幂的运算(基础)巩固练习

合集下载

幂的运算实数练习题

幂的运算实数练习题

幂的运算实数练习题一、基础题1. 计算:\(2^3\)2. 计算:\((3)^2\)3. 计算:\(\left(\frac{1}{2}\right)^4\)4. 计算:\((2)^5\)5. 计算:\(\left(\frac{3}{4}\right)^3\)二、混合运算题6. 计算:\(2^3 \times 3^2\)7. 计算:\(\frac{4^3}{2^2}\)8. 计算:\((5^2)^3\)9. 计算:\(\left(\frac{2}{3}\right)^2 \times \left(\frac{3}{4}\right)^2\)10. 计算:\(\left(\frac{5}{6}\right)^3 \div \left(\frac{2}{3}\right)^2\)三、指数比较题11. 比较:\(3^4\) 和 \(4^3\)12. 比较:\((2)^5\) 和 \((3)^4\)13. 比较:\(\left(\frac{3}{4}\right)^2\) 和\(\left(\frac{4}{5}\right)^2\)14. 比较:\(\left(\frac{2}{3}\right)^3\) 和\(\left(\frac{3}{4}\right)^3\)15. 比较:\(2^6\) 和 \(3^4\)四、应用题16. 一个正方形的边长为2,求其面积。

17. 一个数的平方是64,求这个数。

18. 一个数的立方是216,求这个数。

19. 如果一个数的平方根是4,求这个数的平方。

20. 如果一个数的立方根是3,求这个数的立方。

五、拓展题21. 计算:\(2^3 + 3^2 4^2\)22. 计算:\(\left(\frac{1}{2}\right)^5 \times\left(\frac{2}{3}\right)^4\)23. 计算:\(\left(\frac{3}{4}\right)^2 \div\left(\frac{4}{5}\right)^2\)24. 计算:\(\left(2^3\right)^2 \times \left(3^2\right)^3\)25. 计算:\(\sqrt[3]{64} \times \sqrt[4]{81}\)六、根式运算题26. 计算:\(\sqrt{49}\)27. 计算:\(\sqrt[3]{27}\)28. 计算:\(\sqrt{64} + \sqrt{25}\)29. 计算:\(\sqrt[4]{16} \times \sqrt[3]{8}\)30. 计算:\(\sqrt{121} \sqrt{81}\)七、分数指数幂题31. 计算:\(4^{\frac{1}{2}}\)32. 计算:\(9^{\frac{3}{2}}\)33. 计算:\(\left(\frac{1}{16}\right)^{\frac{1}{4}}\)34. 计算:\(\left(\frac{1}{25}\right)^{\frac{2}{3}}\)35. 计算:\(32^{\frac{1}{5}}\)八、指数方程题36. 解方程:\(2^x = 32\)37. 解方程:\(3^{x+1} = 27\)38. 解方程:\(\left(\frac{1}{2}\right)^x = 8\)39. 解方程:\(5^{2x1} = 25\)40. 解方程:\(4^{x+2} = \frac{1}{16}\)九、指数不等式题41. 解不等式:\(2^x > 16\)42. 解不等式:\(3^{x1} < 27\)43. 解不等式:\(\left(\frac{1}{3}\right)^x \geq 9\)44. 解不等式:\(5^{2x3} \leq 125\)45. 解不等式:\(4^{x+1} > \frac{1}{64}\)十、综合题46. 已知\(a^2 = 36\),\(b^3 = 64\),计算\(a^3 + b^2\)。

北师大版七年级数学幂的运算(基础)巩固练习(含答案)

北师大版七年级数学幂的运算(基础)巩固练习(含答案)

【巩固练习】一.选择题1.(2015•杭州模拟)计算的x 3×x 2 结果是( )A .x 6B .6xC .x 5D .5xa2.a n 的值是( ). n 2 2A. a nB.C. a 2nD. a3a n n2 8 3.(2016•淮安)下列运算正确的是( ) A .a 2•a 3=a 6 B .(ab )2=a 2b 2 C .(a 2)3=a 5 D .a 2+a 2=a 4 4.下列各题中,计算结果写成 10 的幂的形式,其中正确的是().10 103 B. 1000×1010 = 1030 A. 100× 2 = 10 105 D. 100×1000=104C. 100× 3 = 5.下列计算正确的是().2xy 3 5xy5x yA. xy3 B. D. 2 24 6233x 9x 2xy 8x y C. 242332ab 8a b 6.若 915 成立,则( ).m n A. m =6,n =12 C. m =3,n =5 B. m =3,n =12D. m =6,n =5二.填空题7.(2016•大庆)若a m =2,a n =8,则a m+n =.xa a19 ,则x =_______.8. 若 a3 5 a 9. 已知a 3 ,那么 6 ______. nn aa 3 81 10.若a 8 ,则m =______;若 3,则x =______.3 m x 15332 ______;n 3 2 3 11.______;2 =______.12.若 n 是正整数,且a 2n 10,则(a ) 8(a )2 2=__________.3 n 2 n 三.解答题13.(2015 春•莱芜校级期中)计算:(﹣x )3•x 2n +x •(﹣x ) .﹣1 2n 2 1(x ) (x ) ( a b ) (a b ) 14.(1) x 4 3 ;(2) 2 3 3 3 2 2 ; 3 8 310(0.310 )(0.410 ) b 2a 2a b 3 5 (3) (5)3 5 ;(4) ;25a3a a 36 3 3;x 3n 3x 15.(1)若 x n 35 ,求n 的值.3 b b a b (2)若 a 9 15,求 m 、 n 的值. n m 【答案与解析】一.选择题1. 【答案】C ;【解析】解:原式=x 3+2=x 5,故选 C . 2. 【答案】C ; a a a 2n2 .【解析】a n n 2 nn 23. 【答案】B ;【解析】解:A 、a 2•a 3=a 2 3=a 5,故本选项错误;+ B 、(ab )2=a 2b 2,故本选项正确; C 、(a 2)3=a 2 3=a 6,故本选项错误;×D 、a 2+a 2=2a 2,故本选项错误.故选 B .4. 【答案】C ;10 104 ;1000×1010=1013 ;100×1000=10【解析】100× 2 = 5.5. 【答案】D ;22x y 5xy 25xy 3x 9x4 ;4 .【解析】 xy3 3 ;3 2 2 2 6. 【答案】C ;32ab 8a b 8a b ,3m 9,3n 15,解得 m =3,n =5.【解析】 3 3 n9 15 m n m 二.填空题7. 【答案】16;【解析】解:∵a m =2,a n =8,∴a m+n =a m •a n =16,故答案为:16. 8. 【答案】6; a ,3x 1 19, x 6.【解析】a 3x 9. 【答案】25; 1 192a5 25.【解析】a 6n3 n 2 10.【答案】5;1; aaa ,3 m 8,m 5 3 81 3 ,3 x 1 4, x 1.【解析】a; 3x13m3 m84n 3 11.【答案】64; 9 ; 10; 12.【答案】200;32(a ) 8(a )a 8 a 1000 800 200.【解析】 32 2 2 2 2nn n n 三.解答题13.【解析】解:(﹣x )3•x 2n +x •(﹣x )2 ﹣1 2n =﹣x 2n+2+x 2n+2 =0.14.【解析】(x) (x ) x x x x 37;解:(1) x 3 8 4 3 24 12 1 1 ( a b ) (a b ) a b a b 4 ;(2) 2 3 3 3 2 2 6 9 6 3 27 10(0.310 )(0.410 ) 0.30.41010 101.2108;(3) 3 5 352a 2ab 2a b 2a b 2a b (4) b 3 5 3 5 8 ;2 35a 3aa25a 27a a 2a (5)6 3 312 9 3 12 .15.【解析】解:(1)∵ x nx 3n 3x353x 35∴ x 4n ∴4 n +3=35 ∴n =8(2) m =4,n =33 b b a b 解:∵ an m 9 15 b b a b a b ∴ a 3n 3 m 3 3 n 3m 3 9 15∴3 n =9 且 3 m +3=15 ∴n =3 且 m =4x 3n 3x 15.(1)若 x n 35 ,求n 的值.3 b b a b (2)若 a 9 15,求 m 、 n 的值. n m 【答案与解析】一.选择题1. 【答案】C ;【解析】解:原式=x 3+2=x 5,故选 C . 2. 【答案】C ; a a a 2n2 .【解析】a n n 2 nn 23. 【答案】B ;【解析】解:A 、a 2•a 3=a 2 3=a 5,故本选项错误;+ B 、(ab )2=a 2b 2,故本选项正确; C 、(a 2)3=a 2 3=a 6,故本选项错误;×D 、a 2+a 2=2a 2,故本选项错误.故选 B .4. 【答案】C ;10 104 ;1000×1010=1013 ;100×1000=10【解析】100× 2 = 5.5. 【答案】D ;22x y 5xy 25xy 3x 9x4 ;4 .【解析】 xy3 3 ;3 2 2 2 6. 【答案】C ;32ab 8a b 8a b ,3m 9,3n 15,解得 m =3,n =5.【解析】 3 3 n9 15 m n m 二.填空题7. 【答案】16;【解析】解:∵a m =2,a n =8,∴a m+n =a m •a n =16,故答案为:16. 8. 【答案】6; a ,3x 1 19, x 6.【解析】a 3x 9. 【答案】25; 1 192a5 25.【解析】a 6n3 n 2 10.【答案】5;1; aaa ,3 m 8,m 5 3 81 3 ,3 x 1 4, x 1.【解析】a; 3x13m3 m84n 3 11.【答案】64; 9 ; 10; 12.【答案】200;32(a ) 8(a )a 8 a 1000 800 200.【解析】 32 2 2 2 2nn n n 三.解答题13.【解析】解:(﹣x )3•x 2n +x •(﹣x )2 ﹣1 2n =﹣x 2n+2+x 2n+2 =0.14.【解析】(x) (x ) x x x x 37;解:(1) x 3 8 4 3 24 12 1 1 ( a b ) (a b ) a b a b 4 ;(2) 2 3 3 3 2 2 6 9 6 3 27 10(0.310 )(0.410 ) 0.30.41010 101.2108;(3) 3 5 352a 2ab 2a b 2a b 2a b (4) b 3 5 3 5 8 ;2 35a 3aa25a 27a a 2a (5)6 3 312 9 3 12 .15.【解析】解:(1)∵ x nx 3n 3x353x 35∴ x 4n ∴4 n +3=35 ∴n =8(2) m =4,n =33 b b a b 解:∵ an m 9 15 b b a b a b ∴ a 3n 3 m 3 3 n 3m 3 9 15∴3 n =9 且 3 m +3=15 ∴n =3 且 m =4x 3n 3x 15.(1)若 x n 35 ,求n 的值.3 b b a b (2)若 a 9 15,求 m 、 n 的值. n m 【答案与解析】一.选择题1. 【答案】C ;【解析】解:原式=x 3+2=x 5,故选 C . 2. 【答案】C ; a a a 2n2 .【解析】a n n 2 nn 23. 【答案】B ;【解析】解:A 、a 2•a 3=a 2 3=a 5,故本选项错误;+ B 、(ab )2=a 2b 2,故本选项正确; C 、(a 2)3=a 2 3=a 6,故本选项错误;×D 、a 2+a 2=2a 2,故本选项错误.故选 B .4. 【答案】C ;10 104 ;1000×1010=1013 ;100×1000=10【解析】100× 2 = 5.5. 【答案】D ;22x y 5xy 25xy 3x 9x4 ;4 .【解析】 xy3 3 ;3 2 2 2 6. 【答案】C ;32ab 8a b 8a b ,3m 9,3n 15,解得 m =3,n =5.【解析】 3 3 n9 15 m n m 二.填空题7. 【答案】16;【解析】解:∵a m =2,a n =8,∴a m+n =a m •a n =16,故答案为:16. 8. 【答案】6; a ,3x 1 19, x 6.【解析】a 3x 9. 【答案】25; 1 192a5 25.【解析】a 6n3 n 2 10.【答案】5;1; aaa ,3 m 8,m 5 3 81 3 ,3 x 1 4, x 1.【解析】a; 3x13m3 m84n 3 11.【答案】64; 9 ; 10; 12.【答案】200;32(a ) 8(a )a 8 a 1000 800 200.【解析】 32 2 2 2 2nn n n 三.解答题13.【解析】解:(﹣x )3•x 2n +x •(﹣x )2 ﹣1 2n =﹣x 2n+2+x 2n+2 =0.14.【解析】(x) (x ) x x x x 37;解:(1) x 3 8 4 3 24 12 1 1 ( a b ) (a b ) a b a b 4 ;(2) 2 3 3 3 2 2 6 9 6 3 27 10(0.310 )(0.410 ) 0.30.41010 101.2108;(3) 3 5 352a 2ab 2a b 2a b 2a b (4) b 3 5 3 5 8 ;2 35a 3aa25a 27a a 2a (5)6 3 312 9 3 12 .15.【解析】解:(1)∵ x nx 3n 3x353x 35∴ x 4n ∴4 n +3=35 ∴n =8(2) m =4,n =33 b b a b 解:∵ an m 9 15 b b a b a b ∴ a 3n 3 m 3 3 n 3m 3 9 15∴3 n =9 且 3 m +3=15 ∴n =3 且 m =4x 3n 3x 15.(1)若 x n 35 ,求n 的值.3 b b a b (2)若 a 9 15,求 m 、 n 的值. n m 【答案与解析】一.选择题1. 【答案】C ;【解析】解:原式=x 3+2=x 5,故选 C . 2. 【答案】C ; a a a 2n2 .【解析】a n n 2 nn 23. 【答案】B ;【解析】解:A 、a 2•a 3=a 2 3=a 5,故本选项错误;+ B 、(ab )2=a 2b 2,故本选项正确; C 、(a 2)3=a 2 3=a 6,故本选项错误;×D 、a 2+a 2=2a 2,故本选项错误.故选 B .4. 【答案】C ;10 104 ;1000×1010=1013 ;100×1000=10【解析】100× 2 = 5.5. 【答案】D ;22x y 5xy 25xy 3x 9x4 ;4 .【解析】 xy3 3 ;3 2 2 2 6. 【答案】C ;32ab 8a b 8a b ,3m 9,3n 15,解得 m =3,n =5.【解析】 3 3 n9 15 m n m 二.填空题7. 【答案】16;【解析】解:∵a m =2,a n =8,∴a m+n =a m •a n =16,故答案为:16. 8. 【答案】6; a ,3x 1 19, x 6.【解析】a 3x 9. 【答案】25; 1 192a5 25.【解析】a 6n3 n 2 10.【答案】5;1; aaa ,3 m 8,m 5 3 81 3 ,3 x 1 4, x 1.【解析】a; 3x13m3 m84n 3 11.【答案】64; 9 ; 10; 12.【答案】200;32(a ) 8(a )a 8 a 1000 800 200.【解析】 32 2 2 2 2nn n n 三.解答题13.【解析】解:(﹣x )3•x 2n +x •(﹣x )2 ﹣1 2n =﹣x 2n+2+x 2n+2 =0.14.【解析】(x) (x ) x x x x 37;解:(1) x 3 8 4 3 24 12 1 1 ( a b ) (a b ) a b a b 4 ;(2) 2 3 3 3 2 2 6 9 6 3 27 10(0.310 )(0.410 ) 0.30.41010 101.2108;(3) 3 5 352a 2ab 2a b 2a b 2a b (4) b 3 5 3 5 8 ;2 35a 3aa25a 27a a 2a (5)6 3 312 9 3 12 .15.【解析】解:(1)∵ x nx 3n 3x353x 35∴ x 4n ∴4 n +3=35 ∴n =8(2) m =4,n =33 b b a b 解:∵ an m 9 15 b b a b a b ∴ a 3n 3 m 3 3 n 3m 3 9 15∴3 n =9 且 3 m +3=15 ∴n =3 且 m =4。

