学而思 小升初专项训练_找规律篇 教师版

合集下载

小升初毕业班找规律专项练习题1.pdf

小升初毕业班找规律专项练习题1.pdf

是(
)A)495
B)497 C)501 D)503
11、填在下面各正方形中的四个数之间都有相同的规律,根据此规律,m 的值是(

04
26
48
6
28
4 22
6 44
m A.38 B.52 C.66
D.74
12、观察下列各式:
1 2 = 1 (1 23 − 01 2)
3
23 = 1 (23 4 −1 23)
2
2
x =?
7. 定义新运算 x ⊕ y = x +1 .求 3⊕(2⊕4)的值. y
3
(第三个图形)
6、图 1 是棱长为 a 的小正方体,图 2、图 3 由这样的小正方体摆放而成.按照这样的方法继续摆放,由上 而下分别叫第一层、第二层、…、第 n 层,第 n 层的小正方体的个数为 s.解答下列问题:
图1
图2
图3
(1)按照要求填表:
n
1
2
3
4

s
1
3
6

(2)写出当 n=10 时,s=(
9、如图,是 2002 年 6 月份的日历.现用一矩形中任意框出 4 个数,请用一个等式表示 a 、 b 、 c 、 d 之
间的关系:

日 一 二 三四 五 六
1
ab cd
2 34 56 78 9 10 11 12 13 14 15 16 17 18 19 20 21 22
23 24 25 26 27 28 29
个.
日 一二 三四 五六
5、用火柴棒按下图中的方式搭图形,按照这种方式搭下去,搭第 个图形需____________根火柴棒. 1 2 34 56 78 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

小升初找规律的数学题

小升初找规律的数学题

小升初找规律的数学题
(原创实用版)
目录
1.小升初数学题的重要性
2.找规律的数学题的特点和分类
3.如何解答找规律的数学题
4.提高解题能力的方法
正文
小升初是孩子们学习生涯中的一个重要转折点,而数学作为一门基础学科,对于孩子们的未来学习和发展起着至关重要的作用。

在小升初的数学题中,找规律的题目尤为重要,它不仅能够检验孩子们对基础知识的掌握程度,还能培养他们的逻辑思维能力和观察能力。

找规律的数学题主要分为两类:一类是数字规律题,这类题目需要孩子们通过观察数字序列,找出其中的规律,并根据规律推算出下一个数字;另一类是图形规律题,这类题目要求孩子们观察图形序列,找出图形之间的规律,并根据规律推断出下一个图形。

对于如何解答找规律的数学题,首先要做的是仔细阅读题目,理解题意。

然后,通过观察数字或图形序列,找出其中的规律。

在寻找规律的过程中,可以尝试从以下几个方面入手:一是数字或图形的排列顺序;二是数字或图形的数量变化;三是数字或图形的形状变化。

找到了规律后,就可以根据规律推算出下一个数字或图形。

为了提高解题能力,首先要扎实掌握基础知识,加强基本功的训练。

其次,要注重培养自己的观察能力和逻辑思维能力,可以通过做一些有趣的智力题或参加数学竞赛来提高。

最后,要养成良好的解题习惯,遇到问题要善于思考,不怕困难,勇于挑战。

总之,在小升初阶段,找规律的数学题对于孩子们的学习和发展具有重要意义。

小升初数学专题训练找规律解题

小升初数学专题训练找规律解题

找规律解题【例题精讲】例1 摆5个三角形,需要11根木棒,摆2019个三角形,需要_____根木棒例2每个圆点代表一个花盆,根据前3个图案,计算出第2019个图案的花盘总数是__个例3 用数字摆成下面的三角形,请你仔细观察后,推断第10行的各数之和是多少?11 11 2 11 3 3 11 4 6 4 1例4 某城市有10条笔直的道路,这10条路没有平行的,每两条都有交叉路口,但没有3条或3条以上的路在一个路口相交,如果每一个交叉路口安排一名交警,共需安排多少名?例5一楼梯共10级,规定每步只能跨上一级或两级,要登上第10级,共有多少种不同走法?例 6 一个三角形全涂上白色,每进行一操作,即把全白三角形分成四个全等的小三角形,中间的小正三角形涂上黑色(如图),经过五次操作后,有____个黑色三角形,白色部分是整个三角形的_____。

例7 计算下面长方形的各数(没有正方形)?小学数学思维之找规律解题练习试卷简介: 全卷共5题,全部为选择题,共100分。

整套试卷注重数学的本质,锻炼思维能力,引导学生发挥想象力和创造力。

找规律解题,通过最简单最基本的情况寻找突破口。

学习建议: 数学是思维的体操,而奥数就是侧重于发展学生的思维能力。

建议学生将课本知识扎实掌握,比如计算能力,同时需要加强对应用题解题思维的发展,提高对常识问题的理解和应用,让自己发现问题、分析问题、解决问题的能力有大的提高!一、单选题(共5道,每道20分)1.将2019名学生排成一排,按1、2、3、4、5、6、7、6、5、4、3、2、1;1、2、3、4、5、6、7、6、5、4、3、2、1……循环报数,则第2019名学生报的数是_______。

A.3B.1C.4D.52.如图,用3根火柴可以摆出第1个正三角形,加上2根火柴可以摆出第2个正三角形,再加上2根火柴可以摆出第3个正三角形……这样继续下去,摆出第51个正三角形共用_______根火柴。

小升初专题(四)--找规律

小升初专题(四)--找规律

知识点梳理找规律是小学阶段常见的题型之一,其类型可分为数字找规律和图形找规律,主要考查学生的数感、归纳和递推的能力。

①数字找规律:先观察数字的趋势,一般地,数字由大到小,算法上必定是乘法、加法。

数字由小到大,算法上必定是除法、减法。

需要注意:如果一列数有小数、分数、百分数等,要先把数化成同一种形式再找规律。

②图形找规律:观察图形的形状、数量、变化趋势,整理成数据表格,对应观察,找出数字的规律。

表格形如:图形 1 2 3 4 ……n 数量注意:有些题型没有直接说明是规律类题型,需要自己尝试找规律,这一类较难。

经典题型【例1】计算:100+99-98-97+96+95-94-93+……+8+7-6-5+4+3-2-1【例2】有一组数:7,12,17,22,27,…请观察这组数的构成规律,用你发现的规律确定第8个数为(), 第n个数为()。

【例3】有一组数:1,4,16,64,……请观察这组数的构成规律,第n个数为()。

【例4】有一组数:2,6,12,20,30,… 请观察这组数的构成规律,用你发现的规律确定第8个数为( ),第n 个数为( )。

【例5】有一数列1、2、4、7、11、16、22、29……那么这个数列中第2006个数除以5的余数为多少?【例6】如果2!=2×3,3!=3×4×5,5!=5×6×7×8×9。

请你按此规则计算【例7】△△□ ☆★ △△□ ☆★ △△□ ☆★……左起第30个 图形 是( ),当 □ ☆★一共有18个时, △最多有( )个 。

【例8】一串分数:91,76,75,74,73,72,71,54,53,52,51,32,31 ……其中的第2000个分数是多少?【例9】若3111-=a ,1211a a -=,2311a a -= (2014)的值为多少?【例10】如果将八个数14,30,33,35,39,75,143,169平均分成两组,使得这两组数的乘积相等,那么分组的情况是什么?【例11】已知3223222⨯=+,8338332⨯=+,154415442⨯=+……,若bab a ⨯=+288 (a 、b 为正整数),则a+b=( )。

学而思小升初培优三:规律,程序,新运算(原版)

学而思小升初培优三:规律,程序,新运算(原版)

