离散数学英文课件 群论 Groups (II)
离散数学课件(英文版)----Equivalence(II)
A1
A It is straight to prove that R is reflexible, symmetric and transitive, so, it is an equivalence relation.
Symmetry
Let A={1,2,3}, RAA {(1,1),(1,2),(1,3),(2,1),(3,1),(3,3)} symmetric. {(1,2),(2,3),(2,2),(3,1)} antisymmetric. {(1,2),(2,3),(3,1)} antisymmetric and asymmetric. {(11),(2,2)} symmetric and antisymmetric. symmetric and antisymmetric, and asymmetric!
• R is reflexive relation on A if and only if IAR
Visualized Reflexivity
A={a,b,c} a
1 0 0 1 1 1 MR 0 1 1
b
c
Symmetry
Relation R on A is Symmetric if whenever (a,b)R, then (b,a)R Antisymmetric if whenever (a,b)R and (b,a)R then a=b. Asymmetric if whenever (a,b)R then (b,a)R (Note: neither anti- nor a-symmetry is the negative of symmetry)
离散数学(集合论)ppt课件
15
幂 集 定义
P(A) = { B | BA }
设 A={a,b,c},则 P(A)={,{a},{b},{c},{a,b},{a,c},{b,c}{a,b,c}}
计数: 6
2.真子集: A B A B A B
真包含
3.集合相等: A B A B 且 B A
14
n元集,m元子集
含有n个元素的集合简称n元集,它的含有m 个(m≤n)元素的子集称为它的m元子集. 例题3.2:A={a,b,c},求A的全部子集. 0元子集,即空集,只有1个. 1 1元子集,即单元集, c 个 {a},{b},{c} 3 2 元子集 个 {a,b},{a,c}{b,c} 2 3元子集1个c 3 {a,b,c} n元集的集合个数为:
2
当时德国数学家康托尔试图回答一些涉及无穷量 的数学难题,例如“整数究竟有多少?”“一个 圆周上有多少点?”0—1之间的数比1寸长线段 上的点还多吗?”等等。而“整数”、“圆周上 的点”、“0—1之间的数”等都是集合,因此对 这些问题的研究就产生了集合论。
3
1903年,一个震惊数学界的消息传出:集合论 是有漏洞的!这就是英国数学家罗素提出的著名 的罗素悖论。 可以说,这一悖论就象在平静的数 学水面上投下了一块巨石,而它所引起的巨大反 响导致了第三次数学危机。
19
集合基本运算的定义
并
交 相对补 对称差
AB = { x | xA xB }
AB = { x | xA xB } AB = { x | xA xB } AB = (AB)(BA) = (AB)(AB)
绝对补
群论第二章ppt
5
§2.1 群的概念
显然只有群元素比较少时这乘法表才排得出来,在乘法表 中每列与每行,每个元素出现一次,也仅一次,这为乘法表 的重排定理。 若群是Abel群(交换群),则乘法表中对主对角线是对称 的。下面给出几个例子 例1 G 1, 1 乘法为普通数乘法,单位元素为1 e ,a=-1逆元素为 自 己,其乘法定律 ee=e, aa=e, ea=ae=a, 这群在量子力学中很重要,这群与空间反演相对应,三维 空间矢量 r 作用 er r ar r e保持 r 不变的恒等变换 a 使 r 反演的反演变换,则 e, a 构成反演群。 我们称群G与反演群同构。
11
§2.1 群的概念
给出乘法表如下表:从表中看出,群中元素任一个u乘 积 ug a , 给出并且仅一次给出G所有元素,满足重排定理。 e a b c d f —— |—————————————— e | e a b c d f a | a e d f b c b | b f e d c a c | c d f e a b d | d c a b f e f | f b c a e d 后面看到重排定理大大限制了互相不同构有限群数目。还 可以证明,阶数为相同素数的有限群都同构。三客体置换群 S 3 与平面正三角形对称群D3 同构。
a G
ae ea a
4
§2.1 群的概念
2. 乘法表与群示例
如果我们知道群中每两个元素的乘积,则群 结构就确定了。这乘积可以排列成一个乘法 表,例如G中有元素e,a,b,c,d,乘法表为 e a b c d e ee=e ea=a b c d
a b c d ae=a aa b c d ba ca da ab bb cb db ac bc cc dc ad ba cd dd
离散数学PPT教学课件 集合论ppt2
-3/3
[6]
0/2 0/3 0/4
[2]
→
-3/1[11]…
3/2[12]…
1/3[8] 1/4[14]
2/3[9]
3/3…
3/4[13]…
-3/4[16]
-2/4
-1/4[15]
2/4
所以,有理数集合必是可数集合。
2018/7/1
67-30
习题类型
1. 基本概念题:涉及集合的表示;
2. 判断题:涉及元素与集合、集合与集合间的关 系; 3. 计算题:涉及集合的运算和幂集的计算; 4. 证明题:涉及集合相等以及集合间包含关系的 证明。
2018/7/1
67-31
2018/7/1
可数集合(可列集)
定义 1.3.2 凡是与自然数集合等势的集合, 统称为可数集合 ( 可列集 )(Countable Set ) 。可 数集合记为:א0 (读作阿列夫零) 。
例1.3.1 下列集合都是可数集合: 1)O+={x|xN,x是正奇数}; 2)P={x|xN,x是素数}; 3)有理数集合Q.