幂的运算(基础、典型、易错、压轴)分类专项训练-【2022-2023学年七年级数学下学期核心考点

幂的运算(基础、典型、易错、压轴)分类专项训练-【2022-2023学年七年级数学下学期核心考点

第8章 幂的运算(基础、常考、易错、压轴)分类专项训练【基础】一、单选题(2023春·江苏·七年级专题练习)1. 计算32m m ÷的结果是( )A. mB. m 2C. m 3D. m 5(2023春·江苏·七年级专题练习)2. 已知32816x x ⨯=,则x 的值为( )A. 2B. 3C. 4D. 5(2023春·江苏·七年级专题练习)3. 计算23m m ⋅的结果是( )A. 6mB. 5mC. 6mD. 5m(2023春·江苏·七年级专题练习)4. 计算()32a a - 的结果是( )A. 6aB. 6a -C. 5aD. 5a -(2022春·江苏常州·七年级常州市清潭中学校考期中)5. 下列计算正确的是( )A. 236a a a+= B. 236a a a ⨯=C. 826a a a ÷=D. ()437a a =(2023春·江苏·七年级专题练习)6. 计算:()323·a a -结果为( )A. 9a -B. 9aC. 8aD. 8a (2023春·江苏·七年级专题练习)7. 如果()21633n =,则n 的值为( )A. 3B. 4C. 8D. 14(2022春·江苏连云港·七年级统考期中)8. 目前发现的新冠病毒其直径约为0.00012毫米,则这个数字用科学记数法表示正确的是( )A. 41.210⨯ B. 41.210⨯﹣ C. 50.1210⨯ D. 50.1210⨯﹣(2023春·江苏·七年级专题练习)9. 下列运算正确的是( )A. 842x x x ÷= B. ()239xx =C. 437x x x ⋅= D. ()22222xy x y =(2022秋·江苏·七年级专题练习)10. 式子5555555555++++化简的结果是( )A. 25 B. 55 C. 65 D. 555+二、填空题(2022春·江苏泰州·七年级校考阶段练习)11. 把数字0.0000009用科学记数法表示为 _____.(2023春·江苏·七年级专题练习)12. 计算:()22y -= ___.(2021春·江苏泰州·七年级校考期中)13. 4月9日,以“打造城市硬核 塑造都市功能”为主题的2021泰州城市推介会在中国医药城会展交易中心举行,某出席企业研制的溶液型药物分子直径为0.00000008厘米,该数据用科学记数法表示为______厘米.(2021春·江苏南京·七年级南京钟英中学校考期中)14. 在()()22323xy x y =的运算过程中,依据是______.(2022秋·江苏·七年级校考阶段练习)15. 计算:9999188⎛⎫⨯-= ⎪⎝⎭_____________.三、解答题(2021春·江苏连云港·七年级东海实验中学校考阶段练习)16. 计算:(1)()102132363π-⎛⎫--⨯+- ⎪⎝⎭(2)()()333nnn a a a a +-⋅(2023春·江苏·七年级专题练习)17. 计算:()()()3443x x x x ⋅+-⋅---.(2021春·江苏苏州·七年级苏州草桥中学校考期中)18. 计算:3272(2)a a a a -⋅+÷.(2022春·江苏连云港·七年级校考期中)19. 计算: ()100100133⎛⎫⨯- ⎪⎝⎭.(2022春·江苏宿迁·七年级统考期中)20. 我们都知道“先看见闪电,后听见雷声”,那是因为在空气中光的传播速度比声音快.科学家们发现,光在空气中的传播速度约为8310m/s ⨯,而声音在空气中的传播速度约为300m /s .问:在空气中光的传播速度是声音的多少倍?(结果用科学记数法表示)【常考】一.选择题(共4小题)(2022春•江阴市校级月考)21. 计算(﹣0.25)2022×42021的结果是( )A. ﹣1B. 1C. 0.25D. 44020(2022春•吴江区期中)22. 计算()234a 的正确结果是( )A. 616a B. 516a C. 68a D. 916a (2022春•沛县月考)23. 下列运算正确的是( )A. 2242x x x += B. 236x x x ⋅=C. 236()x x = D. 22(2)4x x -=-(2021春•秦淮区期末)24. 下列计算正确的是( )A. 235a a a += B. 236a a a ⋅= C. ()326a a = D. 624a a a ÷=二.填空题(共8小题)(2022春•亭湖区校级期末)25. H9N2型禽流感病毒的病毒粒子的直径在0.00008毫米~0.00012毫米之间,数据0.00012用科学记数法可以表示为_____.(2022春•邗江区期末)26. 若x +y =3,则2x •2y 的值为_____.(2021春•惠山区校级期中)27. 已知2,4x y m m ==,则x y m +=_____.(2022春•浦口区校级月考)28. 计算:22(2)xy - =____________________.(2022春•泰兴市校级月考)29. 16=a 4=2b ,则代数式a+2b=__.(2022春•广陵区期末)30. 已知a m =3,a n =2,则a 2m ﹣n 的值为_____.(2021春•梁溪区期中)31. 已知2x =3,2y =5,则22x+y-1=_____.(2020春•丹阳市校级月考)32. 若0(1)1x -=,则x 满足条件__________.三.解答题(共8小题)(2021春•高新区校级月考)33. 阅读下面的文字,回答后面的问题:求231005555+++⋯+的值.解:令231005555S =+++⋯+①,将等式两边同时乘以5得到:23410155555S =+++⋯+②,②-①得:101455S =-∴101554S -=即10123100555555.4-+++⋯+=问题:(1)求231002222+++⋯+的值;(2)求404123643+++⋯+⨯的值.(2022春•建邺区校级期中)34. 如果c a b =,那么我们规定(),a b c =,例如:因为328=,所以()2,83=(1)根据上述规定,填空:()3,27= ,()4,1= ,()2,0.25= ;(2)记()()()3,5,3,6,3,30a b c ===.求证:a b c +=.(2021春•东台市月考)35. 若105x =,103y =,求2310x y +的值.(2022春•宝应县校级月考)36. (1)若10x =3,10y =2,求代数式103x +4y 的值.(2)已知:3m +2n ﹣6=0,求8m •4n 的值.(2022春•亭湖区校级月考)37. 阅读下列材料:若32a =,53b =,则,a b 的大小关系是a_____b.(填“<”或“>”)解:因为15355()232a a ===,15533()327b b ===,32>27,所以1515a b >,所以a b >解答下列问题:(1)上述求解过程中,逆用的幂的运算性质是:A.同底数幂的乘法 B.同底数幕的除法C.幂的乘方D.积的乘方(2)已知72x =,93y =,试比较x 与y 的大小.(2020秋•淇滨区校级月考)38. 已知2,3m n x x ==,求32m n x -的值.(2021春•高新区校级月考)39. 已知23,25x y ==.求:(1)2x y +的值;(2)32x 的值;(3)212x y +-的值.(2020•盐城二模)40. 计算:()0112π42-----【易错】一.选择题(共4小题)(2022春•吴江区校级期中)41. 新型冠状病毒呈圆形或者椭圆形,最大直径约0.00000014米,怕酒精,不耐高温,相信我们团结一心,必定早日战胜病毒.用科学记数法表示新冠病毒的直径是( )A. 61410⨯﹣ B. 71410⨯﹣ C. 61.410⨯﹣ D. 71.410⨯﹣(2022春•东海县期末)42. 算式35-可以表示为( )A. ()()()()()33333-⨯-⨯-⨯-⨯- B.1555⨯⨯C. ()()()()()33333-+-+-+-+- D. 555-⨯⨯(2022春•相城区期末)43. 下列运算中,正确的是( )A. 2221a a -= B. ()2222a a = C. 633a a a ÷= D. 428a a a ⋅=(2022春•工业园区校级期中)44. 下列运算正确的是( )A. 326a a a ⋅= B. 323a a a +=C. ()3339a a-=- D. ()236aa -=二.填空题(共7小题)(2022春•丹阳市期末)45. 每个生物携带自身基因的载体是生物细胞的DNA ,DNA 分子的直径只有0.0000002cm ,将0.0000002用科学记数法表示为_________.(2022春•宜兴市校级月考)46. (1)若2•4m •8m =221,则m =_____.(2)若3x ﹣5y ﹣1=0,则103x ÷105y =_______.(2022秋•通州区期中)47. 计算:()02-=__.(2021春•宝应县月考)48. 若()3n n -的值为1,则n 的值为__.当x __时,()0241x -=(2020春•高新区期中)49. 20182019133⎛⎫⨯-= ⎪⎝⎭________.(2022春•相城区校级期末)50. 若416m =,28n =,则22m n -=________.(2019春•滨湖区期中)51. 计算:()2020201940.25⨯-_______.三.解答题(共5小题)(2022春•盐都区月考)52. 若a m =a n (a >0且a ≠1,m ,n 是正整数),则m =n .你能利用上面的结论解决下面的2个问题吗?试试看,相信你一定行!(1)如果2×8x ×16x =222,求x 的值;(2)已知9n +1﹣32n =72,求n 的值.(2022春•江阴市校级月考)53. 计算:()()2020********π-⎛⎫----+- ⎪⎝⎭.(2022春•泰兴市校级月考)54. 世界上最小、最轻的昆虫是膜翅目缨小蜂科的一种卵蜂,体长仅0.021厘米,其质量也只有0.000005克.(1)用科学记数法表示上述两个数据.(2)一个鸡蛋的质量大约是50克,多少只卵蜂的质量和与这个鸡蛋的质量相等?(2020春•沭阳县期中)55. 已知:23a =,25b =,275c =.(1)求22a 的值;(2)求2c b a -+的值.(2022春•江都区月考)56. (1)已知a +3b =4,求3a ×27b 的值;(2)解关于x 的方程4321313155x x x +++⨯=.【压轴】一、单选题(2021春·江苏无锡·七年级宜兴市实验中学校考期中)57. 计算100501111122222⋅⋅⋅-⋅⋅⋅个个其结果用幂的形式可表示为( )A.25033333⋅⋅⋅ 个B.26033333⋅⋅⋅ 个C.27033333⋅⋅⋅ 个D.28033333⋅⋅⋅ 个(2023春·七年级单元测试)58. 设m ,n 是正整数,且m n >,若9m 与9n 的末两位数字相同,则m n -的最小值为( )A. 9B. 10C. 11D. 12(2022春·江苏无锡·七年级校考阶段练习)59. 计算20206060(0.125)(2)-⨯的结果是( )A. 1B.1- C. 8 D. 8-(2022春·江苏·七年级专题练习)60. 观察等式:232222+=-;23422222++=-;2345222222+++=-;…已知按一定规律排列的一组数:1001011021992002,2,2,,2,2 ,若1002S =,用含S 的式子表示这组数据的和是( )A. 22S S -B. 22S S +C. 222S S -D. 2222S S --二、填空题(2022春·江苏扬州·七年级校考阶段练习)61. 已知23a =,26b =,212c =,现给出3个数a ,b ,c 之间的四个关系式:①2a c b +=;②23a b c +=-;③23b c a +=+;④2b a =+.其中,正确的关系式是____(填序号).(2022春·江苏扬州·七年级校考期中)62. 已知5160x =,32160y =,则(1)(1)1(2022)x y ----=__________.(2022秋·江苏南通·七年级南通田家炳中学校考阶段练习)63. 计算:202320222021(0.125)24-⨯⨯=________.(2023春·七年级单元测试)64. 观察等式:232222+=-;23422222++=-;按一定规律排列的一组数:5051529910022222+++++ ,若502a =,则用含a 的代数式表示下列这组数50515299100222.....22++++的和_________.(2022春·江苏·七年级专题练习)65. 已知整数a b c d 、、、满足a b c d <<<且234510000a b c d =,则432a b c d +++的值为_____.三、解答题(2023春·江苏·七年级专题练习)66. 规定两数a ,b 之间的一种运算,记作(a ,b ):如果a c =b ,那么(a ,b )=c .例如:因为23=8,所以(2,8)=3(1)根据上述规定,填空:(5,25)=,(2,1)=,(3,19)=.(2)小明在研究这种运算时发现一个特征:(3n ,4n )=(3,4),并作出了如下的证明:设(3n ,4n )=x ,则(3n )x =4n ,即(3x )n =4n .所以3x =4,即(3,4)=x ,所以(3n ,4n )=(3,4).试解决下列问题:①计算(8,1000)﹣(32,100000);②请你尝试运用这种方法证明下面这个等式:(3,2)+(3,5)=(3,10).(2023春·江苏·七年级专题练习)67. 如果10b =n ,那么b 为n 的“劳格数”,记为b =d (n ).由定义可知:10b =n 与b =d (n )表示b 、n 两个量之间的同一关系.(1)根据“劳格数”的定义,填空:d (10)=____ ,d (10-2)=______;(2)“劳格数”有如下运算性质:若m 、n 为正数,则d (mn )=d (m )+d (n ),d (mn)=d (m )-d (n );根据运算性质,填空:3()()d a d a =________.(a 为正数)(3)若d (2)=0.3010,分别计算d (4);d (5).(2023春·江苏·七年级专题练习)68. 阅读下列材料:按照一定顺序排列着的一列数称为数列,排在第一位的数称为第1项,记为1a ,依此类推,排在第n 位的数称为第n 项,记为n a .一般地,如果一个数列从第二项起,每一项与它前一项的比等于同一个常数,那么这个数列叫做等比数列,这个常数叫做等比数列的公比,公比通常用字母q 表示(0)q ≠.如:数列1,3,9,27,⋯为等比数列,其中11a =,公比为3q =.然后解决下列问题.(1)等比数列3,6,12,⋯的公比q 为 ,第4项是 .(2)如果已知一个等比数列的第一项(设为1)a 和公比(设为)q ,则根据定义我们可依次写出这个数列的每一项:1a ,1a q ,21a q ,31a q ,⋯.由此可得第n 项n a = (用1a 和q 的代数式表示).(3)若一等比数列的公比2q =,第2项是10,求它的第1项与第4项.(4)已知一等比数列的第3项为12,第6项为96,求这个等比数列的第10项.(2023春·七年级单元测试)69. 阅读下列材料:小明为了计算22020202112222+++⋅⋅⋅++的值,采用以下方法:设22020202112222S +++⋅⋅⋅++=①则22021202222222S =++⋅⋅⋅++②②-①得,2022221S S S -==-.请仿照小明的方法解决以下问题:(1)220222++⋅⋅⋅+=______;(2)求2501111222+++⋅⋅⋅++=______;(3)求()()()2100222-+-+⋅⋅⋅+-的和;(请写出计算过程)(4)求2323n a a a na +++⋅⋅⋅+的和(其中0a ≠且1a ≠).(请写出计算过程)(2023春·江苏·七年级专题练习)70. 阅读下列材料,并解决下面的问题:我们知道,加减运算是互逆运算,乘除运算也是互逆运算,其实乘方运算也有逆运算,如我们规定式子328=可以变形为25log 83log 252==,也可以变形为2525=.在式子328=中,3叫做以2为底8的对数,记为2log 8.一般地,若()010n a b a a b =≠>且,>,则n 叫做以a 为底b 的对数,记为()a log log a b b n 即,=且具有性质:()log log log log log log n n a a a a a a b n b a n M N M N ==+=⋅①;②;③,其中0a >且100.a M N ≠,>,>根据上面的规定,请解决下面问题:(1)计算:31010log 1_____log 25log 4=+=, _______(请直接写出结果);(2)已知3log 2x =,请你用含x 的代数式来表示y ,其中3log 72y =(请写出必要的过程).(2022春·江苏·七年级专题练习)71. 阅读下面的文字,回答后面的问题:求231005555+++⋯+的值.解:令231005555S =+++⋯+①,将等式两边同时乘以5得到:23410155555S =+++⋯+②,②-①得:101455S =-∴101554S -=即10123100555555.4-+++⋯+=问题:(1)求231002222+++⋯+的值;(2)求404123643+++⋯+⨯的值.(2022春·江苏宿迁·七年级统考阶段练习)72. (1)你发现了吗?2222()333=⨯,22211133()222322()333-==⨯=⨯,由上述计算,我们发现2223(___(32-;(2)请你通过计算,判断35()4与34(5-之间的关系;(3)我们可以发现:()m b a -____()m a b(0)ab ≠(4)利用以上的发现计算:3477()()155-⨯.(2022秋·江苏·七年级专题练习)73. 观察下面三行单项式:x ,22x ,34x ,48x ,516x ,632x ,⋯;①2x -,24x ,38x -,416x ,532x -,664x ,⋯;②22x ,33x -,45x ,59x -,617x ,733x -,⋯;③根据你发现的规律,解答下列问题:(1)第①行的第8个单项式为_______;(2)第②行的第9个单项式为_______;第③行的第10个单项式为_______;(3)取每行的第9个单项式,令这三个单项式的和为A .当12x =时,求15124A ⎛⎫+ ⎪⎝⎭的值.第8章 幂的运算(基础、常考、易错、压轴)分类专项训练【基础】一、单选题(2023春·江苏·七年级专题练习)【1题答案】【答案】A【解析】【分析】根据同底数幂的除法法则进行解答即可.