小升初培优(三)找规律、定义新运算和程序运算一、课堂要求二、知识结构l.找规律解题思维过程:从简单、局部或特殊情况人手,经过提炼、归纳和猜想,探索规律,获得结论.有时还需要通过类比联想才能找到隐含条件,一般有下列几个类型:(1)-列数的规律:把握常见几类数的排列规律及每个数与排列序号n之间的关系.(2)-列等式的规律:用含有字母的代数式总结规律,注意此代数式与序号n之间的关系.(3)图形(图表)规律:观察前几个图形,确定每个图形中图形的个数或图形总数与序号n之间的关系.(4)图形变换的规律:找准循环周期内图形变换的特点,然后用图形变换总次数除以一个循环变换周期,进而观察商和余数.(5)数形结合的规律:观察前n项(一般前3项)及利用题中的已知条件,归纳猜想一般性结论.常见的数列规律:Λ(n为正整数).n,9,7,5,3,1)1(-12,,8,6,4,2)2(Λ(n为正整数).10n2,,n16,,8,4,2)3(Λ(n为正整数).322,,10,5,2)4(2+Λ(n为正整数).17n,1,,26,,8,3,0)5(2-nΛ(n为正整数).151,,,24,6,2)6(+12Λ(n为正整数).nn,,()1,20+)7(-,-,+-Λ(n为正整数).,-+,xxx,xxx(,,x n)1-+--8+,+,((n为正整数).)-+xx,xxxx n1x,)1,(,...,(9)特殊数列:①斐波那契数列:1,1,2,3,5,8,13,…,从第三个数开始每一个数等于与它相邻的前两个数的和.②三角形数:⋅+2)1(,,21,15,10,6,3,1n n Λ 2.定义新运算(1)基本思路:严格按照新定义的运算规则,把已知的数代人,转化为加、减、乘、除的运算,然后按照基本运算过程、运算律进行运算.(2)注意事项:①新的运算不一定符合运算律,特别注意运算顺序. ②每个新定义的运算符号只能在本题中使用. 3.程序计算解题的关键是要准确理解新程序的数学意义,进而转化为数学问题. 4.数学能力:探究、归纳总结和知识迁移的能力.本节重点讲解:两大能力,三种题型(找规律、定义新运算和程序计算).三、全能突破小试牛刀1.根据图2-3-1中数字的规律,在图形中填空.2.观察下面一列整式:,,201,121,61,21161698442Λy x y x y x y x --照此规律第6个整式是 ,第n 个(n≥1且为整数)整式是3.正整数按图2-3-2中的规律排列.请写出第45行,第46列的数字4.图2-3-3所示是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,以此递推,第10层中含有正三角形个数是 个.5.如图2-3-4所示,给正五边形的顶点依次编号为1,2,3,4,5,若从某一顶点开始,沿正五边形的边顺时针行走,顶点编号的数字是几,就走几个边长,则称这种走法为一次“移位”,如:小宇在编号为3的顶点时,那么他应走3个边长,即从3→4→5→1为第一次“移位”,这时他到达编号为1的顶点;然后从1→2为第二次“移位”.若小宇从编号为2的顶点开始,第10次“移位”后,则他所处顶点的编号是 ;第2012次“移位”后,则他所处顶点的编号是 .6.观察下列等式:;531422⨯=-① ;732522⨯=-② ;933622⨯=-③ ;1134722⨯=-④…则第n (n 是正整数)个等式为7.我们规定一种运算:,bc ad d c ba -=若,0124=-x x 则=x8.魔术师为大家表演魔术,他请观众想一个数,然后将这个数按图2-3-5所示的步骤操作:魔术师立刻说出观众想的那个数.(1)如果小明想的数是-1,那么他告诉魔术师的结果应该是 ,(2)如果小聪想了一个数并告诉魔术师结果为93,那么魔术师立刻说出小聪想的那个数是 (3)观众又进行了几次尝试,魔术师都能立刻说出他们想的那个数,请你说出其中的奥妙.能 力 提 升9.已知:,,10244,2564,644,164,4454321Λ=====以上算式结果的个位数字分别为4,6,4,6,…,按照上面的研究方法确定2006200720072006+的个位数字为( )3.A4.B5.C6.D10.如图2-3-6所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n 个图形需要黑色棋子的个数是 .11.古希腊人常用小石子在沙滩上摆成各种形状来研究数,例如:他们研究过图2-3-7 (a)中的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2-3-7(b)中的1,4,9,16,…,这样的数为正方形数.下列数中既是三角形数又是正方形数的是( )15.A 25.B 55.C 1225.D12.(1)探究数字“黑洞”:“黑洞”原指非常奇怪的天体,它的体积小,密度大,吸引力强,任何物体到它那里都别想再“爬出来”,无独有偶,数字中也有类似的“黑洞”,满足某种条件的所有数,通过一种运算,都能被它“吸”进去,无一能逃脱它的魔掌.譬如:任意找一个3的倍数,先把这个数每个数位上的数字都立方,再相加,得到一个新的数,然后把这个新数每个数位上的数字立方再求和,重复运算下去,就能得到一个固定的数T ,我们称它为数字“黑洞”,T 为何具有如此魔力,通过认真的观察、分析,你一定能发现它的奥秘!此短文中的T 是 . (2)任取一个自然数串,数出这个数中的偶数字个数、奇数字个数及所有数字的个数,用这3个数组成下一个数字串,重复上述程序,就能得到一个固定的数,我们称它为数字“黑洞”,则这个固定的数为 .13.在下表中,我们把第i 行第j 列的数记为j i a ,(其中i ,j 都是不大于5的正整数),对于表中的每个数j i a ,规定如下:当j i ≥&时,;1,=j i a 当j i <时,.0.i =j a 例如:当1,2==j i &&时,.11,2,==a a j i 按此规定,=3,1a .;表中的25个数中,共有 个1;计算.3,12,2,11,1,1a a a a a i i +⋅+⋅5,5,14,4,13,i i i a a a a a ⋅+⋅+的值为14.为确保信息安全,信息需加密传输,发送方由明文一密文(加密),接收方由密文一明文(解密),已知加密规则如图2-3-8所示,例如,明文1,2,3,4对应密文5,7,18,16.当接收方收到密文14,9,23,28时,则解密得到的明文为 .15.已知,2,2≥≥n m 且m ,n 均为正整数,如果将nm 进行如图2-3-9所示方式的“分解”,那么下列三个叙述:①在52的“分解”中最大的数是11.②在34的“分解”中最小的数是13. ③若3m 的“分解”中最小的数是23,则m 等于5. 其中正确的是16.有一个运算程序,当n b a =Θ(n 为常数)时,则,2)1(,1)1(-=+Θ+=Θ+n b a n b a 若,211=Θ则=Θ20122012 17.按图2-3-10所示的程序计算:若输入x = 100,输出结果是501,若输入x = 25,输出结果是631,若开始输入的x 值为正整数,最后输出的结果为556,则开始输入的x 的可能值为 .18.如图2-3-11所示,从左到右,在每个小格子中都填入一个整数,使得其中任意三个相邻格子中9 & # x -62 … …图2-3-11(1)可求得x= .第2012个格子中的数为 .(2)判断:前m 个格子中所填整数之和是否可能为20127若能,求出m 的值;若不能,请说明理由;19.阅读图2-3-12并回答下列问题: (1)若A 为785,则E= ;(2)按框图流程,取不同的三位数A ,所得E 的值都相同吗?如果相同,请说明理由;如果不同,请求出E 的所有可能的值;(3)将框图中的第一步变为“任意写一个个位数字不为0的三位数A ,它的百位数字减去个位数字所得的差大于2”,其余的步骤不变,请猜想E 的值是否为定值?并对你猜想的结论加以证明.中 考 链 接20.图2-3-13所示为手的示意图,在各个手指间标记字母A ,B ,C ,D.请你按图中箭头所指方向(即Λ→→→→→→→→→C B A B C D C B A 的方式)从A 开始数连续的正整数1,2,3,4,…,当数到12时,对应的字母是 ;当字母C 第201次出现时,恰好数到的数是 ;当字母C 第2n +1次出现时(n 为正整数),恰好数到的数是 (用含n 的代数式表示).21.符号“f"表示一种运算,它对一些数的运算结果如下:Λ,3)4(,2)3(,1)2(,0)1(====f f f f ①Λ,5)51(,4)41(,3)31(,2)21(====f f f f ②利用以上规律计算:=-)2012()20121(f f22.(1)如图2-3-14所示的运算程序中,若开始输入的x 值为96,我们发现第1次输出的结果为48,第2次输出的结果为24,…,第2009次输出的结果为 .(2)计算机中常用十六进制是逢16进1的计数制,采用数字0~9和字母A ~F 共16个计数符号,这些符号与十进制的数的对应关系如下表所示:十六进制 O 1 2 3 4 5 6 7 8 9 A B C D E F 十进制 O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15例如,用十六进制表示:,1,123,5B D E F F A =+=+=+则=⨯C A难 点 突 破23.图2-3-15所示是一个流程图,图中“结束”处的计算结果是24.对于两数a 和b ,给定一种运算,:ab b a b a -+=井“井”则在下列等式中: ;a b b a 井井①= ;0a a =井② ).()(c b a c b a 井井井井③=正确的是 (填序号).25.正整数,n 小于100,并满足等式,]6[]3[]2[n n n n =++其中[x]表示不超过x 的最大整数,这样的正整数 n 有多少个?。

2023-2024学年人教版六年级下册数学小升初专题训练:探索规律(含答案)

2023-2024学年人教版六年级下册数学小升初专题训练:探索规律(含答案)

2023-2024学年人教版六年级下册数学小升初专题训练:探索规律一、单选题1.把一些正方形纸片按规律拼成如下的图案,第( )个图案中恰好有365个纸片。

A.73B.81C.91D.932.正方形图1作如下操作:第1次:分别连接各边中点如图2,得到5个正方形;第2次:将图2左上角正方形按上述方法再分割如图3,得到9个正方形,……,以此类推,根据以上操作,若要得到53个正方形,需要操作的次数是( )A.12B.13C.14D.153.按如图的方法堆放小球。

第15堆有( )个小球。

A.95B.105C.110D.1204.用边长是1厘米的等腰三角形拼成等腰梯形如图:……按照这样的规律,第n个等腰梯形是由( )个这样的三角形拼成的。

A.2n B.3n C.2n+1D.2n+35.把一些规格相同的杯子叠起来(如图),4个杯子叠起来高20厘米,6个杯子叠起来高26厘米。

n个杯子叠起来的高度可以用下面( )的关系式来表示。

A.6n﹣10B.3n+11C.6n﹣4D.3n+86.用小棒摆六边形,按这个规律摆4个六边形需要( )根小棒。

A.23B.22C.21D.20二、判断题7.如图所示:,摆9个这样的三角形需21根小棒。

( )8.按0、1、3、6、10、15……的规律,下一个数应该是21。

( )9.用火柴棒按下图所示搭正方形,搭一个正方形用4根火柴棒,搭n个正方形用4n根火柴棒。

( )10.因为1÷A=0.0909…;2÷A=0.1818…;3÷A=027272…;所以4÷A=0.3636…。

( )11.根据33×4=132,333×4=1332,3333×4=13332,可知33333×4=133332。

( )12.按□□○▲□□○▲□□○▲……的规律排列,第35个是▲。

( )三、填空题13.观察图形的规律,第8个图形一共由 个小三角形组成。

学而思培优之找规律程序运算定义新运算含答案

学而思培优之找规律程序运算定义新运算含答案

第五讲找规律、程序运算、定义新运算板块一 数列、数表找规律一般规律发现需要“观察、归纳、验证”有时要通过类比联想才能找到隐含条件。

数列规律:【例1】(2009年龙岩)观察下列一组数:12,34,56,78,…,它们是按一定规律排列的。

那么这一组数的第k 个数是_______。

(k 为正整数)【例2】找规律,并按规律填上第五个数:357924816--,,,, ,第n 个数为: 。

(n 为正整数)【例3】(2009年牡丹江市)有一列数12-,25,310-,417,…,那么第7个数是 。

第n 个数为(n 为正整数)。

【例4】(2009-2010海淀区期末考试第16题3分) 若一组按规律排成的数的第n 项为()1n n + (n 为正整数),则这组数的第10项为 ;若一组按规律组成的数为:2,6,12-,20,30,42-,56,72,90-,…,则这组数的第3n (n 为正整数)项是 。

