由传递函数建立状态空间表达式方法比较

合集下载

由传递函数求状态空间表达式根据前面介绍的微分方程与状态空间

由传递函数求状态空间表达式根据前面介绍的微分方程与状态空间

b0sm b1sm1 L bm1s bm sn a1sn1 L an1s an
c1 c2 L cn
s 1 s 2
s n
(n m)
其中:
ci
lim G(s)(s
si
i )
X
1
(s
)
s
1
1
U (s)
X
2
(
s)
s
1
2
U (s)
X
n
(s)
s
1
n
U (s)
分解式第二部分表示状态变量与输出的关系, 输出y等于各状态变量与输入的线性组合,即式中 的C和D阵。
若传递函数等效为:
G(s)
b0
b1s n1 b2 s n1 s n a1s n1
bn1s an1s
bn an
式中
bi (bi aib0 ), (i 1,2, , n)

此时,式中的C阵和D阵可直接写成
sX 1(s) 1 X1 (s) U (s)
sX2
(s)
2
X
2 (s) U (s)
sX n (s) n X n (s) U (s)
x1 1x1 u
x2
2 x2
u
xn n xn u
Y (s) G(s)U (s) c1 U (s) c2 U (s) L cn U (s)
sn
a1s n1
b
an1s an
系统的微分方程为:
y (n) a1 y (n1) an1 y an y bu
则根据上节公式,可直接写出状态空间表达 式。即:
0 1 0
0
A
0
,
B , C 1

《现代控制理论》课后习题答案1.pdf

《现代控制理论》课后习题答案1.pdf

《现代控制理论》第一章习题解答1.1 线性定常系统和线性时变系统的区别何在? 答:线性系统的状态空间模型为:xAx Bu y Cx Du=+=+线性定常系统和线性时变系统的区别在于:对于线性定常系统,上述状态空间模型中的系数矩阵A ,B ,C 和中的各分量均为常数,而对线性时变系统,其系数矩阵D A ,B ,C 和中有时变的元素。

线性定常系统在物理上代表结构和参数都不随时间变化的一类系统,而线性时变系统的参数则随时间的变化而变化。

D 1.2 现代控制理论中的状态空间模型与经典控制理论中的传递函数有什么区别? 答: 传递函数模型与状态空间模型的主要区别如下:传递函数模型(经典控制理论)状态空间模型(现代控制理论) 仅适用于线性定常系统 适用于线性、非线性和时变系统用于系统的外部描述 用于系统的内部描述基于频域分析基于时域分析1.3 线性系统的状态空间模型有哪几种标准形式?它们分别具有什么特点?答: 线性系统的状态空间模型标准形式有能控标准型、能观标准型和对角线标准型。

对于阶传递函数n 1212101110()n n n n n n n b s b s b s b G s d s a s a s a −−−−−−++++=+++++"",分别有[]012101210100000100000101n n n xx ua a a a yb b b b x du−−−⎧⎡⎤⎪⎢⎥⎪⎢⎥⎪⎢⎥=+⎪⎢⎥⎨⎢⎥⎪⎢⎥⎪−−−−⎣⎦⎪=+⎪⎩"" ###%##"""⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⑴ 能控标准型:[]0011221100010********001n n n b a b a xa x ub a b y xdu −−−⎧−⎡⎤⎡⎤⎪⎢⎥⎢⎥−⎪⎢⎥⎢⎥⎪⎢⎥⎢⎥=−+⎪⎢⎥⎢⎥⎨⎢⎥⎢⎥⎪⎢⎥⎢⎥⎪−⎣⎦⎣⎦⎪=+⎪⎩"" "######""⑵ 能观标准型:[]1212001001001n n p p x x up y c c c x du⎧⎡⎤⎡⎤⎪⎢⎥⎢⎥⎪⎢⎥⎢⎥=+⎪⎢⎥⎢⎥⎨⎢⎥⎢⎥⎪⎣⎦⎣⎦⎪⎪=+⎩"" ##%##""⑶ 对角线标准型: 式中的和可由下式给出,12,,,n p p p "12,,,n c c c "12121012111012()n n n n n n n n nb s b s b s bc c c G sd d s a s a s a s p s p s p −−−−−−++++=+=++++++−−−"""++能控标准型的特点:状态矩阵的最后一行由传递函数的分母多项式系数确定,其余部分具有特定结构,输出矩阵依赖于分子多项式系数,输入矩阵中的元素除了最后一个元素是1外,其余全为0。

现代控制工程简答题

现代控制工程简答题

现代控制工程简答题1、控制系统的基本构成及特点。

2、现代控制理论的主要内容。

3、控制系统的状态空间描述及意义。

4、线性定常非齐次连续系统状态(方程解)的动态特性。

参考答案:1、控制系统主要由具有动态特性的被控对象系统、实现控制作用的控制机构、完成数据收集的检测机构,以及实现性能指标评价和信息处理的计算机构等部分构成。

控制系统的主要特点为:以动态系统为控制对象,通过施加必要的操作,实现对象系统状态按照指定的规律进行变化,达到某一特定功能;强调动态过程和动态行为的目的性、稳定性、能观测性、可控性、最优性以及时实性等;控制系统的数学模型主要用微分方程描述,设计方法为动态优化方法。

,2、主要包括五个方面:①线性系统理论(状态空间描述、能控性、能观测性和稳定性分析,状态反馈、状态观测器及补偿理论和设计方法),②建摸和系统辩识(模型结构及参数辩识方法论、参数估计理论),③最优滤波理论(卡尔曼滤波理论),④最优控制理论(经典变分法、最大值原理法、动态规划法),⑤自适应控制理论(模型参考自适应控制方法论、自校正控制方法论、鲁棒稳定自适应理论等)。