【详解】解: 3232m m m m -÷==.故选:A .【点睛】此题主要考查了同底数幂的除法运算,底数不变,指数相减,正确掌握相关运算法则是解题关键.(2023春·江苏·七年级专题练习)【2题答案】【答案】B【解析】【详解】根据幂的乘方,可得同底数幂的乘法,根据同底数的幂相等,可得指数相等,可得答案.【解答】解:由题意,得34122222x x x ⋅==,412x =,解得3x =,故选:B .【点睛】本题考查了同底数幂的乘法,利用幂的乘方得出同底数幂的乘法是解题关键.(2023春·江苏·七年级专题练习)【3题答案】【答案】D【解析】【分析】根据同底数幂的乘法法则计算即可.【详解】解:原式235m m +==,故选D .【点睛】本题考查了同底数幂的乘法,掌握m n m n a a a +⋅=是解题的关键.(2023春·江苏·七年级专题练习)【4题答案】【答案】D【解析】【分析】利用同底数幂的乘法的法则进行求解即可.【详解】解:()32a a - =32a +-=5a -.故选:D【点睛】本题主要考查同底数幂的乘法,解答的关键是对同底数幂的乘法的法则的掌握与运用.(2022春·江苏常州·七年级常州市清潭中学校考期中)【5题答案】【答案】C【解析】【分析】依据合并同类项,同底数幂的乘除法法则、幂的乘方法则进行判断,即可得出结论.【详解】解:A .235a a a +=,故错误,不合题意;B .235a a a ⨯=,故错误,不合题意;C .826a a a ÷=,故正确,符合题意;D .()1432a a =,故错误,不合题意;故选:C .【点睛】本题主要考查了合并同类项,同底数幂的乘除法、幂的乘方,掌握幂的运算法则是解题的关键.(2023春·江苏·七年级专题练习)【6题答案】【答案】A【解析】【分析】利用幂的乘方的法则及同底数幂的除法的法则对式子进行运算即可.【详解】解:()323639··a a a a a -=-=-.故选:A .【点睛】本题主要考查了同底数幂的除法,幂的乘方;解答的关键是对相应的运算法则的掌握.(2023春·江苏·七年级专题练习)【7题答案】【答案】C【解析】【分析】把左边的数化成底数是3的幂的形式,然后利用利用相等关系,可得出关于n 的相等关系,解即可.【详解】解:∵()2233nn =,∴21633n =,∴216n =,∴8n =.故选:C .【点睛】本题考查了幂的乘方,掌握幂的乘方运算公式是关键.(2022春·江苏连云港·七年级统考期中)【8题答案】【答案】B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:40.00012 1.210.-=⨯故选:B .【点睛】本题考查用科学记数法表示较小的数,一般形式为10n a -⨯,其中1||10a ≤<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.(2023春·江苏·七年级专题练习)【9题答案】【答案】C【解析】【分析】分别根据同底数幂的乘法,同底数幂的除法、幂的乘方与积的乘方法则对各选项进行计算即可.【详解】解:A .原式4x =,故本选项错误,不合题意;B .原式6x =,故本选项错误,不合题意;C .原式7x =,故本选项正确,符合题意;D .原式224x y =,故本选项错误,不合题意;故选:C .【点睛】本题主要考查了同底数幂的乘法,同底数幂的除法、幂的乘方与积的乘方法,解题的关键是掌握同底数幂的乘法(除法),底数不变,指数相加(减);幂的乘方,底数不变,指数相乘;积的乘方,把每个因式分别乘方,(2022秋·江苏·七年级专题练习)【10题答案】【答案】C【解析】【分析】利用乘方的意义计算即可得到结果.【详解】解:555555655555555++++=⨯=.故选:C .【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.二、填空题(2022春·江苏泰州·七年级校考阶段练习)【11题答案】【答案】7910-⨯【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正整数;当原数的绝对值1<时,n 是负整数.【详解】解:70.0000009910-=´,故答案为:7910-⨯.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数,表示时关键要正确确定a 的值以及n 的值.(2023春·江苏·七年级专题练习)【12题答案】【答案】4y 【解析】【分析】根据幂的乘方法则计算,即可求解.【详解】解:()422y y -=.故答案为:4y .【点睛】本题主要考查了幂的乘方,熟练掌握幂的乘方,底数不变,指数相乘是解题的关键.(2021春·江苏泰州·七年级校考期中)【13题答案】【答案】8810-⨯【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:80.00000008810-=⨯.故答案是:8810-⨯.【点睛】本题考查用科学记数法表示较小的数,一般形式为10n a -⨯,其中110a ≤<,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.(2021春·江苏南京·七年级南京钟英中学校考期中)【14题答案】【答案】积的乘方运算法则【解析】【分析】根据积的乘方法则∶把每一个因式分别乘方,再把所得的幂相乘可得答案.【详解】解∶在()()22323xy x y =的运算过程中,依据是积的乘方运算法则,故答案为∶积的乘方运算法则.【点睛】此题主要考查了单项式乘法和积的乘方,关键是掌握积的乘方计算法则.(2022秋·江苏·七年级校考阶段练习)【15题答案】【答案】-1【解析】【分析】根据积的乘方的逆用进行计算即可得.【详解】解:原式=9918(8⎡⎤⨯-⎢⎥⎣⎦=99(1)-=-1故答案为:-1.【点睛】本题考查了积的乘方的逆用,解题的关键是掌握积的乘方的逆用并正确计算.三、解答题(2021春·江苏连云港·七年级东海实验中学校考阶段练习)【16题答案】【答案】(1)14-(2)332n n a a +-【解析】【分析】(1)根据乘方运算,负指数幂的运算,非零数的零次幂运算法则即可求解;(2)根据幂的乘方,同底数幂的乘法运算法则即可求解.【小问1详解】解:()102132363π-⎛⎫--⨯+- ⎪⎝⎭9231=--⨯+14=-.【小问2详解】解:()()333n n n a a a a +-⋅333n n n a a a +=+-332n n a a +=-.【点睛】本题主要考查整式的混合运算,掌握同底数幂的乘法法则,幂的乘方,负指数幂的运算,非零数的零次幂的运算是解题的关键.(2023春·江苏·七年级专题练习)【17题答案】【答案】0【解析】【分析】根据同底数幂的乘法以及积的乘方计算法则进行求解即可【详解】()()()3443x x x x ⋅+-⋅---()()4343x x x x ⋅+=⋅---4343x x ++-=77x x =-0=.【点睛】本题主要考查了同底数幂的乘法和积的乘方,解题的关键在于能够熟练掌握相关计算法则进行求解.(2021春·江苏苏州·七年级苏州草桥中学校考期中)【18题答案】【答案】57a -【解析】【分析】先计算积的乘方运算,再计算同底数幂的乘法,同底数幂的除法运算,再合并同类项即可.【详解】解:3272(2)a a a a -⋅+÷3258a a a =-+558a a =-+57a =-.【点睛】本题考查的是积的乘方运算,同底数幂的乘法运算,除法运算,合并同类项,掌握以上基础运算的运算法则是解本题的关键.(2022春·江苏连云港·七年级校考期中)【19题答案】【答案】1【解析】【分析】逆用积的乘方公式即可求解.【详解】解:()100100133⎛⎫⨯- ⎪⎝⎭100133⎛⎫=-⨯ ⎪⎝⎭1=.【点睛】本题考查积的乘方,灵活运用积的乘方公式是解题关键.(2022春·江苏宿迁·七年级统考期中)【20题答案】【答案】6110⨯【解析】【分析】先根据同底数幂相除法则计算,再改写成科学记数法表示即可.【详解】解:根据题意得:8310300⨯=82310310⨯⨯ =610=6110⨯答:在空气中光的传播速度是声音的6110⨯倍【点睛】本题考查同底数幂相除,用科学记数法表示较大的数,熟练掌握科学记数法表示较大的数一般形式为10n a ⨯,其中110a ≤<,n 是正整数,正确确定a 的值和n 的值是解题的关键.【常考】一.选择题(共4小题)(2022春•江阴市校级月考)【21题答案】【答案】C【解析】【分析】根据积的乘方的逆运算法则计算即可.【详解】原式()2021202120212021111111144114444444⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯⨯-=-⨯⨯-=-⨯-=-⨯-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭故选:C .【点睛】本题考查积的乘方的逆运算,熟练掌握运算法则是解题的关键.(2022春•吴江区期中)【22题答案】【答案】A【解析】【分析】根据积的乘方运算法则来进行计算,再与选项进行比较求解.【详解】解:()2323264416a a a ⨯==.故选:A .【点睛】本题主要考查了积的乘方.积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘.理解相关知识是解答关键.(2022春•沛县月考)【23题答案】【答案】C【解析】【分析】根据合并同类项,同底数幂的乘法,幂的乘方与积的乘方法则进行计算即可.【详解】解:A 222.2x x x +=,故A 不符合题意;B.235x x x ⋅=,故B 不符合题意;C.236()x x =,故C 符合题意;D.22(2)4x x -=,故D 不符合题意;故选:C .【点睛】本题考查了合并同类项,同底数幂的乘法,幂的乘方与积的乘方,熟练掌握它们的运算法则是解题的关键.(2021春•秦淮区期末)【24题答案】【答案】C【解析】【分析】根据同底数幂的乘法法则,合并同类项法则,同底数幂的除法法则,幂的乘方法则对每个选项进行分析,即可得出答案.【详解】解:∵235a a a +≠,∴选项A 不符合题意;∵232356a a a a a +⋅==≠,∴选项B 不符合题意;∵()326a a =,∴选项C 符合题意;∵624a a a ÷=,∴选项D 不符合题意;故选:C .【点睛】本题考查了同底数幂的乘法,合并同类项,同底数幂的除法,幂的乘方,熟练掌握同底数幂的乘法法则,合并同类项法则,同底数幂的除法法则,幂的乘方法则是解决问题的关键.二.填空题(共8小题)(2022春•亭湖区校级期末)【25题答案】【答案】1.2×10﹣4.【解析】【分析】根据科学记数法的表示方法解答即可.【详解】解:数据0.00012用科学记数法可以表示为1.2×10﹣4.故答案为:1.2×10﹣4.【点睛】本题考查了科学记数法,绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.(2022春•邗江区期末)【26题答案】【答案】8【解析】【分析】运用同底数幂相乘,底数不变指数相加进行计算即可得解.【详解】解:∵x +y =3,∴2x •2y=2x +y=23=8故答案为8.【点睛】本题考查同底数幂的乘法,熟记同底数幂相乘,底数不变指数相加是解题的关键.(2021春•惠山区校级期中)【27题答案】【答案】8【解析】【分析】根据幂的运算法则即可求解.【详解】∵2,4x y m m ==∴x y m +=248x y m m =⨯⨯=故答案为:8.【点睛】此题主要考查幂的运算,解题的关键是熟知其运算法则.(2022春•浦口区校级月考)【28题答案】【答案】244x y 【解析】【分析】根据积的乘方运算以及幂的乘方运算法则求解即可.【详解】解:22(2)xy -()()22222x y =-⋅244x y =,故答案为:244x y .【点睛】本题考查整式运算,涉及到积的乘方运算以及幂的乘方运算,熟练掌握整式运算的法则是解决问题的关键.(2022春•泰兴市校级月考)【29题答案】【答案】10或6【解析】【分析】根据16=24,求出a,b的值,即可解答.【详解】解:∵16=24,16=a4=2b,∴a=±2,b=4,∴a+2b=2+8=10,或a+2b=﹣2+8=6,故答案为:10或6.【点睛】本题考查的知识点是幂的乘方与积的乘方,利用已知条件得出a、b的值是解此题的关键.(2022春•广陵区期末)【30题答案】【答案】4.5【解析】【分析】首先根据幂的乘方的运算方法,求出a2m的值;然后根据同底数幂的除法的逆运算方法,求出a2m-n的值为多少即可.【详解】详解:∵a m=3,∴a2m=32=9,∴a2m-n=292mnaa=4.5.故答案为4.5.【点睛】此题主要考查了同底数幂的除法的逆运算法则,以及幂的乘方的逆运算,同底数幂相除,底数不变,指数相减,要熟练掌握,解答此题的关键是要明确:①底数a≠0,因为0不能做除数;②单独的一个字母,其指数是1,而不是0;③应用同底数幂除法的法则时,底数a可是单项式,也可以是多项式,但必须明确底数是什么,指数是什么.(2021春•梁溪区期中)【31题答案】【答案】45 2【解析】【分析】根据同底数幂的乘法,底数不变,指数相加;同底数幂的除法,底数不变,指数相减,可得答案.【详解】解:22x+y-1=22x ×2y ÷2=(2x )2×2y ÷2=9×5÷2=452故答案为:452.【点睛】本题考查了同底数幂的乘法与除法的逆用,熟记法则并根据法则计算是解题关键.(2020春•丹阳市校级月考)【32题答案】【答案】x ≠1.【解析】【分析】根据0的零次幂没有意义,有意义的条件下,一个数的零次幂等于1求解即可.【详解】解:∵0的零次幂没有意义,有意义的条件下,一个数的零次幂等于1,∴x-1≠0,∴x ≠1,故答案是:x ≠1.【点睛】本题考查了零次幂的性质,掌握零次幂的性质是关键.三.解答题(共8小题)(2021春•高新区校级月考)【33题答案】【答案】(1)1012 2.-(2)()41231.⨯-【解析】【分析】(1)根据已知材料的方法解答即可(2)先把式子化简成与题干中的式子一致的形式再解答.【详解】解:(1)令231002222S =+++⋯+①,将等式两边同时乘以2得到:23410122222S ②,=+++⋯+②-①得:10122S =-∴即2310010122222 2.+++⋯+=-(2)()4023404123643413333+++⋯+⨯=++++⋯+令()2340413333S =++++⋯+①,将等式两边同时乘以3得到:()2341343333S ②,=+++⋯+②-①得:()412431S =-()41S 231.=⨯-【点睛】此题重点考查学生对同底数幂的乘法的应用,能根据材料正确找到做题方法是解题关键.(2022春•建邺区校级期中)【34题答案】【答案】(1)3,0,2-(2)见解析【解析】【分析】(1)根据规定求解即可;(2)根据规定,得到35,36,330a b c ===,进而得到33356303a b a b c +⋅==⨯==,即可得证.【小问1详解】解∵3021327,41,20.254-====∴()3,273=,()4,10=,()2,0.252=-,故答案为:3,0,2-;【小问2详解】解:由题意,得:35,36,330a b c ===,∵33356303a b a b c +⋅==⨯==,∴a b c +=.【点睛】本题考查零指数幂,负整数指数幂,同底数幂的乘法.理解并掌握题干中的规定,熟练掌握相关运算法则,是解题的关键.(2021春•东台市月考)【35题答案】【答案】675【解析】【分析】根据同底数幂的乘法,可得要求的形式,根据幂的乘方,可得答案.【详解】解:因为10x=5,10y=3,所以102x+3y=102x⋅103y=(10x)2⋅(10y)3=52×33=25×27=675.故答案为675.【点睛】本题考查了幂的乘方以及同底数幂的乘法.(2022春•宝应县校级月考)【36题答案】【答案】(1)432;(2)64【解析】【分析】(1)利用同底数幂的乘法、幂的乘方运算法则将原式变形进行求解;(2)利用同底数幂的乘法运算法则将原式变形进行求解.【详解】(1)∵10x=3,10y=2,∴代数式103x+4y=(10x)3×(10y)4=33×24=432;(2)∵3m+2n﹣6=0,∴3m+2n=6,∴8m•4n=23m•22n=23m+2n=26=64.【点晴】考查了同底数幂的乘法运算以及幂的乘方运算,解题关键是熟记运算法则.(2022春•亭湖区校级月考)【37题答案】【答案】1、C,2、x<y【解析】【分析】(1)、根据幂的乘方法则将其化成同指数,然后进行比较大小得出答案;(2)、将x 和y 的指数化成相同,然后进行比较幂的大小从而得出底数的大小.【详解】(1)、C(2)、解∵x 63=(x 7)9=29=512,y 63=(y 9)7=37=2187,2187>512,∴x 63<y 63,∴x <y .(2020秋•淇滨区校级月考)【38题答案】【答案】89【解析】【分析】根据幂的乘方及同底数幂的除法的逆运算,进行运算即可.【详解】解: 32m n x -32m nx x =÷()()32m n x x =÷89=÷89=.【点睛】本题主要考查了幂的乘方及同底数幂的除法的逆运算,熟练掌握幂的乘方及同底数幂的除法的逆运算是解题的关键.(2021春•高新区校级月考)【39题答案】【答案】(1)15(2)27(3)22.5【解析】【分析】(1)根据同底数幂乘法的逆运算计算,即可求解;(2)根据幂的乘方的逆运算,即可求解;(3)根据同底数幂乘法的逆运算,幂的乘方的逆运算,同底数幂除法的逆运算计算,即可求解.【小问1详解】解:2223515x y x y +=⋅=⨯=【小问2详解】解:()33322327x x ===【小问3详解】解:()2212222235222.5x y x y +-=÷⨯=⋅=÷【点睛】本题主要考查了同底数幂乘法的逆运算,幂的乘方的逆运算,同底数幂除法的逆运算,熟练掌握相关运算法则是解题的关键.(2020•盐城二模)【40题答案】【答案】1-.【解析】【分析】先计算负整数指数幂、零指数幂运算,再计算有理数的减法即可.【详解】原式11122=--1=-.【点睛】本题考查了负整数指数幂、零指数幂运算、有理数的减法,熟记各运算法则是解题关键.【易错】一.选择题(共4小题)(2022春•吴江区校级期中)【41题答案】【答案】D【解析】【分析】根据科学记数法的表示方法求解即可.【详解】解:70.00000014 1.410-=⨯.故选:D .【点睛】本题主要考查科学记数法.科学记数法的表示形式为10n a ⨯的形式,其中1<10a ≤,n 为整数.解题关键是正确确定a 的值以及n 的值.(2022春•东海县期末)【42题答案】。

