线杆AB的高度约是7.9米.【点评】本题考查了解直角三角形的应用,坡度坡角问题,正确作出辅助线,利用AB的长表示抽BD和BC是关键.23.如图1,点D位于△ABC边AC上,已知AB是AD与AC的比例中项.(1)求证:∠ACB=∠ABD;(2)现有点E、F分别在边AB、BC上如图2,满足∠EDF=∠A+∠C,当AB=4,BC=5,CA=6时,求证:DE=DF.【考点】相似三角形的判定与性质.【分析】(1)证出△ABD∽△ACB,得出对应角相等即可;(2)由相似三角形的性质得出对应边成比例求出AD=,BD=,得出BD=CD,由等腰三角形的性质得出∠DBC=∠ACB,证出∠ABD=∠BDC,再证明点B、E、D、F四点共圆,由圆周角定理得出,即可得出结论.【解答】(1)证明:∵AB是AD与AC的比例中项.∴,又∵∠A=∠A,∴△ABD∽△ACB,∴∠ACB=∠ABD;(2)证明:∵△ABD∽△ACB,∴,即,解得:AD=,BD=,∴CD=AC﹣AD=6﹣=,∴BD=CD,∴∠DBC=∠ACB,∵∠ACB=∠ABD,∴∠ABD=∠BDC,∵∠EDF=∠A+∠C,∠A+∠C=180°﹣∠ABC,∴∠EDF+∠ABC=180°,∴点B、E、D、F四点共圆,∴,∴DE=DF.【点评】本题考查了相似三角形的判定与性质、等腰三角形的判定与性质、四点共圆、圆周角定理等知识;熟练掌握相似三角形的判定与性质,证明四点共圆是解决问题(2)的关键.24.平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C(4,6);(1)求抛物线的表达式;(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC(顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.【考点】二次函数综合题.【分析】(1)利用待定系数法直接求出抛物线的解析式;(2)设出D,E坐标,根据平移,用k表示出平移后的抛物线解析式,利用坐标轴上点的特点得出m+n=16,mn=63﹣,进而利用相似三角形得出比例式建立方程即可求出k【解答】解:(1)∵抛物线过点A(1,0)、B(3,0),∴设抛物线的解析式为y=a(x﹣1)(x﹣3),∵C(4,6),∴6=a(4﹣1)(4﹣3),∴a=2,∴抛物线的解析式为y=2(x﹣1)(x﹣3)=2x2﹣8x+6;(2)如图,设点D(m,0),E(n,0),∵A(1,0),∴AD=m﹣1,AE=n﹣1由(1)知,抛物线的解析式为y=2x2﹣8x+6=2(x﹣2)2﹣2;∴将此抛物线先沿x轴方向向右平移6个单位,得到抛物线的解析式为y=2(x﹣8)2﹣2;∴再沿y轴方向平移k个单位,得到的抛物线的解析式为y=2(x﹣8)2﹣2﹣k;令y=0,则2(x﹣8)2﹣2﹣k=0,∴2x2﹣32x+126﹣k=0,根据根与系数的关系得,∴m+n=16,mn=63﹣,∵A(1,0),C(4,6),∴AC2=(4﹣1)2+62=45,∵△ACD∽△AEC,∴,∴AC2=AD•AE,∴45=(m﹣1)(n﹣1)=mn﹣(m+n)+1,∴45=63﹣﹣16+1,∴k=6,即:k=6,向下平移6个单位.【点评】此题是二次函数综合题,主要考查了待定系数法,平移的性质,相似三角形的性质,根与系数的关系,解本题的关键是设出了点D,E的坐标,借助韦达定理直接求出k.25.如图,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.【考点】三角形综合题;等腰三角形的性质;勾股定理;相似三角形的判定与性质;解直角三角形.【专题】压轴题;面积法.【分析】(1)先根据∠ACB=90°,AC=3,BC=4,求得AB=5,sinA=,tanB=,再根据△ACD为直角三角形,求得AD,在Rt△CDE中,求得DE,最后根据BE=AB﹣AD﹣DE进行计算即可;(2)当△CDE时等腰三角形时,可知∠CDE>∠A>∠B=∠DCE,∠CED>∠B=∠DCE,进而得出∠CED=∠CDE,再根据∠B=∠DCE,∠CDE=∠BDC,得到∠BCD=∠CED=∠CDE=∠BDC,最后求得AD的长;(3)先作CH⊥AB于H,Rt△ACH中,求得CH和AH的长,在Rt△CDH中,根据勾股定理得出:CD2=x2﹣x+9,再判定△BDC∽△CDE,得出CD2=DE•DB,即x2﹣x+9=(5﹣x﹣y)(5﹣x),最后求得y关于x的函数解析式,并写出定义域.【解答】(1)在△ABC中,∠ACB=90°,AC=3,BC=4,∴AB=5,sinA=,tanB=,如图,当CD⊥AB时,△ACD为直角三角形,∴CD=AC•sinA=,∴AD==,又∵∠DCE=∠ABC,∴在Rt△CDE中,DE=CD•tan∠DCE=×=,∴BE=AB﹣AD﹣DE=5﹣﹣=;(2)当△CDE时等腰三角形时,可知∠CDE>∠A>∠B=∠DCE,∠CED>∠B=∠DCE,∴唯有∠CED=∠CDE,又∵∠B=∠DCE,∠CDE=∠BDC,∴∠BCD=∠CED=∠CDE=∠BDC,∴BD=BC=4,∴AD=5﹣4=1;(3)如图所示,作CH⊥AB于H,∵×BC×AC=AB×CH,∴CH=,∴Rt△ACH中,AH==,∴在Rt△CDH中,CD2=CH2+DH2=()2+(﹣x)2=x2﹣x+9,又∵∠CDE=∠BDC,∠DCE=∠B,∴△BDC∽△CDE,∴CD2=DE•DB,即x2﹣x+9=(5﹣x﹣y)(5﹣x),解得.【点评】本题属于三角形综合题,主要考查了相似三角形的判定与性质,等腰三角形的性质,勾股定理以及解直角三角形的综合应用,解决问题的关键是中辅助线构造直角三角形,根据勾股定理以及面积法进行求解.。
上海市2017黄浦区初三数学一模试卷(含答案)_PDF压缩
上海市黄浦区2017届初三一模数学试卷2017.1一. 选择题(本大题共6题,每题4分,共24分)1.下列抛物线中,与抛物线224y x x =-+具有相同对称轴的是()A. 2421y x x =++B. 2241y x x =-+C. 224y x x =-+ D. 242y x x =-+2.如图,点D 、E 位于△ABC 的两边上,下列条件能判定DE ∥BC 的是( )A.AD DB AE EC ⋅=⋅B.AD AE BD EC⋅=⋅C.AD CE AE BD ⋅=⋅ D.AD BC AB DE⋅=⋅3.已知一个坡的坡比为i ,坡角为α,则下列等式成立的是( )A.sin i α=B.cos i α=C.tan i α=D.cot i α=4.已知向量a 和b 都是单位向量,则下列等式成立的是( )A.a b =B.2a b +=C.0a b -=D.||||0a b -= 5.已知二次函数2y x =,将它的图像向左平移2个单位,再向上平移3个单位,则所得图像的表达式为( )A. 2(2)3y x =++B. 2(2)3y x =+-C. 2(2)3y x =-+ D. 2(2)3y x =--6.Word 文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化,如图①、②、③是 同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有 △ABC ,已知AB AC =,当它以底边BC 水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC 以腰AB 水平放置时(如图⑤),它所显示的绝对高度和 绝对宽度分别是( )A.3.60和2.40B.2.56和3.00C.2.56和2.88D.2.88和3.00二.填空题(本大题共12题,每题4分,共48分)7.已知线段a 是线段b 、c 的比例中项,如果3a =,2b =,那么c =8.计算:2(2)3()a b a b --+=9.已知点P 是线段AB 的黄金分割点(AP BP >),若2AB =,则AP BP -=10.已知二次函数()y f x =的图像开口向上,对称轴为直线4x =,则(1)f (5)f (填“>”或“<”)11.计算:sin 60tan30︒︒⋅=12.已知G 是等腰直角△ABC 的重心,若2AC BC ==,则线段CG 的长为13.若两个相似三角形的相似比为2:3,则它们的面积比为14.等边三角形的周长为C ,面积为S ,则面积S 关于周长C 的函数解析式为15.如图,正方形ABCD 的边EF 在△ABC 的边BC 上,顶点D 、G 分别在边AB 、AC 上,已知6BC =,△ABC 的面积为9,则正方形DEFG 的面积为16.如图,小明家所在小区的前后两栋楼AB 、CD ,小明在自己所住楼AB 的底部A 处,利用对面楼CD 墙上玻璃(与地面垂直)的反光,测得楼AB 顶部B 处的仰角是α,若 tan 0.45α=,两楼的间距为30米,则小明家所住楼AB 的高度是米17.如图,在△ABC 中,90C ︒∠=,8AC =,6BC =,D 是边AB 的中点,现有一点 P 位于边AC 上,使得△ADP 与△ABC 相似,则线段AP 的长为18.如图,菱形ABCD 内两点M 、N ,满足MB BC ⊥,MD DC ⊥,NB BA ⊥,ND DA ⊥,若四边形BMDN 的面积是菱形ABCD 面积的15,则cos A =三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.用配方法把二次函数21452y x x =-+化为2()y a x m k =++的形式,再指出该函数图像的开口方向、对称轴和顶点坐标;20.如图,在梯形ABCD 中,AD ∥BC ,3AD =,2BC =,点E 、F 分别在两腰上,且EF ∥AD ,:2:1AE EB =;(1)求线段EF 的长;(2)设AB a =,AD b =,试用a 、b 表示向量EC ;21.