3、控制系统的状态空间描述:由状态方程和输出方程组成的状态空间表达式。

状态方程是一个一阶微分方程组,描述系统输入与系统状态的变化关系,即系统的内部描述;输出方程是一个代数方程,主要描述系统状态与系统输出的关系,即系统的外部描述。

意义:状态空间描述反映了控制系统的全部信息,是对系统特性的全部描述,是实现现代控制系统分析、设计的重要手段。

4、线性定常非齐次连续系统状态(方程解)的一般形式为:动态特性:系统状态的动态运动(随时间变化过程)受两部分作用,第一部分为系统初始状态的转移作用,即系统的自由运动项;第二部分为控制输入信号激励下的受控作用,即系统的强迫运动项。

适当选择控制输入,可使系统状态在状态空间中获得满足要求的最佳轨线。

1、控制工程理论(控制科学)的基本任务及广义定义。

由微分方程求状态空间表达式【精选】

由微分方程求状态空间表达式【精选】

1
(2.59a)
由式(2.58)得输出方程为
y b0 x1 b1x2 bn1xn bn (a0 x1 a1x2 an1xn u)


1

h2

h3
8 9 0 8
1 0 9 1
4 1
73 9 585 73
1 04 9 11
5

38

取状态变量为
x1 y h0u y
x2 x1 h1u x1 u x3 x2 h2u x2 5u

因此有 hn1


a1
hn a0
a2 a1
a3 a2

1 an1
1

b1

b0
(2.57)
从式(2.56)可见,当 b1 bn 0,b0 b 时可 得 h0 hn1 0 , hn b ,代入式(2.55)可得 式(2.44),就是前面讨论的微分方程不含有输 入导数项的情况的结果。
取状态变量 则 x1 z , x2 z, x3 z, , xn z (n1)
xn z (n) an1z (n1) a1z a0 z u
(2.58b)
a0 x1 a1x2 an1xn u
所以,状态方程为
x1 x2
由微分方程
表达为矩阵形式
x1


x
2




0 0

x n

0 a0
1 0 0 a1
1
0 a2

自动控制原理部分简答题

自动控制原理部分简答题

一.名词解释1、传递函数:传递函数是指在零初始条件下,系统输出量的拉式变换与系统输入量的拉式变换之比。

2、系统校正:为了使系统达到我们的要求,给系统加入特定的环节,使系统达到我们的要求,这个过程叫系统校正。

3、主导极点:如果系统闭环极点中有一个极点或一对复数极点据虚轴最近且附近没有其他闭环零点,则它在响应中起主导作用称为主导极点。

4、香农定理:要求离散频谱各分量不出现重叠,即要求采样角频率满足如下关系: ωs ≥2ωmax 。

5、状态转移矩阵:()At t e φ=,描述系统从某一初始时刻向任一时刻的转移。

6、峰值时间:系统输出超过稳态值达到第一个峰值所需的时间为峰值时间。

7、动态结构图:把系统中所有环节或元件的传递函数填在系统原理方块图的方块中,并把相应的输入、输出信号分别以拉氏变换来表示,从而得到的传递函数方块图就称为动态结构图。

8、根轨迹的渐近线:当开环极点数 n 大于开环零点数 m 时,系统有n-m 条根轨迹终止于 S 平面的无穷远处,且它们交于实轴上的一点,这 n-m 条根轨迹变化趋向的直线叫做根轨迹的渐近线。

9、脉冲传递函数:零初始条件下,输出离散时间信号的z 变换()C z 与输入离散信号的z 变换()R z 之比,即()()()C z G z R z =。

10、Nyquist 判据(或奈氏判据):当ω由-∞变化到+∞时, Nyquist 曲线(极坐标图)逆时针包围(-1,j0)点的圈数N ,等于系统G(s)H(s)位于s 右半平面的极点数P ,即N=P ,则闭环系统稳定;否则(N ≠P )闭环系统不稳定,且闭环系统位于s 右半平面的极点数Z 为:Z=∣P-N ∣11、程序控制系统: 输入信号是一个已知的函数,系统的控制过程按预定的程序进行,要求被控量能迅速准确地复现输入,这样的自动控制系统称为程序控制系统12、稳态误差:对单位负反馈系统,当时间t 趋于无穷大时,系统对输入信号响应的实际值与期望值(即输入量)之差的极限值,称为稳态误差,它反映系统复现输入信号的(稳态)精度。

状态空间表达式

状态空间表达式

2.5 控制系统的状态空间表达式2.5 控制系统的状态空间表达式随着科学技术的发展,被控制的对象越来越复杂,对自动控制的要求也越来越高。

面对时变系统,多输入多输出系统、非线性系统等被控量和对控制系统高精度、高性能的严格要求,传统的控制理论已不能适用。

同时,计算机技术的发展也要求控制系统地分析,设计中采用计算机技术并在控制系统的组成中使用计算机。

因此,适用这些要求的控制系统的另一种数学描述方法----状态空间就应运而生。

2.5.1 状态变量在对系统动态特性描述中,足以表征系统全部运动状态的最少一组变量,称之为状态变量。

只要确定了这组变量在t=时刻的值以及时的输入函数,则系统在任何时刻的运动状态就会全部确定。

状态变量互相间是独立的,但对同一个系统,状态变量的选取并不是唯一的。

一个用n 阶微分方程描述的系统,有n个独立变量,这n个独立变量就是该系统的状态变量。

若用表示这n个状态变量,则可以把这n个状态变量看作是向量x(t)的分量。

我们称x(t)为状态变量,它是一个n维向量,记为分别以状态变量作为坐标而构成的n维空间,称为状态空间。

系统在t时刻的状态,就是状态空间的一点。

系统在时刻的状态称为初始点,随着时间的变化,x(t)从初始点出发在状态空间描述出一条轨迹,称为状态轨迹。

状态魁及表征了系统状态的变化过程。

2.5.2 状态空间表达式1. 状态方程由系统的状态变量和输入函数构成的一阶微分方程组,称为系统的状态方程。

对于线性系统,可以写成如下形式(2.59)记为(2.60)式中x(t)是n维列向量u(t)是r维输入向量A是n*n维矩阵,称为系数矩阵B是n*r矩阵,称为输入矩阵或控制矩阵若矩阵A和B的元素都是常数,则状态方程是线性定常的。