完整版)幂的运算练习题及答案

完整版)幂的运算练习题及答案

完整版)幂的运算练习题及答案幂的运算》练题一、选择题1.计算(-2)^100+(-2)^99所得的结果是()A。

-299 B。

-2 C。

299 D。

22.当m是正整数时,下列等式成立的有()1)a^(2m)=(a^m)^2;(2)a^(2m)=(a^2)^m;(3)a^(2m)=(-a^m)^2;4)a^(2m)=(-a^2)^m.A。

4个 B。

3个 C。

2个 D。

1个3.下列运算正确的是()A。

2x+3y=5xy B。

(-3x^2y)^3=-9x^6y^3C。

D。

(x-y)^3=x^3-y^34.a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是()A。

an与XXX^(2n)与b^(2n)C。

a^(2n+1)与b^(2n+1) D。

a^(2n-1)与(-b^(2n-1))5.下列等式中正确的个数是()①a^5+a^5=a^10;②(-a)^6•(-a)^3•a=a^10;③(-a)^4•(-a)^5=a^20;④25+25=26.A。

0个 B。

1个 C。

2个 D。

3个二、填空题6.计算:x^2•x^3=_________;(-a^2)^3+(-a^3)^2=_________.7.若2^m=5,2^n=6,则2^(m+n)=_________.三、解答题8.已知3x(x^n+5)=3x^n+1+45,求x的值。

9.若1+2+3+…+n=a,求代数式(x^n*y)(x^(n-1)*y^2)(x^(n-2)*y^3)…(x^2*y^(n-1))10.已知2x+5y=3,求4x•3^2y的值.11.已知25^m•2•10^n=57•24,求m、n.12.已知a^x=5,a^(x+y)=25,求a^(x+y)的值.13.若x^m+2n=16,x^n=2,求x^(m+n)的值.14.比较下列一组数的大小:8131,2741,96115.如果a^2+a=0(a≠0),求a^2005+a^2004+12的值.16.已知9^(n+1)-32^n=72,求n的值.18.若(a^n*b^m)^3=a^9*b^15,求2m+n的值.19.计算:a^n-5(a^(n+1)*b^(3m-2))^2+(-a^(n-1)*b^(m-2))^3*(-b^(3m+2))20.若x=3^a*n,y=-2^n,当a=2,n=3时,求a^n*x-a^y的值.21.已知:2x=4y+1,27y=3x-1,求x-y的值.22.计算:(a-b)^(m+3)•(b-a)^2•(a-b)^m•(b-a)^523.若(a^(m+1)*b^(n+2))*(a^(2n-1)*b^(2n))=a^5*b^3,则求m+n的值.用简便方法计算:1)2×422)(-0.25)12×4123)0.52×25×0.1254)[(2×23)÷3]3答案与评分标准一、选择题(共5小题,每小题4分,满分20分)1、计算(-2)100+(-2)99所得的结果是()A、-299B、-2C、299解答:(-2)100+(-2)99=(-2)99×(-2)=-299,故选A。

第8章 幂的运算 苏科版数学七年级下册全章复习与巩固巩固篇(含答案)

第8章 幂的运算 苏科版数学七年级下册全章复习与巩固巩固篇(含答案)

专题8.12 幂的运算(全章复习与巩固)(巩固篇)(专项练习)一、单选题1.有一句谚语说:“捡了芝麻,丢了西瓜”,意思是说有些人办事只抓一些无关紧要的小事,却忽略了具有重大意义的大事.据测算,25万粒芝麻才1000克,那么1粒芝麻有()A.克B.克C.克D.2.若,则等于()A.4B.8C.16D.323.若,,则的值为()A.3B.11C.28D.无法计算4.下列计算中,结果是的是().A.B.C.D.5.下列各式中,计算错误的个数是( )(1);(2);(3);(4)A.1B.2C.3D.46.下列运算正确的是()A.B.C.D.7.若,则的值为()A.B.C.D.8.下面是小颖同学和小芳同学计算(a•a2)3的过程:解:小颖:(a•a2)3=a3•(a2)3…①=a3•a6…②=a9…③小芳:(a•a2)3=(a3)3…①=a9…②则她们步骤依据的运算性质依次分别是( )A.积的乘方,幂的乘方,同底数幂的乘法,同底数幂的乘法,幂的乘方B.幂的乘方,积的乘方,同底数幂的乘法,积的乘方,同底数幂的乘法C.同底数幂的乘法,幂的乘方,积的乘方,幂的乘方,积的乘方D.幂的乘方,同底数幂的乘法,积的乘方,幂的乘方,幂的乘方9.若,,,则,,的大小关系正确的是()A.B.C.D.10.如图,这是亮亮设计的一种运算程序示意图,若开始输入y的值为64,则第2021次输出的结果是()A.4B.2C.1D.0二、填空题11.某种计算机完成一次基本运算的时间用科学记数法可以表示为1.2×10﹣9s,则此数所对应的原数为_______________s.12.已知,则___________13.若,,则_________.14.已知,,,则______.15.计算:____.16.已知,,,则的值是_________.17.已知,则______.18.已知一个正方体棱长是米,则它的体积是________立方米.三、解答题19.计算:(1),(2).20.(1)已知,求n的值.(2)已知,其中a、b、c为正整数,求的值.21.计算:(1) ;(2) ;(3) .22.(1)填空(2)探索(1)中式子的规律,试写出第n个等式,并说明理由.(3)计算;23.阅读:已知正整数a、b、c,显然,当同底数时,指数大的幂也大,若对于同指数,不同底数的两个幂和,当时,则有,根据上述材料,回答下列问题.(1) 比较大小:_________(填写>、<或=).(2) 比较与的大小(写出比较的具体过程).(3) 计算.24.一般地,个相同的因数相乘,记为,其中称为底数,称为指数;若已知,易知,若,则该如何表示?一般地,如果且,那么叫做以为底的对数,记作,其中叫做对数的底数,叫做真数.如,则叫做以为底的对数,记为;故中,.(1) 熟悉下列表示法,并填空:,,,,,,,______,计算:______;(2) 观察(1)中各个对数的真数和对数的值,我们可以发现______;(用对数表示结果)(3) 于是我们猜想:______且,,请你请根据幂的运算法则及对数的含义证明你的结论;(4) 根据之前的探究,直接写出______.参考答案1.C【分析】先求解1粒芝麻的重量,再利用科学记数法的形式表示,科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值时,n是正整数;当原数的绝对值时,n是负整数.解:.故选C.【点拨】此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,n为整数,表示时关键要正确确定a的值以及n的值.2.A【分析】根据同底数幂的乘法进行计算即可求解.解:∵,∴,故选:A.【点拨】本题考查了同底数幂的乘法,掌握同底数幂的乘法的运算法则是解题的关键.3.C【分析】根据同底数幂的乘法的逆用可直接进行求解.解:∵,,∴.故选:C【点拨】本题主要考查同底数幂的乘法的逆用,熟练掌握同底数幂的乘法的逆用是解题的关键.4.D【分析】根据幂的乘方、同底数幂的乘法的运算法则计算后利用排除法求解.解:A、与不是同类项,不能合并,不符合题意;B、,不符合题意;C、与不是同类项,不能合并,不符合题意;D、,符合题意.故选D.【点拨】本题考查了合并同类项、同底数幂的乘法、幂的乘方.需熟练掌握且区分清楚,才不容易出错.5.D【分析】利用合并同类项的法则,同底数幂的乘法的法则,幂的乘方与积的乘方的法则对各项进行运算即可.解:(1),故(1)符合题意;(2),故(2)符合题意;(3)与不属于同类项,不能合并,故(3)符合题意;(4),故(4)符合题意;则计算错误的个数为4个.故选:D.【点拨】本题主要考查幂的乘方与积的乘方,同底数幂的乘法,合并同类项,解答的关键是对相应的运算法则的掌握.6.B【分析】根据同底数幂的乘除、幂的乘方和积的乘方法则逐项计算即可.解:A、,该选项不符合题意;B、,该选项符合题意;C、,该选项不符合题意;D、,该选项不符合题意;故选:B.【点拨】本题考查了同底数幂的乘除、幂的乘方和积的乘方,熟练掌握运算法则是解题的关键.7.A【分析】根据积的乘方进行计算即可求解.解:∵∴,解得:,故选:A.【点拨】本题考查了积的乘方运算,掌握积的乘方运算法则是解题的关键.8.A【分析】根据幂得运算法则进行扽西判断即可.解:由幂的运算法则,有:小颖:①为积的乘方,②为幂的乘方,③为同底数幂的乘法,小芳:①为同底数幂的乘法,②为幂的乘方.【点拨】本题考查幂的运算,掌握同底数幂的乘法,幂的乘方,积的乘方运算法则是关键.9.C【分析】分别计算出a,b,c的值,再比较大小.解:,,,,故选:C.【点拨】本题考查了有理数乘方运算,平方差公式的应用,零指数幂,灵活运用运算法则与公式是解本题的关键.10.C【分析】根据运算程序示意图求解得出规律即可解答.解:根据题意,第一次输出结果为:,第二次输出结果为:,第三次输出结果为:第四次输出结果为:,第五次输出结果为:,……∴从第四次开始,输出的次数为偶数时,输出的结果为4,输出的次数为奇数时,输出的结果为1,∴第2021次输出的结果是1,故选:C.【点拨】本题考查代数式求值、负整数指数幂运算、数字类规律探究,理解题意,利用运算程序示意图进行计算得出结果的规律是解答的关键.11.0.000 000 0012【分析】根据科学记数法表示原数;指数是负几小数点向左移动几位,可得答案.解:∵1.2×10﹣90.000 000 0012.∴此数所对应的原数为0.000 000 0012.故答案为:0.000 000 0012.【点拨】本题考查了科学记数法,指数是负几小数点向左移动几位,确定0的个数是解题关键.12.【分析】根据,即可.解:∵,∴,解得:.故答案为:.【点拨】本题考查幂的知识,解题的关键是掌握的运用.13.【分析】根据同底数幂乘法的逆用得,再把,代入进行计算即可得.解:∵,,∴,故答案为:.【点拨】本题考查了同底数幂乘法的逆用,解题的关键是理解题意,掌握同底数幂乘法的逆用.14.【分析】根据幂的乘方进行化简,利用,底数进行统一,转换成已知形式进行计算即可.解:【点拨】本题考查了乘方的化简求值;将底数转换统一是解题的关键.15.【分析】利用幂的乘方与积的乘方的法则进行计算,即可得出答案;解:故答案为:【点拨】本题考查了幂的乘方与积的乘方,掌握幂的乘方与积的乘方的法则是解决问题的关键.16.【分析】根据同底数幂的乘法与乘法以及幂的乘方进行计算即可求解.解:∵,,,∴,故答案为:.【点拨】本题考查了逆用同底数幂的乘法与乘法以及幂的乘方,掌握同底数幂的乘法与乘法以及幂的乘方是解题的关键.17.【分析】逆向运用同底数幂的乘除法法则求解即可.解:,,,,即,.故答案为:.【点拨】本题主要考查了同底数幂的乘除法,熟练掌握幂的运算法则是解答本题的关键.18.6.4×1010【分析】先根据题意列出算式(4×103)3,再根据幂的乘方与积的乘方求出答案即可.解:正方体的体积是(4×103)3=64×109=6.4×1010(立方米),故答案为:6.4×1010.【点拨】本题考查了幂的乘方与积的乘方,科学记数法-表示较大的数和认识立体图形等知识点,能熟记(am)n=amn和(ab)n=anbn是解此题的关键.19.(1)4;(2).解:(1)原式=;(2)原式=.考点:1.实数的运算;2.整式的混合运算.20.(1)1 (2)1024【分析】(1)将变形为,将分别变形为,然后可计算,即可确定n的值;(2)将3996分解质因数,分别求出a、b、c的值,然后代入计算的值即可.解:(1)∵,∴,∴∴,∴,∴;(2)∵,,∴,,,∴.【点拨】本题主要考查了幂的乘方的逆运算以及代数式代入求值的知识,熟练掌握幂的乘方的逆运算是解题的关键.21.(1)0(2) (3)【分析】(1)根据同底数幂的乘法和幂的乘方以及合并同类项的计算法则求解即可;(2)根据幂的乘方和同底数幂的除法计算法则求解即可;(3)根据同底数幂的乘除法计算法则求解即可.(1)解:;(2)解:;(3)解:.【点拨】本题主要考查了幂的混合运算,熟知相关计算法则是解题的关键.22.(1)0,1,2;(2)2n-2n-1=2n-1,理由见分析;(3)2101-1.【分析】(1)根据乘方的运算法则计算即可;(2)根据式子规律可得2n-2n-1=2n-1,然后利用提2n-1可以证明这个等式成立;(3)设题中的表达式为a,再根据同底数幂的乘法得出2a的表达式,相减即可.解:(1)21-20=2-1=20,22-21=4-2=21,23-22=8-4=22;故答案为:0,1,2;(2)第n个等式为:2n-2n-1=2n-1,∵左边=2n-2n-1=2n-1(2-1)=2n-1,右边=2n-1,∴左边=右边,∴2n-2n-1=2n-1;(3)设a=20+21+22+23+…+299+2100.①则2a=21+22+23+…+299+2100+2101②由②-①得:a=2101-1∴20+21+22+23+…+298+2100=2101-1.【点拨】此题主要考查了探寻数列规律问题,认真观察、仔细思考,善用联想是解决这类问题的方法,注意观察总结规律,并能正确的应用规律,解答此题的关键是判断出:2n-2n-1=2n-1成立.23.(1)>(2) (3) -4【分析】(1)根据“对于同指数,不同底数的两个幂和,当时,则有”比较大小即可;(2)将与化为指数相同的幂,然后再根据“当同指数时,底数大的幂也大”即可进行比较大小;(3)首先将和化为指数相同的幂,将和也化为指数相同的幂,再根据积的乘方逆运算进行运算,然后进行减法运算即可得出答案.(1)解:由题意,对于同指数,不同底数的两个幂和,当时,则有,可知.故答案为:>;(2)∵,,又∵,∴;(3)原式.【点拨】本题主要考查积的乘方的逆运算、幂的大小的比较以及有理数的混合运算等知识,解答的关键是熟练掌握相关的运算法则.24.(1)4,5(2) (3) ,证明见分析(4)【分析】(1)根据指数和对数的定义进行解答即可;(2)由(1)中结果可得答案;(3)利用“指数”和“对数”的定义,以及同底数幂的乘法进行计算即可;(4)利用(3)中的方法以及同底数幂的除法进行计算即可.(1)解:∵,∴,∵,∴,故答案为:,;(2)解:由(1)可得,,故答案为:;(3)解:,证明:设,则,∴,即,∴,∴;故答案为:;(4)解:,证明:设,则,,∴,即,∴,∴.故答案为:.【点拨】本题考查同底数幂的乘除法,掌握同底数幂的乘除法的计算法则以及指数与对数的定义是正确解答的前提.。