如图,在△ABC 中,90ACB ︒∠=,5AB =,1tan 2A =,将△ABC 沿直线l 翻折,恰好使点A 与点B 重合,直线l 分别交边AB 、AC 于点D 、E ;(1)求△ABC 的面积;(2)求sin CBE ∠的值;22.如图,在坡AP 的坡脚A 处竖有一根电线杆AB ,为固定电线杆在地面C 处和坡面D 处各装一根等长的引拉线BC 和BD ,过点D 作地面MN 的垂线DH ,H 为垂足,已知点C 、 A 、H 在一直线上,若测得7AC =米,12AD =米,坡角为30︒,试求电线杆AB 的高度;(精确到0.1米)23.如图,点D 位于△ABC 边AC 上,已知AB 是AD 与AC 的比例中项;(1)求证:ACB ABD ∠=∠;(2)现有点E 、F 分别在边AB 、BC 上,满足EDF A C ∠=∠+∠,当4AB =,5BC =,6CA =时,求证:DE DF =;24.平面直角坐标系xOy 中,对称轴平行于y 轴的抛物线过点(1,0)A 、(3,0)B 和(4,6)C ;(1)求抛物线的表达式;(2)现将此抛物线先沿x 轴方向向右平移6个单位,再沿y 轴方向平移k 个单位,若所得抛物线与x 轴交于点D 、E (点D 在点E 的左边),且使△ACD ∽△AEC (顶点A 、C 、 D 依次对应顶点A 、E 、C ),试求k 的值,并注明方向;25.如图,△ABC 边AB 上点D 、E (不与点A 、B 重合),满足DCE ABC ∠=∠,90ACB ︒∠=,3AC =,4BC =;(1)当CD AB ⊥时,求线段BE 的长;(2)当△CDE 是等腰三角形时,求线段AD 的长;(3)设AD x =,BE y =,求y 关于x 的函数解析式,并写出定义域;参考答案一. 选择题1.B2.C3.C4.D5.A6.D二.填空题7. 928.7a b --9.410.>11. 1212. 13.4:914. 2S =15.416.2717.4或25418. 23三.解答题19. 21(4)32y x =--,开口向上,对称轴4x =,顶点(4,3)-;20.(1)73EF =;(2)1233EC a b =+;21.(1)5;(2)35; 22.7.9米; 23.(1)略;(2)略;24.(1)2286y x x =-+;(2)6k =,向下平移6个单位;25.(1)75BE =;(2)1AD =;(3)3280525x y x -=-5(0)2x <<;。
上海市黄浦区2017届中考数学一模试题含解析
2017年上海市黄浦区中考数学一模试卷一.选择题(本大题共6题,每题4分,共24分)1.下列抛物线中,与抛物线y=x2﹣2x+4具有相同对称轴的是()A.y=4x2+2x+1 B.y=2x2﹣4x+1 C.y=2x2﹣x+4 D.y=x2﹣4x+22.如图,点D、E位于△ABC的两边上,下列条件能判定DE∥BC的是()A.AD•DB=AE•EC B.AD•AE=BD•EC C.AD•CE=AE•BD D.AD•BC=AB•DE3.已知一个坡的坡比为i,坡角为α,则下列等式成立的是()A.i=sinαB.i=cosαC.i=tanαD.i=cotα4.已知向量和都是单位向量,则下列等式成立的是()A .B .C . D.||﹣||=05.已知二次函数y=x2,将它的图象向左平移2个单位,再向上平移3个单位,则所得图象的表达式为()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣36.Word文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如图①、②、③是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有△ABC,已知AB=AC,当它以底边BC水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC以腰AB水平放置时(如图⑤),它所显示的绝对高度和绝对宽度分别是()图形图①图②图③图④图⑤绝对高度 1.5 2.0 1.2 2.4?0 0 0 0绝对宽度 2.00 1.52.53.6?A.3.60和2.40 B.2.56和3.00 C.2.56和2.88 D.2.88和3.00 二.填空题(本大题共12题,每题4分,共48分)7.已知线段a是线段b、c的比例中项,如果a=3,b=2,那么c= .8.化简:= .9.已知点P是线段AB的黄金分割点(AP>BP),若AB=2,则AP﹣BP= .10.已知二次函数y=f(x)的图象开口向上,对称轴为直线x=4,则f(1)f(5)(填“>”或“<”)11.求值:sin60°•tan30°=.12.已知G是等腰直角△ABC的重心,若AC=BC=2,则线段CG的长为.13.两个相似三角形的相似比为2:3,则它们的面积之比为.14.等边三角形的周长为C,面积为S,则面积S关于周长C的函数解析式为.15.如图,正方形ABCD的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知BC=6,△ABC的面积为9,则正方形DEFG的面积为.16.如图,小明家所在小区的前后两栋楼AB、CD,小明在自己所住楼AB的底部A处,利用对面楼CD墙上玻璃(与地面垂直)的反光,测得楼AB顶部B处的仰角是α,若tanα=0.45,两楼的间距为30米,则小明家所住楼AB的高度是米.17.如图,在△ABC中,∠C=90°,AC=8,BC=6,D是边AB的中点,现有一点P位于边AC上,使得△ADP与△ABC相似,则线段AP的长为.18.如图,菱形ABCD内两点M、N,满足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四边形BMDN 的面积是菱形ABCD面积的,则cosA= .三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.用配方法把二次函数y=x2﹣4x+5化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.20.如图,在梯形ABCD中,AD∥BC,AD=3,BC=2,点E、F分别在两腰上,且EF∥AD,AE:EB=2:1;(1)求线段EF的长;(2)设=, =,试用、表示向量.21.如图,在△ABC中,∠ACB=90°,AB=5,tanA=,将△ABC沿直线l翻折,恰好使点A 与点B重合,直线l分别交边AB、AC于点D、E;(1)求△ABC的面积;(2)求sin∠CBE的值.22.如图,在坡AP的坡脚A处竖有一根电线杆AB,为固定电线杆在地面C处和坡面D处各装一根等长的引拉线BC和BD,过点D作地面MN的垂线DH,H为垂足,已知点C、A、H在一直线上,若测得AC=7米,AD=12米,坡角为30°,试求电线杆AB的高度;(精确到0.1米)23.如图1,点D位于△ABC边AC上,已知AB是AD与AC的比例中项.(1)求证:∠ACB=∠ABD;(2)现有点E、F分别在边AB、BC上如图2,满足∠EDF=∠A+∠C,当AB=4,BC=5,CA=6时,求证:DE=DF.24.平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C (4,6);(1)求抛物线的表达式;(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC(顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.25.如图,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.2017年上海市黄浦区中考数学一模试卷参考答案与试题解析一.选择题(本大题共6题,每题4分,共24分)1.下列抛物线中,与抛物线y=x2﹣2x+4具有相同对称轴的是()A.y=4x2+2x+1 B.y=2x2﹣4x+1 C.y=2x2﹣x+4 D.y=x2﹣4x+2【考点】二次函数的性质.【分析】根据对称轴方程分别确定各个抛物线的对称轴后即可作出判断.【解答】解:抛物线y=x2﹣2x+4的对称轴为x=1;A、y=4x2+2x+1的对称轴为x=﹣,不符合题意;B、y=2x2﹣4x+1的对称轴为x=1,符合题意;C、y=2x2﹣x+4的对称轴为x=,不符合题意;D、y=x2﹣4x+2的对称轴为x=2,不符合题意,故选B.【点评】此题考查了二次函数的性质,牢记对称轴方程公式是解答本题的关键,难度不大.2.如图,点D、E位于△ABC的两边上,下列条件能判定DE∥BC的是()A.AD•DB=AE•EC B.AD•AE=BD•EC C.AD•CE=AE•BD D.AD•BC=AB•DE【考点】平行线分线段成比例.【分析】根据选项选出能推出对应线段成比例的即可.【解答】解:∵AD•CE=AE•BD,∴,∴DE∥BC,故选C.【点评】本题考查了平行线分线段成比例定理,熟练掌握平行线分线段成比例定理是解题的关键.3.已知一个坡的坡比为i,坡角为α,则下列等式成立的是()A.i=sinαB.i=cosαC.i=tanαD.i=cotα【考点】解直角三角形的应用-坡度坡角问题.【分析】根据坡比的定义:斜坡垂直高度与水平宽度的比值,即坡角的正弦值,据此即可判断.【解答】解:i=tanα.故选C.【点评】本题考查了坡比的定义,理解坡比是斜坡垂直高度与水平宽度的比值,即坡角的正弦值,是关键.4.已知向量和都是单位向量,则下列等式成立的是()A. B.C. D.||﹣||=0【考点】*平面向量.【专题】推理填空题.【分析】根据向量和都是单位向量,可知||=||=1,由此即可判断.【解答】解:∵已知向量和都是单位向量,∴||=||=1,∴||﹣||=0,故选D.【点评】本题考查平面向量、单位向量,属于概念题目,记住概念是解题的关键.5.