【例5】(2008北京中考)一组按规律排列的式子:2b a -,52b a ,83b a -,114b a,…(0ab ≠),其中第7个式子是 ,第n 个式子是 (n 为正整数)。

【例6】有一列数1,1,2,3,5,8,13,21…,那么第9个数是 。

【例7】瑞士中学教师巴尔末成功地从光谱数据95,1612,2521,3632,…中得到巴尔末公式,从而大开光谱奥妙的大门。

请你按这种规律写出第7个数据是 .第n 个分数为 。

【例8】(2008宜宾)按一定规律排列的一列数:11234691319,,,,,,,,,…按此规律排列下去,19后面的数应为 。

例题精讲【例9】(海淀区期末考试)探索规律:观察下面算式,解答问题:21342+==;213593++==;21357164+++==;213579255++++== ①请猜想1357919++++++=_________;②请猜想13579(21)(21)(23)n n n ++++++-++++=____________; ③请你用上述规律计算:10310510720032005+++++数列规律:【例10】(2008遵义)如下图是与杨辉三角形有类似性质的三角形数垒,a b ,是某行的前两个数,当7a =时,b = 。

小升初数学专项训练+典型例题分析-找规律篇(附答案)

小升初数学专项训练+典型例题分析-找规律篇(附答案)

名校真题测试卷找规律篇时间:15 分钟满分 5 分姓名_________ 测试成绩________1 (12 年清华附中考题)如果将八个数14,30,33,35,39,75,143,169 平均分成两组,使得这两组数的乘积相等,那么分组的情况是什么?2 (13 年三帆中学考题)4+5=9;9+7=16 ;16+9=25 ;25+11=36 这五道算式,观察1+3=4 ;找出规律,然后填写2001 2+()=2002 23 (12 年西城实验考题)一串分数:1,21,2,3,4,1,2,3,4,5,6 7,1,2................................ 8, 1, 2 , ............ ,其中的第2000个分数3 3,5 5 5 5 7 7 7 7 7 7 9 9 9 11 11(1) 请你说明:11 这个数必须选出来;(2) 请你说明:37和73这两个数当中至少要选出一个;(3) 你能选出55 个数满足要求吗?附答案】1 【解】分解质因数,找出质因数再分开,所以分组为33 、35、30、169 和14、39、75、4 (12 年东城二中考题)在2、3 两数之间, 第一次写上5, 第二次在2、5 和5、3 之间分别写上7、8(如下所示), 每次都在已写上的两个相邻数之间写上这两个相邻数之和. 这样的过程共重复了六次, 问所有数之和是多少?2⋯⋯7⋯⋯5⋯⋯8⋯⋯35 (04 年人大附中考题)请你从01、02、03、⋯、98、99中选取一些数,使得对于任何由0~9 当中的某些数字组成的无穷长的一串数当中,都有某两个相邻的数字,是你所选出的那些数中当中的一个。

为了达到这些目的。

143。

2 【解】上面的规律是:右边的数和左边第一个数的差正好是奇数数列3、5、7 、9 、11所以下面括号中填的数字为奇数列中的第2001 个,即4003。

3 【解】分母为 3 的有 2 个,分母为4 个,分母为7 的为 6 个,这样个数2+4+6+8⋯88=1980<2000,这样2000个分数的分母为89,所以分数为20/89 。

(小升初培优讲义)专题23 探索规律-2022-2023六年级一轮复习(教师版)

(小升初培优讲义)专题23  探索规律-2022-2023六年级一轮复习(教师版)

专题23探索规律1.数字规律按一定的次序排列的一列数叫作数列。

数列中几种常见的规律:①规律隐含在相邻两数的和、差或倍数中。

②前后几项为一项,以组为单位隐含一定的规律。

③需将数列分解,通过对比才能发现规律。

2.图形规律图形规律是指根据一组相关图形总结出图形变化所反映的规律。

解决图形规律问题的方法有两种:一种是数图形,将图形转化成数字规律,再用数字规律解决问题;另一种是通过图形的直观性,从图形的变化中直接寻找规律。

3.算式中的规律①利用计算器独立探索,发现规律。

②利用规律来完成计算。

【例1】找规律填空。

1,1,2,3,5,8,(),(),…【点拨分析】先现察这一列数,前两个数都是1,从第三个数开始,1+1=2,1+2=3,2+3=5,3+5=8,这样,规律就出来了,即从第三个数开始,每一个数都等于它前面两个数的和。

照此规律,第一个括号里应填13,第二个括号里应填21。

【答案】13,211.(1)4,9,16,25,(),(),64,81,…(2)10,14,22,38,70,134,262,(),…2.(1)1,23,58,1321,(),(),…(2)12,15,110,117,(),(),…3.(1)有一串式子:2+4,8+5,14+6,20+7,…都是按规律排列的,则第99个式子是()+()。

(2)有一列数为1,2,3,2,3,4,3,4,5,4,5,6,…则这列数中第2009个数是()。

【例2】观察图中的变化规律,在第四个方框中画出相应的图形。

【点拨分析】仔细观察前三个方框中的图形,这些图形的位置是按照逆时针方向旋转的,所以第四个方框中的图形应是箭头指向下方,三角形在下方,正方形在右边,圆在左边。

【答案】1、找规律,画一画。

(1)〇■▲△■▲△〇▲△〇■___________________(2)☆◇△〇□☆◇△〇□_____________________2.根据下面图形和字母的关系,将ab的图补上。

小升初专项复习:数与代数(6)-探索规律

小升初专项复习:数与代数(6)-探索规律

5
(1)根据上图中图形和字母的关系可知,bc 是下图中的(
)。
(2)用直线把下图分成面积相等的两部分,下图中分法错误的是(
)。
(3)有一列数,第一个数为 1,第二个数为 2,从第三个数开始,每一个数都是前两个数之和。 这一列数的第 2006 个数除以 4 后所得的余数是( )。 A.0 B.1 C.2 D.3 (4)每一竖列为一组,那么第 2000 组是( )。 甲 乙 丙 丁 甲 乙 丙 丁„„ A B C D E A B C„„ ○ △ □ ○ △ □ ○ △„„
四、解决实际问题 (1)观察下面一列有规律的数: 1 1 1 1 1 1 、 、 、 、 、 、„„ 2 6 12 20 30 42 根据规律可知: ①第 7 个数是 ,第 n 个数是 。 1 ② 是第 个数。 380 (2)将长 5 厘米、宽 2 厘米的长方形硬纸片如图一层、二层、三层„„地排下去:
练习 6 计算:
1 2 3 3 6 9 7 14 21 1 3 5 3 9 15 7 21 35
3
例 7 计算:0.1+0.2+0.3+„+0.87+0.88+0.89



▪ ▪
▪ ▪
▪ ▪
题型四 巧用规律解决实际问题 例 8 用一条直线把下图分成面积相等的两部分。
课题 教学 目标
小升初专项复习:数与代数(六)——探索规律 1、 找 规 律 填 数 2、 找 规 律 填 图 3、 巧 用 规 律 计 算 4、 巧 用 规 律 解 决 实 际 问 题 1、 找 规 律 填 数 2、 找 规 律 填 图 3、 巧 用 规 律 计 算 4、 巧 用 规 律 解 决 实 际 问 题 教案
重点 难点 考点

2024年西师大版六年级下册数学小升初分班考必刷专题:探索规律

2024年西师大版六年级下册数学小升初分班考必刷专题:探索规律

2024年西师大版六年级下册数学小升初分班考必刷专题:探索规律一、单选题1.如图,用同样的小棒摆三角形,像这样摆下去()根小棒。

A.2n﹣1B.2n C.2n+1D.2n+22.如图,每个图形均是由1cm2的小正方形组成的,其中第一个图形的面积为2cm2,第二个图形的面积为7cm2,第三个图形的面积为14cm2……由此可知第七个图形的面积,下面表示方法错误的是()。

A.7×7-2B.8×8-2C.7×7×2-6×6D.2+5+7+9+11+13+153.如图,首先将平行四边形纸片剪成2个完全一样的等边三角形,然后将其中一个等边三角形剪成4个完全相同的小等边三角形,再把小等边三角形剪成4个完全相同的等边三角形,如此循环下去。

剪4次后剪出()个三角形。

A.11B.13C.15D.174.按照下面的规律,下一幅图中应该有()个。

A.32B.16C.10D.85.用棱长为1cm的正方体进行摆放(如下图),n(n为大于0的自然数)个这样的正方体摆成的长方体的表面积是()cm2。

A.3n+2B.4(n+2)C.4n-2D.4n+26.把一些正方形纸片按规律拼成如下的图案,第()个图案中恰好有365个纸片。

A.73B.81C.91D.93二、判断题7.一根木头长10m,要把它平均分成5段,每锯下一段需要8分钟,锯完一共要花40分钟。

()8.用火柴棒按下图所示搭正方形,搭一个正方形用4根火柴棒,搭n个正方形用4n根火柴棒。

()9.按照“ ”的规律摆图形,第29个是三角形。

()10.根据99×96=9504,999×996=995004,9999×9996=99950004的规律,可以得出99999×99996=9999500004。