幂的运算专项练习50题(有答案)

幂的运算专项练习50题(有答案)

幂的运算专项练习50题(有答案)1.2. (4ab2)2×(﹣a2b)33.(1);(2)(3x3)2•(﹣x);(3) m2•7mp2÷(﹣7mp);(4)(2a﹣3)(3a+1).4.已知a x=2,a y=3求:a x+y与a2x﹣y的值.5.已知3m=x,3n=y,用x,y表示33m+2n.6.若a=255,b=344,c=433,d=522,试比较a,b,c,d 的大小.7.计算:(﹣2 m2)3+m7÷m.8.计算:(2m2n﹣3)3•(﹣mn﹣2)﹣29.计算:.10.(﹣)2÷(﹣2)﹣3+2×(﹣)0.11.已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.12.若2x+5y﹣3=0,求4x•32y的值.13.已知3×9m×27m=316,求m的值.14.若(a n b m b)3=a9b15,求2m+n的值.15.计算:(x2•x3)2÷x6.16.计算:(a2n)2÷a3n+2•a2.17.若a m=8,a n =,试求a2m﹣3n的值.18.已知9n+1﹣32n=72,求n的值.19.已知x m=3,x n=5,求x2m+n的值.20.已知3m=6,9n=2,求32m﹣4n+1的值.21.(x﹣y)5[(y﹣x)4]3(用幂的形式表示)22.若x m+2n=16,x n=2,(x≠0),求x m+n,x m﹣n的值.23.计算:(5a﹣3b4)2•(a2b)﹣2.24.已知:3m•9m•27m•81m=330,求m的值.25.已知x6﹣b•x2b+1=x11,且y a﹣1•y4﹣b=y5,求a+b的值.26.若2x+3y﹣4=0,求9x﹣1•27y.27.计算:(3a2x4)3﹣(2a3x6)2.28.计算:.29.已知16m=4×22n﹣2,27n=9×3m+3,求(n﹣m)2010的值.30.已知162×43×26=22m﹣2,(102)n=1012.求m+n的值.31.(﹣a)5•(﹣a3)4÷(﹣a)2.32.(a﹣2b﹣1)﹣3•(2ab2)﹣2.33.已知x a+b•x2b﹣a=x9,求(﹣3)b+(﹣3)3的值.34.a4•a4+(a2)4﹣(﹣3x4)235.已知(x5m+n y2m﹣n)3=x6y15,求n m的值.36.已知a m=2,a n=7,求a3m+2n﹣a2n﹣3m的值.37.计算:(﹣3x2n+2y n)3÷[(﹣x3y)2]n38.计算:(x﹣2y﹣3)﹣1•(x2y﹣3)2.39.已知a2m=2,b3n=3,求(a3m)2﹣(b2n)3+a2m•b3n的值40.已知n为正整数,且x3n=7,求(3x2n)3﹣4(x2)3n 的值.41.若n为正整数,且x2n=5,求(3x3n)2﹣34(x2)3n 的值.42.计算:(a2b6)n+5(﹣a n b3n)2﹣3[(﹣ab3)2]n.43..44.计算:a n﹣5(a n+1b3m﹣2)2+(a n﹣1b m﹣2)3(﹣b3m+2)45.已知x a=2,x b=6.(1)求x a﹣b的值.(2)求x2a﹣b 的值.46.已知2a•27b•37c=1998,其中a,b,c为整数,求(a﹣b﹣c)1998的值.47.﹣(﹣0.25)1998×(﹣4)1999.48.(1)(2a+b)2n+1•(2a+b)3•(2a+b)n﹣4(2)(x﹣y)2•(y﹣x)5.49.(1)(3x2y2z﹣1)﹣2•(5xy﹣2z3)2.(2)(4x2yz﹣1)2•(2xyz)﹣4÷(yz3)﹣2.50.计算下列各式,并把结果化为正整数指数幂的形式.(1)a2b3(2a﹣1b3);(2)(a﹣2)﹣3(bc﹣1)3;(3)2(2ab2c﹣3)2÷(ab)﹣2.幂的运算50题参考答案:1.解:原式=4﹣1﹣4=﹣1;2. 原式=16a2b4×(﹣a6b3)=﹣2a8b73.解:(1)原式=(﹣5)×3=﹣15;(2)原式=9x6•(﹣x)=﹣9x7;(3)原式=7m3p2÷(﹣7mp)=﹣m2p;(4)原式=6a2+2a﹣9a﹣3=6a2﹣7a﹣3.故答案为﹣15、﹣9x7、﹣m2p、6a2﹣7a﹣3 4.解:a x+y=a x•a y=2×3=6;a2x﹣y=a2x÷a y=22÷3=5.解:原式=33m×32n,=(3m)3×(3n)2,=x3y26.解:a=(25)11=3211;b=(34)11=8111;c=(43)11=4811;d=(52)11=2511;可见,b>c>a>d7.解:(﹣2m2)3+m7÷m,=(﹣2)3×(m2)3+m6,=﹣8m6+m6,=﹣7m68.解:(2m2n﹣3)3•(﹣mn﹣2)﹣2=8m6n﹣9•m﹣2n4= 9.解:原式=(﹣4)+4×1=010.解:原式=÷(﹣)+2×1=﹣2+2=011.解:∵2x=4y+1,∴2x=22y+2,∴x=2y+2 ①又∵27y=3x﹣1,∴33y=3x﹣1,∴3y=x﹣1②联立①②组成方程组并求解得,∴x﹣y=312.解:4x•32y=22x•25y=22x+5y∵2x+5y﹣3=0,即2x+5y=3,∴原式=23=813.解:∵3×9m×27m,=3×32m×33m,=31+5m,∴31+5m=316,∴1+5m=16,解得m=314.解:∵(a n b m b)3=(a n)3(b m)3b3=a3n b3m+3,∴3n=9,3m+3=15,解得:m=4,n=3,∴2m+n=27=12815.解:原式=(x5)2÷x6=x10÷x6=x10﹣6=x416.解:(a2n)2÷a3n+2•a2=a4n÷a 3n+2•a2=a4n﹣3n﹣2•a2=a n﹣2•a2=a n﹣2+2=a n17.解:a2m﹣3n=(a m)2÷(a n)3,∵a m=8,a n =,∴原式=64÷=512.故答案为51218.解:∵9n+1﹣32n=9n+1﹣9n=9n(9﹣1)=9n×8,而72=9×8,∴当9n+1﹣32n=72时,9n×8=9×8,∴9n=9,∴n=119.解:原式=(x m)2•x n=32×5=9×5=4520.解:由题意得,9n=32n=2,32m=62=36,故32m﹣4n+1=32m×3÷34n=36×3÷4=2721.解:(x﹣y)5[(y﹣x)4]3=(x﹣y)5[(x﹣y)4]3=(x﹣y)5•(x﹣y)12=(x﹣y)1722.解:∵x m+2n=16,x n=2,∴x m+2n÷x n=x m+n=16÷2=8,x m+2n÷x3n=x m﹣n=16÷23=223.解:(5a﹣3b4)2•(a2b)﹣2=25a﹣6b8•a﹣4b﹣2=25a﹣10b6=24.解:由题意知,3m•9m•27m•81m,=3m•32m•33m•34m,=3m+2m+3m+4m,=330,∴m+2m+3m+4m=30,整理,得10m=30,解得m=325.解:∵x6﹣b•x2b+1=x11,且y a﹣1•y4﹣b=y5,∴,解得:,则a+b=1026.解:∵2x+3y﹣4=0,∴2x+3y=4,∴9x﹣1•27y=32x﹣2•33y=32x+3y﹣2=32=927.解:(3a2x4)3﹣(2a3x6)2=27a6x12﹣4a6x12=23a6x12 28.解:原式=•a2b3=29.解:∵16m=4×22n﹣2,∴(24)m=22×22n﹣2,∴24m=22n﹣2+2,∴2n﹣2+2=4m,∴n=2m①,∵(33)n27n=9×3m+3,∴(33)n=32×3m+3,∴33n=3m+5,∴3n=m+5②,由①②得:解得:m=1,n=2,∴(n﹣m)2010=(2﹣1)2010=130.解:∵162×43×26=28×26×26=220=22m﹣2,(102)n=102n=1012.∴2m﹣2=20,2n=12,解得:m=11,n=6,∴m+n=11+6=1731.原式=(﹣a)5•a12÷(﹣a)2=﹣a5+12÷(﹣a)2=﹣a17÷a2=﹣a15.32.解:(a﹣2b﹣1)﹣3•(2ab2)﹣2=(a6b3)•(a﹣2b﹣4)=a4b﹣1=33.解:∵x a+b•x2b﹣a=x9,∴a+b+2b﹣a=9,解得:b=3,∴(﹣3)b+(﹣3)3=(﹣3)3+(﹣3)3=2×(﹣3)3=2×(﹣27)=﹣54 34.解:原式=a8+a8﹣9x8,=2a8﹣9x835.解:(x5m+n y2m﹣n)3=x15m+3n y6m﹣3n,∵(x5m+n y2m﹣n)3=x6y15,∴,解得:,则n m=(﹣9)3=﹣24336.解:∵a m=2,a n=7,∴a3m+2n﹣a2n﹣3m=(a m)3•(a n)2﹣(a n)2÷(a m)3=8×49﹣49÷8=37.解:(﹣3x2n+2y n)3÷[(﹣x3y)2]n,=﹣27x6n+6y3n÷(﹣x3y)2n,=﹣27x6n+6y3n÷x6n y2n,=﹣27x6y n38.解:(x﹣2•y﹣3)﹣1•(x2•y﹣3)2,=x2y3•x4y﹣6,=x6y﹣3,=39.解:(a3m)2﹣(b2n)3+a2m•b3n,=(a2m)3﹣(b3n)2+a2m•b3n,=23﹣32+2×3,=540.解:原式=27x6n﹣4x6n=23x6n=23(x3n)2=23×7×7=112741.解:∵x2n=5,∴(3x3n)2﹣34(x2)3n=9x6n﹣34x6n=﹣25(x2n)3=﹣25×53=﹣312542.解:原式=a2n b6n+5a2n b6n﹣3(a2b6)n=6a2n b6n﹣3a2n b6n=3a2n b6n43.解:原式=()50x50•()50x100=x15044.解:原式=a n﹣5(a2n+2b6m﹣4)+a3n﹣3b3m﹣6(﹣b3m+2),=a3n﹣3b6m﹣4+a3n﹣3(﹣b6m﹣4),=a3n﹣3b6m﹣4﹣a3n﹣3b6m﹣4,=045.解:(1)∵x a=2,x b=6,∴x a﹣b=x a÷x b=2÷6=;=(2)∵x a=2,x b=6,∴x2a﹣b=(x a)2÷x b=22÷6=46.解:∵2a•33b⋅37c=2×33×37,∴a=1,b=1,c=1,∴原式=(1﹣1﹣1)1998=147.解:原式=﹣()1998×(﹣4)1998×(﹣4),=﹣()1998×41998×(﹣4),=﹣(×4)1998×(﹣4),=﹣1×(﹣4),=448.解:(1)原式=(2a+b)(2n+1)+3+(n﹣4)=(2a+b)3n;(2)原式=﹣(x﹣y)2•(x﹣y)5=﹣(x﹣y)749.解:(1)原式=()﹣2•()2=•=;(2)原式=•÷=•y2z6=150.解:(1)a2b3(2a﹣1b3)=2a2﹣1b3+3=2ab6;(2)(a﹣2)﹣3(bc﹣1)3,=a6b3c﹣3,=;(3)2(2ab2c﹣3)2÷(ab)﹣2,=2(4a2b4c﹣6)÷(a﹣2b﹣2),=8a4b6c﹣6,。

