第四章_拉普拉斯方程的格林函数法
数理方程第四章
1 在区域 K 内直到边界上,v 可任意求导。 r
v u 在第二格林公式 (u v v u)dV (u v )dS n n
2 2
1 中, 取 u 为调和函数, 而令 v , 并以 K r 代替第二格林公式中的 . 则我们有
lim u( x, y, z ) 0,
r
(r x 2 y 2 z 2 ).
以保证解的唯一性。
§4.2
高斯(Gauss)公式
格林公式
设 是以光滑曲面 为边界的有界区域,P(x,y,z), Q(x,y,z), R(x,y,z) 在闭域 上连续, 在 内 1 P , Q , R C C 有一阶连续偏导数,即
两式相减, 得
2 2
第二格林公式
v u ( u v v u)dV ( u v )dS n n
利用格林公式, 可以得到调和函数的一些性质:
1) 牛曼内问题有解的必要条件
设 u 是以 为边界的区域 内的调和函数, 在 上有一阶连续偏导数, 则在第二格林公式 中取 u 为上述调和函数, 取 v 1, 有
3)调和函数的积分表达式
所谓调和函数的积分表达式 , 是指用调和函数及 其在区域 边界 上的法向导数沿 的积分来表 达调和函数在区域 内任一点的值。 设 M 0 x0 , y0 , z0 是 内的点, 下面求调和函数在 该点的值。 构造辅助函数
1 v r
1
x x0 y y0 z z0
2u 2u 2u 2 2 0 2 x y z
它描述了稳恒状态下的物理现象。 拉普拉斯方程 u 0的连续解,也叫调和 函数。
数理方程第四章 格林函数法
则 u(M 2 ) u(M1 ) 。以 M 2 为中心,以小于 d 的数为半径
在 内作球 k 2 ,在 k 2上u(M ) u(M 2 ) u(M1 ) ,…, n 次后,
点 N 一定包含在以某点 M n 为中心 ,半径小于 d 的球
kn 内 , 因而 u( N ) u(M n ) u(M1 ) , 由 N 的
性质1. 设 u(x, y, z) 是区域 内的调和函数,它在
上有一阶连续偏导数,则
udS n
0,
其中
,
n
是 的外法线方向。
证明 只要在Green公式中取 v 1即证。
注:此性质表明调和函数的法向导数沿区域边界的积分为零。 对稳定的温度场,流入和流出物体界面的热量相等,否则就 不能保持热的动态平衡,而使温度场不稳定。
3
下午9时12分
HUST 数学物理方程与特殊函数
第4章格林函数法
对二维拉普拉斯方程 u uxx uyy 0 ,其极坐标形式为:
2u r 2
1 r
u r
1 r2
2u
2
0
(4.1.2)
求方程(4.1.2)的径向对称解 u V (r) (即与 无关的解) ,则有:
d 2V dr 2
1 r
dV dr
任意性 ,就得到整个 上有 u( N ) u( M 1 ) ,这与 u 不为
常数矛盾.
10
下午9时12分
HUST 数学物理方程与特殊函数
第4章格林函数法
K1 M2 l M1 K2 M3
S1 S2
Kn N Mn Sn
图4.1
11
下午9时12分
HUST 数学物理方程与特殊函数
第4章格林函数法
第四章_拉普拉斯方程的格林函数法
边值问题的提法: 二. 边值问题的提法:
1)第一边值问题(Dirichlet问题/狄氏问题) ∇ 2u = 0, in Ω uΓ = f 数学解释: 在Ω内寻求一个调和函数u, 它在边界Γ上与已知
连续函数f 吻合,即u Γ = f .