()11.依次类推,摆5个三角形需要用小棒的根数是1+2×5=11(根)。

()三、填空题12.用小棒按照如下方式摆图形:摆20个六边形需要根小棒,用451根小棒可以摆个六边形。

小升初找规律的数学题

小升初找规律的数学题

小升初找规律的数学题摘要:1.小升初数学找规律题的背景和重要性2.找规律题的解题技巧和方法3.常见的数列规律类型及例题解析4.如何准备小升初数学找规律题正文:正文”。

请从以下文本开始任务,文本:小升初找规律的数学题一、小升初数学找规律题的背景和重要性对于许多小学生来说,小升初找规律的数学题是一道难题,因为它不仅需要他们具备一定的数学知识,还需要他们能够灵活运用所学知识去寻找数字之间的规律。

这类题目在小升初考试中占有一定的比重,因此对于学生来说,掌握好找规律的解题技巧和方法显得尤为重要。

二、找规律题的解题技巧和方法1.观察数字之间的联系:对于找规律题,首先要做的就是观察数字之间的联系,看看它们之间是否存在一定的关系。

比如,相邻两数之间的差或倍数关系等。

2.尝试寻找规律:在观察数字之间联系的基础上,可以尝试寻找一些规律。

比如,数字的和、差、积、方等可能就是找规律的关键。

3.验证规律:在找到规律后,需要通过具体的计算来验证一下这个规律是否正确。

三、常见的数列规律类型及例题解析1.等差数列:等差数列是指相邻两项的差相等的数列,比如1, 3, 5, 7, 9...例题:请找出下面数列的规律:1, 3, 5, 7, 9...解答:这个数列的规律是等差数列,公差为2。

2.等比数列:等比数列是指相邻两项的比相等的数列,比如1, 2, 4, 8, 16...例题:请找出下面数列的规律:1, 2, 4, 8, 16...解答:这个数列的规律是等比数列,公比为2。

3.斐波那契数列:斐波那契数列是指每一项都是前两项的和的数列,比如1, 1, 2, 3, 5, 8...例题:请找出下面数列的规律:1, 1, 2, 3, 5, 8...解答:这个数列的规律是斐波那契数列。

四、如何准备小升初数学找规律题1.多做练习:通过做更多的找规律题,可以提高自己对于这类题目的解题能力。

2.分析错题:在练习过程中遇到的错题,要进行认真的分析,找出自己的错误和不足。

小升初数学之找规律专题(含解析)

小升初数学之找规律专题(含解析)

小升初之找规律专题教学目标;1、规律题是观察,实验,归纳,猜想和验证的综合考察;2、以退为进的解题过程在找规律的过程中尤其重要;3、规律的总结是抽象思维能力和计算能力,形象思维能力等的综合考察;4、规律题的积累经验也是非常必要的。

复习检查:此版块适用于除首课之外的课程设计,授课教师可灵活采用各种方式对学生上节课所学知识掌握情况进行效果检查。

如:放置需要学生作答的笔试题目或需要口头作答的提问。

1、甲、乙两人相距150米,甲在前,乙在后,甲每分钟走60米,乙每分钟走75米,两人同时向南出发,几分钟后乙追上甲?思路分析:这道问题是典型的追及问题,求追及时间,根据追及问题的公式: 追及时间=路程差÷速度差150÷(75-60)=10(分钟) 答:10分钟后乙追上甲。

2、下午放学时,弟弟以每分钟40米的速度步行回家。

5分钟后,哥哥以每分钟60米的速度也从学校步行回家,哥哥出发后,经过几分钟可以追上弟弟?(假定从学校到家有足够远,即哥哥追上弟弟时,仍没有回到家)()()10202004060540=÷=-÷⨯(分钟)3、一辆汽车和一辆摩托车同时从甲、乙两地出发,向同一个方向前进,摩托车在前,每小时行28千米,汽车在后,每小时行65千米,经过4小时汽车追上摩托车,甲乙两地相距多少千米?()14842865=⨯-(千米)4、环湖一周共400米,甲、乙二人同时从同一地点同方向出发,甲过10分钟第一次从乙身后追上乙。

若二人同时从同一地点反向而行,只要2分钟二人就相遇。

求甲、乙的速度。

速度差:4010400=÷(米/分钟) 速度和:2002400=÷(米/分钟) 甲速度:()120220040=÷+(米/分钟) 乙速度:80120200=-(米/分钟) 5、甲骑车、乙跑步,二人同时从同一地点出发沿着长4千米的环形公路同方向进行晨练。

出发后10分钟,甲便从乙身后追上了乙。

学而思-小升初专项训练-找规律篇-教师版

学而思-小升初专项训练-找规律篇-教师版

名校真题测试卷6 (找规律篇)1 、如果将八个数14,30,33,35,39,75,143,169平均分成两组,使得这两组数的乘积相等,那么分组的情况是什么?2 、观察1+3=4 ; 4+5=9 ; 9+7=16 ; 16+9=25 ; 25+11=36 这五道算式,找出规律,然后填写20012+()=200223、一串分数:12123412345612812 ,,,,,,,,,,,,.....,,,......,33,55557777779991111其中的第2000个分数是.4、在2、3两数之间,第一次写上5,第二次在2、5和5、3之间分别写上7、8(如下所示),每次都在已写上的两个相邻数之间写上这两个相邻数之和.这样的过程共重复了六次,问所有数之和是多少? 2......7......5......8 (3)5、请你从01、02、03、…、98、99中选取一些数,使得对于任何由0~9当中的某些数字组成的无穷长的一串数当中,都有某两个相邻的数字,是你所选出的那些数中当中的一个。

为了达到这些目的。

(1)请你说明:11这个数必须选出来;(2)请你说明:37和73这两个数当中至少要选出一个;(3)你能选出55个数满足要求吗?【附答案】1 、【解】分解质因数,找出质因数再分开,所以分组为33、35、30、169和14、39、75、143。

2 、【解】上面的规律是:右边的数和左边第一个数的差正好是奇数数列3、5、7、9、11……,所以下面括号中填的数字为奇数列中的第2001个,即4003。

3 、【解】分母为3的有2个,分母为4个,分母为7的为6个,这样个数2+4+6+8…88=1980<2000,这样2000个分数的分母为89,所以分数为20/89。

4 、【解】:第一次写后和增加5,第二次写后的和增加15,第三次写后和增加45,第四次写后和增加135,第五次写后和增加405,……它们的差依次为5、15、45、135、405……为等比数列,公比为3。

小升初数学《规律探索》专题练习(含解析)

小升初数学《规律探索》专题练习(含解析)