67-8
定理1.3.1
两个有限集合等势当且仅当它们有相同 的元素个数; 有限集合不和其任何真子集等势;
可数集合可以和其可数的真子集等势。
2018/7/1
67-9
不可数集合
定义1.3.3
开区间 (0,1) 称为不可数集合,其基数设为 (א读作阿列夫);
凡是与开区间 (0,1) 等势的集合都是不可数 集合。
2018/7/1 67-12
1.4
离散数学群与子群-PPT
解:由题意,R上得二元运算★得运算表如上所示,由表知,运算★在R上就 是封闭得。
对于任意a, b, cR,(a★b)★c表示将图形依次旋转a, b和c,而 a★(b★c)表示将图形依次旋转b,c和a,而总得旋转角度都就是 a+b+c(mod 360),因此(a★b)★c= a★(b★c),即★运算满足结合性。
a
b
c
d
b
d
a
c
定理5、4、4 群〈G,*〉得运算表中任一行(列)得元素都就是G中元 素得一个置换。且不同行,不同列得置换都不同。 证明 首先,证明运算表中得任一行或任一列所含G中得一个元素不可能多 于一次。用反证法,如果对应于元素a∈G得那一行中有两个元素都就 是c,即有 a*b1=a*b2=c 且b1≠b2 由可约性可得 b1=b2,这与b1≠b2矛盾。
其次,要证明G中得每一个元素都在运算表得每一行和每一列中出现。考 察对应于元素a∈G得那一行,设b就是G中得任一元素,由于 b=a*(a1*b),所以b必定出现在对应于a得那一行中。
再由运算表中没有两行(或两列)相同得事实,便可得出:<G,*>得运算表中 每一行都就是G得元素得一个置换,且每一行都就是不相同得。同样得 结论对于列也就是成立得。
结果都等于另一个元素, ) 3) G中任何元素得逆元就就是她自己; 。 故〈G,*〉为一个群。 此外,运算就是可交换得,一般称这个群为克莱因(Klein)四元群,简称四元群。
思考练习
已知:在整数集 I 上得二元运算定义为:a,b∈I,
a b=a+b-2
证明:< I , >为群。
么元为:2 逆元:x-1=4-x
离散数学群与子群
一、群得概念
《离散数学概述》PPT课件
同 子代数 种
的 积代数 同
类 商代数 型
的 新代数系统
22
半群与群
广群 二元运算的封闭性
结合律
半群
交换律
交换半群
单位元 交换律
独异点
每个元素可逆 交换律
群
交换独异点 实例
Abel群
生成元
Klein群 循环群
有限个元素
有限群
编辑ppt
实例
n元置换群
23
图论
图论是离散数学的重要组成部分,是近代应用数学的重要分支。
由于在计算机内,机器字长总是有限的, 它代表离散的数或其
它离散对象,因此随着计算机科学和技术的迅猛发展,离散数
学就显得重要。
编辑ppt
5
离散数学的内容
数理逻辑: “证明”在计算科学的某些领域至关重要,构 造一个证明和写一个程序的思维过程在本质上是一样的。
组合分析:解决问题的一个重要方面就是计数或枚举对象。
编辑ppt
20
代数系统
近世代数,……,是关于运算的学说,是关于运算规则 的学说,但它不把自己局限在研究数的运算性质上,而 是企图研究一般性元素的运算性质。
——M.Klein
数学之所以重要,其中心原因在于它所提供的数学系统 的丰富多彩;此外的原因是,数学给出了一个系统,以 便于使用这些模型对物理现实和技术领域提出问题,回 答问题,并且也就探索了模型的行为。
1736年是图论历史元年,因为在这一年瑞士数学家欧拉(Euler) 发表了图论的首篇论文——《哥尼斯堡七桥问题无解》,所以人
们普遍认为欧拉是图论的创始人。
1936年,匈牙利数学家寇尼格(Konig)出版了图论的第一部专 著《有限图与无限图理论》,这是图论发展史上的重要的里程碑 ,它标志着图论将进入突飞猛进发展的新阶段。
ChLogic离散数学英文实用PPT课件
• Algorithm (Algorithmic Analysis, Algorithmic Thinking) • Universal, Existential Quantification, Rule of Inference • Probability, Statistics, Event, Independent, Dependent • Operation, Operator, Product, Sum, Division, Integer, Real Number,
• Steps to convert an English sentence to a statement in propositional logic • Identify propositions and using propositional variables • Determine appropriate logical operations
