最新五年级下数学简易方程知识点与练习
五年级数学下册简易方程知识点
五年级数学下册简易方程知识点五年级数学下册简易方程知识点在日常的学习中,是不是经常追着老师要知识点?知识点就是学习的重点。
为了帮助大家掌握重要知识点,以下是店铺为大家收集的五年级数学下册简易方程知识点,欢迎阅读,希望大家能够喜欢。
五年级数学下册简易方程知识点11、在含有字母的式子里,字母中间的乘号可以记作,也可以省略不写。
加号、减号除号以及数与数之间的乘号不能省略。
2、aa 可以写作 aa 或 a2,a2读作 a 的平方。
2a 表示 a+a3、我们学过的一些典型的数量关系:(用s路程、v速度、t时间)行程问题:路程=速度时间s=vt速度=路程时间v=st时间=路程速度t=sv(用c总价、a单价、x数量)价格问题:总价=单价数量c=ax单价=总价数量a=cx数量=总价单价x=ca(用c工作总量、 a工作效率、 t工作时间)工程问题:工作总量=工作效率工作时间c=at工作效律=工作总量工作时间a=ct工作时间=工作总量工作效率t=ca4、方程:含有未知数的等式称为方程。
使方程左右两边相等的未知数的值,叫做方程的解。
求方程的解的过程叫做解方程。
5、解方程原理:天平平衡。
等式左右两边同时加、减、乘、除相同的数(0 除外),等式依然成立。
、6、各个数量关系式:加法:和=加数+加数一个加数=和-另一个加数减法:差=被减数-减数被减数=差+减数减数=被减数-差乘法:积=因数因数一个因数=积另一个因数除法:商=被除数除数被除数=商除数除数=被除数商7、所有的方程都是等式,但等式不一定都是方程。
8、方程的检验过程:方程左边=9、方程的解是一个数;解方程式一个计算过程。
=方程右边所以,X=是方程的解。
五年级数学下册简易方程知识点21、表示相等关系的式子叫做等式。
2、含有未知数的等式是方程。
3、方程一定是等式;等式不一定是方程。
等式>方程4、等式两边同时加上或减去同一个数,所得结果仍然是等式。
这是等式的性质。
五年级简易方程练习题
五年级简易方程练习题解答:题目:五年级简易方程练习题在五年级数学学习中,方程是一个重要的概念。
通过解方程,我们可以找出未知数的值,从而解决一些实际问题。
本文将为大家提供一些简易的方程练习题,帮助五年级学生巩固这一知识点。
练习题一:1. 解方程:x + 4 = 92. 解方程:8 - y = 33. 解方程:5 + m = 124. 解方程:n + 6 = 105. 解方程:7 - p = 2练习题二:1. 解方程:2x + 3 = 92. 解方程:5 - y = 13. 解方程:7 + m = 124. 解方程:2n + 4 = 125. 解方程:9 - p = 4练习题三:1. 解方程:3x + 2 = 82. 解方程:6 - y = 23. 解方程:8 + m = 164. 解方程:4n + 5 = 215. 解方程:11 - p = 6练习题四:1. 解方程:4x + 7 = 232. 解方程:9 - y = 53. 解方程:12 + m = 254. 解方程:6n + 3 = 335. 解方程:15 - p = 9练习题五:1. 解方程:5x + 6 = 412. 解方程:12 - y = 83. 解方程:16 + m = 354. 解方程:8n + 10 = 585. 解方程:20 - p = 16通过以上的练习题,相信大家对于五年级简易方程的解法已经有了一定的掌握。
方程这一数学概念的学习,为我们培养了分析问题、解决问题的能力。
希望同学们能够不断练习,提高自己的方程解题水平。
本文仅提供了一些简单的练习题,随着学习的深入,我们将能够面对更加复杂的方程,不断挑战自己。
相信通过勤奋的学习和不断的练习,同学们一定能够在数学方程这个领域取得优异的成绩!祝愿同学们在五年级数学学习中取得进步,为将来的学习打下坚实的基础!。
苏教版五下数学第一单元《简易方程》知识点附练习5套
苏教版五下数学第一单元《简易方程》知识点附练习5套第一单元简易方程1、表示相等关系的式子叫做等式。
2、含有未知数的等式是方程。
3、方程一定是等式;等式不一定是方程。
等式>方程4、等式两边同时加上或减去同一个数,所得结果仍然是等式。
这是等式的性质。
5、使方程左右两边相等的未知数的值叫做方程的解。
6、求方程中未知数的过程,叫做解方程。
7、检验格式:60-4x=20解4x=60-204x=40x=10①检验:把x=10代入原方程,左边=60-4×10=20,右边=20,左边=右边,所以x=10是原方程的解.②检验:方程左边=60-4×10=20方程右边所以,x=10是方程的解。
8、解方程时常用的关系式:一个加数=和-另一个加数减数=被减数-差被减数=减数+差一个因数=积÷另一个因数除数=被除数÷商被除数=商×除数9、五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。
奇数个连续的自然数(或连续的奇数,连续的偶数)的和÷个数=中间数10、4个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间两个数或首尾两个数的和×个数÷2(高斯求和公式)。
11、列方程解应用题的思路:A、审题并弄懂题目的已知条件和所求问题。
B、理清题目的等量关系。
C、设未知数,一般是把所求的数用X表示。
D、根据等量关系列出方程E、解方程F、检验五年级数学(下)解方程练习(1)1.加数+加数=和加数=和-另一个加数例:20+ⅹ=45(ⅹ是一个加数,应用:加数=和-另一个加数方法来解)解:ⅹ=45-20ⅹ=25练习10题:35+ⅹ=10012.5+ⅹ=4547+ⅹ=305 3.5+ⅹ=30.5 60+ⅹ=160.5ⅹ+25=38ⅹ+2.5=3.8ⅹ+3.2=15ⅹ+52=100ⅹ+0.64=64五年级数学(下)解方程练习(2)2、被减数-减数=差被减数=差+减数减数=被减数-差例:ⅹ-51=43(ⅹ是一个被减数,应用:被减数=差+减数方法来解)解:ⅹ=43+51ⅹ=94例:64-ⅹ=20(ⅹ是一个减数,应用:减数=被减数-差方法来解)解:ⅹ=64-20ⅹ=44练习10题:ⅹ-51=68ⅹ-12.5=5ⅹ-14.25=43ⅹ-3.52=2.48ⅹ-12.5=6.894-ⅹ=2042.32-ⅹ=300.64-ⅹ=0.25 100-ⅹ=0.2580-ⅹ=70五年级数学(下)解方程练习(3)3、因数×因数=积因数=积÷另一个因数例:6ⅹ=48(ⅹ是一个因数,应用:因数=积÷另一个因数方法来解)解:ⅹ=48÷6ⅹ=8练习10题:7ⅹ=630.32ⅹ=1600.6ⅹ=4.8625ⅹ=1008ⅹ=720.25ⅹ=400 2.25ⅹ=90025ⅹ=15ⅹ=0.458ⅹ=1000五年级数学(下)解方程练习(4)4、被除数÷除数=商被除数=商×除数除数=被除数÷商例:ⅹ÷9=53(ⅹ是一个被除数,应用:被除数=商×除数方法来解)解:ⅹ=53×9ⅹ=477例:255÷ⅹ=5(ⅹ是一个除数,应用:除数=被除数÷商方法来解)解:ⅹ=255÷5ⅹ=51练习10题:ⅹ÷12=13ⅹ÷0.9=5.3ⅹ÷0.25=2.14ⅹ÷3.2=17ⅹ÷1.2=1.3300 5÷ⅹ=5 2.55÷ⅹ=0.532.8÷ⅹ=0.21000÷ⅹ=83612÷ⅹ=3五年级数学(下)解方程练习(5)5、稍复杂的方程(一)例:2ⅹ-20=4(先把2ⅹ看成一个整体,2ⅹ看成一个被减数,应用:被减数=差+减数方法来解)(最关键是把含有ⅹ的量看成一个整体,还把它看成一个什么数)2ⅹ-20=4解:2ⅹ=4+202ⅹ=24ⅹ=24÷2ⅹ=12练习10题:2ⅹ-51=674ⅹ-3.52=12.4880-10ⅹ=7092-8ⅹ=202×1.02+ⅹ=35.22×7+2ⅹ=3020ⅹ÷8=1254ⅹ÷12=133005÷2ⅹ=5 2.55÷3ⅹ=0.5五年级数学(下)解方程练习(6)6、稍复杂的方程(二)例:(2.8+ⅹ)×2=10.4(先把(2.8+ⅹ)看成一个整体,(2.8+ⅹ)看成一个因数,首先应用:因数=积÷另一个因数方法来解(最关键是把括号看成一个整体,还把它看成一个什么数)(2.8+ⅹ)×2=10.4解:2.8+ⅹ=10.4÷22.8+ⅹ=5.2ⅹ=5.2-2.8ⅹ=2.4练习9题:2(ⅹ-2.6)=85(ⅹ+1.5)=17.5(ⅹ-3)÷2=7.5(ⅹ-3)÷6=6.32+(ⅹ-2.6)=85+(ⅹ+1.5)=17.5(ⅹ-6.2)-8=41.6(ⅹ-3)-2=7.5(ⅹ-3)÷0.2=7.5。
小学五年级数学简易方程的知识点归纳
小学五年级数学简易方程的知识点归纳数学方程是数学中常见的一个概念,它是一个等式,其中包含一个或多个未知数。
在小学五年级的数学学习中,学生开始接触简易方程的概念和解题方法。
本文将对小学五年级数学简易方程的知识点进行归纳。