若A和B中有随时间变化的元素,状态方程就是线性时变的。

状态方程中不能含有x(t)的高于一阶导数的项和输入函数的导数项。

对于非线性系统,状态方程可以写成如下形式(2.61)记为(2.62)式中f为向量函数。

状态空间表达式及其与传递函数间的关系

状态空间表达式及其与传递函数间的关系

x Ax Bu y Cx Du
u(t)
y(t)
系统
A : 系统(状态)矩阵 (n n)
B : 控制(输入)矩阵 (n p)
C : 输出矩阵 (q n)
D : 前馈矩阵 (q p)
A、B、C、D 为常数阵 定常系统
A、B、C、D 含时变参数 时变系统
9
x Ax Bu y Cx Du
不同状态变量之间存在线性变换关系
13
2.6 两种模型的相互转化
2.6.1由状态空间模型转化为传递函数(阵) 2.6.2由传递函数转化为状态空间描述 应用MATLAB进行模型之间的相互转化(自
学)
14
2.6.1 由状态空间模型转化为传递函数(阵)
设 线 性 定 常 系 统 的 状 态空 间 模 型 为

0 1u
1 G( s ) LCs2 RCs 1
y 1
0

x1 x2

由同一系统的不同状态空间表
达式导出的传递函数(阵)必
然相同
18
2.6.2 由系统传递函数建立状态空间模型
之前已知:由微分方程转
A,B,C,D
化为状态空间模型
u(t)
y(t)
系统
U(s)
x Ax Bu 注意! u(t)
G(s)
y(t)
y Cx Du
系统
对其进行拉氏变换 sX(s) x(0 ) AX(s) BU(s) Y(s) CX(s) DU(s)
对应的传递函数(阵)为
令初始条件为零, x( 0 ) 0 得:sX(s) AX(s) BU(s)
x n
xn

现代控制理论基础-第2章-控制系统的状态空间描述精选全文完整版

现代控制理论基础-第2章-控制系统的状态空间描述精选全文完整版

(2-18)
解之,得向量-矩阵形式的状态方程
(2-19)
输出方程为
(2-20)
(5) 列写状态空间表达式
将式(2-19)和式(2-20)合起来即为状态空间表达式,若令
则可得状态空间表达式的一般式,即
(2-21)
例2.2 系统如图
取状态变量:
得:
系统输出方程为:
写成矩阵形式的状态空间表达式为:
1.非线性系统
用状态空间表达式描述非线性系统的动态特性,其状态方程是一组一阶非线性微分方程,输出方程是一组非线性代数方程,即
(2-7)
2. 线性系统的状态空间描述
若向量方程中 和 的所有组成元都是变量 和 的线性函数,则称相应的系统为线性系统。而线性系统的状态空间描述可表示为如下形式: (2-8) 式中,各个系数矩阵分别为 (2-9)
4.线性定常系统的状态空间描述
式中的各个系数矩阵为常数矩阵
当系统的输出与输入无直接关系(即 )时,称为惯性系统;相反,系统的输出与输入有直接关系(即 )时,称为非惯性系统。大多数控制系统为惯性系统,所以,它们的动态方程为
(2-11)
1.系统的基本概念 2. 动态系统的两类数学描述 3. 状态的基本概念
2.2 状态空间模型
2.2.1状态空间的基本概念
1.系统的基本概念
■系统:是由相互制约的各个部分有机结合,且具有一定功能的整体。 ■静态系统:对于任意时刻t,系统的输出惟一地取决于同一时刻的输入,这类系统称为静态系统。静态系统亦称为无记忆系统。静态系统的输入、输出关系为代数方程。 ■动态系统:对任意时刻,系统的输出不仅与t时刻的输入有关,而且与t时刻以前的累积有关(这种累积在t0(t0<t)时刻以初值体现出来),这类系统称为动态系统。由于t0时刻的初值含有过去运动的累积,故动态系统亦称为有记忆系统。动态系统的输入、输出关系为微分方程。

状态空间表达式

状态空间表达式

an 1 (h0u
( n 1)
h1u
( n2)
hn 1u )
an 2 (h0u
( n2)

h1u
( n 3)
hn 2u )
( n)
a1 (h0 u h1u) a0 h0u bnu
bn 1u
( n 1)
b1u b0u
可写成向量-矩阵的形式:
x Ax bu y cx du
即:
1 0 x1 0 x 0 2 0 1 x 0 n1 0 0 x n a0 a1 a 2
c 1 0 0
例1 设
...
y 5y8y 6 y 3u
求(A,B,C,D)
.
..
.
解:选
x1 y
x2 y
x3 y
..
则:
x1 x 2
.
x 2 x3
.
x3 y 3u 6 x1 8x2 5x3
.
...
y x1
状态空间表达式为
1 0 x1 0 x1 0 x 0 x 0 u 2 0 1 2 x3 6 8 5 x3 3
h2 b1 a2 h1 a1h0 3 h3 b0 a 2 h2 a1h1 a0 h0 13
状态空间表达式为
1 0 x1 1 x1 0 x 0 x 3u 2 0 1 2 x3 1 2 4 x3 13 x1 x y 1 0 0 2 x3