《幂的运算》练习题及答案

《幂的运算》练习题及答案

《幂的运算》提高练习题一、选择题1、计算(﹣2)100+(﹣2)99所得的结果是()A、﹣299B、﹣2C、299D、22、当m是正整数时,下列等式成立的有( )(1)a2m=(a m)2;(2)a2m=(a2)m;(3)a2m=(﹣a m)2;(4)a2m=(﹣a2)m.A、4个B、3个C、2个D、1个3、下列运算正确的是( )A、2x+3y=5xyB、(﹣3x2y)3=﹣9x6y3C 、D、(x﹣y)3=x3﹣y34、a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是()A、a n与b nB、a2n与b2nC、a2n+1与b2n+1D、a2n﹣1与﹣b2n﹣15、下列等式中正确的个数是()①a5+a5=a10;②(﹣a)6•(﹣a)3•a=a10;③﹣a4•(﹣a)5=a20;④25+25=26.A、0个B、1个C、2个D、3个二、填空题6、计算:x2•x3=_________;(﹣a2)3+(﹣a3)2= _________ .7、若2m=5,2n=6,则2m+2n= _________ .三、解答题8、已知3x(x n+5)=3x n+1+45,求x的值.9、若1+2+3+…+n=a,求代数式(x n y)(x n﹣1y2)(x n﹣2y3)…(x2y n﹣1)(xy n)的值.10、已知2x+5y=3,求4x•32y的值.11、已知25m•2•10n=57•24,求m、n.12、已知a x=5,a x+y=25,求a x+a y的值.13、若x m+2n=16,x n=2,求x m+n的值.14、比较下列一组数的大小.8131,2741,961 15、如果a2+a=0(a≠0),求a2005+a2004+12的值.16、已知9n+1﹣32n=72,求n的值.18、若(a n b m b)3=a9b15,求2m+n的值.19、计算:a n﹣5(a n+1b3m﹣2)2+(a n﹣1b m﹣2)3(﹣b3m+2)20、若x=3a n,y=﹣,当a=2,n=3时,求a n x﹣ay的值.21、已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.22、计算:(a﹣b)m+3•(b﹣a)2•(a﹣b)m•(b﹣a)523、若(a m+1b n+2)(a2n﹣1b2n)=a5b3,则求m+n的值.24、用简便方法计算:(1)(2)2×42(2)(﹣0.25)12×412(3)0。

(完整版)幂的运算练习题

(完整版)幂的运算练习题

8.计算:(x -y )2·(x -y )3-(x -y )4·(y -x )幂的运算练习题(每日一页)基础能力训练】 、同底数幂相乘1.下列语句正确的是( )A .同底数的幂相加,底数不变,指数相乘;B .同底数的幂相乘,底数合并,指数相加;C .同底数的幂相乘,指数不变,底数相加;D .同底数的幂相乘,底数不变,指数相加 2. a 4·a m ·a n =( )A .a4mB . a4(m+n )C . a m+n+4D .am+n+47.计算: a 5·(- a )2·(-a )33.(- x )·(-x )8·(- x )3=( ) A .(- x )11 B .(- x )24 C .x 12 4.下列运算正确的是( ) A .a 2· a 3=a 6 B . a 3+a 3=2a 6 C .a 3a 2=a 65.a ·a 3x 可以写成( ) A .( a 3)x+1 B .(a x )3+1 C .a 3x+16.计算: 100×100m -1×100m+1D.D .-x 12a8-a 4=a D .(a x )2x+1、幂的乘方9.填空:(1)(a8)7= ____ ;(2)(105)m= ___ ;(3)(a m)3= ___ ;(4)(b2m)5= _______ ;(5)(a4)2·(a3)3= ____ .10.下列结论正确的是()A.幂的乘方,指数不变,底数相乘;B.幂的乘方,底数不变,指数相加;C.a 的m 次幂的n 次方等于 a 的m+n 次幂;D.a的m次幂的n次方等于a的mn次幂11.下列等式成立的是()A.(102)3=105B.(a2)2=a4C.(a m)2=a m+2D.(x n)2=x2n 12.下列计算正确的是()A.(a2)3·(a3)2=a6·a6=2a6 B.(-a3)4·a7=a7·a2=a9 2 3 3 2 6 6 12C.(-a )·(-a )=(-a )·(-a )=aD.-(-a3)3·(-a2)2=-(-a9)·a4=a1313.计算:若642×83=2x,求x 的值.、积的乘方14.判断正误:(1)积的乘方,等于把其中一个因式乘方,把幂相乘()(2)(xy)n=x· y n()(3)(3xy)n=3(xy )n()(4)(ab)nm=a m b n()(5)(-abc)n=(-1)n a n b n c n()15.(ab3)4=()A.ab12B.a4b7C.a5b7D.a4b1222.已知 2×8n ×16n =222,求 n 的值.16.(- a 2b 3c )3=( )A .a 6b 9c 3B .-a 5b 6c 3C .-a 6b 9c 3D .- a 2b 3c 317.(- a m+1b 2n )3=( ) A .a 3m+3b 6nB .- a 3m +b 6nC .-a 3m+3b 6nD .-a 3m+1b 8m318.如果( a n b m b )3=a 9b 15,那么 m ,n 的值等于( ) A .m=9,n=- 4 B . m=3,n=4n=6【综合创新训练】 一、综合测试 19.计算:11 m+1 12-m n -1 (- x · y )·(- x y )33、创新应用20.下列计算结果为 m 14 的是( )A .m 2·m 7B .m 7+m 7C .m ·m 6·m 721.若 5m+n =56·5n -m ,求 m 的值.3)(-a m b n c )2·(a m -1b n+1c n )24)[( 12)2] 4·(-23)C . m=4,n=3D .m=9,2)10× 102× 1 000×10n -3D .m ·m 8·m 623.已知x3n=2,求x6n+x4n·x5n的值.24.若2a=3,4b=6,8c=12,试求a,b,c 的数量关系.25.比较6111,3222,2333的大小.26.比较3555,4444,5333的大小.三、巧思妙想1 2 227.(1)( 2 )2× 42412)[(12)2] 3×(23)23)(-0.125)12×(- 1 2)7×(-8)13×3-35)4)-82003×(0.125)2002+(0.25)17×417计宜¢-2) i∞+ (-2)鈴所得的结果是( )A> -2" , -2C、产DK 22、当M是正整数时,下列等式咸立的有( )(1) a2fτ= (a ra) 2; <2) a2m= (a2) m; (3) a2m= ( -a m) 2; ( 4> a lm= (-a2> m.4 4个3个C、2个D* 1个3、下列运尊正确的是( >A S 2x+3γ=5xy B、(■ 3x2y)'二-9χδy3C、4χ3y2∙ ( -py2) χ-2x4y4DS(X-V) 5√-/4、a与b互为相反数,且都不等于0, n为正整数,则下列各组中一定互为相反数的是(A、J与b” B^a2n⅛b2nC、严⅞b2n*tD、孑2⅛-b2n^15、下列等戒中正确的个数是( )O5+a5=a ic∣②(- B ) δ∙ ( - a) 3∙a=a1°J Φ-a4∙ C -3 ) 5≡a2°J Φ5+25≡2δ.AZ个3、1个5 2个D・3个6 、计真;χ2∙χi≡ _____________ ; ( - a") 3+ ( - a2) 2=__________________ ・7 .若2π⅛,2'6,则2决叫_______________ •8、BftI 3κ (χπ+5 ) ≡3χ,Hl+45,求X 的值•9χ ≡ T3+2"求代数式(X ft Y) (χn*1v2) CX n V> - <x2yπ'1) (√)的值•10、已知2x+5y3 √*32v的值・11、已知25πn∙2∙10⅛7∙24≡ 求m、n∙12、EJD a x=5> a x4v=25> 求齐2的值.13、若严叫询χf⅛b求严「的值•14、e⅜ ID a=3» 10p=5> ICi7,试把105写咸底数是IO的幕的形式15、比较下列一组数的大小.8产,2产,95-16、如果a2+a=0 C a?O)J求a2005÷a2c°4+l2 的値.17 > B⅛ 9Γ*∙-32Γ=72^求n 的值.18、若< aπb m k>) 3=a5b15∙求2* 的值・19、计勒厂'<a r V2) 2+ (a n∙V z) 3 ( -b3m*2>迹若心T严, 当a=2 y n=3时,求一ay的值.21 > SJffls 2κ=4v*1> 27y≡3x'1 * 求X-Y 的值.22、i⅛M ≡ Ce e b)"」・(b β a ) J 〈匕―b) Cb-匕)23、若 C a rn*I b IH2) Ca2r∙1b2fl) =a⅛3则求m+n 的值•24用简便方法计算:Cl)(2丄)2χ424(2)( 一0.25〉12×41Z答案:【基础能力训练】1.D 2.D 3.C 4.C 5. C 6. 1002m+1 7.- a 10 8.原式 =(x -y )5-(x -y )4·[-(x -y )]=2(x -y )5 9.(1)a 56 (2) 105m(3)a 3m (4)b 10m (5)a 1710. D 11.B 12.D13.左边 =(82)2×83=84×83=87=(23)7=22115. D 16.C 17.C 18.20.C 解析: A 应为 m 9,B 应为 2m 7,D 应为 m 15.21.由 5m+n =56·5n -m =56+m -n 得 m+n=6+n -m ,即 2m=6,所以 m=3.22.式子 2×8n × 16n 可化简为: 2×23n ×24n =21+7n , 而右边为 222 比较后发现 1+7n=22,n=3.23.x 6n +x 4n ·x 5n =x 6n +x 9n =(x 3n )2+(x 3n )3把x 3n =2 代入可得答案为 12.而右边 =2x ,所以 x=21. 14.(1)× (2)× (3)× ( 4)×5)∨综合创新运用】1119.原式 =(- )×( )·33 y 1+n -1= 1 x 3y n9 原式 =10×102×103×10n -3=101+2+3+n -3=103+n 原式=(-1)2(a m )2·(b n )2·c 2·(a m -1) b 2n ·c 2·a 2m-2b 2n+2c 2n =a 4m -2b 4n+2c 2n+2xm+1·x 2-m·y ·y n -11 m+1+2-m=x 9(2)(3) 2m=a2·(b n+1)2(c n )2 4)原式=(21)2×4·(-1)3·23×3=-(21)829 29=-228=-224.由4=6得22b=6,8c=12即23c=12,所以2a·22b=2× 6=12即2a+2b=12,所以2a+2b=23c,所以a+2b=3c.25.3222=(32)111=9111,2333=(23)111=8111因为9111>8111>6111,所以3222>2333>6111.26.4444>3555>533327.(1)原式=(9)2×42=814(2)原式=(1)6×29=(1×2)6×23=23=8223)原式= -1)12×(-5)7×(-8)13×(-3)98 3 5=-(1)12×813×(5 )7×(3)98 3 5=-(1 ×8)12×8×(5×3)7×(3)2=-8×9728 3 5 5 25 254)原式= 82003×(1 )20 02+(-1)17×4178 4=-(8× 1)2002×8+(-1×4)17=-8+(-1)=-9 84探究学习】设拉面师傅拉n 次就可以变成一碗面条,则2n=256,由于256=28,∴ n=8.。

幂的运算(经典培优题)

幂的运算(经典培优题)

幂的运算(经典培优题)幂的运算⼀、幂的运算定律逆向运⽤1、若52=m ,62=n ,求n m 22+2、已知a m =6,a n =2,求a 2m -3n 的值3、若的值求n m m n b a b b a +=2,)(15934、已知y x y x x a a a a +==+求,25,5的值.5、若3521221))(b a b a b a n n n m =-++(,则求m +n 的值.6、已知,710,510,310===c b a 试把105写成底数是10的幂的形式.⼆、数字为底数的幂的运算及逆运⽤1、如果(9n )2=312,则n 的值是()A .4 B .3 C .2 D .12、若n m n n m x x x ++==求,2,162的值3、已知472510225?=??n m ,求m 、n .4、已知2x +5y -3=0,求y x 324?的值.5、已知723921=-+n n ,求n 的值.6、 7、⽐较下列⼀组数的⼤⼩:61413192781,,三、乘法分配率在幂的运算中的运⽤1.计算9910022)()(-+-所得的结果是()A.-2B.2C.-992 D.9922、已知453)5(31+=++n n x x x ,求x 的值.3、如果的值求12),0(020*******++≠=+a a a a a .四、整体代⼊法及正负号的确定1、下列等式中正确的个数是()2、计算(-2)2007+(-2)2008的结果是() A .22015 B .22007 C .-2 D .-220083、当a<0,n 为正整数时,(-a )5·(-a )2n 的值为()A .正数 B .负数 C .⾮正数 D .⾮负数4、计算(-a 2)5+(-a 5)2的结果是() A .0 B .2a 10 C .-2a 10 D .2a 75、如果单项式y x b a 243--与y x ba +331是同类项,那么这两个单项式的积为()A .y x 46B .y x 23-C .y x 2338- D .y x 46- 6、下列正确的是()A .a 2÷a=a 2 B .(-a )6÷a 2=(-a )3=-a 3 C .a 2÷a 2=a 2-2=0 D .(-a )3÷a 2=-a 7、-m 2·m 3的结果是()A .-m 6 B .m 5 C .m 6 D .-m 58、计算:(-x 2)3÷(-x )3=_____.[(y 2)n ] 3÷[(y 3)n ] 2=______.104÷03÷102=_______.(π-3.14)0=_____. 0122-+= .2332)()(a a -+-= (a 2m ·a n+1)2·(-2a 2)3=9、()23220032232312??? ??-?-???? ??--y x y x 233342)(a a a a a +?+? 22442)()(2a a a ?+?(a -b )6÷(b -a )3.(a -b )2m -1·(b -a )2m ·(a -b )2m+110、⽤简便⽅法计算:11、已知(x -y )·(x -y )3·(x -y )m =(x -y )12,求(4m 2+2m+1)-2(2m 2-m -5)的值.1、某种植物的花粉的直径约为3.5×10-5⽶,⽤⼩数把它表⽰出来.2、新建的北京奥运会体育场——“鸟巢”能容纳91 000位观众,将91 000⽤科学记数法表⽰为A .31091?; B.210910?; C.3101.9?; D.4101.9?。

幂的运算计算100题(专项练习)

幂的运算计算100题(专项练习)