• “If I go to iShow (爱秀) or to CHIC (东京秀客 ), t hen I will no t go sho pping at Golden Ea gle .” • p: I go to iShow • q: I go to CHIC • r: I go shopping at GE
Solution: Let p be A is a knight, and q be B is a
kniቤተ መጻሕፍቲ ባይዱht
• If A is a knight, then p True. Since knights tell
the truth, then
If p or q then not r.
离散数学课件 第9章 半群和群
第9章半群和群semigroup and group§9.1 二元运算复习binary operation revisitedA上二元运算f:A×A→Af处处有定义的函数。
Dom(f)=A×A,对任意a,b∈A,f(a,b)∈A,唯一确定。
二元运算常记做+,-,×,*,◦,等等对任意a,b∈A,a◦b∈A说成A对◦封闭。
A={a1,a2,……,a n}时,二元运算可以用运算表给出。
二元运算的性质1可换commutativea*b=b*a2 结合associativea*(b*c)=(a*b)*c3 幂等idempotenta*a=a特殊元素单位元对任意a∈A,e*a=a*e=a. 单位元也叫恒等元零元对任意a∈A,0*a=a*0=0逆元对任意a,b∈A,a*b=b*a=e a,b互为逆元代数结构(A,*)A上定义了二元运算满足1)封闭性2)结合律-----------半群3)有单位元---------独异点4)有逆元-----------群5)可交换-----------交换群例子:1)(Z n +), (Z n, )2)(A*, *) 字符串的连接Homework P323-32416,20,22,24,25,26§9.2 半群semigroup半群定义:(S,*) *是S上乘法,满足结合律。
半群的例(Z,+),(Z,×),(N,×),(N,+),(Q,+),(R,×),(P(S),∪),(P(S), ∩),(M n,+),(Mn,×),S上全体映射,对于复合,(L,∧),(L,∨),L是格(A*, ),定理1.半群中,n个元素的乘积与乘法的次序无关。
幂power:设(S,*)是半群,a∈S,定义a的幂power:a1=a, a n=a n-1*a.a0=?a-n=?a m*a n=a m+n(a m)n=a mn.子半群subsemigroup 子独异点submonoid设(S,*)是半群,T⊆S,T对*封闭,则(T,*)也是半群,称为(S,*)的子半群。
离散数学课件(英文版)----Counting精选 课件
Hale Waihona Puke <0,4><0,0>, <0,1>, <1,0>, <0,2>, <1,1>, <2,0>, <0,3>, ......
So, the set of rational numbers is countable.
as a sequence, { r1, r2, r3, ... } • (3) Assume, for example, that the decimal expansions of
the beginning of the sequence are as follows. r1 = 0 . 0 1 0 5 1 1 0 ... r2 = 0 . 4 1 3 2 0 4 3 ... r3 = 0 . 8 2 4 5 0 2 6 ... r4 = 0 . 2 3 3 0 1 2 6 ... r5 = 0 . 4 1 0 7 2 4 6 ... r6 = 0 . 9 9 3 7 8 3 8 ... r7 = 0 . 0 1 0 5 1 3 0 ...
– If the list goes on forever, it is infinite.
Proof of Countability
• The set of all integers is countable.
– We can arrange all integer in a linear list as follows: 0,-1,1,-2,2,-3,3,... that is: positive k is the (2k+1)th element, and negative k is the 2kth element in the list.