一、方程的基本概念方程是由等号连接的两个代数式组成,其中至少包含一个未知数。
例如,下面的方程是一个简单的数学方程:2x + 3 = 9在这个方程中,未知数是x,左边的2x + 3是一个代数式,右边的9也是一个代数式。
二、方程的解解方程,就是要找到使得方程成立的未知数的值。
对于简易方程来说,解通常是一个特定的数。
在解方程时,我们必须使用逆运算来保持等式的平衡。
例如,对于上面的方程2x + 3 = 9,我们可以先减去3再除以2来解方程,即:2x + 3 - 3 = 9 - 32x = 62x ÷ 2 = 6 ÷ 2x = 3所以x=3是这个方程的解。
三、方程的变形及性质在解方程的过程中,我们经常需要进行方程的变形。
方程的变形即改变方程的形式,使得方程更易于求解。
常见的方程变形方法包括:1. 合并同类项:将方程中相同的项合并,以简化方程。
2. 移项:将方程中的项按照规则从一边移到另一边,以便合理组织方程形式。
3. 消元:通过适当的运算,使得方程中的某些项相互抵消,以简化方程。
四、常见的简易方程类型1. 一元一次方程:一元一次方程是最简单的方程类型,形式为ax +b = c,其中a、b、c都是已知的实数,且a不等于0。
例如:2x + 3 = 7解这个方程的步骤是:2x + 3 - 3 = 7 - 32x = 42x ÷ 2 = 4 ÷ 2x = 2所以,这个方程的解是x=2。
2. 带括号的一元一次方程:在一元一次方程中,有时方程中带有括号,解这类方程的关键是先去括号再进行求解。
例如:3(x + 2) = 15首先展开括号:3x + 6 = 15然后解方程:3x + 6 - 6 = 15 - 63x = 93x ÷ 3 = 9 ÷ 3x = 3因此,这个方程的解是x=3。
第一单元简易方程(易错梳理)-五年级下册数学单元复习讲义
简易方程知识盘点知识点1:等式和方程的意义1、表示相等关系的式子叫做等式。
从形式是看,含有“=”的式子就是等式。
2、含有未知数的等式是方程。
知识点2:等式和方程的关系方程一定是等式;等式不一定是方程。
知识点3:等式的性质① 等式两边同时加上或减去同一个数,所得结果仍然是等式。
② 等式两边同时乘或除以同一个不等于0的数,所得的结果仍然是等式。
知识点4:解方程1、方程的解:使方程左右两边相等的未知数的值。
2、解方程:求方程中未知数的过程。
3、用等式的性质可以直接解形如x ±a=b 、a x =b 、x ÷a=b 的方程。
4、用等式的性质解形如a x ±b x =c (a±b≠0)的方程的具体解法及书写格式如下:a x ±b x =c解: (a ±b )x =c(a ±b )x ÷(a ±b )=c ÷(a ±b )x =c÷(a ±b )5、解形如a x +ab =c (a≠0)的方程的方法。
(1)解形如a x +ab =c 的方程时,把ax 看作一个整体,先求a x 的值,再求x 的值。
(2)解形如a (x +b )=c 的方程时,把小括号内的x +b 看作一个整体,先求x +b 的值,再求x 的值。
⭐注意 方程具备的特征:①就含有未知数;②等式知识点5:用方程解决实际问题 1、列方程解应用题的思路:①审题并弄懂题目的已知条件和所求问题, ②理清题目的等量关系,③设未知数,一般是把所求的数用x 表示, ④根据等量关系列出方程, ⑤解方程, ⑥检验, ⑦作答。
2、已知数量甲比数量乙的几倍多(或少)几和数量甲,求数量乙的实际问题, 可设数量乙为x ,根据数量乙×倍数±几=数量甲,列出形如a x ±b=c 的方程 进行解答。
3、解决涉及两个未知量的问题时,一般设其中的一个未知量为x (通常设标准量 为x ),另一个未知量用含有x 的式子表示,然后根据等量关系式列方程求解。
1.简易方程-苏教版五年级下册数学期末复习专题讲义(知识点归纳 典例讲解 同步测试)
苏教版五年级下册数学期末复习专题讲义-1.简易方程【知识点归纳】1、表示相等关系的式子叫做等式。
2、含有未知数的等式叫方程。
3、方程一定是等式;等式不一定是方程.4、等式两边同时加上或减去同一个数,所得结果仍然是等式。
这是等式的性质。
等式两边同时乘或除以同一个不等于0的数,所得结果仍然是等式。
这也是等式的性质。
5、使方程左右两边相等的未知数的值叫做方程的解。
6、求方程中未知数的过程,叫做解方程。
注意:解完方程,要养成检验的好习惯。
7、三个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的3倍。
五个连续的自然数(或连续的奇数,连续的偶数)的和,等于中间的一个数的5倍。
8、列方程解应用题的思路:①、审题并弄懂题目的已知条件和所求问题。
②、理清题目的数量关系。
③、设未知数,一般是把问题中的量用X表示。
④、根据数量关系列出方程。
⑤、解方程。
⑥、检验。
⑦、答。
【典例讲解】例1.已知平行四边形的周长是44厘米,它的一边长是a厘米,则与该边相邻的边长是()厘米.A.44﹣a B.(44﹣a)÷2C.44÷2﹣a【分析】平行四边形对边相等,周长是44厘米,则相邻的两边之和是44÷2=22cm,它的一边长是a厘米,则与该边相邻的边长是(22﹣a)cm,据此解答即可.【解答】解:44÷2﹣a=(22﹣a)cm答:与该边相邻的边长是(22﹣a)cm.故选:C.【点评】此题考查了用字母表示数的方法,关键是弄清题中字母所表示的含义,再进一步解答.例2.如果a=3,那么a2+6等于15.【分析】把a=3,代入a2+6即可求出它的值.【解答】解:a=3时,a2+6=3×3+6=15答:如果a=3,那么a2+6等于15.故答案为:15.【点评】此题考查了用字母表示数以及求值的方法,关键是弄清题中字母所表示的含义,再进一步解答.例3.因为2+2=2×2,所以x+x=x×x.×(判断对错)【分析】当x=3时,x+x=6,x×x=9,二者不相等,直接判断即可.【解答】解:当x=3时,x+x≠x×x,所以原题说法错误;故答案为:×.【点评】此题考查了用字母表示数的方法,关键是弄清题中字母所表示的含义,再进一步解答.例4.解方程.4x+7=23﹣4x2(2x﹣5)=14【分析】(1)根据等式的性质,方程的两边同时加上4x,把方程化为8x+7=23,方程的两边同时减去7,然后方程的两边同时除以8求解;(2)根据等式的性质,方程的两边同时除以2,方程的两边同时加上5,然后方程的两边同时除以2求解.【解答】解:(1)4x+7=23﹣4x4x+7+4x=23﹣4x+4x8x+7=238x+7﹣7=23﹣78x=168x÷8=16÷8x=2(2)2(2x﹣5)=142(2x﹣5)÷2=14÷22x﹣5=72x﹣5+5=7+52x=122x÷2=12÷2x=6【点评】本题考查解方程,解题的关键是掌握等式的性质:方程两边同时加上或减去相同的数,等式仍然成立;方程两边同时乘(或除以)相同的数(0除外),等式仍然成立.例5.读唐代古诗.望庐山瀑布[唐]李白日照香炉生紫烟,遥看瀑布挂前川.飞流直下三千尺,疑是银河落九天.(1)若唐代的一尺相当于现在的a米,诗中的三千尺相当于现在的3000a米.(2)如果唐代的千尺约为现在的307米,那么a约代表多少?【分析】(1)若唐代的一尺相当于现在的a米,诗中的三千尺相当于现在的3000×a=3000a米;(2)唐代的千尺约为现在的307米,则一尺相当于307÷1000=0.307米,即a约代表0.307米.【解答】解:(1)3000×a=3000a(米)答:诗中的三千尺相当于现在的3000a米.(2)307÷1000=0.307(米)答:a约代表0.307米.故答案为:3000a.【点评】解答此题的关键是正确找出题中数据的关系,再灵活选用乘法或除法解答.【同步测试】一.选择题(共10小题)1.如图,可以看出在解方程时运用了()A.商不变的规律B.等式的性质C.乘数=积÷另一个乘数2.笑笑打算从273里连续减去13,要计算减去多少次后结果还是13.下列方程错误的是()A.273﹣13x=13B.13x=273﹣13C.13x=273D.13x+13=2733.一位同学在计算a+235时,把235当做23.5,那么()A.和增加10倍B.和减少10倍C.和减少了235﹣23.54.5x﹣3错写成5(x﹣3),结果比原来()A.多12B.少12C.多35.与a2表示的意义一样的是()A.a×a B.a+a C.2a D.a+26.根据方程3 x﹣6=18的解,得到5x﹣6=()A.4B.8C.14D.347.五(1)班有学生48名,男生有(48﹣m)名,这里的m表示()A.男生人数B.女生人数C.全班人数D.男生和女生相差的人数8.当()时,a的倒数大于a.A.a>1B.a=1C.0<a<19.一个两位数,十位上的数字是a,个位上的数字是b,这个两位数是()A.a+b B.10a+b C.a+10b10.