已知二次函数y=x2,将它的图象向左平移2个单位,再向上平移3个单位,则所得图象的表达式为()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3【考点】二次函数图象与几何变换.【分析】直接根据“上加下减、左加右减”的原则进行解答即可.【解答】解:由“左加右减”的原则可知,二次函数y=x2的图象向左平移个单位得到y=(x+2)2,由“上加下减”的原则可知,将二次函数y=(x+2)2的图象向上平移3个单位可得到函数y=(x+2)2+3,故选:A.【点评】本题考查的是二次函数的图象与几何变换,熟知“上加下减、左加右减”的原则是解答此题的关键.6.Word文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如图①、②、③是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有△ABC,已知AB=AC,当它以底边BC水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC以腰AB水平放置时(如图⑤),它所显示的绝对高度和绝对宽度分别是()图形图①图②图③图④图⑤绝对高度 1.50 2.01.22.4?绝对宽度 2.00 1.52.53.6?A.3.60和2.40 B.2.56和3.00 C.2.56和2.88 D.2.88和3.00【考点】勾股定理;等腰三角形的性质.【分析】根据等腰三角形的性质,勾股定理可求AB,即图⑤绝对宽度,再根据三角形面积公式可求图⑤绝对高度.【解答】解:图④,过A点作AD⊥BC于D,BD=3.60÷2=1.80,在Rt△ABD中,AB==3,图⑤绝对宽度为3;图⑤绝对高度为:2.40×3.60÷2×2÷3=4.32×2÷3=2.88.故选:D.【点评】此题考查了勾股定理,等腰三角形的性质,解题的关键是熟练掌握图形的绝对高度和绝对宽度的定义.二.填空题(本大题共12题,每题4分,共48分)7.已知线段a是线段b、c的比例中项,如果a=3,b=2,那么c= .【考点】比例线段.【分析】根据比例中项的定义可得b2=ac,从而易求c.【解答】解:∵线段a是线段b、c的比例中项,∴a2=bc,即32=2×c,∴c=.故答案是:.【点评】本题考查了比例线段,解题的关键是理解比例中项的定义.8.化简: = ﹣﹣7.【考点】*平面向量.【分析】直接利用平面向量的加减运算法则求解即可求得答案.【解答】解: =2﹣4﹣3﹣3=﹣﹣7.故答案为:.【点评】此题考查了平面向量的运算法则.注意掌握去括号时的符号变化是解此题的关键.9.已知点P是线段AB的黄金分割点(AP>BP),若AB=2,则AP﹣BP= 2﹣4 .【考点】黄金分割.【分析】根据黄金分割的概念、黄金比值计算即可.【解答】解:∵点P是线段AB的黄金分割点,AP>BP,∴AP=AB=﹣1,则BP=2﹣AP=3﹣,∴AP﹣BP=(﹣1)﹣(3﹣)=2﹣4,故答案为:2﹣4.【点评】本题考查的是黄金分割的概念和性质,把线段AB分成两条线段AC和BC(AC>BC),且使AC是AB和BC的比例中项,叫做把线段AB黄金分割.10.已知二次函数y=f(x)的图象开口向上,对称轴为直线x=4,则f(1)>f(5)(填“>”或“<”)【考点】二次函数的性质.【分析】根据对称轴及开口方向确定其增减性即可确定答案.【解答】解:∵二次函数y=f(x)的图象开口向上,对称轴为直线x=4,∴当x的取值越靠近4函数值就越小,反之越大,∴f(1)>f(5),故答案为:>.【点评】考查了二次函数的性质,解题的关键是根据对称轴及开口方向确定其增减性,难度不大.11.求值:sin60°•tan30°=.【考点】特殊角的三角函数值.【专题】计算题.【分析】先根据特殊角的三角函数值计算出各数,再根据二次根式的乘法进行计算即可.【解答】解:原式=×=.故答案为:.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.12.已知G是等腰直角△ABC的重心,若AC=BC=2,则线段CG的长为.【考点】三角形的重心;等腰直角三角形.【分析】根据三角形的重心到顶点的距离等于到对边中点的距离的2倍解答即可.【解答】解:∵G是等腰直角△ABC的重心,AC=BC=2,∴CG=,故答案为:【点评】本题考查了三角形的重心,熟记三角形的重心到顶点的距离等于到对边中点的距离的2倍是解题的关键.13.两个相似三角形的相似比为2:3,则它们的面积之比为4:9 .【考点】相似三角形的性质.【专题】探究型.【分析】直接根据相似三角形的性质进行解答即可.【解答】解:∵两个相似三角形的相似比为2:3,∴它们的面积之比为4:9.故答案为:4:9【点评】本题考查的是相似三角形的性质,即相似三角形面积的比等于相似比的平方.14.等边三角形的周长为C,面积为S,则面积S关于周长C的函数解析式为S=C2.【考点】根据实际问题列二次函数关系式.【分析】直接利用等边三角形的性质得出AD的长,再利用三角形面积求法得出答案.【解答】解:如图所示:过点A作AD⊥BC于点D,∵等边三角形的周长为C,∴AB=BC=AC=,∴DC=BD=,∴AD==C,∴S=×C×=C2.故答案为:S=×C×=C2.【点评】此题主要考查了等边三角形的性质以及三角形面积求法,正确表示出三角形的高是解题关键.15.如图,正方形ABCD的边EF在△ABC的边BC上,顶点D、G分别在边AB、AC上,已知BC=6,△ABC的面积为9,则正方形DEFG的面积为 4 .【考点】相似三角形的判定与性质;正方形的性质.【分析】由DG∥BC得△ADG∽△ABC,利用相似三角形对应边上高的比等于相似比,列方程求解.【解答】解:作AH⊥BC于H,交DG于P,如图所示:∵△ABC的面积=BC•AH=9,BC=6,∴AH=3,设正方形DEFG的边长为x.由正方形DEFG得,DG∥EF,即DG∥BC,∵AH⊥BC,∴AP⊥DG.由DG∥BC得△ADG∽△ABC∴.∵PH⊥BC,DE⊥BC∴PH=ED,AP=AH﹣PH,即,由BC=6,AH=3,DE=DG=x,得,解得x=2.故正方形DEFG的面积=22=4;故答案为:4.【点评】本题考查了相似三角形的判定与性质、正方形的性质.关键是由平行线得到相似三角形,利用相似三角形的性质列方程.16.如图,小明家所在小区的前后两栋楼AB、CD,小明在自己所住楼AB的底部A处,利用对面楼CD墙上玻璃(与地面垂直)的反光,测得楼AB顶部B处的仰角是α,若tanα=0.45,两楼的间距为30米,则小明家所住楼AB的高度是27 米.【考点】解直角三角形的应用-仰角俯角问题.【分析】作PE⊥AB于点E,在直角△AEP中,利用三角函数求得AE的长,根据AB=2AE即可求解.【解答】解:作PE⊥AB于点E,在直角△AEP中,∠APE=∠α,则AE=PE•tan∠APE=30×0.45=13.5(米),则AB=2AE=27(米).故答案是:27.【点评】本题考查解直角三角形、仰角、俯角的定义,解题的关键是记住特殊三角形的边之间关系,学会把问题转化为方程解决,属于中考常考题型.17.如图,在△ABC中,∠C=90°,AC=8,BC=6,D是边AB的中点,现有一点P位于边AC 上,使得△ADP与△ABC相似,则线段AP的长为4或.【考点】相似三角形的判定.【分析】先根据勾股定理求出AB的长,再分△ADP∽△ABC与△ADP∽△ACB两种情况进行讨论即可.【解答】解:∵在△ABC中,∠C=90°,AC=8,BC=6,∴AB==10.∵D是边AB的中点,∴AD=5.当△ADP∽△ABC时, =,即=,解得AP=4;当△ADP∽△ACB时, =,即=,解得AP=.故答案为:4或.【点评】本题考查的是相似三角形的判定,在解答此题时要注意进行分类讨论,不要漏解.18.如图,菱形ABCD内两点M、N,满足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四边形BMDN 的面积是菱形ABCD面积的,则cosA= .【考点】菱形的性质;解直角三角形.【分析】如图,连接AN、CM,延长BM交AD于H.AN是菱形ABCD的角平分线,同理CM也是菱形ABCD的角平分线,设BD与AC交于点O,易知四边形BMDN是菱形,设S△OMB=S△ONB=S△OMD=S△OND=a,因为四边形BMDN的面积是菱形ABCD 面积的,所以S△AMB=S△AMD=S△CNB=S△CND=4a,推出AM=4OM,CN=4ON,设ON=OM=k,则AM=CN=4k,由△ABO∽△BNO,推出OB2=OA•ON=5k2,推出OB=k,AB=AD==k,由AD•BH=•BD•AO,推出BH==,再利用勾股定理求出AH即可解决问题.【解答】解:如图,连接AN、CM,延长BM交AD于H.∵AB⊥BN,AD⊥DN,∴∠ABN=∠ADN=90°,在Rt△ANB和Rt△AND中,,∴△ABN≌△ADN,∴∠BAN=∠DAN,∴AN是菱形ABCD的角平分线,同理CM也是菱形ABCD的角平分线,设BD与AC交于点O,易知四边形BMDN是菱形,设S△OMB=S△ONB=S△OMD=S△OND=a,∵四边形BMDN的面积是菱形ABCD面积的,∴S△AMB=S△AMD=S△CNB=S△CND=4a,∴AM=4OM,CN=4ON,设ON=OM=k,则AM=CN=4k,∵△ABO∽△BNO,∴OB2=OA•ON=5k2,∴OB=k,AB=AD==k,∵AD•BH=•BD•AO,∴BH==,∴AH===k,∴cosA===.故答案为【点评】本题考查菱形的性质、全等三角形的判定和性质、勾股定理、相似三角形的判定和性质等知识,解题的关键是灵活运用所学知识,学会利用参数解决问题,学会利用面积法求线段,所以中考常考题型.三.解答题(本大题共7题,共10+10+10+10+12+12+14=78分)19.