传递函数到状态空间模型的转换

传递函数到状态空间模型的转换

自动控制理论自动控制第二章周立芳徐正国连续时间控制系统的数学模型浙江大学控制科学与工程学系1第二章要点✓引言✓电路及组成✓线性代数与状态的基本概念✓传递函数及方块图✓机械传递系统✓其他的数学建模实例✓系统传递函数的计算✓非线性系统的线性化✓系统整体传递函数的确定✓仿真图✓信号流图从传函数到状间模的转换✓从传递函数到状态空间模型的转换2从传递函数到状态空间模型的转换◆从传递函数到并联状态图◆并联状态图◆A 矩阵的对角化◆利用状态变换求解状态方程◆状态方程的标准形式可控标准型◆◆可观标准型◆从方块图到状态空间模型控制科学与工程学系并联状态图由下面微分方程描述的SISO 系统可以由相应的传递函数表示并联状态图)()()( ;)()())(()(1210111i ii i i ni i n n n n n n s f s U s Z f s G s G c s s s c s c s c s c s G λλλλ-==+=---++++=∑=--并联状态图系统的状态转移信号流图如下图所示,图中省略了状态变量的初始值z i (t 0)。

Z 1(s)λ1f 1前馈通道Z 2(s)f 2U(s)Y(s)λ2:f n())()(1∑=+=ni i n s G c s G f λnc nZ n (s))()()( iii i i s f s U s Z s G λ-==图5.31 式(*) 的并联解耦仿真图(w=n )并联状态图于是系统的状态空间模型为:所有元素均为1⎥⎤⎢⎡⎥⎤⎢⎡ 2111000λλnn +Λ=⎥⎥⎥⎢⎢⎢+⎥⎥⎥⎢⎢⎢=ub z u z z1000λw=n, d n ≠0, 否则d n =0[]ud u c f f f y n n n n +=+=⎦⎣⎦⎣z c z21A 是对角阵此时系统动态方程称为状态空间模型系统矩阵A 是对角阵,此时系统动态方程称为正则标准型状态空间模型,系统矩阵可表示为Λ(or A*),相应的状态变量称为规范变量(canonical variables )。

状态空间描述

状态空间描述

x x
2 3
x1 x2
n 1u n2u
(1 )
x n x n 1 1 u
式中系数 0,1,,n
是待定系数.
x1 x2 n 1u
整理(1)式得:
x
2
x3
n2u
(2)
x n 1 x n 1u
令:
xna0x1a1x2 an 1xn0u yx1nu
(3)
联立(2)式和(3)式,即可求得状态空间表达式为:
1)q
c1(q1)
(s 1)q1
(s
c1
1
1)
分析:
s
cq1
q1
s
cq2
q2
cn
s n
bn
既有互异极点: q1,q2,,n
也有一个q重极点: 1
实现方法: 整理得
Y (s ) jq 1 (s c 1 (q 1 ) j q 1 )j 1 U (s ) i q n 1 s c iiU (s ) b n U (s ) ( 1 )
由式(1)(2)可以得到下式:
yx1 nu
yyxx12nnu1ux2nun1xu3nnu2un1unu
(4)
y(n1) xn
u(n1)
n
u (n2)
n1
2u1u
增加一个中间变量:x n 1
令 xn1xn0u (5)
由式(5)和式(4)可求得:
y (n ) x nn u (n )n 1 u (n 1 ) 2 u 1 u x n 1n u (n )n 1 u (n 1 ) 2 u 1 u 0 u
2 说明: ①上述是对结构和参数均已知的系统建立状态空间表达式的方法。
②系统的状态空间分析法是时域内的一种矩阵运算方法,特别适 合于用计算机来计算。

现代控制理论课后题答案(第二章-第六章)

现代控制理论课后题答案(第二章-第六章)
状态空间表达式为:
1
R R2C1 1 1 1 1 x1 x2 u1 x R1 R2C1 R2C1 R2C1 1 1 1 2 x1 x2 u1 x R2C2 R2C2 R2C2 y u2 u1 x1
即:
R1 R2C1 1 R1 R2C1 x x 2 1 R2C2
x2
u
R1
R3
y
R2
图 P2.8 RL 电网络
解 采用机理分析法求状态空间表达式。由电路原理可得到如下微分方程
2 x1 x2 R3 R2 x2 L2 x
1 x1 x2 R3 u x1 L1 x / R1
y x1 x2 R3
(2) 解 采用拉氏变换法求取状态空间表达式。对微分方程 (2)在零初试条件 下取拉氏变换得:
2s 3Y ( s ) 3sY ( s ) s 2U ( s ) U ( s ) 1 2 1 s Y (s) s 1 2 2 U ( s ) 2s 3 3s s 3 3 s 2
dy1 dy , x4 2 。 dt dt
3 Kx1 B1 M1 x
2
d ( x2 x1 ) dt
对 M 2 有:
4 f (t ) B M2x
经整理得:
1
d ( x2 x 1) dx B 2 dt dt
2
状态方程为:
1 x3 x x 2 x4 B B K 3 x1 1 x3 1 x4 x M1 M1 M1 B B B 1 4 1 x3 ( 1 2 ) x4 u x M2 M2 M2 M2
1 1 R2C1 x1 R2C1 u1 x2 1 1 R C R2C2 2 2