离散数学英文版PPT
How I Can Help You
• If you have a question, you can ask me face-to-face
Prerequisite and Description
• Prerequisite: MATH 170 Calculus I and CSCI 185 Programming II • Description: An introduction to discrete structures with applications to computing problems. Topics include logic, sets, functions, relations, proof techniques and algorithmic analysis. Graph theory and trees may be studied as well
Course Objectives
1. Relate practical examples to the appropriate set, function, or relation model, and interpret the associated operations and terminology in context 2. Apply proof techniques, including logic, to problems 3. Differentiate between dependent and independent events 4. Apply the binomial theorem to independent events and Bayes’ theorem to dependent events, and solve problems such as Hashing 5. Relate ideas of mathematical induction(归纳) to recursion and apply it to problems in computer science setting 6. Apply the basic counting principles, permutations and combinations to problems in computer science setting 7. Implementing algorithms in C or C++ programs
离散数学课件(英文版)----Semigroup
ห้องสมุดไป่ตู้Algebraic Systems and Groups
Lecture 13 Discrete Mathematical Structures
If “” is associative, then x1x2x3… xn can be computed by any order of among the (n-1) operations, with the constraint that the order of all operands are not changed.
If S has a left identity and a right identity as well, then they must be equal, and this element is also an identity of the system: e l = e l e r= e r If existing, the identity of an algebraic system is unique: e 1= e 1e 2= e 2
Association
What a pity!
Semigroup
Axiom of semigroup
– Association
An example ({1,2},*), * defined as follows:
For any x,y∈{1,2}, x*y=y Proof: it should be proved that for any x,y,z in {1,2}, (x*y)*z = x* (y*z)
离散数学(2.2命题函数与谓词)
第二章 谓词逻辑(Predicate Logic)
2.2命题函数与量词(Propositional functions &
Quantifiers)
小结:本节介绍了n元谓词、命题函数、全称量 词和存在量词等概念。重点掌握全称量词和 存在量词及量化命题的符号化。 作业:P59 (2)单数
20
x(M(x) F(x)).
11
第二章 谓词逻辑(Predicate Logic)
2.2命题函数与量词(Propositional functions &
Quantifiers) (2) 当个体域为全体学生的集合时: 令P(x): x要参加考试。则(2)符号化为xP(x). 当个体域为全总个体域时: 令S(x): x是学生。则(2)符号化为 x(S(x) P(x)). (3) 当个体域为全体整数的集合时: 令P(x): x是正的。N(x): x是负的。则(3)符号化为 x(P(x)∨N(x)) . 当个体域为全总个体域时: 令I(x): x是整数。则(3)符号化为 x(I(x)(P(x)∨N(x))).
8
第二章 谓词逻辑(Predicate Logic)
2.2命题函数与量词(Propositional functions &
Quantifiers)
• 在命题函数中,客体变元的取值范围称为 个体域,又称之为论域。个体域可以是有 限事物的集合,也可以是无限事物的集合。 • 全总个体域:宇宙间一切事物组成的个体 域称为全总个体域。
10
第二章 谓词逻辑(Predicate Logic)
2.2命题函数与量词(Propositional functions &
Quantifiers)
离散数学课件(英文版)----Function
x-y>,
:N×N→N, (<x,y>) = | x2-y2|
(N×{0}) ={ n2|n∈N}, -1({0}) ={<n,n>|n∈N}
Characteristic Function of Set
A’ B’ B A
f
Special Types of Functions
Surjection
:A→B is a surjection or “onto” iff. Ran()=B, iff. y∈B, x∈A, such that f(x)=y
Injection (one-to-one)
:A→B is one-to-one iff. y∈Ran(f), there is at most one x∈A, such that f(x)=y iff. x1,x2∈A, if x1≠x2, then (x1) ≠(x2) iff. x1,x2∈A, if (x1) =(x2),then x1=x2
Note: if <x,y>∈f, then <x,y>∈f and <x,x>∈1A if <x,y>∈ f °1A,则<t,y>∈ f , 且<x,t>∈1A, 则t=x, 所以<x,y>∈f .
Invertible Function
The inverse relation of f :A→B is not necessarily a function, even though f is.
If |A|>|B| then 0 else |A|!*|A|C|B|
离散数学-群
.
群
1.2 子群、陪集和拉格朗日定理
定理11.17 设<G,>为有限群,那么当G的非空子
集H对 运算封闭时, <H,>即为G的子群.