用配方法把二次函数y=x2﹣4x+5化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.【考点】二次函数的三种形式.【分析】利用配方法把一般式化为顶点式,根据二次函数的性质解答即可.【解答】解:y=x2﹣4x+5=(x﹣4)2﹣3,∴抛物线开口向上,对称轴x=4,顶点(4,﹣3).【点评】本题考查的是二次根式的三种形式,正确利用配方法把一般式化为顶点式是解题的关键.20.如图,在梯形ABCD中,AD∥BC,AD=3,BC=2,点E、F分别在两腰上,且EF∥AD,AE:EB=2:1;(1)求线段EF的长;(2)设=, =,试用、表示向量.【考点】*平面向量;梯形.【专题】计算题.【分析】(1)作BM∥CD交AD、EF于M、N两点,将问题转化到△ABM中,利用相似三角形的判定与性质求EN,由EF=EN+NF=EN+AD进行求解;(2)由=、=得BC=AD,EB=AB,根据=可得答案.【解答】解:(1)作BM∥CD交AD、EF于M、N两点,又AD∥BC,EF∥AD,∴四边形BCFN与MNFD均为平行四边形.∴BC=NF=MD=2,∴AM=AD﹣MD=1.又=2,∴=,∵EF∥AD,∴△BEN∽△BAM,∴,即,∴EN=,则EF=EN+NF=;(2)∵=, =,∴BC=AD,EB=AB,∴==, ==,则==+.【点评】本题主要考查了平行四边形的判定与性质、相似三角形的判定与性质及向量的运算,熟练掌握相似三角形的判定与性质得出对应边的长度之比和向量的基本运算是解题的关键.21.如图,在△ABC中,∠ACB=90°,AB=5,tanA=,将△ABC沿直线l翻折,恰好使点A 与点B重合,直线l分别交边AB、AC于点D、E;(1)求△ABC的面积;(2)求sin∠CBE的值.【考点】翻折变换(折叠问题).【分析】(1)根据∠A的正切用BC表示出AC,再利用勾股定理列方程求出BC,再求出AC,然后根据直角三角形的面积公式列式计算即可得解;(2)设CE=x,表示出AE,再根据翻折变换的性质可得BE=AE,然后列方程求出x,再利用锐角的正弦等于对边比斜边列式计算即可得解.【解答】解:(1)∵∠ACB=90°,tanA=,∴=,∴AC=2BC,在Rt△ABC中,BC2+AC2=AB2,即BC2+4BC2=25,解得BC=,所以,AC=2,△ABC的面积=AC•BC=××2=5;(2)设CE=x,则AE=AC﹣CE=2﹣x,∵△ABC沿直线l翻折点A与点B重合,∴BE=AE=2﹣x,在Rt△BCE中,BC2+CE2=BE2,即2+x2=(2﹣x)2,解得x=,所以,CE=,BE=2﹣x=2﹣=,所以,sin∠CBE===.【点评】本题考查了翻折变换的性质,锐角三角函数的定义,此类题目,利用勾股定理列出方程求出相关的线段的长度是解题的关键.22.如图,在坡AP的坡脚A处竖有一根电线杆AB,为固定电线杆在地面C处和坡面D处各装一根等长的引拉线BC和BD,过点D作地面MN的垂线DH,H为垂足,已知点C、A、H在一直线上,若测得AC=7米,AD=12米,坡角为30°,试求电线杆AB的高度;(精确到0.1米)【考点】解直角三角形的应用-坡度坡角问题.【分析】作BE⊥AD于点E,设AB=x米,在直角△ABE中,根据三角函数,利用x表示出AE 和BE的长,则在直角△BED中,利用勾股定理表示出BD的长,在直角△ABC中利用勾股定理表示出BC,根据BC=BD即可列方程求解.【解答】解:作BE⊥AD于点E,设AB=x米,在直角△ABE中,∠BAE=90°﹣∠DAH=90°﹣30°=60°,则AE=AB•cos∠BAE=xcos60°=x(米),BE=AB•sin∠BAE=xsin60°=x(米).则DE=AD﹣AE=12﹣x,在直角△BED中,BD2=BE2+DE2=(x)2+(12﹣x)2=144+x2﹣12x,在直角△ABC中,BC2=AC2+AB2=72+x2=49+x2.∵BC=BD,∴144+x2﹣12x=49+x2.解得x=≈7.9答:电线杆AB的高度约是7.9米.【点评】本题考查了解直角三角形的应用,坡度坡角问题,正确作出辅助线,利用AB的长表示抽BD和BC是关键.23.如图1,点D位于△ABC边AC上,已知AB是AD与AC的比例中项.(1)求证:∠ACB=∠ABD;(2)现有点E、F分别在边AB、BC上如图2,满足∠EDF=∠A+∠C,当AB=4,BC=5,CA=6时,求证:DE=DF.【考点】相似三角形的判定与性质.【分析】(1)证出△ABD∽△ACB,得出对应角相等即可;(2)由相似三角形的性质得出对应边成比例求出AD=,BD=,得出BD=CD,由等腰三角形的性质得出∠DBC=∠ACB,证出∠ABD=∠BDC,再证明点B、E、D、F四点共圆,由圆周角定理得出,即可得出结论.【解答】(1)证明:∵AB是AD与AC的比例中项.∴,又∵∠A=∠A,∴△ABD∽△ACB,∴∠ACB=∠ABD;(2)证明:∵△ABD∽△ACB,∴,即,解得:AD=,BD=,∴CD=AC﹣AD=6﹣=,∴BD=CD,∴∠DBC=∠ACB,∵∠ACB=∠ABD,∴∠ABD=∠BDC,∵∠EDF=∠A+∠C,∠A+∠C=180°﹣∠ABC,∴∠EDF+∠ABC=180°,∴点B、E、D、F四点共圆,∴,∴DE=DF.【点评】本题考查了相似三角形的判定与性质、等腰三角形的判定与性质、四点共圆、圆周角定理等知识;熟练掌握相似三角形的判定与性质,证明四点共圆是解决问题(2)的关键.24.平面直角坐标系xOy中,对称轴平行于y轴的抛物线过点A(1,0)、B(3,0)和C (4,6);(1)求抛物线的表达式;(2)现将此抛物线先沿x轴方向向右平移6个单位,再沿y轴方向平移k个单位,若所得抛物线与x轴交于点D、E(点D在点E的左边),且使△ACD∽△AEC(顶点A、C、D依次对应顶点A、E、C),试求k的值,并注明方向.【考点】二次函数综合题.【分析】(1)利用待定系数法直接求出抛物线的解析式;(2)设出D,E坐标,根据平移,用k表示出平移后的抛物线解析式,利用坐标轴上点的特点得出m+n=16,mn=63﹣,进而利用相似三角形得出比例式建立方程即可求出k【解答】解:(1)∵抛物线过点A(1,0)、B(3,0),∴设抛物线的解析式为y=a(x﹣1)(x﹣3),∵C(4,6),∴6=a(4﹣1)(4﹣3),∴a=2,∴抛物线的解析式为y=2(x﹣1)(x﹣3)=2x2﹣8x+6;(2)如图,设点D(m,0),E(n,0),∵A(1,0),∴AD=m﹣1,AE=n﹣1由(1)知,抛物线的解析式为y=2x2﹣8x+6=2(x﹣2)2﹣2;∴将此抛物线先沿x轴方向向右平移6个单位,得到抛物线的解析式为y=2(x﹣8)2﹣2;∴再沿y轴方向平移k个单位,得到的抛物线的解析式为y=2(x﹣8)2﹣2﹣k;令y=0,则2(x﹣8)2﹣2﹣k=0,∴2x2﹣32x+126﹣k=0,根据根与系数的关系得,∴m+n=16,mn=63﹣,∵A(1,0),C(4,6),∴AC2=(4﹣1)2+62=45,∵△ACD∽△AEC,∴,∴AC2=AD•AE,∴45=(m﹣1)(n﹣1)=mn﹣(m+n)+1,∴45=63﹣﹣16+1,∴k=6,即:k=6,向下平移6个单位.【点评】此题是二次函数综合题,主要考查了待定系数法,平移的性质,相似三角形的性质,根与系数的关系,解本题的关键是设出了点D,E的坐标,借助韦达定理直接求出k.25.如图,△ABC边AB上点D、E(不与点A、B重合),满足∠DCE=∠ABC,∠ACB=90°,AC=3,BC=4;(1)当CD⊥AB时,求线段BE的长;(2)当△CDE是等腰三角形时,求线段AD的长;(3)设AD=x,BE=y,求y关于x的函数解析式,并写出定义域.【考点】三角形综合题;等腰三角形的性质;勾股定理;相似三角形的判定与性质;解直角三角形.【专题】压轴题;面积法.【分析】(1)先根据∠ACB=90°,AC=3,BC=4,求得AB=5,sinA=,tanB=,再根据△ACD为直角三角形,求得AD,在Rt△CDE中,求得DE,最后根据BE=AB﹣AD﹣DE进行计算即可;(2)当△CDE时等腰三角形时,可知∠CDE>∠A>∠B=∠DCE,∠CED>∠B=∠DCE,进而得出∠CED=∠CDE,再根据∠B=∠DCE,∠CDE=∠BDC,得到∠BCD=∠CED=∠CDE=∠BDC,最后求得AD的长;(3)先作CH⊥AB于H,Rt△ACH中,求得CH和AH的长,在Rt△CDH中,根据勾股定理得出:CD2=x2﹣x+9,再判定△BDC∽△CDE,得出CD2=DE•DB,即x2﹣x+9=(5﹣x﹣y)(5﹣x),最后求得y关于x的函数解析式,并写出定义域.【解答】(1)在△ABC中,∠ACB=90°,AC=3,BC=4,∴AB=5,sinA=,tanB=,如图,当CD⊥AB时,△ACD为直角三角形,∴CD=AC•sinA=,∴AD==,又∵∠DCE=∠ABC,∴在Rt△CDE中,DE=CD•tan∠DCE=×=,∴BE=AB﹣AD﹣DE=5﹣﹣=;(2)当△CDE时等腰三角形时,可知∠CDE>∠A>∠B=∠DCE,∠CED>∠B=∠DCE,∴唯有∠CED=∠CDE,又∵∠B=∠DCE,∠CDE=∠BDC,∴∠BCD=∠CED=∠CDE=∠BDC,∴BD=BC=4,∴AD=5﹣4=1;(3)如图所示,作CH⊥AB于H,∵×BC×AC=AB×CH,∴CH=,∴Rt△ACH中,AH==,∴在Rt△CDH中,CD2=CH2+DH2=()2+(﹣x)2=x2﹣x+9,又∵∠CDE=∠BDC,∠DCE=∠B,∴△BDC∽△CDE,∴CD2=DE•DB,即x2﹣x+9=(5﹣x﹣y)(5﹣x),解得.【点评】本题属于三角形综合题,主要考查了相似三角形的判定与性质,等腰三角形的性质,勾股定理以及解直角三角形的综合应用,解决问题的关键是中辅助线构造直角三角形,根据勾股定理以及面积法进行求解.。
2017年上海黄浦区初三一模数学试卷答案
= 90
∘
,AC
= 8
.