下面的式子中,()是方程.A.3x﹣2B.0.8x+2>5C.﹣x=二.填空题(共8小题)11.a×5×b用简便方法写成,m×m×1用简便方法写成.12.每千克苹果是m元,妈妈买了8千克,付给售货员30元,应找回元.13.笑笑家一年水电支出a元,平均每月水电支出元.14.粮库有m吨大米,每小时运走n吨,4.5小时后还剩吨.15.丁丁今年12岁,妈妈今年36岁,妈妈比丁丁大岁.如果用A表示丁丁的年龄,用表示妈妈的年龄比较合适.16.一辆小汽车每小时行x千米,一列火车的速度比它的3倍多16千米,这列火车每小时行千米;如果x=58,火车的速度是千米/时.17.如果x+4=7,那么3x+12=.18.京张高速铁路是2022年北京冬奥会重要交通保障设施之一,全长174km,其中北京境内长akm,剩余都在河北境内.如果高铁以每小时350km的速度行驶,高铁在河北境内需要开小时.三.判断题(共5小题)19.x=16是方程x×6﹣4=32的解.(判断对错)20.x=6.8是方程x﹣1.2=8的解.(判断对错)21.a2表示两个a相乘,当a=2时,a2=2a.(判断对错)22.a+1和a﹣1可以分别表示和自然数a(a≠0)相邻的两个自然数.(判断对错)23.如果2a=3b(a、b不等于0),那么a<b.(判断对错)四.计算题(共1小题)24.解方程.2x÷3=96x+18=488﹣4x=4五.应用题(共7小题)25.为了庆祝国庆节,学校手工社团计划做360面小彩旗.(1)如果每天做x面,3天后还剩下多少面小彩旗没有做?(2)当x=85时,用上面的式子求还剩下多少面小彩旗没有做.26.学校买来m个足球,单价是40元/个;又买来n个篮球,单价是25元/个.(1)用含有字母的式子表示学校买这些球一共花了多少元?(2)当m=5,n=3时,学校买这些球一共花了多少元?27.利民蔬菜公司用来a车蔬菜,每车装5吨,供应给菜场45吨.(1)用含有字母的式子表示剩下的吨数.(2)当a=14时,求剩下多少吨蔬菜.28.小军步行去游乐场,上坡用了6分钟,平均每分钟走a米;下坡用了5分钟,平均每分钟走b米.当a =40,b=50时,小军一共走了多少米?29.如图,一张长方形纸长16厘米,宽m厘米.用这张纸剪一个最大的正方形.(1)用式子表示剩下部分的面积.(2)当m=10时,剩下部分的面积是多少平方厘米?30.幸福小学四、五年级同学星期天参加义务劳动,四年级去了a人、五年级去的人数是四年级的1.2倍.先用含有字母的式子表示四、五年级一共去的人数,再计算,当a=80时,四、五年级一共去了多少人?31.一辆大客车和一辆小轿车从甲地同时出发,沿同一条公路开往乙地.大客车每小时行驶x千米,小轿车每小时行驶120千米.2.5小时后,小轿车到达乙地,大客车没有到达.(1)用含有字母的式子表示这时大客车离乙地还有多少千米?(2)当x=80时,大客车离乙地还有多少千米?参考答案与试题解析一.选择题(共10小题)1.【分析】根据等式的性质,方程两边同时除以4求解.【解答】解:4y=20004y÷4=2000÷4y=500解方程时运用了等式的性质;故选:B.【点评】此题考查了根据等式的性质解方程,即等式两边同加上、同减去、同乘上或同除以一个不为0的数,等式仍相等.同时注意“=”上下要对齐..2.【分析】设笑笑要连续减去x次,连续减去x次13是13x,根据从273里减去13x次后结果还是13,列出方程求解即可.【解答】解:设笑笑要连续减去x次,可列方程,273﹣13x=13,13x=273﹣13,13x+13=273所以方程错误的是13x=273;故选:C.【点评】完成本题要注意分析题目中数量之间的关系,然后列出方程解答即可.3.【分析】把235当作23.5来加就是少加了235﹣23.5=211.5,就是和减少了211.5,据此选择.【解答】解:一位同学在计算a+235时,把235当做23.5,那么和减少了(235﹣23.5);故选:C.【点评】解答本题关键是理解:把235当作23.5来加就是少加了(235﹣23.5).4.【分析】根据题意知道,用5(x﹣3)减去5x﹣3,得出的数大于0说明结果比原来大,得出的数小于0说明结果比原来小.【解答】解:5(x﹣3)﹣(5x﹣3)=5x﹣15﹣5x+3=﹣12答:把5x﹣3错写成5(x﹣3),结果比原来少12,故选:B.【点评】注意括号前面是减号,去掉括号时,括号里面的运算符合要改变.5.【分析】根据乘法的意义可知:a2=a×a,而B项a+a=2a,C项2a也等于a+a,D项a+2是字母与数字相加,没有其它的表达形式,据此解答即可.【解答】解:由分析可知,与a2表示的意义一样的是a×a;故选:A.【点评】此题考查了用字母表示数,解答此题应注意乘法的意义的灵活应用.6.【分析】根据等式的性质,先求出方程3x﹣6=18的解,然后再代入5x﹣6进行求值.【解答】解:3x﹣6=183x﹣6+6=18+63x=243x÷3=24÷3x=8把x=8代入5x﹣6可得:5×8﹣6=40﹣6=34故选:D.【点评】本题关键是根据等式的性质,先求出方程的解,然后再代入含有字母的式子进行解答.7.【分析】因为班级里所有学生人数包括男生和女生,则男生人数=全班人数﹣女生人数=48﹣m,所以m表示女生人数.【解答】解:因为男生人数=全班人数﹣女生人数=48﹣m,所以m表示女生人数.故选:B.【点评】解题关键是明确:男生人数=全班人数﹣女生人数,据此可知字母表示的意义.8.【分析】当一个数大于0且小于1时,它的倒数大于这个数;当一个数大于1时,这个数的倒数一定小于这个数;据此解答即可.【解答】解:由分析得出:当0<a<1时,a的倒数大于a.故选:C.【点评】此题考查的目的是使学生理解倒数的意义,掌握求一个数的倒数的方法.9.【分析】用十位上的数字乘10,加上个位上的数字,即可表示出这个两位数.【解答】解:因为十位数字为a,个位数字为b,所以这个两位数可以表示为10a+b.故选:B.【点评】此题考查了用字母表示数,以及两位数的表示方法.两位数字的表示方法:十位数字×10+个位数字.10.【分析】方程是指含有未知数的等式.所以方程必须具备两个条件:①含有未知数;②等式.由此进行选择.【解答】解:A、只是含有未知数的式子,不是等式,不是方程;B、只是含有未知数的不等式,不是等式,不是方程;C、既含有未知数又是等式,具备了方程的条件,因此是方程;故选:C.【点评】此题考查方程的辨识:只有含有未知数的等式才是方程.二.填空题(共8小题)11.【分析】用字母表示数时,数字与字母,字母与字母相乘,中间的乘号可以省略不写;或用“•”(点)表示.字母和数字相乘时,省略乘号,并把数字放到字母前;“1”与任何字母相乘时,“1”省略不写.据此解答即可.【解答】解:a×5×b用简便方法写成5ab,m×m×1用简便方法写成m2.故答案为:5ab,m2.【点评】此题考查了用字母表示数的方法,关键是弄清题中字母所表示的含义,再进一步解答.12.【分析】根据总价=单价×数量,妈妈买了8千克,苹果的总价是8×m=8m元,付给售货员30元,应找回(30﹣8m)元.【解答】解:30﹣8×m=(30﹣8m)元答:应找回(30﹣8m)元.故答案为:(30﹣8m).【点评】此题考查了用字母表示数的方法,关键是弄清题中字母所表示的含义,再进一步解答.13.【分析】求平均每个月水电支出多少元,根据:总价÷数量=单价,由此带入解答即可.【解答】解:笑笑家一年水电支出a元,平均每月水电支出(a÷12)元.故答案为:(a÷12).【点评】明确总价、数量和单价之间的关系,是解答此题的关键.14.【分析】每小时运走的吨数(n吨)乘运的时间(4.5小时)就是运走的吨数,用总吨数(m吨)减去运走的吨数就剩下的吨数.【解答】解:m﹣n×4.5=m﹣4.5n(吨)答:粮库有m吨大米,每小时运走n吨,4.5小时后还剩m﹣4.5n吨.故答案为:m﹣4.5n.【点评】此题是使学生在现实情景中理解用字母表示数的意义,初步掌握用字母表示数的方法;会用含有字母的式子表示数量.15.【分析】先用妈妈的年龄减去丁丁的年龄等于妈妈比丁丁大的岁数;然后用丁丁的年龄加上妈妈比丁丁大的岁数即可求出妈妈的年龄.【解答】解:6﹣12=24(岁),妈妈比丁丁大24岁;如果用A表示丁丁的年龄,用(A+24)表示妈妈的年龄比较合适.故答案为:24,(A+24).【点评】解答此题的关键是,根据已知条件,把未知的数用字母正确的表示出来,再结合所求的问题,即可得出答案.16.【分析】根据火车的速度比小汽车的3倍多16千米,所以火车每小时行的路程为:3×小汽车每小时行的路程+16;再把x=58代入算式解答即可.【解答】解:因为汽车每小时行x千米,火车的速度比小汽车的3倍多16千米,所以火车每小时行(3x+16)千米;当x=58时3x+16=3×58+16=174+16=190(千米/时)答:这列火车每小时行(3x+16)千米;如果x=58,火车的速度是190千米/时.