小升初数学《规律探索》专题练习(含解析)一.选择题1.(2019•利州区)一组数据按下面顺序依次排列:1,3,2014,2,4,2012,3,5,2010,4,6,2008…第2016个数是()A.672B.674C.670D.6762.(2018•连云港)如图,用同样的小棒摆图形,照这样摆下去,摆第6幅图需要()根小棒.A.45B.54C.63D.1083.(2018•绵阳)最近四次从地球上看到哈雷彗星的年份分别是1761年、1836年、1911年、1986年.哈雷彗星下次出现在()A.2011B.2021C.2051D.20614.(2018•太仓市)将一些小圆球如图摆放,第六幅图有()个小圆球.A.30B.36C.425.?处应该填()A.15B.17C.116.△□〇△□〇△□〇……按规律排下去,第26个是()A.△B.□C.〇7.(2019秋•龙州县期末)用同样长的小棒摆出如下的图形.照这样继续摆,摆第6个图形用了()根小棒.A.20B.25C.248.(2020•北京模拟)在一次运动会上,小优按照3个红气球,2个黄气球,1个绿气球的顺序,把气球连接起来装饰运动场.如果照她这样做,第2019个气球应该是()色.A.红B.黄C.绿D.以上都有可能二.填空题9.(2019•沛县)□□〇◇□□〇◇□□〇◇…根据图形的排列规律,第40个图形是,第47个图形是.10.(2019•厦门)把边长1厘米的正方形纸片,按规律排成长方形(1)4个正方形拼成的长方形周长是厘米.(2)用a个正方形拼成的长方形周长是厘米.11.(2018•大丰区)用小棒按照如下方式摆图形.(1)摆1个八边形需要8根小棒,摆2个八边形需要根小棒,摆20个八边形需要根小棒.如果想摆a个八边形,需要根小棒.(2)有2009根小棒,最多可以摆个完整的八边形.12.(2018•市南区)按下面用小棒摆正六边形.摆4个正六边形需要根小棒;摆10个正六边形需要根小棒;摆n个正六边形需要根小棒.13.(1)2,5,8,,14,,.(2)48,40,32,,,.14.开动脑筋想一想.箱子里有个●,个〇.15.(2019秋•成都期末)玩搭积木游戏,每一阶段增多的积木的个数相同,所搭起来的积木的形状如下图所示.搭第8阶段一共需要积木个.16.(2019秋•成都期末)2只小熊有只脚着地;3只小熊有只脚着地;n只小熊有只脚着地.如果共有26只脚着地,那么有只小熊在表演节目.三.判断题17.(2012•岳麓区)按1、8、27、、125、216的规律排,横线中的数应为64..(判断对错)18.第567个图形是〇.(判断对错)19.(2019秋•温县期末)如图,如果一个小三角形的边长为1cm,第五个图形的周长是15cm..(判断对错)20.(2018•工业园区)沿道路的一边,按3面红旗、2面黄旗、1面蓝旗的顺序插了一行彩旗.第190面应该是红旗.(判断对错)21.(2018秋•北票市期末)如图,第五个点阵中点的个数是17个.(判断对错)22.(2015秋•霍邱县校级期中)0.123123123…小数点后的第98位是2..(判断对错)23.(2010•河池)3.58658658…小数部分的第95位数字是8..(判断对错)24.☆△〇〇☆△〇〇…像这样依次重复排列下去,第31个图形是☆.(判断对错)四.计算题(共2小题)25.(2017秋•醴陵市期末)先计算,再利用规律解决问题.1﹣=﹣=﹣=﹣=+++=(请写出计算过程)26.按图摆放餐桌和椅子,摆8张餐桌可以坐多少人?52人用餐,需要摆多少张餐桌?五.应用题27.甲、乙、丙三人分一副扑克牌,按照首先给甲3张,然后给乙2张,最后给丙2张的顺序一直往下发牌.最后一张(第54张)牌发给了谁?28.有绿、白两种颜色的珠子,按照下面的规律穿在一根线上,那么第22颗珠子是什么颜色的?第45颗珠子呢?29.(2019•宁波模拟)小明用小棒搭房子.搭2间用9根,搭3间用13根.照这样计算,如果搭10间房子,需要用多少根小棒?30.庆“六一”联欢会,二(3)班教室里按红、黄、蓝、绿的顺序挂了30盏灯,最后一盏是什么颜色的灯?31.同学们为联欢会布置教室,将气球按3红2绿2黄的顺序排列.第84个气球是什么颜色的?32.一串彩色气球按“红、蓝、蓝、蓝、黄、黄”的顺序排列.(1)第39个气球是什么颜色的?(2)前47个气球中有多少个蓝色气球?33.(2019•湘潭模拟)一张桌子可以坐6人,两张桌子拼起来可以坐10人,三张桌子拼起来可以坐14人.像这样共几张桌子拼起来可以坐50人.六.操作题34.(2019•郑州模拟)找规律,第四幅图该怎么画?35.(2018•张家港市校级模拟)分析如下图①,②,④中阴影部分的分布规律,按此规律在图③中画出其中的阴影部分.36.(2019秋•洛阳期中)找规律填一填,画一画.(1)、.(2)3、6、9、12、、.(3)80、40、、10、.(4)1、3、9、、81、.七.解答题37.(2019秋•綦江区期末)找规律,填数.(1)(2)0,5,10,,.(3)17,15,13,,.38.(2019春•通州区期末),,,,,…观察这列数的规律,其中第四个分数是,如果这列数中的某个分数的分母是a,那么分子是.39.(2019秋•雅安期末)找规律,按要求操作:(1)在横线上画出相应的图形..(2)如图,△□☆△□☆△□☆……,第137个图形是.40.(2019秋•永州期末)观察下面的点阵图规律,第(9)个点阵图有个点.参考答案:一.选择题1.(2019•利州区)一组数据按下面顺序依次排列:1,3,2014,2,4,2012,3,5,2010,4,6,2008…第2016个数是()A.672B.674C.670D.676【分析】根据观察发现,这组数据每3个数一组:第一个数字为从1开始的自然数排列;第二个数为从3开始的自然数排列;第3个数为从2014开始,每组减2.先求第2016个数包含几组:2016÷3=672(组),然后计算第2016个数为:2014﹣(672﹣1)×2=672.【解答】解:根据观察发现,这组数据每3个数一组:第一个数字为从1开始的自然数排列;第二个数为从3开始的自然数排列;第3个数为从2014开始,每组减2.第2016个数包含几组:2016÷3=672(组)所以第2016个数为:2014﹣(672﹣1)×2=2014﹣1342=672答:第2016个数为672.故选:A.2.(2018•连云港)如图,用同样的小棒摆图形,照这样摆下去,摆第6幅图需要()根小棒.A.45B.54C.63D.108【分析】根据图示可知,摆图(1)用3×1根小棒;摆图(2)用3×(1+2)=9(根)小棒;摆图(3)用3×(1+2+3)=18(根)小棒,发现规律:摆第n个图形需要小棒根数:3×(1+2+3+……+n)=3×(根).利用规律做题.【解答】解:摆图(1)用3×1根小棒;摆图(2)用3×(1+2)=9(根)小棒;摆图(3)用3×(1+2+3)=18(根)小棒,……摆第n个图形需要小棒根数:3×(1+2+3+……+n)=3×(根)所以,摆6幅图需要小棒:3×=3×3×7=63(根)答:摆第6幅图需要63根小棒.故选:C.3.(2018•绵阳)最近四次从地球上看到哈雷彗星的年份分别是1761年、1836年、1911年、1986年.哈雷彗星下次出现在()A.2011B.2021C.2051D.2061【分析】1836﹣1761=75(年),1911﹣1836=75(年),1986﹣1911=75(年),哈雷彗星出现一次,是每隔75年,据此得解.【解答】解:1836﹣1761=75(年)1911﹣1836=75(年)1986﹣1911=75(年)1986年+75年=2061年答:哈雷彗星下次出现在2061年.故选:D.4.(2018•太仓市)将一些小圆球如图摆放,第六幅图有()个小圆球.A.30B.36C.42【分析】从第一个图形开始分析小圆圈的个数:第一个图形中有1×2=2个小圆球,第二个图形中有2×3=6个小圆球,第三个图形中有3×4=12个小圆球,第四个图形中有4×5=20个小圆球,…第n个图形有n(n+1)个小圆球,利用规律解决问题.【解答】解:观察图形可知:第一个图形中有1×2=2个小圆球,第二个图形中有2×3=6个小圆球,第三个图形中有3×4=12个小圆球,第四个图形中有4×5=20个小圆球,…所以第六幅图有6×7=42个小圆球.故选:C.5.?处应该填()A.15B.17C.11【分析】根据已知数据可知:11=4+7,13=4+9,上面的数等于下面这2个数相加,据此解答即可.【解答】解:因为11=4+7,13=4+9,所以4+11=15.故选:A.6.△□〇△□〇△□〇……按规律排下去,第26个是()A.△B.□C.〇【分析】根据图示可知,这组图形的规律:每3个图形一循环,求第26个图形是第几个循环零几个图形即可判断其形状.【解答】解:26÷3=8 (2)所以第26个图形与第2个图形一样,是□.答:第26个是□.故选:B.7.(2019秋•龙州县期末)用同样长的小棒摆出如下的图形.照这样继续摆,摆第6个图形用了()根小棒.A.20B.25C.24【分析】图1用5根小棒摆成,图2用9根小棒摆成,图3用13根小棒摆成,仔细观察发现,每增加一个五六边形其小棒根数增加4根,所以可得第n个图形需要小棒5+4(n﹣1)=4n+1根,据此即可解答问题.【解答】解:由图可知:图形1的小棒根数为5;图形2的小棒根数为9;图形3的小棒根数为13;…由该搭建方式可得出规律:图形标号每增加1,小棒的个数增加4,所以可以得出规律:第n个图形需要小棒5+4(n﹣1)=4n+1根,当n=6时,需要小棒:4×6+1=25(根)答:摆第6个图形用了25根小棒.故选:B.8.(2020•北京模拟)在一次运动会上,小优按照3个红气球,2个黄气球,1个绿气球的顺序,把气球连接起来装饰运动场.如果照她这样做,第2019个气球应该是()色.A.红B.黄C.绿D.以上都有可能【分析】根据题意,这组气球的规律为:每3+2+1=6(个)图形一循环,所以计算2019个气球是第几个循环零几个,即可判断其颜色.【解答】解:2019÷(3+2+1)=2019÷6=336(组)……3(个)所以第2019个气球与第3个气球一样,为红色.故选:A.二.填空题9.(2019•沛县)□□〇◇□□〇◇□□〇◇…根据图形的排列规律,第40个图形是◇,第47个图形是〇.【分析】观察图形可知,4个图形一个循环周期,分别按照□□〇◇的顺序依次循环排列,据此求出第40个是第几个循环周期的第几个;前47个图形一共经历了几个循环周期即可解答问题.【解答】解:40÷4=10所以第40个图形是第10循环周期的最后一个,是◇;47÷4=11 (3)所以前47个图形是第21循环周期的第三个,是〇.答:第40个图形是◇,第47个图形是〇.故答案为:◇;〇.10.(2019•厦门)把边长1厘米的正方形纸片,按规律排成长方形(1)4个正方形拼成的长方形周长是10厘米.(2)用a个正方形拼成的长方形周长是2a+2厘米.【分析】根据题意,按规律拼成的长方形的长:正方形的个数×正方形的边长,长方形的宽还是原来正方形的边长,即1厘米.再根据长方形的周长公式计算即可.【解答】解:由题意可知,按规律拼成的长方形的长:正方形的个数×正方形的边长,长方形的宽还是原来正方形的边长.(1)用4个正方形拼成的长方形,长=4×1=4(厘米),宽=1(厘米).周长=(长+宽)×2=(4+1)×2=10(厘米);(2)用a个正方形拼成的长方形,长=a×1=a(厘米),宽=1(厘米)用m个正方形拼成的长方形的周长周长=(长+宽)×2=(a+1)×2=2a+2(厘米).故答案为:10,2a+2.11.(2018•大丰区)用小棒按照如下方式摆图形.(1)摆1个八边形需要8根小棒,摆2个八边形需要15根小棒,摆20个八边形需要141根小棒.如果想摆a个八边形,需要(7a+1)根小棒.(2)有2009根小棒,最多可以摆286个完整的八边形.【分析】根据图示,发现这组图形的规律:摆n个八边形所需小棒个数为(7n+1)根,利用规律解题.【解答】解:(1)摆1个八边形需要8根小棒,摆2个八边形需要15根小棒,……摆n个八边形需要(7n+1)根小棒.所以:摆20个八边形需要141根小棒.如果想摆a个八边形,需要(7a+1)根小棒.(2)2009﹣1=2008(根)2008÷7≈286(个)答:有2009根小棒,最多可以摆286个完整的八边形.故答案为:15;141;(7a+1);286.12.(2018•市南区)按下面用小棒摆正六边形.摆4个正六边形需要21根小棒;摆10个正六边形需要51根小棒;摆n个正六边形需要5n+1根小棒.【分析】摆1个六边形需要6根小棒,可以写作:5×1+1;摆2个需要11根小棒,可以写作:5×2+1;摆3个需要16根小棒,可以写成:5×3+1;…由此可以推理得出一般规律解答问题.【解答】解:当n=1时,需要小棒1×5+1=6(根),当n=2时,需要小棒2×5+1=11(根),当n=3时,需要小棒3×5+1=16(根),当n=4时,需要小棒4×5+1=21(根),…当n=10时,需要小棒10×5+1=51(根)摆n个六边形需要:5n+1根小棒.答:摆4个正六边形需要21根小棒;摆10个正六边形需要51小棒;摆n个六边形需要5n+1根小棒.故答案为:21;51;5n+1.13.(1)2,5,8,11,14,17,20.(2)48,40,32,24,16,8.【分析】(1)5﹣2=3,8﹣5=3,规律:每次增加3;(2)48﹣40=8,40﹣32=8,规律:每次减少8;据此解答即可.【解答】解:(1)8+3=1114+3=1717+3=20所以2,5,8,11,14,17,20.(2)32﹣8=2424﹣8=1616﹣8=8所以48,40,32,24,16,8.故答案为:11,17,20;24,16,8.14.