幂的运算计算(专项练习)1.计算:3x 2y 2•(﹣2xy 2z )2. 2.计算:2110213(2020)34π---⎛⎫⎛⎫⨯+-÷ ⎪ ⎪⎝⎭⎝⎭.3.()()32212π312--⎛⎫-÷-++- ⎪⎝⎭. 4.已知a 2m =2,an =3,试求a 4m ﹣3n 的值.5.()4533()a a a ⋅---6.计算:(1)75x x ÷; (2)88m m ÷; (3)107()()a a -÷-; (4)53()()xy xy ÷.7.计算:(1)2()m a ; (2)43()m ⎡⎤-⎣⎦; (3)32()m a -.8.计算:(1)35(2)(2)(2)b b b +⋅+⋅+; (2)23(2)(2)x y y x -⋅- . 9.计算(1)a •a 2•a 3; (2)(﹣2ab )2; (3)(a 3)5; (4)(﹣a )6÷(﹣a )2÷(﹣a )2.10.计算:()32722a a a a -++ 11.(1)()()25343a a a-⋅+- (2)()()2020312-+-+(π-1)0214-⎛⎫+- ⎪⎝⎭(3)32113b a ab ab ab ⎛⎫⎛⎫-+÷- (4)()()()3316842-2ab a b ab a b a b -÷++(1)(﹣2)3+(2020+π)0﹣|﹣3|; (2)(﹣3a 2)3﹣4a 2•a 4+5a 9÷a 3.13.计算:()()()3020******* 3.14π0.12582-⎛⎫----⨯- ⎪⎝⎭.14.计算:|﹣16|﹣20210﹣(14)﹣1. 15.计算:()3322a a a a ⋅⋅+.16.计算:202132()2--+-- 17.计算:()()224323534x x x x ⎡⎤⨯+-÷⎢⎥⎣⎦18.计算:352()()()y y y y ---. 19.计算:2342552()()x x x x x x ⋅⋅⋅+-+-20.计算:(1)()2310 (2)()23n n n -21.计算:(﹣2a )3+(a 4)2÷(﹣a )5. 22.计算:23523()()x x x x ⋅+-+23.化简求值:2333236(2)()5xy x y x y --,其中3x =,1y =.24.计算:()()3202013132π-⎛⎫-+-⨯--- ⎪⎝⎭.(1)()()120201132π-⎛⎫-+-- ⎪⎝⎭; (2)()3248222a a a a a +÷--.26.()()5x y x y -÷-27.计算:(1)()()2332423x x x x ---; (2)()()2434422a a a a a ⋅⋅+-+.28.化简:()2532a a a ⋅--29.计算: (1)()()220201120192-⎛⎫-+-- ⎪⎝⎭(2)()3104224232a a a a a ÷---⋅30.计算:(1)()()131202022-⎛⎫-++- ⎪⎝⎭; (2)()3252a a a -•.31.计算:m 4·m 5+m 10÷m -(m 3)3. 32.计算:345·a a a ÷.33.计算:()235223a a a a a -⋅+÷.34.计算或化简:(1)31202052-⎛⎫--- ⎪⎝⎭; (2)()()23542aa a ÷-; (3)()20192020122⎛⎫⨯- ⎪⎝⎭.35.计算:()2248233a a a a a -÷+.36.计算:(1)()020201113π---++() (2)242()a a ÷37.计算:﹣a 4•a 3•a +(a 2)4﹣(﹣2a 4)2. 38.计算:()42342x x x x -⋅⋅.39.计算: (1)01113()16()422-⨯- (2)322(48)42(2)ab a b ab a a b -÷+-40.计算:5x 2•x 4﹣(﹣2x 3)2+x 8÷x 2 41.计算:(2a 2)2﹣a •3a 3+a 5÷a .42.计算:(1)(﹣t 4)3+(﹣t 2)6; (2)(m 4)2+(m 3)2﹣m (m 2)2•m 3.43.已知:35m =,310n =,求值:(1)23m (2)3m n +45.计算:(﹣310)2021×(313)2020×(﹣1)2022.46.计算: ()20202121π33-⎛⎫-++- ⎪⎝⎭; 47.计算:a •a 7﹣(﹣3a 4)2+a 10÷a 2.48.计算:()232622a a a a a ⋅-+÷. 49.已知254x y +=,求432x y ⋅得值.50.计算:(1)22012()272--+-; (2)2642135(2)5x x x x x ⋅--+÷ (3)253()()[()]a b b a a b -⋅-÷--;(4)先化简,再求值:426223225(3)()(2)a a a a a ⎡⎤⋅-÷÷-⎣⎦,其中5a =-.51.计算:(1)2563()2x x x x -÷+⋅; (2)23322(927)(3)x y x y xy -÷.52.计算:(1)21n n n a a a ++⋅⋅; (2)41122n n a a a a -+⋅+⋅; (3)25()()x y y x -⋅-.53.(1)若3230x y +-=,求279x y ⋅的值; (2)已知36m =,92n =,求2413m n -+的值.54.已知:3x =2,3y =5,求3x+y +32x+3y 的值.55.计算(1)()()()235222--- (2)()()432x x x --- (3)()()()34m n n m n m ---56.计算:2726733333(3)⨯-⨯+⨯-.57.计算:(1)4326()()t t -+-; (2)4232223()()()m m m m m +-.58.(1)已知2,3m n a a ==,求2m n a ++的值; (2)已知48,432x y ==,求x y +的值.59.规定22a b a b *=⨯,求:(1)求13*; (2)若()22164x *+=,求x 的值.60.计算:723()()()a a a -⋅-÷. 61.计算:()242104392a a a a a +÷-.62.(1)计算:()()32224422a a a a a --⋅+-÷;(2)先化简,再求值:()()2222132522x y xy x y xy --+,其中1,2x y =-=.63.计算:()22436·310a a a a +--. 64.计算∶()()()332222223x x x x -+-+⋅65.(1)已知342x x +=,求x 的值, (2)若23n a =,14n b =,求2)n ab -(.66.计算:(1)x •x 3+x 2•x 2. (2)5x 2y •(﹣2xy 2)3. (3)7x 4•x 5•(﹣x )7+5(x 4)4.67.计算:(1)43x x - (2)6253a a a a - (3)()()32x y x y --68.计算:(1)()()320191152π-⎛⎫-⨯--- ⎪⎝⎭(2)()()203511021010210--⎛⎫-⨯⨯-⨯⨯ ⎪⎝⎭(3)322312xy z ⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦ (4)()()()35b a b a a b ---69.(1)已知3×9m ×27m =311,求m 的值. (2)已知2a =3,4b =5,8c =5,求8a +c -2b 的值.70.计算:(1)(x 2y 3)4+(﹣x )8(y 6)2; (2)(9x 2y 3﹣27x 3y 2)÷(3xy )2.71.计算:(1)33223()(2)a b ab ⋅-+- (2)5755(4)0.25-⨯(3)120211()(2)5()42---+-⨯- (4)435()()()p q p q q p -÷-⋅-72.计算:(1)2253224243⎛⎫⎛⎫-⨯--÷- ⎪ ⎪⎝⎭⎝⎭; (2)()()()2020220202021110.50.125833⎡⎤-+-⨯⨯⨯--⎢⎥⎣⎦.73.计算:()()()3352322x xx x -⋅⋅+ 74.计算:()()1020*******π-⎛⎫--+-+- ⎪⎝⎭.75.计算:(1)322x x x x ⋅+⋅; (2)3()pq -;(3)()422a b --; (4)()()4234242a a a a a ⋅⋅++-.76.计算:()()4235243a a a a ⋅++-. 77.2(x 3)2∙x 3-(3x 3)3+(5x )2∙x 778.已知2310x y ,求927x y ⋅的值.(1)()2344x x x x ⋅⋅+- (2)()()32232423a a a a -+--⋅80.计算:()()()()()322323a a a a a---+---81.已知n 为正整数,且24n x =.(1)求()313n n x x +-的值; (2)求()()2232913nn x x -的值.82.计算:()326222()x x x x ⋅+-⋅-83.计算题.(1)()2432a a ⋅. (2)()()()2322252x xy x y ⋅-÷-.84.已知n 为正整数,且x 3n =3,求(4x 3n )2+(-3x 2n )3的值.85.计算:(1)(2 a 3) 3-3 a 3 a 2+3 a 9 (2)(x 3) 3 (-x 4) 3÷(x 2) 3 ÷(x 3) 286.已知1639273m m ⨯⨯=,求()()3232m m m -÷⋅的值.(1)23223(2)x y x y ⋅-; (2)223(2)(35)a ab ab -⋅-.88.(-x )2 • x 3 • (-2y )3 + (-2xy )2 • (-x )3y89.已知:a n =2, a m =3,a k =4,试求a 2n+m-2k 的值.90.计算:(﹣a 2)3+a 2•a 3+a 8÷(﹣a 2) 91.()()2333322a a a a +-+92.用简便方法计算下列各题:(1)201620174( 1.25)5⎛⎫⨯- ⎪⎝⎭ (2)1010112512562⎛⎫⎛⎫⎛⎫⨯-⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭93.若518,53x y ==, 求25x y +的值.94.如果3915(2)8m m n a b a b +=,求m 和n 的值.95.已知84m =,85n =,求328m n +的值. 96.若10m =5,10b =3,求102m+3b 的值.11 97.计算:(1)(12x 4y 6﹣8x 2y 4﹣16x 3y 5)÷4x 2y 3. (2)(34a 2b 3﹣3ab )•23ab(3)(﹣2x 2y 3)+8(x 2)2•(﹣x )2•(﹣y ) (4)(5x 2﹣3x +4)(4x ﹣7).98.已知24a =,26b =,212c =(1)求证:1a b c +-=; (2)求22a b c +-的值.99.已知22342612x x x ++-=⋅,求22(52)47x x --+的值.100.计算:(1)2323()a a a a ⋅⋅+ (2)()3224x y xy ⋅-。

幂的运算基础练习题

幂的运算基础练习题

幂的运算基础练习题一、同底数幂相乘1.下列语句正确的是A.同底数的幂相加,底数不变,指数相乘;B.同底数的幂相乘,底数合并,指数相加;C.同底数的幂相乘,指数不变,底数相加;D.同底数的幂相乘,底数不变,指数相加2.a4·am·an=A.a4m B.a4 C.am+n+ D.am+n+43.·8·3=A.11B.24C.x1D.-x124.下列运算正确的是A.a2·a3=a B.a3+a3=2a C.a3a2=aD.a8-a4=a4 5.a·a3x可以写成A.x+1B.3+1C.a3x+1 D.2x+16.计算:100×100m-1×100m+17.计算:a5·2·38.计算:2·3-4·二、幂的乘方9.填空:7=________;m=_______;3=_______;5=_________;2·3=________.10.下列结论正确的是A.幂的乘方,指数不变,底数相乘;B.幂的乘方,底数不变,指数相加;C.a的m次幂的n次方等于a的m+n次幂;D.a的m次幂的n次方等于a的mn次幂11.下列等式成立的是A.3=10 B.2=a C.2=am+212.下列计算正确的是A.3·2=a6·a6=2a6B.4·a7=a7·a2=a9C.3·2=·=a12D.-3·2=-·a4=a1313.计算:若642×83=2x,求x的值.三、积的乘方14.判断正误:积的乘方,等于把其中一个因式乘方,把幂相乘n=x·ynn=3nnm=ambnn=nanbncn15.4=A.ab1 B.a4b C.a5b7D.a4b12D.2=x2n )16.3=A.a6b9c3B.-a5b6c C.-a6b9c D.-a2b3c317.3=A.a3m+3b6nB.-a3m+b6n C.-a3m+3b6n D.-a3m+1b8m318.如果3=a9b15,那么m,n的值等于A.m=9,n=-4B.m=3,n=C.m=4,n=D.m=9,n=6一、综合测试19.计算:11· 10×102×1 000×10n-33312·[2]·32二、创新应用20.下列计算结果为m14的是A.m2·m B.m7+m C.m·m6·m D.m·m8·m621.若5m+n=56·5n-m,求m的值.22.已知2×8n×16n=222,求n的值.23.已知x3n=2,求x6n+x4n·x5n的值.24.若2a=3,4b=6,8c=12,试求a,b,c的数量关系.25.比较6111,3222,2333的大小.26.比较3555,4444,5333的大小.三、巧思妙想27.×4[2]×4212××13×95-82003×2002+17×417答案:1.D .D .C .C .C .1002m+1 .-a108.原式=5-4·[-]=259.a5 105m a3m b10m a1710.D 11.B 12.D13.左边=2×83=84×83=87=7=221而右边=2x,所以x=21.14.× × × × ∨15.D 16.C 17.C 18.C11 19.原式=×·xm+1·x2-m·y·yn-1311 =xm+1+2-m·y1+n-1=x3yn9原式=10×102×103×10n-3=101+2+3+n-3=103+n 原式=22·2·c2·2·2 =a2m·b2n·c2·a2m-2b2n+2c2n=a4m-2b4n+2c2n+212×4182933×3原式=··2=-·2=-8=-22220.C 解析:A应为m9,B应为2m7,D应为m15.21.由5m+n=56·5n-m=56+m-n得m+n=6+n-m,即2m=6,所以m=3.22.式子2×8n×16n可化简为:2×23n×24n=21+7n,而右边为222比较后发现1+7n=22,n=3.23.x6n+x4n·x5n=x6n+x9n=2+3把x3n=2代入可得答案为12.24.由4=6得22b=6,8c=12即23c=12,所以2a·22b=2×6=12即2a+2b=12,所以2a+2b=23c,所以a+2b=3c.1111115.3222==9111,2333==8111因为9111>8111>6111,所以3222>2333>6111.26.4444>3555>533392)×42=8111 原式=6×29=6×23=23=227.原式=A.-2B.2C.-D.2.当n是正整数时,下列等式成立的有A.4个B.3个C.2个D.1个3.计算:=.4.若,,则=.5.下列运算正确的是A. B.C.D.6.若.7.10.11.计算:12.若13.用简便方法计算:,则求m+n的值.1.32.3..m=2,n=5.10 .87.8.9、1210.1 11. D2. B3. 04. 180.C.12.08.C.210.311. 12. 13. 1 1 14.a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是 A.an与bnB.a2n与b2n C.a2n+1与b2n+1 D.a2n-1与-b2n-1 17.已知9n+1-32n=72,求n的值. 18.若3=a9b15,求2m+n的值.19.计算:an-52+20.若x=3an,y=-12n-1a,当a=2,n=3时,求anx-ay的值.21.已知:2x=4y+1,27y=3x-1,求x-y的值.2.计算:m+3?2?m?23.若=a5b3,则求m+n的值.平面图形的认识提高练习班级:________姓名:___________一、选择题:1、下列图形中,不能通过其中一个四边形平移得到的是:2、在下列各图的△ABCBDCD中,正确画出AC边上的高的图形是:BDACBCBDDAAC3、如图,在宽为20m,长为30m的矩形地面上修建两条同样宽的道路,余下部分作为耕地.根据图中数据,计算耕地的面积为:A、600m2B、551m2C、550m2D、500m24、将一张长方形纸片如图所示折叠后,再展开.如果∠1=56°,那么∠2等于:A、56°第3题图第4题图B、68°1C、62° D、66°5、a、b、c、d四根竹签的长分别为2cm、3cm、4cm、6cm.从中任意选取三根首尾依次相接围成不同的三角形,则围成的三角形共有:A、1个、下列B、2个叙述中C、3个,正确D、4个的有:①三角形的一个外角等于两个内角的和;②一个五边形最多有3个内角是直角;③任意一个三角形的三条高所在的直线相交于一点,且这点一定在三角形的内部;④ΔABC 中,若∠A=2∠B=3∠C,则这个三角形ABC为直角三角形. A、0个、如图,B、1个,则下C、2个列各式中D、3个正确的是OP∥QR∥ST:A、∠1+∠2+∠3=180° C、∠1-∠2+∠3=90°B、∠1+∠2-∠3=90° D、∠2+∠3-∠1=180° ?9、如图是一块电脑主板的示意图,每一转角处都是直角,数据如图所示,则该主板的周长是:A、88mmB、96mmC、80mmD、84mm10、一幅三角板如图所示叠放在一起,则图中∠α的度数为:A、75°B、60°C、65°D、55°二、填空题1、如图,面积为6cm的直角三角形ABC沿BC方向平移至三角形DEF的位置,平移距离是BC的2倍,则图中四边形ACED的面积为_______ cm.A l1第1题图l222第2第3题图2、如图,l1∥l2,AB⊥l2,垂足为O,BC交l2于点E,若∠ABC=140°,则∠1=_____°.、光线a照射到平面镜CD上,然后在平面镜AB和CD之间来回反射,这时光线的入射角等于反射角。

初一(七年级)数学幂的运算精品习题

初一(七年级)数学幂的运算精品习题

第二节 幂的学习与加强训练例1、计算2)3)(1(x 5)2)(2(b - 4)2)(3(xy - n a )3)(4(2 523))(5(b a例2、 计算:1010)41(4)1(⨯ 11109)75.0()98()211)(2(⨯⨯(3)x 2·x 4+(x 3)2; (4)(a 3)3·(a 4)3.例3、地球可以近似地求作球体,如果用r v ⋅分别代表球的体积和半径,那么34=v пr 3,地球的半径大约为3106⨯千米,它的体积大约是多少立方千米?你能计算出太阳的体积大约是多少立方千米吗?(太阳的半径大约是地球的半径的100倍)(写出完整答案)。