故答案为:(3x+16),190.【点评】本题考查了用字母表示数以及含字母式子的求值,做这类用字母表示数的题目时,解题关键是根据已知条件,把未知的数用字母正确的表示出来,然后根据题意列式计算即可得解.17.【分析】首先把3x+12化成3(x+4),然后把x+4=7代入3(x+4),求出算式的值是多少即可.【解答】解:因为x+4=7,所以3x+12=3(x+4)=3×7=21故答案为:21.【点评】此题主要考查了方程的解和解方程,要熟练掌握,解答此题的关键是把所求的算式灵活变形.18.【分析】由题意可知,京张高速铁路全长174km,其中北京境内长akm,剩余都在河北境内.河北境内的高铁长度(174﹣a)千米,然后再运用路程速度时间之间的数量关系进行解答即可.【解答】解:(174﹣a)÷350(小时)答:高铁在河北境内需要开(174﹣a)÷350小时.故答案为:(174﹣a)÷350.【点评】此题考查用字母表示数,关键是把给出的字母当做已知数,再根据基本的数量关系列式.三.判断题(共5小题)19.【分析】依据等式的性质,方程两边同时加上4,再同时除以6求解,再判断即可解答.【解答】解:x×6﹣4=32x×6﹣4+4=32+4x×6=36x×6÷6=36÷6x=6所以x=16是方程x×6﹣4=32的解,计算错误;故答案为:×.【点评】解方程时要注意:(1)方程能化简先化简,(2)等号要对齐.20.【分析】依据等式的性质,方程两边同时加上1.2求解,再进行判断解答.【解答】解:x﹣1.2=8x﹣1.2+1.2=8+1.2x=9.2所以x=6.8是方程x﹣1.2=8的解,说法错误;故答案为:×.【点评】此题考查了运用等式的性质解方程,即等式两边同加上或同减去、同乘上或同除以一个数(0除外),两边仍相等,同时注意“=”上下要对齐.21.【分析】根据题意,当a=2时,把a=2分别代入a2与2a,求出值再比较解答.【解答】解:当a=2时;a2=2×2=4;2a=2×2=4;所以a2=2a.所以,原题说法正确.故答案为:√.【点评】此题考查了用字母表示数,把a表示的数代入即可得出结论.22.【分析】根据自然数的排列规律,相邻的自然数相差1,与自然数a(a≠0)相邻的两个自然数是a+1和a﹣1.【解答】解:与自然数a(a≠0)相邻的两个自然数是a+1和a﹣1;故答案为:√.【点评】此题考查的目的是理解自然数的意义,掌握自然数的排列规律.明确:相邻的自然数相差1.23.【分析】由题意知2a=3b(a、b不等于0),要比较a、b两数的大小,可比较另外两个数的大小,根据“积一定的情况下,一个因数小则另一个因数就大”,据此判断.【解答】解:如果2a=3b(a、b不等于0),因为2<3,所以a>b,因此如果2a=3b(a、b不等于0),那么a<b,这种说法是错误的.故答案为:×.【点评】解答此题要明确:积(0除外)一定的情况下,一个因数小则另一个因数就大.四.计算题(共1小题)24.【分析】(1)根据等式的性质,方程的两边同时乘上3,然后方程的两边同时除以2求解;(2)根据等式的性质,方程的两边同时减去18,然后方程的两边同时除以6求解;(3)根据等式的性质,方程的两边同时加上4x,把方程化为4+4x=8,方程的两边同时减去4,然后方程的两边同时除以4求解.【解答】解:(1)2x÷3=92x÷3×3=9×32x=272x÷2=27÷2x=13.5(2)6x+18=486x+18﹣18=48﹣186x=306x÷6=30÷6x=5(3)8﹣4x=48﹣4x+4x=4+4x4+4x=84+4x﹣4=8﹣44x=44x÷4=4÷4x=1【点评】本题考查解方程,解题的关键是掌握等式的性质:方程两边同时加上或减去相同的数,等式仍然成立;方程两边同时乘(或除以)相同的数(0除外),等式仍然成立.五.应用题(共7小题)25.【分析】(1)用每天做的面数乘3,求出已经做的面数,再与总面数作差即可;(2把x=85,代入上面(1)中的代数式解答即可.【解答】解:(1)360﹣x×3=360﹣3x(面)答:如果每天做x面,3天后还剩下(360﹣3x)面小彩旗没有做.(2)当x=85时,360﹣3x=360﹣3×85=360﹣255=105(面)答:还剩下105面小彩旗没有做.【点评】做这类用字母表示数的题目时,解题关键是根据已知条件,明确数量之间的关系,然后根据题意列式计算即可得解.26.【分析】(1)根据“总价=单价×数量”分别求出买足球、篮球的钱数,再把二者相加.(2)把(1)中用含有字母m、n的表示买这两种球一共要付的钱数的式子中的m、n用5、6代换,计算即可.【解答】解:(1)m×40+25×n=40m+25n(元)答:学校买这两种球一共要付的钱数是(40m+25n)元.(2)当m=5,n=3时,40m+25n=40×5+25×3=200+75=275(元)答:一共要付275元.【点评】此题主要是使学生在现实情景中理解用字母表示数的意义,初步掌握用字母表示数的方法;会用含有字母的式子表示数量;会根据字母的取值,求含有字母式子的值.注意:数字与字母相乘时,数字因数写在字母因数的前面,并省略乘号.27.【分析】(1)用每车的质量乘辆数求出求出总吨数,再减去45吨就是剩下的吨数.(2)当a=14时,把它代入问题(1)的式子求出求剩下多少吨蔬菜即可.【解答】解:(1)用含有字母的式子表示剩下的吨数是:(5a﹣45)吨.(2)当a=14时,5a﹣45=5×14﹣45=25(吨)答:剩下25吨蔬菜.【点评】在数学中,我们常常用字母来表示一个数,然后通过四则运算求解出那个字母所表示的数.含字母的式子求值的方法:把字母表示的数值代入式子,进而求出式子的数值.28.【分析】用每分钟走的路程×时间分别计算出上下坡走的路程,再相加就是小军一共走的路程,再将将数值代入算式计算即可.【解答】解:a×6+b×5=6a+5b(米)当a=40,b=50时,6a+5b=6×40+5×50=240+250=490(米)答:小军一共走了490米.【点评】本题考查了速度、时间和路程的关系的运用以及含字母式子的求值.29.【分析】(1)在这张长方形纸上剪下的最大正方形的边长等于这张长方形纸的宽m厘米,根据长方形的面积计算公式“S=ab”求出原长方形的面积,再根据正方形的面积计算公式“S=a2”求出剪去的最大正方形的面积,二者相减即可.(2)当m=10时,把(1)求出含有字母b的表示剩下部分面积的式子,经过计算即可求出剩下部分的面积.剩下部分还是一个长方形,长为原来的宽m厘米,宽为(16﹣m)厘米,根据长方形的面积计算公式“S =ab”即可求得剩下部分的面积.也可用【解答】解:(1)16×m﹣m2=16m﹣m2(平方厘米)(2)当m=10时16m﹣m2=16×10﹣102=160﹣100=60(平方厘米)答:剩下部分的面积是60平方厘米.【点评】此题主要是使学生在现实情景中理解用字母表示数的意义,初步掌握用字母表示数的方法;会用含有字母的式子表示数量;会根据字母的取值,求含有字母式子的值.30.【分析】先用四年级的人数乘上1.2求出五年级的人数,再把四五年级的人数相加;再把a=80代入计算即可求解.【解答】解:a+a×1.2=2.2a(人)当a=80时,2.2a=2.2×80=176答:四、五年级一共去的人数是2.2a人,当a=80时,四、五年级一共去了176人.【点评】解决本题关键是理解倍数关系:已知一个数,求它的几倍是多少,用乘法计算.31.【分析】(1)根据“小轿车每小时行驶120千米,2.5小时后到达乙地”,可知从甲地到乙地的总路程是120×2.5千米,根据“大客车每小时行驶x千米,行驶了2.5小时”,可知大客车一共行驶了2.5x 千米,据此用甲地到乙地的总路程减去大客车2.5小时行驶的2.5x千米,就是这时大客车离乙地还有的千米数;(2)把x=80代入含字母的式子,计算即可求得大客车离乙地还有的千米数.【解答】解:(1)120×2.5﹣x×2.5=300﹣2.5x(千米)答:这时大客车离乙地还有(300﹣2.5x)千米.(2)当x=80时300﹣2.5x=300﹣2.5×80=300﹣200=100(千米)答:大客车离乙地还有100千米.【点评】此题考查用字母表示数,关键是把给出的字母当做已知数,再根据基本的数量关系列式;也考查了含字母的式子求值的方法.。
【小学数学】人教版小学五年级数学简易方程知识点+相关习题
简易方程知识点1、方程的意义含有未知数的等式;叫做方程。
2、方程和等式的关系3、方程的解和解方程的区别使方程左右两边相等的未知数的值;叫做方程的解。
求方程的解的过程叫做解方程。
4、列方程解应用题的一般步骤(1)弄清题意;找出未知数;并用表示。
(2)找出应用题中数量之间的相等关系;列方程。
(3)解方程。
(4)检验;写出答案。
5、数量关系式加数=和-另一个加数减数=被减数–差被减数=差+减数因数=积另一个因数除数=被除数商被除数=商除数小学数学五年级上册《简易方程》练习题一、填空。