开动脑筋想一想.箱子里有4个●,9个〇.【分析】根据图示发现珠子的排列规律:〇从1开始,每组增加1个;●每组2个.因为箱子左面:1个白球,2个黑球;2个白球,2个黑球;3个白球,1个黑球;箱子右边1个黑球,6个白球.所以箱子里的遮住了第3组的1个黑球,第4组的4个白球和2个黑球;第5组的5个白球和1个黑球.据此判断箱子中〇和●的个数即可.【解答】解:根据规律可知,〇在箱子里的是:4+5=9(个)●在箱子里的是:1+2+1=4(个)答:箱子里有4个●,9个〇.15.(2019秋•成都期末)玩搭积木游戏,每一阶段增多的积木的个数相同,所搭起来的积木的形状如下图所示.搭第8阶段一共需要积木24个.【分析】观察图形可知,第一阶段,积木个数是3=3×1;第二阶段,积木个数是6=3×2;第三阶段,积木个数是9=3×3,第四阶段,积木个数是12=3×4…,据此可得,第n阶段,积木个数是3n;据此即可解答.【解答】解:根据题干分析可得:第n阶段,积木个数是3n;当n=8时,3×8=24(个),答:第8阶段有24个积木.故答案为:24.16.(2019秋•成都期末)2只小熊有6只脚着地;3只小熊有8只脚着地;n只小熊有(2n+2)只脚着地.如果共有26只脚着地,那么有12只小熊在表演节目.【分析】(1)从图中看出,有1只小熊的4条腿着地,有n﹣1只小熊的2条腿着地,由此用(n﹣1)×2+4分别求出n=2,n=3,n只小熊表演节目腿着地的条数;(2)让(n﹣1)×2+4等于26,解此方程即可求出n的值.【解答】解:(1)2只小熊有2+4=6(只)3只小熊有2×2+4=8(只)n只小熊有:(n﹣1)×2+4=2n﹣2+4=(2n+2)(只)答:2只小熊有6只腿着地,3只小熊有8只腿着地,n只小熊表演时共有(2n+2)只腿着地.(2)(n﹣1)×2+4=262n+2=262n=26﹣22n=24n=12答:如果共有26只脚着地,那么有12只小熊在表演节目.故答案为:6,8,(2n+2),12.三.判断题17.(2012•岳麓区)按1、8、27、64、125、216的规律排,横线中的数应为64.正确.(判断对错)【分析】此题关键是发现以上数列是按各数的立方顺序排列的.【解答】解:13=1;23=8;3 3=27;43=64;5 3=125;63=216.由此发现规律:以上数列是按1、2、3、4、5、6的立方顺序排列的,43=64.故答案为:正确.18.第567个图形是〇.×(判断对错)【分析】根据图示可知,每6个图形一循环,计算第567个图形是第几个循环零几个图形,即可知道其形状,判断即可.【解答】解:567÷6=94 (3)所以第567个图形与第4个图形一样,为正方形,原说法错误.故答案为:×.19.(2019秋•温县期末)如图,如果一个小三角形的边长为1cm,第五个图形的周长是15cm.×.(判断对错)【分析】依题意可知:当n=1时,周长=边长×3;当n=2时,周长=边长×4;当n=3时,周长=边长×5;当n=4时,周长=边长×6;…;当有n个三角形时,图形周长=边长×(n+2).【解答】解:根据题干分析可得:当有n个三角形时,图形周长=边长×(n+2),当n=5时,图形周长是:1×(5+2)=7(cm),答:第五个图形的周长是7cm.故答案为:×.20.(2018•工业园区)沿道路的一边,按3面红旗、2面黄旗、1面蓝旗的顺序插了一行彩旗.第190面应该是红旗.×(判断对错)【分析】根据题干可得,这些彩旗的排列规律是:6面旗一个循环周期,分别按照3红、2黄、1蓝的顺序依次排列,据此求出第190面彩旗是的高循环周期的第几个即可解答.【解答】解:190÷6=31…4,所以第190面彩旗是第32循环周期的第4个,是黄旗.题干说法错误.故答案为:×.21.(2018秋•北票市期末)如图,第五个点阵中点的个数是17个.√(判断对错)【分析】根据图示,发现这组图形的规律:第一个点阵中点的个数:1个;第二个点阵中点的个数:1+4=5(个);第三个点阵中点的个数:1+4+4=9(个);……第n个点阵中点的个数:1+4(n﹣1)=(4n ﹣3)(个).据此判断即可.【解答】解:第一个点阵中点的个数:1个第二个点阵中点的个数:1+4=5(个)第三个点阵中点的个数:1+4+4=9(个)……第n个点阵中点的个数:1+4(n﹣1)=(4n﹣3)(个)……第五个点阵中点的个数:4×5﹣3=20﹣3=17(个)答:第五个点阵中点的个数是17个.所以原说法正确.故答案为:√.22.(2015秋•霍邱县校级期中)0.123123123…小数点后的第98位是2.√.(判断对错)【分析】因为0.123123123…的循环节是123,三位数字,那么98÷3=32…2,因此0.123123123…的小数点后面第98位上的数字是2.【解答】解:0.123123123…的循环节是123,所以98÷3=32…2,所以0.123123123…的小数点后面第98位上的数字是2.故答案为:√.23.(2010•河池)3.58658658…小数部分的第95位数字是8.正确.(判断对错)【分析】因为3.58658658…是循环小数,它的循环节是586,是3位数,95÷3=31(个)…2,所以小数部分的第95位数字是31个循环节后的32个循环节上的第2个数字,循环节是586的第二个数字是8,据此求出然后分析判断.【解答】解:根据分析可知:3.58658658…小数部分的第95位数字是8,这是正确的;故答案为:正确.24.☆△〇〇☆△〇〇...像这样依次重复排列下去,第31个图形是☆.×(判断对错)【分析】根据图示,每4个图形一循环,求第31个图形是第几个循环零几个图形,即可判断其形状.【解答】解:31÷4=7 (3)所以第31个图形与第3个图形一样,是⚪.原说法错误.故答案为:×.四.计算题25.(2017秋•醴陵市期末)先计算,再利用规律解决问题.1﹣=﹣=﹣=﹣=+++=(请写出计算过程)【分析】因为1﹣=,﹣=,=,…….所以:==1﹣.【解答】解:1﹣=﹣==……所以:==1﹣=故答案为:.26.按图摆放餐桌和椅子,摆8张餐桌可以坐多少人?52人用餐,需要摆多少张餐桌?【分析】第一张餐桌上可以摆放8把椅子,进一步观察发现:多一张餐桌,多放4把椅子.第n张餐桌共有4+4n把椅子;据此解答即可.【解答】解:第一张餐桌上可以摆放8把椅子,进一步观察发现:多一张餐桌,多放4把椅子.所以第n张餐桌共有4+4n把椅子,(1)当n=8时,4+4×8=36(人),答:摆8张餐桌可以坐36人.(2)当52人用餐时,则,4+4n=524n=48n=12答:52人用餐,需要摆12张餐桌.五.应用题27.甲、乙、丙三人分一副扑克牌,按照首先给甲3张,然后给乙2张,最后给丙2张的顺序一直往下发牌.最后一张(第54张)牌发给了谁?【分析】首先给甲3张,然后给乙2张,最后给丙2张,看作是一组,有3+2+2=7张,用除法求出54张牌中有几组,余几张,即可得知最后一张(第54张)牌发给了谁.【解答】解:3+2+2=7(张)54÷7=7(组)……5(张)这五张牌中,首先发给甲3张,然后给乙2张,所以最后一张(第54张)牌发给了乙.答:最后一张(第54张)牌发给了乙.28.有绿、白两种颜色的珠子,按照下面的规律穿在一根线上,那么第22颗珠子是什么颜色的?第45颗珠子呢?【分析】根据题时可知,这组珠子的排列规律:每5颗珠子一循环,分别计算第22颗、第45颗珠子是第几个循环零几颗珠子,几颗判断其颜色.【解答】解:22÷5=4(组)……2(颗)45÷5=9所以第22颗珠子与第2颗珠子一样,是白色;第45颗珠子与第5颗珠子一样,是绿色.答:第22颗珠子是白色,第45颗珠子是绿色.29.(2019•宁波模拟)小明用小棒搭房子.搭2间用9根,搭3间用13根.照这样计算,如果搭10间房子,需要用多少根小棒?【分析】根据搭成的房子间数,和所用小棒的根数,发现规律:搭n间房需要:[5+(n﹣1)×4]=(4n+1)根小棒.【解答】解:根据图示,2间房:5+4=9(根)3间房:5+4+4=13(根)……10间房:5+4×(10﹣1)=41(根)答:搭10间房子,需要用41根小棒.30.庆“六一”联欢会,二(3)班教室里按红、黄、蓝、绿的顺序挂了30盏灯,最后一盏是什么颜色的灯?【分析】根据题意可知,每4盏灯一循环,求第30盏灯是第几个循环零几盏灯,即可判断其颜色.【解答】解:30÷4=7(组)……2(盏)所以第30盏灯与第2盏一样,是黄色.答:最后一盏是黄色的灯.31.同学们为联欢会布置教室,将气球按3红2绿2黄的顺序排列.第84个气球是什么颜色的?【分析】根据题意,这组气球每3+2+2=7(个)一循环,计算第84个气球是第几组循环零几个,即可判断其颜色.【解答】解:84÷(3+2+2)=84÷7=12(组)所以第84个气球与第7个一样,是黄色答:第84个气球是黄色的.32.一串彩色气球按“红、蓝、蓝、蓝、黄、黄”的顺序排列.(1)第39个气球是什么颜色的?(2)前47个气球中有多少个蓝色气球?【分析】根据这串气球的排列规律:每6个气球一循环,分别求第39和第47个气球是第几个循环零几个图形,然后根据每个循环里蓝气球的个数,求47个气球中有多少蓝气球即可.【解答】解:(1)39÷6=6 (3)所以第39个气球与第3个气球一样,是蓝色.答:第39个气球是蓝色的.(2)47÷6=7 (5)7×3+3=21+3=24(个)答:前47个气球中有24个蓝色气球.33.(2019•湘潭模拟)一张桌子可以坐6人,两张桌子拼起来可以坐10人,三张桌子拼起来可以坐14人.像这样共几张桌子拼起来可以坐50人.【分析】由一张桌子坐6人,两张桌子坐10人,三张桌子坐14人,可以发现每多一张桌子多4个人,由此用字母表示这一规律,然后代值计算.【解答】解:1张桌子可坐2×1+4=6人,2张桌子拼在一起可坐2×4+2=10人,3张桌子拼在一起可坐4×3+2=14人,…所以五张桌子坐4×5+2=22人,…那么n张桌子坐(4n+2)人.当共有50人时,4n+2=504n=48n=12答:这样共12张桌子拼起来可以坐50人.六.操作题34.(2019•郑州模拟)找规律,第四幅图该怎么画?【分析】从图中观察可知,第一幅图中的四个阴影部分在中间的对角线上,第二幅图的阴影部分向对角线的右面移了三个阴影,多余的一个,移到了对角线的左下,第三幅图中的阴影部分向对角线的右面移了二个阴影,多余的二个,移到了对角线的左下.照这样的变化,第四幅图的阴暗部分应是有对角线的右上角有一个,对角线的右下有3个.据此解答.【解答】解:根据分析画图如下:35.(2018•张家港市校级模拟)分析如下图①,②,④中阴影部分的分布规律,按此规律在图③中画出其中的阴影部分.【分析】从图中可以观察变化规律是,正方形每次绕其中心顺时针旋转90°,每个阴影部分也随之旋转90°.【解答】解:画图如下:36.(2019秋•洛阳期中)找规律填一填,画一画.(1)、.(2)3、6、9、12、15、18.(3)80、40、20、10、5.(4)1、3、9、27、81、243.【分析】(1)1×2=2,2×2=4,规律:每次个数扩大2倍;(2)3=3×1、6=3×2、9=3×3、12=3×4,;规律:依次都是3的倍数;(3)80÷40=2,规律:依次缩小2倍数;(4)3÷1=3,9÷3=3,规律:每次个数扩大3倍.【解答】解:(1)(2)3×5=153×6=18(3)40÷2=2010÷2=5(4)9×3=2781×3=243故答案为:,;15,18;20,5;27,243.七.解答题(共4小题)37.(2019秋•綦江区期末)找规律,填数.(1)(2)0,5,10,15,20.(3)17,15,13,11,9.【分析】(1)根据自然数的排列规律依次填出;(2)每相邻两个数字之间间隔5,据此解答;(3)每相邻两个数字之间递减2,据此解答;【解答】解:(1)依次为:13、14、15、16、17、18、19、20.应填16、20.(2)10+5=15,15+5=20.应填:15、20.(3)13﹣2=11,11﹣2=9.应填:11、9.故答案为:16、20,15、20,11、9.38.(2019春•通州区期末),,,,,…观察这列数的规律,其中第四个分数是,如果这列数中的某个分数的分母是a,那么分子是a﹣3.【分析】观察给出的数列知道,分子分别是从2开始的连续偶数,而分母是比分子多3的数,由此得出答案.【解答】解:根据以上分析,得:第四个分数的分子:6+2=8;分母是:8+3=11;所以第四个分数是;如果这列数中的某个分数的分母是a,那么分子是a﹣3.故答案为:;a﹣3.39.(2019秋•雅安期末)找规律,按要求操作:(1)在横线上画出相应的图形..(2)如图,△□☆△□☆△□☆……,第137个图形是□.【分析】(1)根据图示,发现这组图形的规律:第一个图形小黑点个数为:12=1(个);第二个图形小黑点的个数为:22=4(个);第三个图形小黑点的个数为:32=9(个);……第n个图形小黑点的个数为:n2个.据此解答.(2)根据图形的特点可知,该图形每三个图形一循环,所以计算第137个图形是第几个循环零几个图形,根据余数判断其形状即可.【解答】解:(1)第一个图形小黑点个数为:12=1(个)第二个图形小黑点的个数为:22=4(个)第三个图形小黑点的个数为:32=9(个)……第n个图形小黑点的个数为:n2个如图所示:(2)137÷3=45 (2)所以与第二个图形一样是□.答:第137个图形是□.故答案为:□.40.(2019秋•永州期末)观察下面的点阵图规律,第(9)个点阵图有30个点.【分析】第一个图:1+2+3=6,第二个图:2+3+4=9;第三个图:3+4+5=12…第n个图就是:n+(n+1)+(n+2)由此求解.【解答】解:第9个图有:9+10+11=30;答:第9个点阵图有30个点.故答案为:30.。