由传递函数转换成状态空间模型1

由传递函数转换成状态空间模型1

X n =_a n X ia n 4X 2-a 1X n u由传递函数转换成状态空间模型一一方法多!!!SISO 线性定常系统高阶微分方程化为状态空间表达式SISOy (n j+a y D+azy W )+…+a n y =b 0u 俨)+b 1u (m _L )+…+b m u(n ^m )b °s mb,sm 4s nys n」 a 2s n^ ■ a n外部描述<实现问题:有了内部结构一-模拟系统 内部描述‘X = Ax +bu y =cx+ du实现冋题解决有多种方法,方法不同时结果不同直接分解法 因为Y(s) Z(s) _ Z(s) Y(s) U(s) Z(s) U(s) Z(s)n―1b )s m bs m bmQ ss ys 亠 亠a n 」s a n:丫(s) =(b °s m +bs m '+…+b m 」s + b m )Z(s)iU (s) = (s n+a 1s n,十■八 +a n/S + a n)Z(s)对上式取拉氏反变换,则jy =b o Z (m)+32^)+…+b m'Z + b m Z<(n )丄(n 4) I ■ ■ ■.u=z +az ++a n 』z+a n zX 2 = X 3G(s)二SISO按下列规律选择状态变量,即设x 1 二 z, X 2 二乙 ,X n(nd),于是有_x ;l - 0ir x j 「0] X 2■01—4y 二[b 2 b 1 b °] X 2 =[30] f uX 1X ;式中,|心为n -1 A 系数阵称之为友阵。

只要系统状态方程的系数阵 A 和输入阵b 具有上式的形式,c 阵的形式可以任意, 则称之为能控标准型。

则输出方程y 二 b °X n b i X n 」b m 」X 2 b m X i写成矩阵形式_X L IX 2y = [b m b m」b 1 b 0 ]'X n 」」n 一分析A,b,c 阵的构成与传递函数系数的关系。

微分方程与状态空间表达式之间变换

微分方程与状态空间表达式之间变换

Y 1 0 0 X
其中:A为一种规范形称为友矩阵,输入矩阵的特点是,其最后一 行元素与方程系数对应,而其余各元为零或为单位阵(A阵,对角线上 方元素为1,最后一行元素为分母负系数的反向罗列,其他元素为0;B 阵,最后一行元素为1,其他元素为0。)D=0无直联通道,
6 y 6u 例:D-E. y 6 y 11y S-E
1、传递函数中没有零点时的变换 传递函数为:
b G( s) n s a1 s n 1 a n 1 s a n
系统的微分方程为:
a n y bu y ( n ) a1 y ( n1) a n1 y
则根据上节公式,可直接写出状态空间表达 式。即:
二.输入项中包含有导数项:
D-E y a1 y
n n 1
an y b0u b1u
n
n 1
bnu bn 1u
若按相变量法选状态, 则出现解的不唯一性
x1 y x y 2 x y n 1 n
0 1 x x 2 n x an
1
an 1
0 x1 0 x 2 u 0 1 xn 1 a1
能控标准形实现的模拟图
b G (s) n s a1s n 1 an 1s an bs n 1 a1s 1 an 1s1 n an s n
• 其状态变量图为
1 s 1 1 s 1 s 1 1 s 1 b u (s) ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ y ( s)
0 即X 0 an 1 0 0 x1 x 0 2 u 1 0 xn a1 b

系统的传递函数和状态空间表达式的转换

系统的传递函数和状态空间表达式的转换

现代控制理论实验一 系统的传递函数和状态空间表达式的转换一、实验目的1. . 学习多变量系统状态空间表达式的建立方法、了解系统状态空间表达式与传递函数相互转换的方法;2. . 通过编程、上机调试,掌握多变量系统状态空间表达式与传递函数相互转换方法。

二、实验要求学习和了解系统状态方程的建立与传递函数相互转换的方法;三、实验设备1. 计算机1台2. MA TLAB6.X 软件1套。

四、实验原理说明设系统的状态空间表达式如式(1-1)示。

q p n R y R u R x D Cx y Bu Ax x ∈∈∈⎩⎨⎧+=+= (1-1)其中A 为n ×n 维系数矩阵、B 为n ×p 维输入矩阵 C 为q ×n 维输出矩阵,D 为传递阵,一般情况下为0。

系统的传递函数和状态空间表达式之间的关系如式(1-2)示。

D B A sI C s G +-=-1)()( (1-2)五、 实验步骤求系统的A 、B 、C 、阵;然后进行验证。

432352)(232+++⎥⎦⎤⎢⎣⎡+++=s s s s s s s G%求系统的A 、B 、C 阵num=[0 0 1 2;0 1 5 3];den=[1 2 3 4];[A B C D]=tf2ss(num,den)运行结果:A =-2 -3 -41 0 00 1 0B =1C =0 1 21 5 3D =对上述结果验证:程序如下:%对上述结果进行验证编程A=[-2 -3 -4;1 0 0;0 1 0];B=[1;0;0];C=[0 1 2;1 5 3];D=[0;0];[num den]=ss2tf(A,B,C,D)运行结果如下:num =0 -0.0000 1.0000 2.00000 1.0000 5.0000 3.0000den =1.00002.00003.00004.0000文,wen,从玄从爻。