一.选择题(本大题共6题,每题4分,… 二.填空题(本大题共12题,每题4分,… 三.解答题(本大题共7题,共10+10+1…
答案 解析
4
或
25 4
∵在△ABC 中,∠C ∴
jia
os
hi
目录
.iz
∘
= 90
,AC
hi ka ng
,BC
= 6
= 8
,BC
.c
,D是边AB的中点,现有一点P 位于边AC 上,使得△ADP 与△ABC 相
.
答案 解析
9 2
∵b是a、c的比例中项, ∴a2 = bc ,即c =
9 2
jia
.
os
18
/1
2/
2.40 × 3.60 ÷ 2 × 2 ÷ 3
04
学生版
教师版
答案版
编辑
⃗ ⃗ 8. 计算:2(a ⃗ − 2b) − 3(a ⃗ + b) =
.
答案 解析
−a ⃗ − 7b
⃗
经过计算,原式= −a ⃗ − 7b ⃗ .
目录
一.选择题(本大题共6题,每题4分,… 二.填空题(本大题共12题,每题4分,… 三.解答题(本大题共7题,共10+10+1…
学生版
教师版
答案版
编辑
2017年上海黄浦区初三一模数学试卷
一.选择题(本大题共6题,每题4分,共24分) 目录
1. 下列抛物线中,与抛物线y = x2 − 2x + 4具有相同对称轴的是( ).
一.选择题(本大题共6题,每题4分,… 二.填空题(本大题共12题,每题4分,… 三.解答题(本大题共7题,共10+10+1…
2017黄浦区中考一模英语试卷及答案1
2017黄浦区中考一模英语卷(满分150分, 考试时间: 100分钟)考生注意:本卷有7大题, 共94小题。
试题均采用连续编号, 所有答案务必按照规定在答题卡上完成, 做在试卷上不给分。
Part 1 Listening(第一部分听力)prehensio.(听力理解): (共30分)Listen and choose the right picture (根据你听到的内容, 选出相应的图片):(6分)A B C DE F G H_______. 2._______. 3._______. 4._______. 5._______. 6.________B.Liste.t.th.dialogu.an.choos.th.bes.answe.t.th.questio.yo.hea.(根据你听到的对话和问题, 选出最恰当的答案): (8分)7. A) At 5:00. B) At 5:30.C) At 6:00. D) At 6:30.8. A) By bus. B) By taxi.C) By bike. D) By underground.9. A) In the library. B) At the airport.C) In the restaurant. D) At the supermarket.10. A) France. B) Italy.C) Germany. D) England.11. A) $8. B) $20.C) $32. D) $40.12. A) Teacher and student. B) Doctor and patient.C) Father and son. D) Shop assistant and customer.13. A) Because he wasn’t ready. B) Because he was tired.C) Because he attended a meeting. D) Because he was preparing for a meeting.14. A) Linda has two dogs. B) Linda has just moved into a new house.C) Linda doesn’t like her new house. D) Linda’s neighbour is quite noisy.15.C.Liste.t.th.passag.an.tel.whethe.th.followin.statement.ar.tru.o.false.(判断下列句子是否符合你所听到的短文内容, 符合的.“T”表示, 不符合的.“F”表示): (6分)16.Bill works on his parents’ farm all day long.17.In the day, Bill is too busy to have activities for fun.18.At school, Bill is good at math and ancient history.19.Working on the farm makes Bill feel strong but tired.20.Although he likes farm life, Bill wants to learn about the life in big cities.21.The stories about cities seem frightening, so Bill will not leave the farm.plet.th.followin.sentence.(听短文, 完成下列内容, 每空格限填一词): (10分)23.An architect plans what a building will ________ ________.24.Before they plan, architects will learn what the building is ________ ________.ually, Architects draw pictures on paper to ________ ________.26.When they are happy with their drawings, architects make ________ ________.27.Workers work with the archetect to ________ ________ that everything goes well.Part 2 Phonetics, Grammar and vocabulary(第二部分语音、词汇和语法)II.Choos.th.bes.answer.(选择最恰当的答案): (共20分)26.Which of the following underlined parts in pronunciation is different from others?A) cake B) main C) map D) stay27.Every child should go to ________ school at the age of six in China.A) a B) an C) the D) /28.Bill met his wife on the campus for the first time ________ the spring of 1971.A) on B) in C) at D) for29.Some students were too busy preparing for their tests to get enough ________.A) sleep B) friend C) hobby D) activity30.We should stop and look ________ ways before crossing the roads.A) all B) either C) neither D) both31.It was long believed that ________ things fall at a faster speed.A) heavy B) heavier C) heaviest D) the heaviest32.London is almost the same ________ other big European cities.A) to B) with C) as D) in33.It is repoorted that two travellers lost ________ way in the desert and almost died ofthirst.A) them B) their C) theirs D) themselves34.Smart phones have become an important part of people’s ________ life.A) daily B) happily C) recently D) quickly35.The caring father seems ________ everything about his children.A) know B) knowing C) to know D) to knowing36.More and more people enjoy ________ a peaceful life in the countryside instead of inbig cities.A) live B) living C) to live D) to living37.English is quite difficult for Julie, ________ but she will not give it up.A) but B) for C) or D) so38.When we landed on Phuket Island last night, it ________ heavily outside.A) rains B) has rained C) is raining D) was raining39.The big fire in the north of Canada ________ more than two hundred houses since lastFriday.A) will destroy B) has destroyed C) had destroyed D) is destroying40.You can go to Yunnan Road ________ you want to try Shanghai local snacks.A) although B) until C) if D) because41.Very soon a nursing home ________ in our neighbourhood for the elderly living alone.A) has set up B) will set up C) has been set up D) will be set up42.With the help of the Internet, news ________ reach every corner of the world.A) can B) need C) must D) ought to43.________exciting it is to see Kobe Bryant playing at the court with my own eyes!A) What B) How C) What an D) How an44.-- Three people lost their life in the traffic accident yesterday.-- ________.A) I don’t think so.B) All right.C) Be careful.D) Th at’s terrible.45.-- Would you like me to show you around our school campus?-- ________.A) Good idea.B) Well done.C) Yes, please.D) My pleasure.Ke.hoppe.of.th.bus.H.wa.carryin.hi.mat.homewor.i.on.han.an.th.saxophon.tha.hi.mothe.ha.aske.hi.t.brin.ho m.i.th.other.H.wasn ’.sur.wha.h.____46___.more.th.homewor.o.hi.mother ’.specia.“assignment.”Ke.love.____47___.th.saxophon.i.th.schoo.band.Th.song.cam.s.____48___.t.hi.tha.h.didn ’.hav.t.practis.outsid.outsid.o.th.schoo.studio.Bu.no.hi.mothe.wante.hi.t.pla.som.ol.jaz.song.fro.th.1940s.an.h.wasn ’.intereste.____49____.Th.song.sounde.nothin.lik.th.popula.song.tha.h.listene.t.o.th.radio.Marcu.climbe.of.th.bus.wit.hi.