202X年学而思小升初专项训练数教师版

202X年学而思小升初专项训练数教师版

千里之行,始于足下。

202X年学而思小升初专项训练数老师版学而思小升初专项训练数学老师版敬重的家长伴侣们,大家好!我是负责学而思小升初专项训练数学老师,今日我将为大家介绍一下学而思小升初专项训练数学教材。

学而思小升初专项训练数学教材是特地为学校六班级同学编写的,旨在挂念同学夯实基础学问,提高解题力量,为顺当升入学校打下坚实的数学基础。

教材内容共分为四个部分,分别是数与代数、空间与图形、数据与概率、运算与应用。

每个部分都有具体的教学目标和教学内容,挂念同学逐步把握数学学问和技巧。

在数与代数部分,教材涵盖了数的大小、数的读写、数的比较、数的四则运算、数的倍数与约数等基础学问。

通过一系列的讲解和练习,挂念同学娴熟把握这些基础概念和技巧,并能够用于解决实际问题。

在空间与图形部分,教材围绕立体图形、平面图形、坐标系等内容开放。

通过教材中的图形呈现和题目训练,挂念同学理解和把握图形的特征和性质,提高对图形的分析和推断力量。

在数据与概率部分,教材主要讲解数据的收集和统计方法,并通过实际的数据处理和分析问题,培育同学的数据分析力量和概率思维力量。

在运算与应用部分,教材以实际问题为基础,涵盖了数学运算、数学应用等内容。

通过解决实际问题的训练,挂念同学将数学学问应用到实际生活中去,培育同学的数学思维和解决问题的力量。

第1页/共2页锲而不舍,金石可镂。

除了教材本身的内容,学而思还为同学供应了丰富的帮助资源,包括在线视频课程、习题讲解、练习册和模拟试卷等。

同学可以通过这些资源随时随地进行学习和巩固,提高学习效果。

最终,我想强调的是,学而思小升初专项训练数学教材的目标是提高同学的数学素养和解题力量,并为他们顺当升入学校打下坚实的数学基础。

我们将依据同学的实际状况和学习进度进行共性化教学,挂念他们克服困难,取得进步。

感谢大家!假如您对学而思小升初专项训练数学教材还有任何疑问或需要进一步了解,请随时与我们联系。

祝愿孩子们在数学学习中取得好成果!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

名校真题测试卷6 (找规律篇)时间:15分钟满分5分姓名_________ 测试成绩_________1 (06年清华附中考题)如果将八个数14,30,33,35,39,75,143,169平均分成两组,使得这两组数的乘积相等,那么分组的情况是什么?2 (05年三帆中学考题)观察1+3=4 ;4+5=9 ;9+7=16 ;16+9=25 ;25+11=36 这五道算式,找出规律,然后填写20012+()=200223(06年西城实验考题)一串分数:12123412345612812 ,,,,,,,,,,,,.....,,,......,33,55557777779991111其中的第2000个分数是 .4 (06年东城二中考题)在2、3两数之间,第一次写上5,第二次在2、5和5、3之间分别写上7、8(如下所示),每次都在已写上的两个相邻数之间写上这两个相邻数之和.这样的过程共重复了六次,问所有数之和是多少? 2......7......5......8 (3)5 (04年人大附中考题)请你从01、02、03、…、98、99中选取一些数,使得对于任何由0~9当中的某些数字组成的无穷长的一串数当中,都有某两个相邻的数字,是你所选出的那些数中当中的一个。