天地万物的信息产生出来的现象、纹路、轨迹,描绘出了阴阳二气在事物中的运行轨迹和原理。

现代控制理论试题与答案

现代控制理论试题与答案

现代控制理论1.经典-现代控制区别:经典控制理论中,对一个线性定常系统,可用常微分方程或传递函数加以描述,可将某个单变量作为输出,直接和输入联系起来;现代控制理论用状态空间法分析系统,系统的动态特性用状态变量构成的一阶微分方程组描述,不再局限于输入量,输出量,误差量,为提高系统性能提供了有力的工具.可以应用于非线性,时变系统,多输入-多输出系统以及随机过程.2.实现-描述由描述系统输入-输出动态关系的运动方程式或传递函数,建立系统的状态空间表达式,这样问题叫实现问题.实现是非唯一的.3.对偶原理系统=∑1(A1,B1,C1)和=∑2(A2,B2,C2)是互为对偶的两个系统,则∑1的能控性等价于∑2的能观性, ∑1的能观性等价于∑2的能控性.或者说,若∑1是状态完全能控的(完全能观的),则∑2是状态完全能观的(完全能控的).对偶系统的传递函数矩阵互为转置4.对线性定常系统∑0=(A,B,C),状态观测器存在的充要条件是的不能观子系统为渐近稳定第一章控制系统的状态空间表达式1.状态方程:由系统状态变量构成的一阶微分方程组2.输出方程:在指定系统输出的情况下,该输出与状态变量间的函数关系式3.状态空间表达式:状态方程和输出方程总合,构成对一个系统完整动态描述4.友矩阵:主对角线上方元素均为1:最后一行元素可取任意值;其余元素均为05.非奇异变换:x=Tz,z=T-1x;z=T-1ATz+T-1Bu,y=CTz+Du.T为任意非奇异阵(变换矩阵),空间表达式非唯一6.同一系统,经非奇异变换后,特征值不变;特征多项式的系数为系统的不变量第二章控制系统状态空间表达式的解1.状态转移矩阵:eAt,记作Φ(t)2.线性定常非齐次方程的解:x(t)=Φ(t)x(0)+∫t0Φ(t-τ)Bu(τ)dτ第三章线性控制系统的能控能观性1.能控:使系统由某一初始状态x(t0),转移到指定的任一终端状态x(tf),称此状态是能控的.若系统的所有状态都是能控的,称系统是状态完全能控2.系统的能控性,取决于状态方程中系统矩阵A和控制矩阵b3.一般系统能控性充要条件:(1)在T-1B中对应于相同特征值的部分,它与每个约旦块最后一行相对应的一行元素没有全为0.(2)T-1B中对于互异特征值部分,它的各行元素没有全为0的4.在系统矩阵为约旦标准型的情况下,系统能观的充要条件是C中对应每个约旦块开头的一列的元素不全为05.约旦标准型对于状态转移矩阵的计算,可控可观性分析方便;状态反馈则化为能控标准型;状态观测器则化为能观标准型6.最小实现问题:根据给定传递函数阵求对应的状态空间表达式,其解无穷多,但其中维数最小的那个状态空间表达式是最常用的.第五章线性定常系统综合1.状态反馈:将系统的每一个状态变量乘以相应的反馈系数,然后反馈到输入端与参考输入相加形成控制律,作为受控系统的控制输入.K为r*n维状态反馈系数阵或状态反馈增益阵2.输出反馈:采用输出矢量y构成线性反馈律H为输出反馈增益阵3.从输出到状态矢量导数x的反馈:A+GC4.线性反馈:不增加新状态变量,系统开环与闭环同维,反馈增益阵都是常矩阵动态补偿器:引入一个动态子系统来改善系统性能5.(1)状态反馈不改变受控系统的能控性(2)输出反馈不改变受控系统的能控性和能观性6.极点配置问题:通过选择反馈增益阵,将闭环系统的极点恰好配置在根平面上所期望的位置,以获得所希望的动态性能(1)采用状态反馈对系统任意配置极点的充要条件是∑0完全能控(2)对完全能控的单输入-单输出系统,通过带动态补偿器的输出反馈实现极点任意配置的充要条件[1]∑0完全能控[2]动态补偿器的阶数为n-1(3)对系统用从输出到x 线性反馈实现闭环极点任意配置充要条件是完全能观7.传递函数没有零极点对消现象,能控能观8.对完全能控的单输入-单输出系统,不能采用输出线性反馈来实现闭环系统极点的任意配置9.系统镇定:保证稳定是控制系统正常工作的必要前提,对受控系统通过反馈使其极点均具有负实部,保证系统渐近稳定(1)对系统采用状态反馈能镇定的充要条件是其不能控子系统渐近稳定(2)对系统通过输出反馈能镇定的充要条件是其结构分解中的能控且能观子系统是输出反馈能镇定的,其余子系统是渐近稳定的(3)对系统采用输出到x 反馈实现镇定充要条件是其不能观子系统为渐近稳定10.解耦问题:寻求适当的控制规律,使输入输出相互关联的多变量系统的实现每个输出仅受相应的一个输入所控制,每个输入也仅能控制相应的一个输出11.系统解耦方法:前馈补偿器解耦和状态反馈解耦12.全维观测器:维数和受控系统维数相同的观测器现代控制理论试题1 ①已知系统u u uy y 222++=+ ,试求其状态空间最小实现。

由传递函数转换成状态空间模型(1)

由传递函数转换成状态空间模型(1)

由传递函数转换成状态空间模型——方法多!!! SISO 线性定常系统高阶微分方程化为状态空间表达式SISO ()()()()()()m n u b u b u b y a y a y a y m m m n n n n ≥+++=++++--- 1102211)(2211110nn n n mm m a s a s a s b s b s b s G +++++++=--- 假设1+=m n外部描述←—实现问题:有了部结构—→模拟系统部描述SISO ⎩⎨⎧+=+=ducx y bu Ax x实现问题解决有多种方法,方法不同时结果不同。

一、直接分解法因为1011111()()()()()()()()1m m m mn n n nY s Z s Z s Y s U s Z s U s Z s b s b s b s b s a s a s a ----⨯=⨯=⨯++++++++⎩⎨⎧++++=++++=----)()()()()()(1111110s Z a s a s a s s U s Z b s b s b s b s Y n n n n m m m m 对上式取拉氏反变换,则⎩⎨⎧++++=++++=----z a z a za z u zb z b z b z b y n n n n m m m m 1)1(1)(1)1(1)(0 按下列规律选择状态变量,即设)1(21,,,-===n n z x zx z x ,于是有 ⎪⎪⎩⎪⎪⎨⎧+----===-u x a x a x a xx xx xn n n n 12113221写成矩阵形式式中,1-n I 为1-n 阶单位矩阵,把这种标准型中的A 系数阵称之为友阵。