“Secret.notebook.H.wa.Ken ’.elde.brothe.an..goo.student.H.alway.pu..lo.o.effor.int.hi.wor.an.alway.____50___.hi.assignmen.o.time.sometime.eve.early.Hi.noteboo.hel.al.o.th.son.lyric.an.____51___.tha.h.ha.written.Ver.fe.peopl.ha.eve.see.them.an.n.on.ha.hear.them.excep.fo.Marcu.himself.Unlik.hi.brother.h.like.musi.tha.wa.____52___.an.meaningful.H.wa.to.sh.t.sing.bu.h.cou l.hea.ho.th.song.woul.soun.____53____.H.ha.take.pian.lesson.sinc.firs.grade.s.h.kne.ho.t.writ.ou.th.musi.notes.to o.54. IV .Complet.th.sentence.wit.th.give.word.i.thei.prope.forms(用括号中所给单词的适当形式完成下列句子, 每空格限填一词).(共8分)55. Al.o.th._______.receive..war.welcom.a.th.party.(guest.56. I.th.Unite.States.Mother ’.Da.i.celebrate.o.th._______.Sunda.i.May.(two. 57. Sometimes.i.i.no.eas.fo.u.t.expres._______.clearl.i.public.(we)58. Student.shoul.b.encourage.t.rea._______.instea.o.doin.to.muc.homework.(wide) 59. M.grandfathe.i.________.bu.h.ca.remembe.wha.happene.lon.ago.(forget) 60. Th.elevato.i.ou.o._______.righ.now.s.w.hav.t.wal.upstairs.(serve)61. Fou.i.a._______.numbe.i.China.becaus.i.sound.lik.th.wor.fo.deat.i.China.(lucky) ernmen.i.takin.step.t.reduc.ai._______.i.bi.cities.(pollute) V .C omp let.tA terrible earthquake hit the small mountain village yesterday.(改为一般疑问句)h.followin.sentence.a.require.(根据所给要求,完成下列句子。
2017届黄浦区九年级一模数学(附答案)
黄浦区2016学年度第一学期九年级期终调研测试数学试卷2017年1月(满分150分,考试时间100分钟)考生注意:1.本试卷含三个大题,共25题;2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效; 3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 1.下列抛物线中,与抛物线224y x x =-+具有相同对称轴的是(B ) (A )2421y x x =++; (B )2241y x x =-+;(C )224y x x =-+;(D )242y x x =-+.2.如图1,点D 、E 位于△ABC 的两边上,下列条件能判定DE ∥BC 的是(C ) (A )AD DB AE EC ∙=∙;(B )AD AE BD EC ∙=∙; (C )AD CE AE BD ∙=∙; (D )AD BC AB DE ∙=∙.3.已知一个坡的坡比为i ,坡角为α,则下列等式成立的是(C ) (A )sin i α=; (B )cos i α=; (C )tan i α=;(D )cot i α=.4.已知向量a r 和b r都是单位向量,则下列等式成立的是(D ) (A )a b =r r;(B )2a b +=r r;(C )0a b -=r r;(D )0a b -=r r.5.已知二次函数2y x =,将它的图像向左平移2个单位,再向上平移3个单位,则所得图像的表达式是(A )(A )()223y x =++; (B )()223y x =+-; (C )()223y x =-+;(D )()223y x =--.6.Word 文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如下图2、3、4是同一个三角形以三条AE DCB图1不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表.现有△ABC ,已知AB =AC ,当它以底边BC 水平放置时(如图5),它所显示的绝对高度和绝对宽度如下表,那么当△ABC 以腰AB 水平放置时(如图6),它所显示的绝对高度和绝对宽度分别是(D )图形 图2 图3 图4 图5 图6 绝对高度 1.50 2.00 1.20 2.40 ? 绝对宽度2.001.502.503.60?(A )3.60和2.40;(B )2.56和3.00;(C )2.56和2.88;(D )2.88和3.00.二、填空题:(本大题共12题,每题4分,满分48分) 7.已知线段a 是线段b 、c 的比例中项,如果a =3,b =2,那么c =92. 8.计算:()()223a b a b --+r r r r =7a b --r r .9.已知点P 是线段AB 的黄金分割点(AP >BP ),若AB =2,则AP -BP =254-.10.已知二次函数()y f x =的图像开口向上,对称轴为直线x =4,则()1f >()5f .(填“>”或“<”) 11.计算:sin 60tan 30︒∙︒=12. 12.已知G 是等腰直角△ABC的重心,若AC =BC =2,则线段CG 的长为223. 13.若两个相似三角形的相似比为2∶3,则它们的面积比为4∶9.14.等边三角形的周长为C ,面积为S ,则面积S 关于周长C 的函数解析式是2336S C =. 15.如图7,正方形DEFG 的边EF 在△ABC 的边BC 上,顶点D 、G 分别在边AB 、AC 上.已知BC =6,△ABC 的面积为9,则正方形DEFG 的面积为4.CBA图5图2图3图4CBA图6DA G16.如图8,小明家所在小区的前后两栋楼AB 、CD ,小明在自己所住楼AB 的底部A 处,利用对面楼CD 墙上玻璃(与地面垂直)的反光,测得楼AB 顶部B 处的仰角是α.若tan α=0.45,两楼的间距为30米,则小明家所住楼AB 的高度是27米.17.如图9,在△ABC 中,∠C =90°,AC =8,BC =6,D 是边AB 的中点.现有一点P 位于边AC 上,使得△ADP 与△ABC 相似,则线段AP 的长为4或254.18.如图10,菱形ABCD 形内两点M 、N ,满足MB ⊥BC ,MD ⊥DC ,NB ⊥BA ,ND ⊥DA ,若四边形BMDN 的面积是菱形ABCD 面积的15,则cos A =23.三、解答题:(本大题共7题,满分78分) 19.(本题满分10分)用配方法把二次函数21452y x x =-+化为()2y a x m k =++的形式,再指出该函数图像的开口方向、对称轴和顶点坐标. 解:21452y x x =-+ =()21816582x x -++- =()()2211434322x x --=+--⎡⎤⎣⎦ 开口向上,对称轴为直线4x =,顶点()4,3- 20.(本题满分10分)DPCBAα图8D CBA•图9DNMCBA图10如图11,在梯形ABCD 中,AD ∥BC ,AD =3,BC =2,点E 、F 分别在两腰上,且EF ∥AD ,AE ∶EB =2∶1.(1)求线段EF 的长;(2)设AB a =uu u r r ,AD b =uuu r r ,试用a r 、b r 表示向量EC uu u r.解:(1)联结BD 交EF 于点O ,则OE ∥AD ,得13OE BE AD BA ==, ∴OE =1. 同理:43OF =, ∴EF =73. (2)EC uu u r =EB BC +uu r uu u r =1233AB AD +uuu r uuu r=1233a b +r r .21.(本题满分10分)如图12,在△ABC 中,∠ACB =90°,AB =5,tan A =12,将△ABC 沿直线l 翻折,恰好使点A 与点B 重合,直线l 分别交边AB 、AC 于点D 、E .(1)求△ABC 的面积; (2)求sin ∠CBE 的值.解:(1)在Rt △ABC 中,tanA =12,令BC =a ,AC =2a . 由222AC BC AB +=,即()22225a a +=, 解得5a =, ∴152ABC S AC BC ∆=∙=. (2)由翻折得AE =BE .令AE =x .FEDC B A图11EDCBAl 图12在△BCE 中,有222BC EC EB +=,即()222525x x +-=,解得554x =, 即BE =554,CE =354, ∴sin ∠CBE =35.22.(本题满分10分)如图,在坡AP 的坡脚A 处竖有一根电线杆AB ,为固定电线杆在地面C 处和坡面D 处各装一根等长的引拉线BC 和BD ,过点D 作地面MN 的垂线DH ,H 为垂足,已知点C 、A 、H 在一直线上.若测得AC =7米,AD =12米,坡角为30°.试求电线杆AB 的高度.(精确到0.1米)解:过D 作DT ⊥AB ,垂足为T .在△ADT 中,AD =12,∠DAT =903060︒-︒=︒, ∴AT =12cos 606︒=,12sin 6063DT =︒=. 令AB =x .则在Rt △ABC 中,2227BC x =+,在Rt △BDT 中,()()222663BD x =-+, 由BC =BD ,得227x +=()()22663x -+, 解得957.912x =≈ 答:电线杆AB 的高度为7.9米.23.(本题满分12分)如图14,点D 位于△ABC 边AC 上,已知AB 是AD 与AC 的比例中项.N MDCBAH P图13(1)求证:∠ACB =∠ABD ;(2)现有点E 、F 分别在边AB 、BC 上(如图15),满足∠EDF =∠A +∠C ,当AB =4,BC =5,CA =6时,求证:DE =DF .BD ABBC AC =证:(1)∵AB 是AD 与AC 的比例中项,∴AB ACAD AB =, 又∠A =∠A ,∴△ACB ∽△ABD ,∴∠ACB =∠ABD .(2)由(1)得:AD =283AB AC =,810633CD =-=,又,得:103BD =,即CD =BD .由∠EDF =∠A +∠C =∠A +∠ABD =∠BDC ,得∠EDB =∠FDC .于是在△BDE 与△CDF 中, DBE DCF DB CDBDE CDF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△BDE ≌△CDF , ∴DE =DF .24.(本题满分12分)在平面直角坐标系xOy 中,对称轴平行于y 轴的抛物线过点A (1,0)、B (3,0)和C (4,6). (1)求抛物线的表达式;DCBAFDCBAE图15图14(2)现将此抛物线先沿x 轴方向向右平移6个单位,再沿y 轴方向平移k 个单位,若所得抛物线与x 轴交于点D 、E (点D 在点E 的左边),且使△ACD ∽△AEC (顶点A 、C 、D 依次对应顶点A 、E 、C ),试求k 的值,并注明方向.解:(1)令抛物线的表达式为2y ax bx c =++, 由题意得:09301646a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩,解得:286a b c =⎧⎪=-⎨⎪=⎩,所以抛物线的表达式为2286y x x =-+.(2)由(1)得平移前抛物线的对称轴为直线x =2,顶点为()2,2-.则平移后抛物线的对称轴为直线x =8,令()8,0D a -,其中0a >,则()8,0E a +. 由题意知:AC AEAD AC=,即2AC AD AE =∙, 则()()2241608181a a -+-=--∙+-,解得:1,22a =±,3,494a =±,其中负值舍去,当94a =,不合题意舍去. 所以()6,0D ,()10,0E .O xy图16令平移后抛物线为22y x dx e =++,则222660210100d e d e ⎧⨯++=⎪⎨⨯++=⎪⎩, 解得:32120d e =-⎧⎨=⎩,即平移后抛物线为2232120y x x =-+,平移后抛物线的顶点为()8,8-, 所以k =6,平移方向为向下.25.(本题满分14分)如图17,△ABC 边AB 上点D 、E (不与点A 、B 重合),满足∠DCE =∠ABC .已知∠ACB =90°,AC =3,BC =4.(1)当CD ⊥AB 时,求线段BE 的长;(2)当△CDE 是等腰三角形时,求线段AD 的长;(3)设AD =x ,BE =y ,求y 关于x 的函数关系式,并写出定义域.解:(1)在△ABC 中,∠ACB =90°,AC =3,BC =4,∴AB =5,sinA =45,tanB =34. 当CD ⊥AB 时,△ACD 为直角三角形,∴CD =12sin 5AC A ∙=,2295AD AC CD =-=. 又在Rt △CDE 中,9tan 5DE CD DCE =∙∠=,∴75BE AB AD DE =--=.(2)当△CDE 是等腰三角形时,可知CDE A B DCE ∠>∠>∠=∠,CED B DCE ∠>∠=∠,CBA DECBA备用图图17所以唯有CED CDE ∠=∠. 又B DCE ∠=∠,CDE BDC ∠=∠, ∴BCD CED CDE BDC ∠=∠=∠=∠, ∴BD =BC =4, ∴AD =1.(3)作CH ⊥AB ,垂足为H ,则125CH =,95AH =. 则在Rt △CDH 中,22221895CD CH DH x x =+=-+. 又△BDC ∽△CDE ,得2CD DE DB =∙, 即()()2189555x x x y x -+=---, 解得:8032502552x y x x -⎛⎫=<< ⎪-⎝⎭.。