2)第二边值问题( Neumann 问题/牛氏问题 ) ∇ 2 u = 0, in Ω (其中 n是 Γ 的外法向量, f 是 连续函数 ) ∂u = f ∂n Γ
数学解释: Ω内寻求一个调和函数,它在闭区域Ω上有一阶 在 连续偏导数,即u ∈ C 2 (Ω) I C1 (Ω),且在边界上满足边界条件。 ,且在边界上满足边界条件。
∂u ∫∫ u (M )dS + 4π a ∫∫ ∂n dS Γ Γ 1
∫∫ u (M )dS
Γ
(4)Laplace方程解的唯一性问题 ) 方程解的唯一性问题
定理:狄氏问题在C 2 (Ω) I C 1 (Ω)内解唯一,牛曼问题除相差一个
常数外解也是唯一确定的。
证明:
设u1 , u2为上述两类问题的解,则它们的差v = u1 − u2必是原问题的
第四章 拉普拉斯方程的格林函数法
第一节 第二节 第三节 第四节 拉普拉斯方程边值问题的提法 格林公式 格林函数 两种特殊区域的格林函数及狄氏 问题的解
格 林 函 数 法
格林函数:又称点源影响函数,是数学物理中的一个重要概念 格林函数 又称点源影响函数, 又称点源影响函数
格林函数代表一个点源在一定的边界条件和初始条件下所产生的 格林函数代表一个点源在一定的边界条件和初始条件下所产生的 知道了点源的场就可以用迭加的方法计算出任意源所产生的场。 场,知道了点源的场就可以用迭加的方法计算出任意源所产生的场。 知道了点源的场就可以用迭加的方法计算出任意源所产生的场
电势与格林函数静电问题中的拉普拉斯方程与格林函数解法
电势与格林函数静电问题中的拉普拉斯方程与格林函数解法导言:在静电学中,研究电势和格林函数是解决电场分布的重要方法。
本文将讨论电势与格林函数在静电问题中的应用,重点介绍拉普拉斯方程以及格林函数解法。
一、拉普拉斯方程简介拉普拉斯方程是描述电势在无电荷区域中分布的基本方程。
对于一个二维情况下的电势分布问题,拉普拉斯方程可以写作:∇²ψ = 0其中,∇²表示拉普拉斯算子,ψ表示电势。
二、格林函数的概念与意义格林函数是求解拉普拉斯方程问题的关键工具。
格林函数是指满足以下条件的函数G(x,x'):∇²G(x,x') = -1 / ε₀ * δ(x-x')其中,ε₀是真空介电常数,δ(x-x')表示Dirac函数。
格林函数在某一点的值表示在该点放置单位点电荷时在空间中的分布情况。
三、格林函数的求解方法格林函数的求解可以通过使用边值问题的方法,具体步骤如下:1. 确定给定区域的边界条件以及相应的边界值。
2. 根据边界条件和拉普拉斯方程建立复杂变量的边界值问题。
3. 利用复变函数的解析性质求解得到问题的解析解。
4. 根据格林第一定理以及叠加原理,得到最终的格林函数解。
四、拉普拉斯方程与格林函数解法实例在一个有限区域中,假设存在一个带电导体表面,题目要求求解该区域内的电势分布。
根据已知条件,可以将问题建模为一个边值问题,通过求解格林函数来得到电势分布。
结论:在静电学问题中,电势与格林函数是求解电场分布的重要方法。
通过拉普拉斯方程与格林函数的解法,可以得到电势的具体分布情况。
在实际问题中,我们可以根据具体的边界条件和几何形状,使用适当的数值方法或解析方法求解,从而获得准确的电势分布结果。
参考文献:[1] Griffiths D J. Introduction to Electrodynamics[M]. Pearson Education Limited, 2017.[2] Lewin W. Mathematical Methods in Classical Mechanics[M]. Springer Science & Business Media, 2012.。
格林函数.pdf
