哈密顿算子与梯度、散度、旋度
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
引进哈密顿算符: 引进哈密顿算符:
∂r ∂ r ∂ r ∇= i + j + k ∂x ∂y ∂z
r ∇⋅ D = ρ r ∇⋅ B = 0 r r r ∂D ∇× H = δ + r ∂t r ∂B ∇× E = − ∂t
标量场的梯度(gradient) 标量场的梯度(gradient)
考虑压强标量场,空间某点的梯度,记 考虑压强标量场,空间某点的梯度, p 定义为如下矢量: 为 ∇ ,定义为如下矢量: 1.大小等于压强在空间给定点单位长度上 1.大小等于压强在空间给定点单位长度上 的最大变化率。 的最大变化率。 2.方向为给定点压强变化率最大的方向 方向为给定点压强变化率最大的方向。 2.方向为给定点压强变化率最大的方向。 笛卡尔坐标系下梯度表达式: 笛卡尔坐标系下梯度表达式:
哈密顿算子与梯度、散度、 哈密顿算子与梯度、散度、旋度
• 英汉对对碰 • • • • Operator▽ Operator▽ Gradient Divergence Curl • • • • 哈密顿算子 梯度(grad) 梯度(grad) 散度(div) 散度(div) 旋度(rot) 旋度(rot)
哈密顿算子与梯度、散度、 哈密顿算子与梯度、散度、旋度
• 哈密顿算子是一种重要的微分算子 • 由它作为工具,可导出一系列美妙的结论, 它把数量场的梯度与矢量场的散度和旋度 简洁地呈现出来 • 麦克斯韦的电磁学方程组微分形式就是用 哈密顿算子表示起来极其简洁、明了 • 可以说,算子简化了复杂的理论,且通过 它可把远离的理论巧妙地联系起来
哈密顿算子的定义与性质
• 定义向量微分算子
∂wenku.baidu.com∂ ∇ = ∂x i + ∂∂y j + ∂z k
• 称为▽( Nabla ,奈 称为▽ 布拉)算子, 布拉)算子, 或哈密 顿( Hamilton ) 算子
• • •
矢量性 微分算子 只对于算子▽ 只对于算子▽ 右边的量发生 右边的量发生 微分作用
∂Dx ∂Dy ∂Dz + + =ρ ∂x ∂y ∂z ∂Bx ∂By ∂BZ + + =0 ∂x ∂y ∂z
∂u ∂u ∇u = ∂x i + ∂ y ∂u j + ∂z k
= gradu
(2) A = P(x, y, z)i + Q(x, y, z) j + R(x, y, z) k, 则
∇⋅ A
∂P ∂Q ∂R = ∂x + ∂ y + ∂z = div A
i
∂ = ∂x ∇× A P
j
∂ ∂y
k
∂ ∂z
对速度矢量场, 对速度矢量场 , 流体微团运动分析证明 速度散度的物理意义是标定流体微团运 动过程中相对体积的时间变化率。 动过程中相对体积的时间变化率。
矢量场的旋度(curl) 矢量场的旋度(curl)
对矢量场, 对矢量场 , 在笛卡尔坐标系下其旋度定 义为: 义为: ir rj kr
r ∇ × V = ∂ ∂x Vx − ∂ ∂y Vy ∂ ∂z Vz r i +
例如 麦克斯韦方程组的微分形式为
∂Hz ∂Hy ∂Dx − = δx + ∂t ∂y ∂z ∂Dy ∂Hx ∂Hz =δy + − ∂z ∂x ∂t ∂Hy ∂Hx ∂DZ − = δz + ∂x ∂y ∂t
∂Ez ∂Ey ∂Bx − =− ∂t ∂y ∂z ∂By ∂Ex ∂Ez − =− ∂z ∂x ∂t ∂Ey ∂Ex ∂Bz − =− ∂x ∂y ∂t
= rot A
Q
R
∇ p = ∂ p ∂ p i+ ∂ x ∂ y j+ ∂ p k ∂ z
梯度和方向导数的关系: 梯度和方向导数的关系:
r dp =∇ p•n ds
矢量场的散度(divergence) 矢量场的散度(divergence)
对矢量场, 对矢量场 , 在笛卡尔坐标系下其散度定 义为: 义为:
r ∂V x ∂V y ∂V z ∇ •V = + + ∂x ∂y ∂z
=
∂Vz ∂y
∂V y ∂z
∂Vx ∂z
−
∂Vz ∂x
r j +
∂V y ∂x
−
∂Vx ∂y
r k
对速度矢量场, 对速度矢量场 , 流体微团运动分析证明 速度旋度等于旋转角速度的两倍。 速度旋度等于旋转角速度的两倍。
哈密顿算子小结
(1) 设u = u(x, y, z), 则