1、某厂计划每月用煤a吨;实际用煤b吨;每月节约用煤( )吨。
2、一本书100页;平均每页有a行;每行有b个字;那么;这本书一共有( )个字。
3、用字母表示长方形的周长公式()4、根据运算定律写出:9n +5n = ( + )n = a × 0.8 ×0.125 = ( ×)ab = ba 运用()定律。
5、实验小学六年级学生订阅《希望报》186份;比五年级少订a份。
186+a 表示()6、一块长方形试验田有 4.2公顷;它的长是420米;它的宽是()米。
7、一个等腰三角形的周长是43厘米;底是19厘米;它的腰是()。
8、甲乙两数的和是171.6;乙数的小数点向右移动一位;就等于甲数。
甲数是();乙数是()。
二、判断题。
(对的打√;错的打×)1、含有未知数的算式叫做方程。
()2、5x 表示5个x相乘。
()3、有三个连续自然数;如果中间一个是 a ,那么另外两个分别是a+1和a- 1。
()4、一个三角形;底a缩小5倍;高h扩大5倍;面积就缩小10倍。
()三、解下列方程。
3.5x = 140 2x +5 = 40 15x+6x = 1683—3x = 5.1 (写出检验过程) 5x+1.5 = 4.5 13.7—x = 5.29 4.2 ×四、列出方程并求方程的解。
(1)、一个数的5倍加上 3.2;和是38.2;求这个数。
苏教版五年级下册简易方程知识点梳理
第1部分简易方程知识点梳理一、字母表示数1、在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。
加号、减号除号以及数与数之间的乘号不能省略。
2、a×a可以写作a·a(或2a) ,2a读作a的平方,表示两个a相乘。
2a表示a+a3、数字和字母相乘,省略乘号时要把数字写在前面。
(如b×4写作4b )对应练习1.排球队共有队员a人,女队员有7人,男队员有( )人。
2.1千克大米的价钱是1.50元,买x千克大米应付( )元。
3.甲数比乙数的3倍还多a,甲数是x,乙数是( );如果乙数是x,那么甲数是( )。
4.省略乘号,写出下面的式子。
3×a 9×x a×4 y×5 a×3x⒊方程0.6x=3的解是()。
⒋ac+bc=( □+ □)×□⒌a与b的和的5倍是()⒍梯形面积计算公式用字母表示是(),三角形面积计算公式用字母表示是()。
⒎一个三角形的面积是4.8平方米,它的底边长是1.2米,高是x米,写出含有x的等量关系式是()。
⒏当a=2,b=5时,那么8a-2b=()。
⒐正方形的边长为x厘米,4x表示(),x2表示()。
10.有x吨水泥,运走10车,每车a吨。
仓库还剩水泥()吨。
二、方程的定义及解方程1、方程:含有未知数的等式称为方程。
2、方程的解:使方程左右两边相等的未知数的值,叫做方程的解。
3、解方程:求方程的解的过程叫做解方程。
4、解方程原理:天平平衡。
等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。
5、方程两边同时加、减、乘、除一个不等于0的数,左右两边仍然相等。
6、解方程需要注意什么?(1)、一定要写‘解’字。
(2)、等号要对齐。
(3)、两边乘除相同数的时候,这个数不要为07、10个数量关系式:加法:和=加数+加数一个加数=和-另一个加数减法:差=被减数-减数被减数=差+减数减数=被减数-差乘法:积=因数×因数一个因数=积÷另一个因数除法:商=被除数÷除数被除数=商×除数除数=被除数÷商8、方程和等式的关系:含有未知数的等式叫做方程,所有的方程都是等式,但等式不一定都是方程。
五年级下册数学知识整理 第一单元 简易方程
五年级下册数学知识整理---## 第一单元:简易方程### 1. 什么是简易方程?在数学中,简易方程是一种含有未知数的等式,通常表示为x + 2 = 7这样的形式。
在这个方程中,x就是未知数,我们需要找到x的值使得等式成立。
简易方程是学习代数的基础,也是解决实际问题的重要数学工具。
### 2. 理解方程的含义方程的本质是一种平衡关系,左边与右边相等。
当我们解一个方程时,实际上是在寻找未知数的值,使得等式两边保持平衡。
通过解方程,我们可以解决很多实际问题,比如小明手中的糖果数量加上5等于小红手中的糖果数量,这是一个简单的方程问题。
### 3. 解简易方程的方法解简易方程有很多种方法,比如逆运算法、等式法、凑整数法等。
逆运算法是指通过逆向的运算来求解未知数,比如对方程x + 5 = 10,我们可以通过减5的逆运算来求解x的值。
等式法是指通过等式的性质来求解,比如方程x + 5 = 10可以转化为x = 10 - 5的形式来求解。
凑整数法是指通过调整方程中的系数,使得方程更容易解决,比如方程2x + 3 = 7可以通过减3再除以2来求解x的值。
### 4. 实际问题中的简易方程简易方程最大的作用之一就是解决实际问题。
比如小明手中的糖果数量加上5等于小红手中的糖果数量,这个问题可以用简易方程x + 5 = y来表示,其中x和y分别代表小明和小红手中的糖果数量。
通过解这个方程,我们就可以求解出小明和小红手中糖果的具体数量。
### 5. 总结与展望简易方程是数学中非常重要的内容,它不仅是代数学习的基础,也是解决实际问题的重要工具。
通过学习简易方程,我们可以培养逻辑思维能力,提高解决问题的能力。
在未来的学习中,我们还会接触到更加复杂的方程,所以要扎实掌握简易方程的知识,为以后的学习打下坚实的基础。
### 6. 个人观点我认为简易方程是数学中非常重要且实用的一部分,它不仅帮助我们提高数学解决问题的能力,也培养了我的逻辑思维能力。
五年级数学《简易方程》复习(整理)
五年级数学《简易方程》复习一、用字母表示数在数学中经常用字母表示数:加法的交换律:a+a+=bb加法的结合律:)+=+a++b)(b(cac乘法的交换律:a⋅=bba⋅乘法的结合律:)a⋅=⋅c⋅b()(cba乘法的分配率:c⋅=+⋅)+(ba⋅aacb在含有字母的式子中,字母中间的乘号可以写成⋅,也可以省略不写。
1、你能完成下面的题目吗?(1)省略乘号,写出下列格式。
x×y( ),7×a( ), 1×a( ) , y ×3+9( )(2)下面式子对吗?如果不对请改正过来。
㎡写作m×2() a×b写作ba() 1×a写作1a()。
(3)、用含有字母的式子表示下面的数量关系。
a与b的差() x与8.5的积()比b多c的数()y的4倍() b除c() x减去a的2倍()2、填一填。
(1)小红体重36千克,比小莉重a千克,小莉体重()千克。
(2)李佳有10元钱,买钢笔用去x元,还剩()元。
3、超市运回10箱方便面,每箱X袋(x>20),卖出180袋。
(1)用含有字母的式子表示超市还剩下方便面多少袋()(2)根据这个式子,求当X=24时,超市还剩方便面多少袋?总结:通过以上的例子,大家要理解用字母可以表示任何数字,以及当数字与字母相乘,或者是字母与字母相乘的时候,可以把乘号简写,或者是省略。
但是省略时数字一定要写到字母的后面。
例如:8Xa=___________________用字母来表示计量单位: 长度单位面积单位 质量单位 千米km 平方千米 2km 吨 t 米m 平方米 2m 千克 kg 分米dm 平方分米 2dm 克 g 厘米cm 平方厘米 2cm 毫米 mm 平方毫米 2m m用字母表示正方形和长方形的面积和周长图形的面积一般用字母S 来表示;图形的周长一般用字母C 来表示如:设正方形的边长为a ,那么S=2a ,C=4a设长方形的长为a ,宽为b ,那么S=b a ⋅;C=)(2b a +平行四边形的面积:S ( 底为 高为 ) 三角形的面积:S (底为 高为 )梯形的面积:S (上底 下底 高 ) b ×b ×b 怎样表示二、解简易方程:概念:方程:含有未知数(用字母来表示未知数)的等式叫做方程注意:等式不一定是方程,但方程一定是等式方程的解:使方程左右两边相等的未知数的值叫做方程的解解方程:求方程的解的过程叫做解方程性质:方程两边同时加上同一个数,左右两边还相等方程两边同时减去同一个数,左右两边还相等方程两边同时乘以同一个数,左右两边还相等方程两边同时除以同一个不为零的数,左右两边还相等1、下面哪些式子是方程(1)3.2x-12 (2) 0+7y=56 (3) 5-4=1 (4) 3a+5>9 (5) 4x=1.6 (6)16÷x=4填序号2、下列哪些方程的解是x=4①2x+9=19 ②4x=1.6 ③16÷x=4填序号原理一、根据天平的原理来解方程3+x=15 原理:因此,就是这个方程3+x=15的解。
人教版五年级简易方程整理和复习
X=23
答:舞蹈队有23人。
复习二:兴华服装厂五月份做大人服装
1500套,做的儿童服装比大人服装的3倍少 270套。做儿童服装多少套?