习题11.计算:224)3)(1(y x - []43)()2(n m -- 213)())(3(+⋅m m a a(4)28×28 (5)52×53 (6)102×105 (7)a 3·a 3(8)32÷32= (9)103÷103= (10)a m ÷a n =( )(a ≠0) 2. 计算: 72708)125.0)(1(⨯ ][][23)()()2(n m y x y x +⋅+的值求已知26851520,64)3(z y x z y x = 的值求已知n m n m 232,42,32)4(+==3.下面计算中,正确的是( )A.a 2n ÷a n =a 2B.a 2n ÷a 2=a nC.(xy )5÷xy 3=(xy )2D.x 10÷(x 4÷x 2)=x 8. 4.(2×3-12÷2)0等于( )A.0B.1C.12D.无意义5.若x 2m +1÷x 2=x 5,则m 的值为 ( ) A.0 B.1 C.2 D.36.(a 2)4÷a 3÷a 等于( )A.a 5B.a 4C.a 3D.a 27.若32x +1=1,则x = ;若3x =271,则x = .8.x m +n ÷x n =x 3,则m = .9.填空:(1)( )·28=216 (2)( )·53=55 (3)( )·105=107 (4)( )·a 3=a 610 下列计算:(1)a n ·a n =2a n ; (2) a 6+a 6=a 12; (3) c ·c 5=c 5 ; (4) 3b 3·4b 4=12b 12 ; (5) (3xy 3)2=6x 2y 6 中正确的个数为 ( ) A . 0 B . 1 C . 2 D . 3 11 若2m =3,2n =4,则23m-2n 等于 ( ) A .1B .89C .827 D .1627 12、一个长方体形储货仓长为4×103㎝,宽为3×103㎝,高为5×102㎝,求这个货仓的体积。

初二数学复习巩固经典 幂的运算(提高)巩固练习

初二数学复习巩固经典 幂的运算(提高)巩固练习

幂的运算(提高)【巩固练习】一.选择题1.下列计算正确的是( ).A. ()325xx = B.()5315x x = C. 4520x x x ⋅= D.()236x x --= 2.()()2552a a -+-的结果是( ). A.0 B.72a - C.102a D. 102a -3.下列算式计算正确的是( ).A.()33336a a a +== B.()22n n x x -= C.()()3626yy y -=-= D.()33333327c c c ⨯⨯⎡⎤==⎢⎥⎣⎦ 4.31n x +可以写成( ).A.()13n x +B.()31n x +C.3n x x ⋅D.()21n n x +5.下列计算中,错误的个数是( ).①()23636x x = ②()2551010525a b a b -=- ③3328()327x x -=- ④()42367381x y x y = ⑤235x x x ⋅=A. 2个B. 3个C. 4个D. 5个6.93191993+的个位数字是( )A .2B .4C .6D .8二.填空题 7.化简:(1)33331)31(b a ab +-=_______;(2)()()322223a a a +⋅=_______. 8.直接写出结果:(1)()_____n =233n n n a b ; (2)1011x y =()5_____y ⋅;(3)若2,3n n a b ==,则6n =______. 9. 501420031[()]3_____3-⨯=. 10.若23,25,290a b c ===,用a ,b 表示c 可以表示为 .11.已知554433222,3,5,6a b c d ====,那么a 、b 、c 、d 从小到大的顺序是 . 12.若整数a 、b 、c 满足50189827258a b c⎛⎫⎛⎫⎛⎫⋅⋅= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则a = ,b = ,c = .三.解答题 13.若2530x y +-=,求432x y ⋅的值.14.已知1,1x y >>,218157,m n n m n xx x y y y ----⋅=⋅=,求m n 、的值. 15. 已知200080,200025==y x ,则=+y x 11 . 【答案与解析】一.选择题1. 【答案】B ;【解析】()326x x =;459x x x ⋅=;()236x x --=-. 2. 【答案】A ; 【解析】()()255210100a a a a -+-=-=. 3. 【答案】D ; 【解析】()33339a a a ⨯==;()222()()n n n x n x x n ⎧⎪-=⎨-⎪⎩为偶数为奇数;()326y y -=-.4. 【答案】C ;【解析】()1333n n x x ++=;()314n n x x +=;()2212n n n n x x ++=.5. 【答案】B ;【解析】①②④错误.6. 【答案】C ;【解析】93191993+的个位数字等于931993+的个位数字.∵93246469(9)9819=⋅=⋅;1944343(3)3(81)27=⋅=⋅.∴931993+的个位数字等于9+7的个位数字.则93191993+的个位数字是6.二.填空题7. 【答案】33827a b ;628a ; 【解析】33333333311198()33272727ab a b a b a b a b -+=-+=;()()3222266632728a a a a a a +⋅=+=. 8. 【答案】233a b ;22x y ;ab ;【解析】(3)()62323n n n n ab =⨯=⋅=.9. 【答案】13; 【解析】2004200350142003200311111[()]33333333⎛⎫⎛⎫-⨯=⨯=⨯⋅= ⎪ ⎪⎝⎭⎝⎭. 10.【答案】21c a b =++;【解析】()2221903252222221c a b a b c a b ++=⨯⨯=⋅⋅==++Q ∴∴ 11.【答案】a d b c <<<;【解析】()()()()11111111511411311211232,381,5125,636a b c d ========. 12.【答案】a =6,b =6,c =3; 【解析】22232232233235018925233235227258352a b ca ab bc a b c b c a a b a b c +-+--⋅⋅⎛⎫⎛⎫⎛⎫⋅⋅=⋅⋅=⋅⋅= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 336223062203a b c a b c a b a b c +-==⎧⎧⎪⎪+-==⎨⎨⎪⎪-==⎩⎩∴∴.三.解答题13.【解析】解:()()25252543222222x y x y x y x y +⋅=⋅=⋅=∵2530x y +-=,∴253x y +=∴原式=328=.14.【解析】解:∵218157,m n n m n xx x y y y ----⋅=⋅= ∴1847,m n m n x x y y +--+== ∴18m n +-=且47m n -+=∴m =6,n =315.【解析】解:∵252000,802000,20002580x y ===⨯∴()()2525200025802580252000y y x xy y y y y ===⨯=⨯=⨯; 252525200025x y x y y +⋅==⨯ ∴2525xy x y +=;∴xy x y =+,111x y x y xy ++==。

《幂的运算》练习题及答案

《幂的运算》练习题及答案

《幂的运算》提高练习题一、选择题1、计算(﹣2)100+(﹣2)99所得的结果是()A、﹣299B、﹣2C、299D、22、当m是正整数时,下列等式成立的有()(1)a2m=(a m)2;(2)a2m=(a2)m;(3)a2m=(﹣a m)2;(4)a2m=(﹣a2)m.A、4个B、3个C、2个D、1个3、下列运算正确的是()A、2x+3y=5xyB、(﹣3x2y)3=﹣9x6y3C 、D、(x﹣y)3=x3﹣y34、a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是()A、a n与b nB、a2n与b2nC、a2n+1与b2n+1D、a2n﹣1与﹣b2n﹣15、下列等式中正确的个数是()①a5+a5=a10;②(﹣a)6•(﹣a)3•a=a10;③﹣a4•(﹣a)5=a20;④25+25=26.A、0个B、1个C、2个D、3个二、填空题6、计算:x2•x3=_________;(﹣a2)3+(﹣a3)2= _________ .7、若2m=5,2n=6,则2m+2n= _________ .三、解答题8、已知3x(x n+5)=3x n+1+45,求x的值。

9、若1+2+3+…+n=a,求代数式(x n y)(x n﹣1y2)(x n﹣2y3)…(x2y n﹣1)(xy n)的值.10、已知2x+5y=3,求4x•32y的值.11、已知25m•2•10n=57•24,求m、n.12、已知a x=5,a x+y=25,求a x+a y的值.13、若x m+2n=16,x n=2,求x m+n的值.14、比较下列一组数的大小.8131,2741,961 15、如果a2+a=0(a≠0),求a2005+a2004+12的值.16、已知9n+1﹣32n=72,求n的值.18、若(a n b m b)3=a9b15,求2m+n的值.19、计算:a n﹣5(a n+1b3m﹣2)2+(a n﹣1b m﹣2)3(﹣b3m+2)20、若x=3a n,y=﹣,当a=2,n=3时,求a n x﹣ay的值.21、已知:2x=4y+1,27y=3x﹣1,求x﹣y的值.22、计算:(a﹣b)m+3•(b﹣a)2•(a﹣b)m•(b﹣a)523、若(a m+1b n+2)(a2n﹣1b2n)=a5b3,则求m+n的值.24、用简便方法计算:(1)(2)2×42 (2)(﹣0.25)12×412(3)0.52×25×0.125(4)[()2]3×(23)3答案与评分标准一、选择题(共5小题,每小题4分,满分20分)1、计算(﹣2)100+(﹣2)99所得的结果是()A、﹣299B、﹣2C、299D、2考点:有理数的乘方。

幂的运算练习题及答案

幂的运算练习题及答案

幂的运算练习题及答案幂的运算》练题一、选择题1.计算(-2)^100+(-2)^99所得的结果是()A。

-299B。

-2C。

299D。

22.当m是正整数时,下列等式成立的有()1) a^(2m)=(a^m)^2;2) a^(2m)=(a^2)^m;3) a^(2m)=(-a^m)^2;4) a^(2m)=(-a^2)^m.A。

4个B。

3个C。

2个D。

1个3.下列运算正确的是()A。

2x+3y=5xyB。

(-3x^2y)^3=-9x^6y^3C。

(x-y)^3=x^3-y^3D。

无正确答案4.a与b互为相反数,且都不等于0,n为正整数,则下列各组中一定互为相反数的是()A。

an与XXXB。

a^(2n)与b^(2n)C。

a^(2n+1)与b^(2n+1)D。

a^(2n-1)与(-b)^(2n-1)5.下列等式中正确的个数是()①a^5+a^5=a^10;②(-a)^6*(-a)^3*a=a^10;③(-a)^4*(-a)^5=a^20;④25+25=26.A。

0个B。

1个C。

2个D。

3个二、填空题6.计算:x^2*x^3=_________;(-a^2)^3+(-a^3)^2=_________.7.若2^m=5,2^n=6,则2^(m+n)=_________.三、解答题8.已知3x(x^n+5)=3x^(n+1)+45,求x的值。

9.若1+2+3+…+n=a,求代数式(x^n*y)(x^(n-1)*y^2)(x^(n-2)*y^3)…(x^2*y^(n-1))的值。

10.已知2x+5y=3,求4x*3^(2y)的值.11.已知25^m*2^10n=57*2^4,求m、n.12.已知ax=5,ax+y=25,求ax+ay的值.13.若x^m+2n=16,x^n=2,求x^(m+n)的值.14.比较下列一组数的大小:8131,2741,96115.如果a^2+a=0(a≠0),求a^2005+a^2004+12的值.16.已知9^(n+1)-32^n=72,求n的值.17.删除该题18.若(a^n*b^m)^3=a^9*b^15,求2m+n的值.19.计算:a^n-5(a^(n+1)*b^(3m-2))^2+(-a^(n-1)*b^(m-2))^3*(-b^(3m+2))20.若x=3^a*n,y=-2^(n-1),当a=2,n=3时,求a^n*x-a*y的值.21.已知:2x=4y+1,27y=3x-1,求x-y的值.22.计算:(a-b)^(m+3)*(b-a)^2*(a-b)^m*(b-a)^523.若(a^(m+1)*b^(n+2))*(a^(2n-1)*b^(2n))=a^5*b^3,则求m+n的值.用简便方法计算:1)2×422)(-0.25)12×4123)0.52×25×0.1254)[(2×23)3]答案与评分标准一、选择题(共5小题,每小题4分,满分20分)1、计算(-2)100+(-2)99所得的结果是()A、-299B、-2C、299D、2解答:根据负数的奇偶次幂性质,(-2)100为正数,(-2)99为负数,所以(-2)100+(-2)99=-299.因此,选A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

幂的运算(基础)巩固练习
一.选择题
1.(2015•杭州模拟)计算的x 3×x 2结果是( )
A .x 6
B .6x
C . x 5
D .5x 2.2n n a a +⋅的值是( ).
A. 3n a +
B. ()2n n a +
C. 22n a +
D. 8
a 3.(2016•淮安)下列运算正确的是( )
A .a 2•a 3=a 6
B .(ab )2=a 2b 2
C .(a 2)3=a 5
D .a 2+a 2=a 4
4.下列各题中,计算结果写成10的幂的形式,其中正确的是( ).
A. 100×210=310
B. 1000×1010=3010
C. 100×310=510
D. 100×1000=410
5.下列计算正确的是( ).
A.()33xy xy =
B.()222455xy
x y -=- C.()22439x x -=- D.()
323628xy x y -=- 6.若()391528m n a b a b =成立,则( ).
A. m =6,n =12
B. m =3,n =12
C. m =3,n =5
D. m =6,n =5
二.填空题
7.(2016•大庆)若a m =2,a n =8,则a m+n = .
8. 若()319x a a a ⋅=,则x =_______.
9. 已知35n a =,那么6n a =______.
10.若38m a a a ⋅=,则m =______;若313
81x +=,则x =______. 11. ()322⎡⎤-=⎣⎦______; ()33n ⎡⎤-=⎣⎦
______; ()523-=______. 12.若n 是正整数,且210n a
=,则3222()8()n n a a --=__________.
三.解答题 13.(2015春•莱芜校级期中)计算:(﹣x )3•x 2n ﹣1+x 2n •(﹣x )2.
14.(1) 3843()()x x x ⋅-⋅-; (2)2333221
()()3
a b a b -+-; (3)3510(0.310)(0.410)-⨯-⨯⨯⨯; (4)()()3522b a a b --;
(5)()()2
363353a a a -+-⋅; 15.(1)若3335n n x x x +⋅=,求n 的值.
(2)若()3915n m a b b a b ⋅⋅=,求m 、n 的值.
【答案与解析】
一.选择题
1. 【答案】C ;
【解析】解:原式=x 3+2=x 5,故选C .
2. 【答案】C ;
【解析】2222n n n n n a a
a a ++++⋅==.
3. 【答案】B ;
【解析】解:A 、a 2•a 3=a 2+3=a 5,故本选项错误;
B 、(ab )2=a 2b 2,故本选项正确;
C 、(a 2)3=a 2×3=a 6,故本选项错误;
D 、a 2+a 2=2a 2,故本选项错误.故选B .
4. 【答案】C ; 【解析】100×210=410;1000×1010=1310;100×1000=510.
5. 【答案】D ;
【解析】()333xy x y =;()2224525xy x y -=;()2
2439x x -=. 6. 【答案】C ;
【解析】()333915288,39,315m n m n a b
a b a b m n ====,解得m =3,n =5. 二.填空题
7. 【答案】16;
【解析】解:∵a m =2,a n =8,∴a m+n =a m •a n =16,故答案为:16.
8. 【答案】6;
【解析】3119,3119,6x a a x x +=+==.
9. 【答案】25;
【解析】()2632525n n a a ===.
10.【答案】5;1;
【解析】338,38,5m m a a a
a m m +⋅==+==;3143813,314,1x x x +==+==. 11.【答案】64;9n -;103-;
12.【答案】200;
【解析】()()32
322222()8()
81000800200n n n n a a a a --=-=-=. 三.解答题
13.【解析】 解:(﹣x )3•x 2n ﹣
1+x 2n •(﹣x )2
=﹣x 2n+2+x 2n+2
=0.
14.【解析】 解:(1)3843241237()()x x x x x x
x ⋅-⋅-=-⋅⋅=-; (2)233322696411()()327a b a b a b a b -+-=-
+; (3)3535810(0.310)(0.410)0.30.4101010 1.210-⨯-⨯⨯⨯=⨯⨯⨯⨯=⨯;
(4)()
()()()()3535822222b a a b a b a b a b --=---=--; (5)()()236331293125325272a
a a a a a a -+-⋅=-⋅=-. 15.【解析】
解:(1)∵3335n n x x
x +⋅= ∴ 4335n x x +=
∴4n +3=35
∴n =8
(2)m =4,n =3
解:∵()3915n m a b b
a b ⋅⋅= ∴ 333333915n m n m a b b a b a b +⋅⋅=⋅=
∴3n =9且3m +3=15
∴n =3且m =4。

相关文档
最新文档