只要系统状态方程的系数阵A 和输入阵b 具有上式的形式,c 阵的形式可以任意,则称之为能控标准型。

则输出方程121110x b x b x b x b y m m n n ++++=--写成矩阵形式⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=--n n m m x x x x b b b b y 121011][ 分析c b A ,,阵的构成与传递函数系数的关系。

现代控制理论复习

现代控制理论复习

G ( s ) = G1 ( s )[ I + G2 ( s )G1 ( s )]−1 或 = [ I + G1 ( s )G2 ( s )]−1 G1 ( s )
2 0 1 1 1 2 9 8
[ 第二章总结] 1 .线性定常齐次状态方程的解 2 .矩阵指数函数 e At 3 .状态转移矩阵 Φ ( t − t0 ) Φ ( t , t ) 0 4 .线性定常非齐次状态方程的解 5 .线性时变系统状态方程的解 1 、线性定常系统运动分析 1 )齐次状态方程的解:
2 0 1 1 1 2 9 2 2
4 、李氏第二法判稳 李氏第二法判稳思路:寻找李氏函数 李氏第二法判稳思路 李氏第二法稳定性定理
G11 G12 G G Y(s) G(s) = = C(sI − A)−1 B + D = 21 22 M M U(s) Gm1 Gm2 L G1r L G2r L M L Gmr
G( s ) 的每个元素的含义:
Yi ( s ) 表示第i 个输出中,由第j 个输入变量所引 Gij ( s ) = 个输入变量间的传递关系 U j ( s ) 起的输出和第j
e At
2 0 1 1 1 2 9
e λ1t = P 0
0 −1 O P e λnt
1 0
约当标准型法:当A 的特征值为 λ1(n 重根)
λ1t e = Q M 0 0 te λ1t L O O L 1 t n−1e λ1t ( n − 1)! −1 O M Q O te λ1t 0 e λ1t
x ( t ) = Φ ( t − t0 ) x ( t0 )
2 )非齐次状态方程的解:
x( t ) = Φ ( t ) x( 0) + ∫ Φ ( t − τ ) Bu(τ )dτ

传递函数转状态空间的各种方法

传递函数转状态空间的各种方法

G (s) Y (s) / U (s)
Y(s) Z(s) Z(s) U(s)
(bm S bm 1S ( S an 1S
n
m
m 1
n 1
... b0 )
... a0 )
设n>m n=m+1
Z ( s) 1 n U ( s) ( S an 1S n 1 ... a0 ) S n Z ( s) an 1S n 1Z ( s) ... a0 Z ( s) U ( s)
u
输出方程
n
Байду номын сангаас
Y ( s) ci xi ( s)
i 1
n
y(t ) ci xi (t ) c1c2 cn
i 1
x1 x2 xn
特点:n个子系统互不相关,都是独立 的,即解耦系统
解耦系统图形
例1.6
Y(s) 6 6 3 2 u (s) s 6s 11s 6 (s 1)(s 2)(s 3)
b3 0 b2 1 b1 1 b0 3
x1 y 3 1 1 x 2 x 3
Y(s) 二、并联法 G(s) u (s)
M(s) (s 1 )(s 2 ) (s n )
i (i 1,2,n)
极点
n c c1 c2 cn i s 1 s 2 s n i 1 s i
可控标准型
其中 x1 z
同样
x2 z
x n z n 1
Y(s) b n 1Sn 1 b n 2Sn 2 ... b1S b 0 Z(s)
Y(s) bn1Sn1Z(s) bn2Sn2 Z(s) ... b1SZ (s) b0 Z(s)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

u ( n-
1
2) -
…-
B2u·-
B1u
由上式可得状态方程:
·
x1
0 0 1 0… 0
·
x2
0 0 0 1… 0
= …
·
x n- 1
0 0 0 0… 1
·
xn
- a0 - a1 - a2 - a3 … - an- 1
- x1 - x2 + - x n- 1 - xn
Bn- 1 Bn- 2 u B1 B0
u 的形式, 消去 u 的高阶导数, 其中 Bi 为待定系数。具体如下:
x 1 = y - Bnu
x2=
·
x1-
Bn- 1u=
·
y-
Bn
·
u-
Bn- 1 u
x3=
·
x2-
Bn- 2u=
¨
y-
Bn
¨
u-
Bn- 2 u
( 19)

x n=
x·n-
B1u =
y ( n) -
Bn u( n- 1) -
Bn-
( 3)
式中: x 为状态矢量, x = ( x 1, x 2, …, x n ) T 为 n 维矢量; A 为系统矩阵, A = ( aij ) 为 n×n 方
阵; B 为输入矩阵, B = ( b1 , b2, …, bn) T 为 n×1 列阵; C 为输出矩阵, C= ( c1, c2, …, cn) 为 1
写成矩阵形式
·
x1
- an- 1 1 0 … 0 x 1
·
x2
- an- 2 0 1 … 0 x 2
bn- 1 - a n- 1 bn bn- 2 - a n- 2 bn
= … + u
( 17)
x· n- 1
- a1 0 0 … 1 x n- 1
b1 - a1 bn
×n 行阵; D 为直接传递阵, D = ( d1, d2, …, dn) 为 1×n 行阵; y 为输出矢量, Y = ( y 1, y 2,
…, yn ) T ; u 为输入量, 标量。
由于式( 1) 中含有输入导数项, 使式( 2) 中含有零点, 确定式( 3) 比较复杂, 且方法不
同, 因而式( 3) 表达式不一, 但本质上是等价的, 这正如古典控制论中, 系统的方块图不是
( 2) 方法 3 也比较容易理解, 缺点是矩阵 A 为非标准型, 计算量和方法与 1 和 2 相 当。
( 3) 方法 4 得出矩阵 A 为可控标准型, 从理论上不太容易理解, 计算比较繁锁。 ( 4) 综上所述, 作者认为方法 1 较好, 应优先选用。
47
淮 南 工 业 学 院 学 报 2000 年 20 卷第 3 期
( 15)
·
·
在上式中, 如果引入 x 1= y - bnu, x 2 - x 1 = an- 1y - bn- 1 u, …, x n - x n - 1= a1y - b1 u 则使方程
大为简化, 故作如下变换。
·
x 1 = x 2 - ( an- 1y - bn- 1u) = x 2- an- 1x 1 + ( bn- 1- an- 1bn) u
u( x)
( 7)
由式( 4) 、式( 7) , 则有
·
y 1= y2
·
y 2= y3