1500
大人服装:
X
270
桔树和梨树各有几棵? 解:设梨树有X棵,那么桔树有2X棵。 桔树棵数+梨树棵数
=150
2X+X=
150
有两个书架,第一个书架书的本数是第二个的1.5倍。 如果从第一个书架取出50本放入第二个中,则两个 书架的数就一样多。原来两个书架各有几本书?
两个书架相差了(50×2)本
解:设第二个书架有x本书,那么第一个书架有1.5x本书。
2.复杂方程:
(1)1.2x-4.4=5.6×2
解:1.2x-4+.44.4= 11+.42.4
把1.2X看作是一个整 体,先算5.6×2 .
1.2x=11.2+4.4
÷1.2 ÷1.2
1.2x=15.6
x=15.6÷1.2
x=13
解复杂方程的要点:
1、能计算的要先算. 2、把和X在一起或较近的数看作一个整体.
χ+2-2χ=7-2 χ=5
1.简单方程:
-5 -5
x+5=12.3 解:x=12.3- 5
x=7.3
+6 +6
x-6=9.2 解: x=9.2 +6
x=15.2
÷4
÷4
4x=24.8
解:x=24.8 ÷4
x=6.2
x÷2×2=16.2×2 解:x=16.2 ×2
x=32.4
解方程的依据---等式的性质。 方程两边同时加上(减去)一个数,左右两边仍然相等; 方程两边同时乘或除以一个(不为0)的数,左右两边仍然相等。
苏教版五年级下册简易方程知识点梳理_及错题好题经典集锦
第一单元简易方程知识点梳理一、字母表示数1、在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。
加号、减号除号以及数与数之间的乘号不能省略。
2、a×a可以写作a·a (或2a) ,2a读作a的平方,表示两个a相乘。
2a表示a+a二、3、数字和字母相乘,省略乘号时要把数字写在前面。
(如b×4写作4b )方程的定义及解方程1、方程:含有未知数的等式称为方程。
2、方程的解:使方程左右两边相等的未知数的值,叫做方程的解。
3、解方程:求方程的解的过程叫做解方程。
4、解方程原理:天平平衡。
等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。
5、方程两边同时加、减、乘、除一个不等于0的数,左右两边仍然相等。
6、解方程需要注意什么?(1)、一定要写‘解’字。
(2)、等号要对齐。
(3)、两边乘除相同数的时候,这个数不要为07、10个数量关系式:加法:和=加数+加数一个加数=和-另一个加数减法:差=被减数-减数被减数=差+减数减数=被减数-差乘法:积=因数×因数一个因数=积÷另一个因数除法:商=被除数÷除数被除数=商×除数除数=被除数÷商8、方程和等式的关系:含有未知数的等式叫做方程,所有的方程都是等式,但等式不一定都是方程。
9、方程的检验过程:把X=……带入原方程左边=…右边=左边=右边所以X=……是原方程的解对应练习1.排球队共有队员a人,女队员有7人,男队员有( )人。
2.1千克大米的价钱是1.50元,买x千克大米应付( )元。
3.甲数比乙数的3倍还多a,甲数是x,乙数是( );如果乙数是x,那么甲数是( )。
4.省略乘号,写出下面的式子。
3×a 9×x a×4 y×5 a×3x⒊方程0.6x=3的解是()。
⒋ac+bc=( □ + □ )×□⒌a与b的和的5倍是()⒍梯形面积计算公式用字母表示是(),三角形面积计算公式用字母表示是()。
苏教版五年级下册。第1单元。简易方程 知识点+重难点提升
苏教版五年级下册。
第1单元。
简易方程知识点+重难点提升第一单元简易方程(知识点+重难点分析)1.等式表示相等关系,含有未知数的等式称为方程。
2.方程是一种等式,但等式不一定是方程。
3.等式有两个重要的性质:加减同一个数和乘除同一个非零数不改变等式的结果。
4.解方程是求使方程左右两边相等的未知数的值,解方程时常用的四则运算关系式包括加减乘除运算。
5.解方程的步骤包括写解、上下对齐、利用等式的性质解方程、检验和写答句。
6.列方程解应用题的思路包括审题、找等量关系、设未知数、列方程、解方程、检验和写答句。
7.找等量关系的方法可以根据条件想数量间的相等关系、根据计算公式确定等量关系或者画出线段图找等量关系。
重难点分类解析:类型一:利用等式的性质解方程这种类型的方程解法是利用等式的性质,通过加减乘除同一个数来解方程。
需要注意的是,解完方程后要进行检验,确保所得结果正确。
类型二:用形如ax+b=c的方程解决实际问题这种类型的方程需要根据实际问题设定未知量,并根据已知条件列出方程,然后解方程求解未知量。
需要注意的是,这种类型的方程可能会有多个未知量,需要设定不同的未知量来求解。
反馈练:一个水池分为深、浅两部分,深部分的水是浅部分水的3倍。
如果从深部分取出20升水放到浅部分,这时两部分水的水量正好相等。
原来深、浅两部分各有多少升水?例题2:甲、乙两人同时从A、B两地出发,相向而行,中途相遇后,甲车行驶的路程是乙车行驶路程的1.5倍。
如果两车相遇后,甲车再行驶10千米,乙车再行驶20千米。
这时两车行驶的路程相等。
A、B两地相距多少千米?点拨:这是一道稍复杂的差倍问题,需要先求出两车相遇时的路程差,再根据题意列方程求解。
反馈练:XXX和XXX同时从A、B两地出发,相向而行,中途相遇后,XXX行驶的路程是XXX行驶路程的2倍。
如果两人相遇后,XXX再行驶30千米,XXX再行驶20千米。
这时两人行驶的路程相等。
A、B两地相距多少千米?1.两袋面粉,原来甲袋的质量是乙袋的3倍,现从甲袋中取出34千克,则两袋面粉同样重。
小学数学苏教版-五年级下-第一单元-《简易方程》学习重点、章节练习及解析
小学数学苏教版-五年级下-第一单元-《简易方程》一、知识点(一)方程的定义及性质1.定义:含有未知数的等式是方程。
2.性质:(1)等式两边同时加上或减去同一个数,所得结果仍然是等式;(2)等式两边同时乘或除以同一个不是0的数,所得结果仍然是等式;3.使方程左右两边相等的未知数的值叫做方程的解,求方程的解的过程叫做解方程。
(二)列方程需要注意的问题列方程解决实际问题:(1)先弄清题意,找出未知量,并用字母表示;(2)要根据题中数量之间的相等关系列方程;(3)求出答案后,还要检验结果是否正确;(4)应用学过的公式、数量关系式或者画图,可以帮助我们寻找等量关系。
二、练习题(一)选择题1.下面式子中,()是方程.A.x+3B.4÷5=0.8C.0.8y+1=7D.10-x>22.下面各式中,()不是方程.A.3x+5x+1=8+1B.2.8+5x=12.8C.3.4x=0D.2x+4<243.a-b=4,7-x=5,5x>6,7y=35,67+a=77这几个式子中有()个方程.A.2B.3C.44.小亮比小强大2岁,比小花小4岁,如果小强是m岁,小花是()岁.A.m-2B.m+2C.m+4D.m+65.爸爸今年x岁,比舅舅大a岁,舅舅今年()岁.A.x+a B.x-a C.a-x6.与方程3x+8=68的解相同的是()A.12x=360B.8+2x=68C.15x=320-x7.方程3x=36的解与下面()的解相同.A.x+12=12B.12÷x=1C.2x+3=248.比x的3倍多1的数是4,列方程是()A.3x-1=4B.3-x=4C.3x+1=49.下面的x的值中,()是方程3x+5=20的解A.x=5B.x=6C.x=710.根据x+4.5=9判断下面()成立.A.x+4.5-5=9+4.5B.(x+4.5)×2=9×3 C.x+4.5-4.5=9-4.5(二)填空题11.一本书有A页,小明每天看18页,看了B天,还剩下页没有看.12.甲数是a,比乙数多5,乙数是.13.小明今年a岁,爸爸的年龄比他的3倍大b岁,爸爸今年岁.14.哪些是等式,哪些是方程.(填写序号)①x+5=40②20-10x③7a=14④160÷8=20⑤9x>80⑥5a⑦(n-2)×180=540等式有方程有.15.已知0.6x+8=20,那么5x-9=.16.按要求在横线上列方程.(1)5与b的和是24.(2)3个y的和是60.17.填上适当的数,使每个方程的解都是x=10x+=91x-=8.9x=5.1x÷=4(三)计算18.直接写出计算结果.x×3=3a+7a= 2.3t-1.3t=x+5.7x=m×m=0.84-0.4=9.6÷0.6=12.5×80=8.48÷0.8=1÷0.01×9.2=19.解方程.3x-48=72 5.9x-2.4x=7x÷2.6=0.84x-6=284x-2x=482x÷9=2520.三个连续整数的和是63,最小数为a,求这三个数.(列方程解答)三、答案及解析1.【答案】C【解析】A、x+3,只是含有未知数的式子,不是等式,不是方程;B、4÷5=0.8,只是等式,不含有未知数,不是方程;C、0.8y+1=7,既含有未知数又是等式,具备了方程的条件,因此是方程;D、10-x>2,虽然含有未知数,但它是不等式,也不是方程.2.【答案】D【解析】A、3x+5x+1=8+1,既含有未知数又是等式,具备方程的条件,因此是方程;B、2.8+5x=12.8,既含有未知数又是等式,具备方程的条件,因此是方程;C、3.4x=0,既含有未知数又是等式,具备方程的条件,因此是方程;D、2x+4<24,只是含有未知数的式子,不是等式,所以不是方程.3.【答案】C【解析】这几个式子中方程有:a-b=4,7-x=5,7y=35,67+a=77,共4个;故选:C.4.【答案】D【解析】m+2+4=m+6(岁).答:小花是(m+6)岁.故选:D.5.【答案】B【解析】舅舅比爸爸小a岁,所以用爸爸的年龄减a就是舅舅的年龄.舅舅今年(x-a)岁.6.【答案】C【解析】3x+8=68解:3x+8-8=68-83x=603x÷3=60÷3x=20A.把x=20代入12x=360,左边=12×20=240,右边=360,左边≠右边,所以它们的解不同;B.把x=20代入8+2x=68,左边=8+2×20=8+40=48,右边=68,左边≠右边,所以它们的解不同;C.把x=20代入15x=320-x,左边=15×20=300,右边=320-20=300,左边=右边,所以它们的解相同7.【答案】B【解析】3x=36解:3x÷3=36÷3x=12A.把x=12代入x+12=12,左边=12+12=24,右边=12,左边≠右边,所以它们的解不同;B.把x=12代入12÷x=1,左边=12÷12=1,右边=1,左边=右边,所以它们的解不同;C.把x=12代入2x+3=24,左边=2×12+3=27,右边=24,左边≠右边,所以它们的解不同。
苏教版五下数学 简易方程 11 整理与练习
这条线段应 该怎么分?