黄浦区中考数学一模及答案
黄浦区2017学年度第一学期九年级期终调研测试 数学试卷 2018.1(考试时间:100分钟 总分:150分)考生注意:1. 本试卷含三个大题,共25题;2. 答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3. 除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上】1、已知二次函数2y ax bx c =++的图像大致如图所示,则下列关系式中成立的是( )(A )0a >; (B )0b <; (C )0c <; (D )20b a +>.222y x =,则原来抛物线的表达222y x =-; (C )()222y x =+; (D )()222y x =-. 3 )(A )sin AC A AB =; (B )sin BC A AB =; (C )sin AC A BC =; (D )sin BC A AC=. 4、如图,线段AB 与CD 交于点O ,下列条件中能判定AC BD ∥的是( )(A )1OC =,2OD =,3OA =,4OB =; (B )1OA =,2AC =,3AB =,4BD =;(C )1OC =,2OA =,3CD =,4OB =; (D )1OC =,2OA =,3AB =,4CD =.5、如图,向量OA 与OC 均为单位向量,且OA OB ⊥,令n OA OB =+,则||n =( ) (第1题)(A )1; (B ; (C (D )2.6、如图,在ABC △中,80B ∠=︒,40C ∠=︒,直线l 平行于BC ,现将直线l 绕点A 逆时针旋转,所得直线分别交边AB 和AC 于点M 、N ,若AMN △和ABC △相似,则旋转角为( )(A )20︒; (B )40︒; (C )60︒; (D )80︒.二、填空题(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置】7、已知a 、b 、c 满足346ab c ==,则a b c b+-= . 8、如图,点D 、E 、F 分别位于ABC △的三边上,满足DE BC ∥,EF AB ∥,如果:3:2AD DB =,那么:BF FC = .9、已知向量e 为单位向量,如果向量n 与向量e 方向相反,且长度为3,那么向量n = .(用单位向量e 表示)10、已知ABC DEF △∽△,其中顶点A 、B 、C 分别对应顶点D 、E 、F ,如果40A ∠=︒,60E ∠=︒,那么C ∠= 度.11、已知锐角α,满足tan 2α=,则sin α= .12、已知点B 位于点A 北偏东30︒方向,点C 位于点A 北偏西30︒方向,且8AB AC ==千米,那么BC = 千米.13、已知二次函数的图像开口向下,且其图像顶点位于第一象限,请写出一个满足上述条件的二次函数解析式为 (表示为()2y a x m k =++的形式)14、已知抛物线2y ax bx c =++开口向上,一条平行于x 轴的直线截此抛物线于M 、N 两点,那么线段MN 的长度随直线向上平移而变 .(填“大”或“小”)15、如图,矩形DEFG 的边EF 在ABC △的边BC 上,顶点D 、G 分别在边AB 、AC 上.已知6AC =,8AB =,10BC =,设E F x =,矩形DEFG 的面积为y ,则y 关于x 的函数关系式为 (不必写出定义域).16、如图,在ABC △中,90C ∠=︒,6BC =,9AC =,将ABC △平移使其顶点C 位于ABC △的重心G 处,则平移后所得三角形与原ABC △的重叠部分面积是 .17、如图,点E 为矩形ABCD 边BC 上一点,点F 在边CD 的延长线上,EF 与AC 交于点O ,若:1:2CE EB =,:3:4BC AB =,AE AF ⊥,则:CO OA = .18、如图,平面上七个点A 、B 、C 、D 、E 、F 、G ,图中所有的连线长均相等,则cos BAF ∠= .三、解答题(本大题共7题,满分78分)19、(本题满分10分) 计算:2cot 452cos 30sin60tan301︒︒+-︒︒+. 20、(本题满分10分)用配方法把二次函数2264y x x =-++化为()2y a x m k =++的形式,再指出该函数图像的开口方向、对称轴和顶点坐标.21、(本题满分10分)如图,在ABC △中,90ACB ∠=︒,4AC =,3BC =,D 是边AC 的中点,CE BD ⊥交AB 于点E .(1)求tan ACE ∠;(2)求:AE EB .22、(本题满分10分)如图,坡AB 的坡比为1:2.4,坡长130AB =米,坡AB 的高为BT .在坡AB 的正面有一栋建筑物CH ,点H 、A 、T 在同一条地平线MN 上.(1)试问坡AB 的高BT 为多少米? (2)若某人在坡AB 的坡脚A 处和中点D 处,观测到建筑物顶部C 处的仰角分别为60︒和30︒,试求建筑物的高度CH .(精确到米,1.731.41≈) 23、(本题满分12分)如图,BD 是ABC △的角平分线,点E 位于边BC 上,已知BD 是BA 与BE 的比例中项.(1)求证:12CDE ABC ∠=∠E D C B A(2)求证:AD CD AB CE ⋅=⋅24、(本题满分12分)在平面直角坐标系xOy 中,对称轴为直线1x =的抛物线28y ax bx =++过点()2,0-.(1)求抛物线的表达式,并写出其顶点坐标;(2)现将此抛物线沿y 方向平移若干个单位,所得抛物线的顶点为D ,与y 轴的交点为B ,与x 轴负半轴交于点A ,过点B 作x 轴的平行线交所得抛物线于点C ,若AC BD ∥,试求平移后所得抛物线的表达式.25、(本题满分14分)如图,线段5AB =,4AD =,90A ∠=︒,DP AB ∥,点C 为射线DP 上一点,BE 平分ABC ∠交线段AD 于点E (不与端点A 、D 重合).(1)当ABC ∠为锐角,且tan 2ABC ∠=时,求四边形ABCD 的面积;(2)当ABE △与BCE △相似时,求线段CD 的长;(3)设DC x =,DE y =,求y 关于x 的函数关系式,并写出定义域.参考答案1-6、DCBCBB7、738、3:2 9、3e - 10、80 11 12、8 13、()211y x =--+ 14、大 15、21224255y x x =-+ 16、3 17、1130 18、5619、320、2317222y x ⎛⎫=--+ ⎪⎝⎭,对称轴32x =,开口向下,顶点317,22⎛⎫ ⎪⎝⎭ 21、(1)23 (2)8:9 22、(1)50米;(2)89米23、(1)证明略;(2)证明略24、(1)228y x x =-++,顶点()1,9;(2)223y x x =-++25、(1)16;(2)2或45;(3)41010y x ⎫=<<⎪⎝⎭。
黄浦区中考一模英语试卷及答案
2017黄浦区中考一模英语卷(满分150分,考试时间:100分钟)考生注意:本卷有7大题,共94小题。
试题均采用连续编号,所有答案务必按照规定在答题卡上完成,做在试卷上不给分。
Part 1 Listening(第一部分听力)I. Listening Comprehension (听力理解):(共30分)A.Listen and choose the right picture (根据你听到的内容,选出相应的图片):(6分)A B C DE F G H1.________2. ________3. ________4. ________5. ________6. ________B. Listen to the dialogue and choose the best answer to the question you hear (根据你听到的对话和问题,选出最恰当的答案):(8分)7. A) At 5:00. B) At 5:30.C) At 6:00. D) At 6:30.8. A) By bus. B) By taxi.C) By bike. D) By underground.9. A) In the library. B) At the airport.C) In the restaurant. D) At the supermarket.10. A) France. B) Italy.C) Germany. D) England.11. A) $8. B) $20.C) $32. D) $40.12. A) Teacher and student. B) Doctor and patient.C) Father and son. D) Shop assistant and customer.13. A) Because he wasn’t ready. B) Because he was tired.C) Because he attended a meeting. D) Because he was preparing for a meeting.14. A) Linda has two dogs. B) Linda has just moved into a new house.C) Linda doesn’t like her new house. D) Linda’s neighbour is quite noisy.C. Listen to the passage and tell whether the following statements are true or false. (判断下列句子是否符合你所听到的短文内容,符合的用“T”表示,不符合的用“F”表示):(6分)15.Bill works on his parents’ farm all day long.16.In the day, Bill is too busy to have activities for fun.17.At school, Bill is good at math and ancient history.18.Working on the farm makes Bill feel strong but tired.19.Although he likes farm life, Bill wants to learn about the life in big cities.20.The stories about cities seem frightening, so Bill will not leave the farm.D. Listen to the passage and complete the following sentences (听短文,完成下列内容,每空格限填一词):(10分)21.An architect plans what a building will ________ ________.22.Before they plan, architects will learn what the building is ________ ________.ually, Architects draw pictures on paper to ________ ________.24.When they are happy with their drawings, architects make ________ ________.25.Workers work