ቤተ መጻሕፍቲ ባይዱ( 8)
·
y n- 1= y n
·
y n= - a0 y 1- a1y 2- …- an- 1y n + u
将式( 8) 表示为矩阵形式
·
y1
0 1 0… 0
y1
0
·
y2
0 0 1… 0
y2
0
=




+
( 上接第 15 页) [ 2] 中国环境 监测总站《环境水 质监测质 量保证手册 》编委 会 . 北京水 质监测质量 保证手册 [ M ] . 北 京: 化学工业出版社, 1994.
第 20 卷 第 3 期
淮南工业学院学报
2000 年 9 月
JO U RN A L OF HU AI NA N IN ST I T U T E OF T ECHNO L OG Y
Vol. 20 №3 SEP. 2000
由传递函数建立状态空间表达式方法比较
鲍和云1, 王其彬2
( 1. 淮 南 工业 学 院 机 械工 程 系, 安 徽 淮 南 232001; 2. 淮 南矿 业 集 团 谢家 集 二 矿, 安 徽 淮南 2 320 00 )
1
式( 10) 和( 11) 联立, 即是式( 1) 与式( 2) 的实现问题。若 m< n, 在式( 10) 和( 11) 中, 依次将
bn , bn- 1, …, bm+ 1换成 0 即可。
2. 2 引入中间变量 z 设
u=
z ( n) +
an- 1z (n- 1) +
…+
·
a1z +
a 0z
( 12)
参考文献:
[ 1] 刘豹 . 现 代控制理论[ M ] . 北京: 机械工业出版社, 1997. [ 2] 陈哲 . 现 代控制理论基础[ M ] , 北京: 冶金工业出版社, 1987.
Com parison o f state space expression methods established from transfer funct ion
2. 1 引入中间输出量 y i( x) ( i= 1, …, n) 设
y1( x) = y( x)
·
y2( x) = y( x)
( 4)

y n ( x ) = y ( n- 1) ( x ) 在式( 2) 中, 设 m = n 不失一般性, 引入
Yi( s)
=
s i-
1Y( s) =
si-
BA O He-yun1, W A NG Q i-bin2
( 1. Dept of M echa nical Eng ineering , Huainan Instit ut e of T echno lo gy , Huainan 232001, China; 2. T he Second Co al M ining o f Xiejiaji, Huainan M ining Company G ro op, Huainan 232000, China)
1
biA(
1
s)
U
(
s
)
( 5)
将式( 5) 代入式( 2) 并作 L apl ace 逆变换, 则有
y(x) =
bny
( n) 1
+
bn-
1y
( n1
1)
+
…+
··
b2y 1+
·
b1 y 1+
b0 y 1
( 6)
由式( 5) 可定
y
( n) 1
+
an-
y ( n-
11
1)
+
…+
a1 y·1+
a0y 1 =
·
xn
- a0 0 0 … 0 xn
a0 - b0 bn
46
鲍和云等: 由传递函 数建立状态空间表达 式方法比较
x1
y = [ 1 0 … 0] + bnu
( 18)
xn
2. 4 待定系数法
本方法的思路是引入中间状态变量 x i, 除 x 1= y - Bnu 外, 其余表示为 x i = x i- 1 - Bn- i
( 20)
式中:
y = [ 1 0 0 … 0]
x1 + Bnu xn
1 0 000 an- 1 1 0 0 0
an- 2 an- 1 1 0 0 a0 a1 … … 1
Bn
bn
Bn- 1
bn- 1
Bn- 2 = bn- 2


B0
b0
( 21) ( 22)
3 结论
( 1) 方法 1 和 2 得出的结论是一致的, 矩阵 A 为可控标准型, 从理论上比较容易理 解。
m
∏ s0i) , s0i为零点, A ( s) = sn + an- 1sn- 1 + …+ a1 s+ a0 = ( s- sj ) , sj 为极点。 j= 1
由式( 1) 或( 2) 建立状态空间表达式称为实现问题。状态空间表达式一般如下:
x·= A x + B u y = Cx + D u
x2 + bnu
( 10)
xn
45
淮 南 工 业 学 院 学 报 2000 年 20 卷第 3 期
·
x1
0 1 0… 0
x1
0
·
x2
0 0 1… 0
x2
0
= …
+ u
( 11)
·
xn
- a0 - a1 - a2 … - an- 1 x n
·
x 2 = x 3 - ( an- 2y - bn- 2u) = x 3- an- 2x 1 + ( bn- 2- an- 2bn) u

·
x n- 1 = x n - ( a1y - b1u) = x n- a1x 1 + ( b1- a1bn ) u
( 16)
·
x n = - ( a0y - b0 u) = - a0x 1 + ( b0 - a0 bn ) u
相关文档
最新文档