量出这条线段的 长度,再把它平 均分成5份?
14.下表中的a、b、c表示3个连续的自然数。任意写出三
个这样的数,并求出各组数的和。
4
5
15
16
210
211
6
15
17
48
212
633
(1)观察上表,你有什么发现? 每一组的和除以3,所得的商是都是自然数b。
(2)你会用含有b的式子表示a或c吗? a表示成b-1,c表示成b+1。
题中的数量间 甲队开凿长度+乙队开凿长度=720 有什么关系?
解:设乙队每天开凿x米。
14.5×24+24x = 720 348+24x = 720 24x = 372 x =15.5
答:乙队每天开凿15.5米。
10. 每张光盘多少元?
题中的数量间有什 么关系?
10张光盘的价钱+8张光盘的价钱=216 每张光盘的价钱×两人买的光盘张数=216苏教版来自学 五年级下册1 简易方程
整理与练习
整体回顾
知识梳理
简易方程
方程、等式
列方程解决实际问题
等式
等
方程
式
的含
的
义及
性
关系
质
解 列一步 列形如 方 两步计 ax±bx=c 程 算方程 ax±b×c=d
解决实 的方程解决 际问题 实际问题
含有未知数的等式是方程。 方程一定是等式,且必须含有未知数。
18×5=90(根) 186-90=96(根) 96÷4=24(根)
答:平均每班借24根。
12. 每张门票多少元?
五年级的门票-四 年级的门票=65 题中的数量间有什么关系?
(人教版)五年级数学重难点:简易方程 (知识点+试题解析)
简易方程001简易方程1.含有字母的乘式的简便记法(1)在含有字母的式子里,字母中间的乘号可以记作“⋅”,也可以省略不写.如:a×b可写作a·b或ab.(2)在含有字母的式子里,字母与数之间的乘号可以省略不写,并把数写在字母前面,如:a×6可写作6a.(3)字母与1相乘时,“1”可以省略不写,如:a×1=a.2.平方一个数的平方表示这个数与这个数本身的乘积,如:a×a=a2.3.化简含有字母的式子(1)几个相同的字母相加,简写时应写成相同字母的个数与字母相乘的形式.如:a+a+a+a=4a.(2)几个含有相同字母的乘法式子相加减,可以运用乘法分配律化简,即ax±bx=(a±b)x.(其中x是字母,a、b既可以是字母,也可以是数.)1.填一填.(1)一本作业本共有40页,已经写了a页,还剩下页.(2)停车场停着y辆小汽车,货车数量是小汽车的6倍,货车有辆.(3)有三个连续自然数,中间的自然数是n,它前面的数是,后面的数是.(4)“爸爸的体重是80千克,比儿子体重的2倍还多20千克.”这句话里面的等量关系是的体重=的体重×2+20.0025年级重难点汇编2.将下列各式化简.(1)a+a+b=.(2)2a+14+a=.(3)4b-2b-5=.(4)3b+2b+b=.(5)b×b=.(6)12×a×6=.(7)x·18·y=.(8)2·x+3·y+13=.3.如图,阴影部分是一个正方形.(1)阴影部分的面积是.(2)空白部分的面积是.(3)当a=18,b=3时,空白部分的面积是多少?简易方程003 4.如图.(1)像这样摆下去,摆n个三角形需要多少根小棒?(2)当n=97时,用第(1)题的式子计算摆97个三角形需要的小棒数.5.根据表格信息回答问题.(1)用含有字母的式子在表中写出第n个图案点的总数.(2)当n=12时,点的总个数是多少?0045年级重难点汇编1.表示相等关系的两个式子叫作等式.从形式上看,含“=”的式子就是等式.2.含有未知数的等式是方程.3.等式和方程的关系:等式包括方程,方程一定是等式,等式不一定是方程.6.下面()是方程.A.30+y<50B.16+x=25C.49−8=41D.2+x7.下列说法中,正确的是()A.等式一定是方程B.等式是一种特殊的方程C.方程一定是等式等式的性质1:等式两边加上或减去同一个数,左右两边仍然相等.【拓展提高】等式两边加上或减去同一个式子,左右两边仍然相等.等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍简易方程005然相等.8.填一填.(1)像x+1=3,2m=4,y=1,这样含有的,都是方程.(2)y-4.5=10,根据等式的性质有:y-4.5+4.5=10+.(3)8x=104,根据等式的性质有:8x÷8=104÷.9.下列说法不正确的是()A.等式两边都加上同一个数或一个式子,所得结果仍是等式B.等式两边都乘同一个数,所得结果仍是等式C.等式两边都除以同一个数,所得结果仍是等式D.一个等式的左、右两边与另一个等式的左、右两边分别相加,所得结果仍是等式1.方程的解和解方程(1)使方程左右两边相等的未知数的值,叫做方程的解.(2)求方程的解的过程叫做解方程.2.简易方程的解法根据等式性质1、等式性质2解方程即可.0065年级重难点汇编10.解方程.(1)x+4=10(2)x−5=7(3)6x=18(4)x÷3=711.解方程.(1)3x+4=10(2)0.5x−0.8=2.4(3)x+3+2x=18列方程解应用题的一般步骤1.审:找出题目中的关键量,这个量最好能和题目中的其他量有紧密的数量关系.2.设:设这个量为x,用含x的代数式来表示题目中的其他量.3.列:找到题目中的等量关系,列方程.4.解:解方程,通过求出的关键量进而得到题目的答案.5.答:检验并答题.简易方程00712.将下题中的等量关系表示出来,再列方程解决问题.(1)花圃里有吊兰和仙人球共56盆,吊兰的盆数是仙人球的3倍,吊兰和仙人球各有多少盆?等量关系:(2)北京到郑州的铁路线长690km,一列火车从北京出发,每时行110km;另一列火车从郑州出发,每时行120km.两列火车同时出发,几时后相遇?等量关系:13.小猿农场今年养鸡55只,比去年养鸡只数的4倍少5只,去年养鸡只.0085年级重难点汇编答案解析一、用字母表示数1.(1)(40-a)(2)6y(3)n-1n+1(4)爸爸儿子2.(1)2a+b(2)3a+14(3)2b−5(4)6b(5)b2(6)72a(7)18xy(8)2x+3y+133.(1)(a−2b)2(2)2b(a−2b)(3)724.(1)2n+1(2)当n=97时,2n+1=2×97+1=195 5.(1)4n﹣3(2)45二、解简易方程(一)等式与方程7.6.CB答案解析009(二)等式性质8.(1)未知数等式(2) 4.5(3)89.C(三)解简易方程10.(1)x=6(2)x=12(3)x=3(4)x=2111.(1)x=2(2)x=6.4(3)x=5(四)列方程解应用题的一般步骤12.(1)等量关系式:吊兰的盆数=仙人球的盆数×3;仙人球的盆数+吊篮的盆数=56盆.解:设仙人球有x盆,则吊兰3x盆.x+3x=564x=56x=1414×3=42盆答:吊兰有42盆,仙人球有14盆.0105年级重难点汇编(2)等量关系式:北京出发火车速度×时间+郑州出发火车速度×时间=全长690km解:设出发x小时后相遇110x+120x=690230x=690x=3答:两列火车同时出发,3时后相遇.13.15。
五年级数学下册《简易方程》公式及习题
6x+6×(52-2x) +10×(x-15)=250
6x+316-12x+10x-150=250
4X=88
X=22螳螂有52-2×22=8只,螃蟹有22-15=7只
解:设乙车每小时行x千米
(45+x)×5-25=450
45+x=95
X=50
被除数与除数的和是98,如果被除数与除数都减去9,那么,被除数是除数的4倍,求被除数和除数分别是多少?