with the archetect to ________ ________ that everything goes well.Part 2 Phonetics, Grammar and vocabulary(第二部分语音、词汇和语法)II. Choose the best answer. (选择最恰当的答案):(共20分)26.Which of the following underlined parts in pronunciation is different from others?A) cake B) main C) map D) stay27.Every child should go to ________ school at the age of six in China.A) a B) an C) the D) /28.Bill met his wife on the campus for the first time ________ the spring of 1971.A) on B) in C) at D) for29.Some students were too busy preparing for their tests to get enough ________.A) sleep B) friend C) hobby D) activity30.We should stop and look ________ ways before crossing the roads.A) all B) either C) neither D) both31.It was long believed that ________ things fall at a faster speed.A) heavy B) heavier C) heaviest D) the heaviest32.London is almost the same ________ other big European cities.A) to B) with C) as D) in33.It is repoorted that two travellers lost ________ way in the desert and almost died ofthirst.A) them B) their C) theirs D) themselves34.Smart phones have become an important part of people’s ________ life.A) daily B) happily C) recently D) quickly35.The caring father seems ________ everything about his children.A) know B) knowing C) to know D) to knowing36.More and more people enjoy ________ a peaceful life in the countryside instead of inbig cities.A) live B) living C) to live D) to living37.English is quite difficult for Julie, ________ but she will not give it up.A) but B) for C) or D) so38.When we landed on Phuket Island last night, it ________ heavily outside.A) rains B) has rained C) is raining D) was raining39.The big fire in the north of Canada ________ more than two hundred houses since lastFriday.A) will destroy B) has destroyed C) had destroyed D) is destroying40.You can go to Yunnan Road ________ you want to try Shanghai local snacks.A) although B) until C) if D) because41.Very soon a nursing home ________ in our neighbourhood for the elderly living alone.A) has set up B) will set up C) has been set up D) will be set up42.With the help of the Internet, news ________ reach every corner of the world.A) can B) need C) must D) ought to43.________exciting it is to see Kobe Bryant playing at the court with my own eyes!A) What B) How C) What an D) How an44.-- Three people lost their life in the traffic accident yesterday.-- ________.A) I don’t think so.B) All right.C) Be careful.D) That’s terrible.45.-- Would you like me to show you around our school campus?-- ________.A) Good idea.B) Well done.C) Yes, please.D) My pleasure.III. Complete the following passage with the words or phrases in the box. Each can only be used once.(将下列单词或词组填入空格。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年黄浦区初三一模教案(5)
一、选择题(本大题共6题,每题4分,满分24分)
1、下列抛物线中,与抛物线2
24y x x =-+具有相同对称轴的是( )
A 、2421y x x =++;
B 、2241y x x =-+;
C 、224y x x =-+;
D 、242y x x =-+.
2、如图,点D 、E 位于△ABC 的两边上,下列条件能判定DE ∥BC 的是( )
A 、AD D
B AE E
C ⋅=⋅; B 、A
D A
E BD EC ⋅=⋅; C 、AD CE AE BD ⋅=⋅; D 、AD BC AB DE ⋅=⋅.
第2题
3、已知一个坡的坡比为i ,坡角为α,则下列等式成立的是( )
A 、sin i α=;
B 、cos i α=;
C 、tan i α=;
D 、cot i α=.
4、已知向量a 和b 都是单位向量,则下列等式成立的是( )
A 、a b =;
B 、2a b +=;
C 、0a b -=;
D 、||||0a b -=.
5、已知二次函数2
y x =,将它的图像向左平移2个单位,再向上平移3个单位,则所得图像的表达式为( )
A 、2(2)3y x =++;
B 、2(2)3y x =+-;
C 、2(2)3y x =-+;
D 、2(2)3y x =--.
6、Word 文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化,如图①、②、③是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有△ABC ,已知AB AC =,当它以底边BC 水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC 以腰AB 水平放置时(如图⑤),它所显示的绝对高度和绝对宽度分别是( )
A 、3.60和2.40;
B 、2.56和3.00;
C 、2.56和2.88;
D 、2.88和3.00.
二、填空题(本大题共12题,每题4分,满分48分)
7、已知线段a 是线段b 、c 的比例中项,如果3a =,2b =,那么c = 8、计算:2(2)3()a b a b --+=
9、已知点P 是线段AB 的黄金分割点(AP BP >),若2AB =,则AP BP -=
10、已知二次函数()y f x =的图像开口向上,对称轴为直线4x =,则(1)f (5)f (填“>”或“<”) 11、计算:=︒⋅︒30tan 60sin
12、已知G 是等腰直角△ABC 的重心,若2AC BC ==,则线段CG 的长为 13、若两个相似三角形的相似比为2:3,则它们的面积比为
14、等边三角形的周长为C ,面积为S ,则面积S 关于周长C 的函数解析式为
15、如图,正方形DEFG 的边EF 在△ABC 的边BC 上,顶点D 、G 分别在边AB 、AC 上,已知6BC =, △ABC 的面积为9,则正方形DEFG 的面积为
16、如图,小明家所在小区的前后两栋楼AB 、CD ,小明在自己所住楼AB 的底部A 处,利用对面楼CD 墙上玻璃(与地面垂直)的反光,测得楼AB 顶部B 处的仰角是α,若t a n 0.45
α=,两楼的间距为30米,
则小明家所住楼AB 的高度是 米
第15题 第16题
17、如图,在△ABC 中,90C ︒
∠=,8AC =,6BC =,D 是边AB 的中点,现有一点P 位于边AC 上, 使得△ADP 与△ABC 相似,则线段AP 的长为
18、如图,菱形ABCD 形内两点M 、N ,满足MB BC ⊥,MD DC ⊥,NB BA ⊥,ND DA ⊥,若四 边形BMDN 的面积是菱形ABCD 面积的
1
5
,则cos A =
第17题 第18题
三、解答题(本大题共7题,满分78分) 19、用配方法把二次函数2
1452
y x x =-+化为2()y a x m k =++的形式,再指出该函数图像的开口方向、
对称轴和顶点坐标.
20、如图,在梯形ABCD 中,AD ∥BC ,3AD =,2BC =,点E 、F 分别在两腰上,且EF ∥AD ,
:2:1AE EB =.
(1)求线段EF 的长;
(2)设AB a =,AD b =,试用a 、b 表示向量EC .
21、如图,在△ABC 中,90ACB ︒
∠=,5AB =,1
tan 2
A =,将△ABC 沿直线l 翻折,恰好使点A 与 点
B 重合,直线l 分别交边AB 、A
C 于点
D 、
E ; (1)求△ABC 的面积; (2)求sin CBE ∠的值;
22、如图,在坡AP 的坡脚A 处竖有一根电线杆AB ,为固定电线杆在地面C 处和坡面D 处各装一根等长 的引拉线BC 和BD ,过点D 作地面MN 的垂线DH ,H 为垂足,已知点C 、A 、H 在一直线上,若测 得7AC =米,12AD =米,坡角为30︒
,试求电线杆AB 的高度.(精确到0.1米)
23、如图,点D 位于△ABC 边AC 上,已知AB 是AD 与AC 的比例中项. (1)求证:ACB ABD ∠=∠;
(2)现有点E 、F 分别在边AB 、BC 上,满足EDF A C ∠=∠+∠,当4AB =,5BC =,6CA =时, 求证:DE DF =.
24、平面直角坐标系xOy 中,对称轴平行于y 轴的抛物线过点(1,0)A 、(3,0)B 和(4,6)C . (1)求抛物线的表达式;
(2)现将此抛物线先沿x 轴方向向右平移6个单位,再沿y 轴方向平移k 个单位,若所得抛物线与x 轴交 于点D 、E (点D 在点E 的左边),且使△ACD ∽△AEC (顶点A 、C 、D 依次对应顶点A 、E 、C ), 试求k 的值,并注明方向.
25、如图,△ABC 边AB 上点D 、E (不与点A 、B 重合)
,满足DCE ABC ∠=∠,90ACB ︒
∠=,3AC =, 4BC =.
(1)当CD AB ⊥时,求线段BE 的长;
(2)当△CDE 是等腰三角形时,求线段AD 的长;
(3)设AD x =,BE y =,求y 关于x 的函数解析式,并写出定义域.
2017年黄浦区初三一模参考答案
一、选择题
二、填空题
3
三、解答题 19、21
(4)32
y x =--,开口向上,对称轴直线4x =,顶点(4,3)-.
20、(1)73EF =; (2)1233
EC a b =+.
21、(1)5; (2)3
5
.
22、7.9米.
23、(1)略; (2)略.
24、(1)2
286y x x =-+; (2)6k =,向下平移6个单位.
25、(1)75BE =; (2)1AD =; (3)3280525x y x -=
-5
(0)2
x <<.。