定理11.18 设<H,>为<G,>的子群,那麽
(1)当gH时, gH = H(Hg = H)。 (2)对任意gG, gH = H ( Hg = H ).
.
群
1.1 群及其基本性质
定理11.13
有限群G的每个元素都有有限阶, 且其阶数不超过群G的阶数 G .
.
群
1.1 群及其基本性质
定理11.14
设<G,>为群,G中元素 a 的阶为 k, 那么, an = e当且仅当 k 整除 n .
定理11.15
设<G,>为群,a为G中任一元素, 那么 a 与 a-1 具有相同的阶.
或者aH = bH(Ha = Hb), 或者 aH∩bH = (Ha∩Hb = ).
定理0 设<H,>为有限群<G,>的子群
那么H阶的整除G的阶.
.
群
1.2 子群、陪集和拉格朗日定理
定义11.11 设<H,>
为群<G,>的子群。
定义 G上H的左(右)
陪集等价关系~。
对任意a,bG a~b当且仅当a,b 在H的同一左(右) 陪集中
.
群
1.2 子群、陪集和拉格朗日定理
定义11.9
设<G,>为群.称<H,
G的子群(subgroups),
如果<H,>为G的 子代数 ,且<H,>为一群.
.
群
离散数学lecture2
Discrete Mathematics Thomas Honold Predicates and Quantifiers Nested Quantifiers
Existential Quantification
The quantifier (“there exists”)
Definition
Suppose again that P ´x µ is a unary predicate. The existential quantification of P ´x µ is the proposition “There exists an x in the domain of P such that P ´x µ is true.” The existential quantification of P ´x µ is denoted by x P ´x µ (read “there exists x such that P ´x µ holds”). The symbol is called the existential quantifier.
Discrete Mathematics Thomas Honold Predicates and Quantifiers Nested Quantifiers
Further Examples
Example
Consider the statement “d is a divisor of n” for positive integers d n 6. Describe the corresponding predicate explicitly.
Example
Denote the statement “x 3” by P ´x µ and let P have domain (the integers). Then P ´ 2µ and P ´3µ are false (since propositions 2 3 and 3 3 are false) while P ´5µ is true (since 5 3). The set of integers having property P . The proposition P ´ 3 µ is not defined, since is 4 5 6 7 4 3 is not an integer. 4
离散数学完整版课件全套ppt教学教程最全整套电子讲义幻灯片(最新)
1.1 命题及联结词
运算符“析取” 与汉语的“或”几乎一致但有 区别:哪些老师讲离散数学?有人回答如下:
(16)“讲离散数学的老师是杨老师或吴老师”, 分解为
“讲离散数学的老师是杨老师”或 “讲离散数学的老师是吴老师”, 这两个原子命题有可能都是对的, 这种“或”称为“可同时为真的或”, 或简称为“可兼或”。 这种“或”表示可表 示为“析取”
1.1 命题及联结词
定义1.4条件:当p是1 ,q是0时,pq为0,即10 为0,其他情况为1。
逻辑运算符“如果…那么”, 如老妈说:“如果期终考了年级前10 名,那么奖励1000元”。 p:期终考了年级前10名 q:奖励1000元 则上面的语句表示为pq。 先考虑值为0即假的情况: 当p为1即“期终考了年级前10”, 且q为0即“没有奖励1000元” 这时老妈的话是假话空话,
这个例题有点不正点! “郎才当且仅当女貌”,
可以表示为“郎才女貌”
1.2命题公式
对错明确的陈述语句称为命题,其真值t/f 0/1 C运算:加+、减-、乘x、除/、余数%, 命题逻辑:合、析、否定、条件、双条件(版) C语言中用变量x表示某些数,如x*x+x+10是表达式,
命题逻辑中用变量p,q,r表示任意命题,由命题常元与 此类变量所构成表达式,称为“命题公式”。
无论p/q取何值,这两个公式的值,与前面各例 不同,此表是将运算结果写在联结词的下方!