解:设被除数为x,除数为(98-x)
x-9=4×(98-x-9)
x-9=356-4x
x=73除数为98-73=25
螃蟹有10条腿,螳螂有6条腿和1对翅膀,蜻蜓有6条腿和2对翅膀。现在这三种动物37只,共有250条腿和52对翅膀。每种动物各有多少只?
五年级数学下册
《简易方程》公式及习题归纳
功效×时间=工作总量
工作总量÷功效=时间工作总量÷时间=功效
例:王师傅一小时加工8个零件,他工作一天加工多少个零件?
解:设王师傅工作一天加工x 个零件
功效×时间=工作总量
X=24×8
X=192
答:王师傅工作一天加工192个零件。
路程=时间×速度 用字母表示为:s=vt
例:小明和小红家相距560米,学校在两家的中央,小明和小红在校门口分手,七分钟后他们同时到家,小明平均每分钟走45米,问小红平均每分钟走多少米?
解:设小红平均每分钟走x米.
路程=时间×速7=x+45
X=35
答:小红平均每分钟走35米。
甲乙两列火车从相距450千米的两地同时相对开出,甲车每小时行45千米,5小时候两车第二次相距25千米,乙车每小时行多少千米?
苏教版数学五年级下册第一单元方程思维导图知识点以及相应练习
苏教版数学五年级下册第一单元简易方程思维导图等式和方程的含义4x+5=25,x2=36方程:含有未知数的的等式叫做方程。
比如4x+5=25,x2=36。
等式和方程之间的关系:等式不一定是方程,方程一定是等式。
练习一、算一算5x+7x 8x+3x+12x 9x-5x 32x-19x-8x4(x+1)+3x 3(2x-3)+5(x+1)6x-(2x-3) 40-(30-5x)小结:化简代数式,也叫做合并同类项,同类的合并,不同类的不能合并。
二、填空1.下面的式子中,是等式的在后面()里画“√”。
X+18=36 () x+2﹥10 () 72-x () x=3 () 3+4=7 ()2.下面的式子中,是方程的在后面()里画“√”。
X+18=36 () x+2﹥10 () 72-x () x=3 () 3+4=7 ()3.在这一些式子①5.2+x=9.8,②4.5-4=0.5,③5x<9.2,④x÷1.6,⑤4.2÷3=1.4,⑥7x÷7>1.1,⑦5x=100,⑧7+m-n=15中,等式有(),方程有()。
(填序号)我发现()。
4.一个正方形的边长是a米,它的周长是( )米,面积是( )米2。
5.小丽买了5个笔记本,每个x元,付出了20元,应找回()元。
6.李叔叔每分钟骑V米,3分钟骑()米,t分钟骑()米。
如果每分钟行160m,时间是20分,路程是()米。
7.某班有学生40名。
女生有40-b名,这里的b表示()。
8.李明家九月份的用水量是12吨,共交水费c元,那么水费每吨是()元。
9.如果苹果每千克a元,雪梨每千克b元,那么:①4a表示()②2b表示()③a-b表示()④5(a+b)表示()10.用字母表示平行四边形的面积公式是S=();当a=2.8cm,h=1.5cm时,S=()cm2。
11.比x的3.4倍少1.2的数是()。
12.与整数a相邻的两个自然数分别是(),()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【知识点1】用字母表示数
1、在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。
加号、减号除号以及数与数之间的乘号不能省略。
2、a×a可以写作a·a(或2a) ,2a读作a的平方,表示两个a相乘。
2a表示a+a
3、数字和字母相乘,省略乘号时要把数字写在前面。
(如b×4写作4b )
对应练习
1、排球队共有队员a人,女队员有7人,男队员有( )人。
2、1千克大米的价钱是1.50元,买x千克大米应付( )元。
3、甲数比乙数的3倍还多a,甲数是x,乙数是( );如果乙数是x,那么甲数是( )。
4、省略乘号,写出下面的式子。
3×a9×x a×4 y×5 5×3x
5、a与b的和的5倍是( )。
6、梯形面积计算公式用字母表示是( ),三角形面积计算公式用字母表示是( )。
7、一个三角形的面积是4.8平方米,它的底边长是1.2米,高是x米,写出含有x的等量关系式是( )。
8、正方形的边长为x厘米,4x表示( ),x2表示( )。
9、有x吨水泥,运走10车,每车a吨。
仓库还剩水泥()吨。
【知识点2】方程的定义及解方程
1、方程:含有未知数的等式称为方程。
2、方程的解:使方程左右两边相等的未知数的值,叫做方程的解。
3、解方程:求方程的解的过程叫做解方程。
4、解方程原理:天平平衡。
等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。
5、方程两边同时加、减、乘、除一个不等于0的数,左右两边仍然相等。
6、解方程需要注意什么?
(1)一定要写‘解’字。
(2)等号要对齐。
(3)两边乘除相同数的时候,这个数不要为0
7、10个数量关系式:
加法:和=加数+加数一个加数=和-另一个加数
减法:差=被减数-减数被减数=差+减数减数=被减数-差
乘法:积=因数×因数一个因数=积÷另一个因数
除法:商=被除数÷除数被除数=商×除数除数=被除数÷商
8、方程和等式的关系:
含有未知数的等式叫做方程,所有的方程都是等式,但等式不一定都是方程。
9、方程的检验过程:方程左边=……=方程右边
所以,x=…是方程的解。
10、方程的解是一个数;解方程是一个计算过程。
对应练习
1、等式与方程:下列各式中是等式的打上“√”,是方程的打上“△”。
(1)12+x=13 ()(2)2.5-0.5=2 ()(3)5x>3 ()(4)14.6-7x=0.6 ()(5)x=0 ()(6)9=3x()(7)3+5x()(9)1+2.7=3.7()(10)15<1十x()
2、口算下面各题。
3.4a-a= a-0.3a= 3.1x-1.7x= 0.3x+3.5x+x=
15b-4.7b= 6.7t + t= 32x-4x-6x= x-0.5x-0.04x=
3、解下列方程。
2x-7.5=8.5 35x+13x=9.6 2 ÷x=0.5
1.5(x-3)=60 (x+1.4)÷1.5=3.2 7.4-(x-
2.1)=6 7x+3×1.4x=0.2×56 5x+34=3x+54 7x-27=13-3x
4、列出方程,并求出方程的解。
①0.3乘以14的积比x的3倍少0.6。
②x的5倍比3个7.2小3.4。
③一个数的3倍加上它本身正好是9.6,求这个数。
④ 20 20 20 20 x x
360
5、水果店运来15筐桔子和12筐苹果,一共重600千克。
每筐桔子重20千克,每筐苹果重多 少千克?
6、体育比赛中参加跳绳的人数是踢毽子人数的3倍,已知踢毽子的人数比跳绳的人数少20 人,跳绳、踢毽子各有多少人?
【课后作业】
一、填空题。
1、每筐梨重x 千克,5筐梨重( )千克,10筐梨重( )千克;
2、学校买来a 个足球,每个m 元,又买来b 个排球,每个n 元,一共用去( )元,足球比排球多用( )元
3、李佳有10元钱,买钢笔用去x 元,还剩( )元。
4、一堆煤有a 吨,每车运b 吨,运了5车后,还剩( )吨。
5、小丽买了5个笔记本,每个x 元,付出了20元,应找回( )元。
6、已知x =4是方程618- ax 的解,a 的值是( ),6a =( )。
二、选择题。
1、下面( )说法是正确的。
①含有未知数的式子叫做方程 ②2a 一定大于 ③方程4÷x=0.2的解是20
2、爸爸今年a 岁,比妈妈大3岁,表示妈妈明年岁数的式子是( )。
① 3+a ② 3-a ③ 13+-a
3、ac ab c b a +=⨯+)(表示( )。
①乘法结合率 ②乘法交换率 ③乘法分配率
4、下面各式不属于方程的是( )。
① b a >23 ② 13=-x ③ 1328=+b
三、解方程。
68.175.6=-x 8.43.04=+⨯)(x 37567.0=⨯+x 8.48.02.1=-x x
0.52×5-4x =0.6 x -0.35x =0.91 15.6÷4+2x =1.2-x
四、列出方程,并求出它的解。
1、 x 千克
苹果:
x 千克 270千克
梨子:
求苹果、梨子各多少千克?
2、儿童: x 人
成人: x 人 x 人 x 人 10人
3、0.3除6的商减去x的4倍,得12.4,求x。
4、8x与3x的差等于27.7与4.8的差,求x。
五、解决问题。
(用方程解)
1.一列快车从天津开出,平均每时行79千米;同时有一列慢车从济南开出,平均每时行40千米。
经过3时两车相遇,天津到济南的铁路长多少干米?
2.果园里的桃树和杏树共360棵,杏树的棵数比桃树少50棵。
桃树和杏树各有多少棵?
3.
4.学校买来2套桌椅共用去154元,每把椅子22元,每张桌子多少元?
4、东山小学饲养小组的同学养了一些兔子,其中白兔的只数是黑兔只数的3倍。
已知白兔比黑兔多8只,白兔和黑兔各有多少只?。