为了达到这些目的。

(1)请你说明:11这个数必须选出来;(2)请你说明:37和73这两个数当中至少要选出一个;(3)你能选出55个数满足要求吗?【附答案】1 【解】分解质因数,找出质因数再分开,所以分组为33、35、30、169和14、39、75、143。

2 【解】上面的规律是:右边的数和左边第一个数的差正好是奇数数列3、5、7、9、11……,所以下面括号中填的数字为奇数列中的第2001个,即4003。

3 【解】分母为3的有2个,分母为4个,分母为7的为6个,这样个数2+4+6+8…88=1980<2000,这样2000个分数的分母为89,所以分数为20/89。

4 【解】:第一次写后和增加5,第二次写后的和增加15,第三次写后和增加45,第四次写后和增加135,第五次写后和增加405,……它们的差依次为5、15、45、135、405……为等比数列,公比为3。

它们的和为5+15+45+135+405+1215=1820,所以第六次后,和为1820+2+3=1825。

5 【解】 (1),11,22,33,…99,这就9个数都是必选的,因为如果组成这个无穷长数的就是1~9某个单一的数比如111…11…,只出现11,因此11必选,同理要求前述9个数必选。

(2),比如这个数3737…37…,同时出现且只出现37和37,这就要求37和73必须选出一个来。

(3),同37的例子,01和10必选其一,02和20必选其一,……09和90必选其一,选出9个12和21必选其一,13和31必选其一,……19和91必选其一,选出8个。

23和32必选其一,24和42必选其一,……29和92必选其一,选出7个。

………89和98必选其一,选出1个。

如果我们只选两个中的小数这样将会选出9+8+7+6+5+4+3+2+1=45个。

再加上11~99这9个数就是54个。

第六讲 小升初专项训练 找规律篇一、小升初考试热点及命题方向找规律问题在小升初考试中几乎每年必考,但考题的分值较低,多以填空题型是出现。

在刚刚结束的06年小升初选拔考试中,人大附中,首师附中,十一学校,西城实验,三帆,西外,东城二中和五中都涉及并考察了这一类题型。

二、2007年考点预测07年的这一题型必然将继续出现,题型的出题热点在利用通项表达式(即字母表示)总结出已知条件中等式的内在规律和联系,这一类题型主要考察学生根据已有条件进行归纳与猜想的能力,希望同学们多加练习。

三、典型例题解析1 与周期相关的找规律问题【例1】、(★★)7n化小数后,小数点后若干位数字和为1992,求n 为多少? 【解】7n化小数后,循环数字和都为27,这样1992÷27=73…21,所以n=6。

【例2】、(★★)有一数列1、2、4、7、11、16、22、29……那么这个数列中第2006个数除以5的余数为多少?【解】数列除以5的余数为1、2、4、2、1、1、2、4、2、1…这样就使5个数一周期,所以2003÷5=400…3,所以余4。

【例3】、(★★★)某人连续打工24天,赚得190元(日工资10元,星期六做半天工,发半工资,星期日休息,无工资).已知他打工是从1月下旬的某一天开始的,这个月的1号恰好是星期日. 问:这人打工希望考入重点中学? 奥数网是我们成就梦想的地方!结束的那一天是2月几日?【来源】第五届“华杯赛”初赛第16题【解】因为3×7<24<4×7,所以24天中星期六和星期日的个数,都只能是3或4.又,190是10的整数倍。

所以24天中的星期六的天数是偶数.再由240-190=50(元),便可知道,这24天中恰有4个星期六、3个星期日.星期日总是紧接在星期六之后的,因此,这人打工结束的那一天必定是星期六.由此逆推回去,便可知道开始的那一天是星期四.因为1月1日是星期日,所以1月22日也是星期日,从而1月下旬唯一的一个星期四是1月26日.从1月26日往后算,可知第24天是2月18日,这就是打工结束的日子.2 图表中的找规律问题【例4】、(★★)图中,任意_--个连续的小圆圈内三个数的连乘积郡是891,那么B=_______.【来源】第十届<小数报>数学竞赛初赛填空题第5题【解】根据“任意三个连续的小圆圈内三个数的连乘积都是891”,可知任意一个小圆圈中的数和与它相隔2个小圆圈的小圆圈中的数是相同的.于是,B=891÷(9×9)=11.【例5】(★★★)自然数如下表的规则排列:求:(1)上起第10行,左起第13列的数;(2)数127应排在上起第几行,左起第几列?【解】:本题考察学生“观察—归纳—猜想”的能力.此表排列特点:①第一列的每一个数都是完全平方数,并且恰好等于所在行数的平方;②第一行第n个数是(n-1)2+1,②第n行中,以第一个数至第n个数依次递减1;④从第2列起该列中从第一个数至第n个数依次递增1.由此(1)〔(13-1)2+1〕+9=154;(2)127=112+6=〔(12-1)2+1〕+5,即左起12列,上起第6行位置.3较复杂的数列找规律【例6】、(★★★)设1,3,9,27,81,243是6个给定的数。

从这六个数中每次或者取1个,或者取几个不同的数求和(每一个数只能取1次),可以得到一个新数,这样共得到63个新数。

把它们从小到大一次排列起来是1,3,4,9,10,12,…,第60个数是______。

【来源】1989年小学数学奥林匹克初赛第15题 【解】最大的(即第63个数)是 1+3+9+27+81+243=364第60个数(倒数第4个数)是 364-1-3=360。

【例7】、(★★★)在两位数10,11,…,98,99中,将每个被7除余2的数的个位与十位之间添加-个小数点,其余的数不变.问:经过这样改变之后,所有数的和是多少? 【来源】 第五届“华杯赛”初赛第15题 【解】原来的总和是10+11+…+98+99=290)9910(⨯+=4905,被7除余2的两位数是7×2+2=16,7×3+2=23,…,7×13十2=93.共12个数.这些数按题中要求添加小数点以后,都变为原数的101,因此这-手续使总和减少了 (16+23+…+93)×(1-101)=212)9316(⨯+×109=588.6所以,经过改变之后,所有数的和是4905—588.6=4316.4.【例8】、(★★★)小明每分钟吹-次肥皂泡,每次恰好吹出100个.肥皂泡吹出之后,经过1分钟有-半破了,经过2分钟还有201没有破,经过2分半钟全部肥皂泡都破了·小明在第20次吹出100个新的肥皂泡的时候,没有破的肥皂泡共有 个.【来源】 1990年小学数学奥林匹克决赛第8题【解】小明在第20次吹出100个新的肥皂泡的时候,第17次之前(包括第17次)吹出的肥皂泡全破了.此时没有破的肥皂泡共有 100+100×201+100×21=155(个).4 与斐波那契数列相关的找规律【引言】:有个人想知道,一年之内一对兔子能繁殖多少对?于是就筑了一道围墙把一对兔子关在里面。

已知一对兔子每个月可以生一对小兔子,而一对兔子出生后在第二个月就开始生小兔子。

假如一年内没有发生死亡现象,那么,一对兔子一年内能繁殖成多少对?现在我们先来找出兔子的繁殖规律,在第一个月,有一对成年兔子,第二个月它们生下一对小兔,因此有二对兔子,一对成年,一对未成年;到第三个月,第一对兔子生下一对小兔,第二对已成年,因此有三对兔子,二对成年,一对未成年。

月月如此。

第1个月到第6个月兔子的对数是: 1,2,3,5,8,13。

我们不难发现,上面这组数有这样一个规律:即从第3个数起,每一个数都是前面两个数的和。

若继续按这规律写下去,一直写到第12个数,就得:1,2,3,5,8,13,21,34,55,89,144,233。

显然,第12个数就是一年内兔子的总对数。

所以一年内1对兔子能繁殖成233对。

在解决这个有趣的代数问题过程中,斐波那契得到了一个数列。

人们为纪念他这一发现,在这个数列前面增加一项“1”后得到数列:1,1,2,3,5,8,13,21,34,55,89,……叫做“斐波那契数列”,这个数列的任意一项都叫做“斐波那契数”。

【例9】(★★)数学家泽林斯基在一次国际性的数学会议上提出树生长的问题:如果一棵树苗在一年以后长出一条新枝,然后休息一年。

再在下一年又长出一条新枝,并且每一条树枝都按照这个规律长出新枝。

那么,第1年它只有主干,第2年有两枝,问15年后这棵树有多少分枝(假设没有任何死亡)?【解】 1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,1597,2584绝对是一棵大树。

【例10】(★★)有一堆火柴共 10根,如果规定每次取 1~3根,那么取完这堆火柴共有多少种不同取法?【解】此题要注重思路,因为没办法直接考虑,这样我们发现这题同样用找规律的方法,我们可以先看只有1根的情况开始:1根,有:1种;2根,有1、1,2,共两种;3根,可以有:1、1、1,1、2,2、1,3,共4种;4根,有:1、1、1、1,1、1、2,1、2、1,2、1、1,2、2,1、3,3、1,共7=4+2+1种;5根,有:1、1、1、1、1,1、1、1、2,1、1、2、1,1、2、1、1,2、1、1、1,1、2、2,2、1、2,2、2、1,1、1、3,1、3、1,3、1、1,2、3,3、2,共13=7+4+2种;6根,得到24=13+7+4种;即:n根,所有的取法种数是它的前三种取法的和。

相关文档
最新文档