1.3 等值式
定义1.3.1等值: 对于合法的命题公式A、B, 若无论其中的命题变元取何值,A 、B值总相等, 称为两个公式等值,记为AB (边播边板)
目的:
1.掌握离散数学五大核心内容(集合论、数 理逻辑、代数结构、图论、组合数学)的基本概 念、基本理论、基本方法,训练提高学生的概括 抽象能力、逻辑思维能力、归纳构造能力,培养 学生严谨、完整、规范的科学态度和学习思维习 惯。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Cyclic group
Corollary 6 The generators of Zn are the integers r such that 1=<r < n and gcd(r, n) = 1. Example Let us examine the group Z16. The numbers 1, 3, 5, 7, 9, 11,13, and 15 are the elements of Z16 that are relatively prime to 16. Each of these elements generates Z16. For example, 1*9 = 9 2*9 = 2 3*9 = 11 4*9 = 4 5*9 = 13 6*9 = 6 7*9 = 15 8*9 = 8 9*9 = 1 10*9 = 10 11*9 = 3 12*9 = 12 13*9 = 5 14*9 = 14 15*9 = 7:
Subgroups of Cyclic Groups
Theorem 2: Every subgroup of a cyclic group is cyclic.
Proof. Let G be a cyclic group generated by a and suppose that H is a subgroup of G. If H = {e}, then trivially H is cyclic. Suppose that H contains some other element g distinct from the identity. Then g can be written as an for some integer n. We can assume that n > 0. Let m be the smallest natural number such that am ∈H. Such an m exists by the Principle of Well-Ordering. We claim that h = am is a generator for H. We must show that every h’ ∈ H can be written as a power of h. Since h’ ∈ H and H is a subgroup of G, h’ = ak for some positive integer k. Using the division algorithm, we can find numbers q and r such that k = mq + r where 0 =<r < m; hence, ak = amq+r = (am)qar = hqar: So ar = akh-q. Since ak and h-q are in H, ar must also be in H. However, m was the smallest positive number such that am was in H; consequently, r = 0 and so k = mq. Therefore, h’ = ak = amq = hq and H is generated by h.
For a ∈ G, we call <a> the cyclic subgroup generated by a.
Cyclic Groups
Definition. A group G is said to be cyclic, with generator g, if every element of G is of the form gn for some integer n. Notice that a cyclic group can have more than one single generator. Both 1 and 5 generate Z6; hence, Z6 is a cyclic group. Not every element in a cyclic group is necessarily a generator of the group.
Corollary 3
The subgroups of Z are exactly nZ for n = 0,1, 2,…..
Proposition 4
Let G be a cyclic group of order n and suppose that a is a generator for G. Then ak = e if and only if n divides k. Proof. First suppose that ak = e. By the division algorithm, k = nq + r where 0=<r < n; hence, e = ak = anq+r = anqar = ear = ar. Since the smallest positive integer m such that am = e is n, r = 0. Conversely, if n divides k, then k = ns for some integer s. Consequently, ak = ans = (an)s = es = e.
Example
If a is an element of a group G, we define the order of a to be the smallest positive integer n such that an = e, and we write |a| = n. If there is no such integer n, we say that the order of a is infinite and write |a| = ∝ to denote the order of a. The order of 2 ∈ Z6 is 3. The cyclic subgroup generated by 2 is <2> = {0,2, 4}.
Theorem 1
Every cyclic group is abelian. Proof. Let G be a cyclic group and a ∈G be a generator for G. If g and h are in G, then they can be written as powers of a, say g = ar and h = as. Since gh = aras = ar+s = as+r = asar = hg, G is abelian.
Theorem 5
Let G be a cyclic group of order n and suppose that a∈G is a generator of the group. If b = ak, then the order of b is n/d, where d = gcd(k,n). Proof. We wish to find the smallest integer m such that e = bm = akm. By the above Proposition, this is the smallest integer m such that n divides km or, equivalently, n/d divides m(k/d). Since d is the greatest common divisor of n and k, n/d and k/d are relatively prime. Hence, for n/d to divide m(k/d), it must divide m. The smallest such m is n/d.
Theorem
Let G be a group and a be any element in G. Then the set <a> = {ak : k∈Z} is a subgroup of G. Furthermore, <a> is the smallest subgroup of G that contains a. Proof. The identity is in <a> since a0 = e. If g and h are any two elements in <a>, then by the definition of <a> we can write g = am and h = an for some integers m and n. So gh = aman = am+n is again in <a> . Finally, if g = an in <a> , then the inverse g-1 = a-n is also in <a> . Clearly, any subgroup H of G containing a must contain all the powers of a by closure; hence, H contains <a> . Therefore, <a> is the smallest subgroup of G containing a.
Permutation
A permutation of a set S is a bijection on S, that is, a function π : S → S that is one to one and onto. For example, if S = {1, 2, 3, 4, 5}, then
Examples