第4章 格林函数在这一章里,我们介绍数学物理方程中另外一种常用的方法—格林函数法.从物理上看,一个数学物理方程是表示一种特定的“场”和产生这种场的“源”之间的关系.例如,热传导方程表示温度场和热源之间的关系,泊松方程表示静电场和电荷分布的关系,等等.这样,当源被分解成很多点源的叠加时,如果能设法知道点源产生的场,利用叠加原理,我们可以求出同样边界条件下任意源的场,这种求解数学物理方程的方法就叫格林函数法.而点源产生的场就叫做格林函数.4.1δ函数几何学中的点是没有大小的,它仅仅表示空间的一个位置,因此物理学中的质点、点电荷等点源无法用几何中的点来表示.那么,我们用数学语言如何描述这类具有实际背景的点源呢?考虑一根长为l 的直线,其上任一点的坐标⎦⎤⎢⎣⎡−∈2,2l l x .若总电量为Q 的电荷均匀分布在直线上,则直线上的电荷分布的线密度)(x ρ是⎪⎪⎩⎪⎪⎨⎧≤>=2,2,0)(l x lQ lx x ρ (4.1.1) 由定积分的性质可知x x Q d )(∫+∞∞−=ρ (4.1.2)若将上述线段无限缩小,或者说令0→l ,则我们得到了一个物理上常用的点源—点电荷.此时,电荷分布密度用)(0x ρ表示,同时式(4.1.1)变为⎩⎨⎧=∞≠=0,,0)(0x x x ρ (4.1.3) 而此时,电量仍为Q ,则式(4.1.2)仍然成立.为了理解上的方便,我们修改一下问题的叙述:去电量1=Q ,线段长度为ε2,则密度分布函数为⎪⎩⎪⎨⎧≤>=εεεδεx x x ,21,0)(且1d )(d )(===∫∫−+∞∞−εεεεδδx x x x Q由此可见)(x εδ是偶函数,则由积分第一中值定理可得)()(d )()(d )()(εξεξδξδεε<<−==∫∫+∞∞−+∞∞−f x x f x x f x当0→ε时,我们有了新的结果,我们将它定义为δ函数. 我们称符合下述2个条件的函数为δ函数⎩⎨⎧≠=∞=0,00,)(x x x δ (4.1.4)且∫+∞∞−=1d )(x x δ (4.1.5)由极限理论可知,)(x δ是偶函数.∫∫+∞∞−+∞∞−→→===)0(d )()(d )()(lim )(lim 00f x x f x x x f x f δδξεεε (4.1.6))(x δ不是通常意义下的函数,它用来描述集中分布这种常见而又特殊的一类现象的数学工具.δ函数不局限于描述点电荷的分布密度,它可以用来描述任意点量的密度.借助于δ函数,我们可以方便地描述各类点源的分布情况.如电量Q 的点电荷的分布函数为)()(0x Q x δρ=.例1 设有一条张紧静止的无穷长的细弦,其线密度为1=ρ若在0=x 点,在很短的时间内,用大小为F 的力敲一下,使获得的冲量1=∆⋅t F .问弦上的初始速度v 是怎样的?解 若0≠x ,由于时间非常短,扰动尚未传动,所以0=v ;而在0=x 上有∞=v .此外,由于敲打前弦是静止的,所以弦上的动量是1=∆⋅t F ,即∫∫+∞∞−+∞∞−==⋅1d )()(d x x v x v x ρ故初速度)()(x x v δ=.例2 设有一根温度为C 0o度的导热杆,其线密度为ρ,比热为c ,现用火焰在0=x 处以极短的时间烤一下,传给杆的热量为Q ,请分析一下开始一瞬间杆上的温度)(x T 的分布?解 在刚开始一瞬间,我们有⎩⎨⎧=∞≠=0,,0)(x x x T且∫+∞∞−=Q x x T c d )(ρ所以有)()(x c Qx T δρ=通过以上两个例题,我们对)(x δ有了进一步的认识.如果将坐标平移0x ,即集中量出现在点0x x =处,则有⎩⎨⎧=∞≠=−000,,0)(x x x x x x δ且∫+∞∞−=−1d )(0x x x δ这样,我们可以得到δ函数的一个重要性质)(d )(00x f x x x ∫+∞∞−=−δ或者说⎩⎨⎧><<<=−∫bx a x bx a x x x ba0000,0,1d )(或δ⎩⎨⎧><<<=−∫b x a x bx a x f x x x x f b a00000,0),(d )()(或δ4.2 无界域中的格林函数在第1章中,我们推导出了静电场的电势分布u 满足泊松方程ρε1222222−=∂∂+∂∂+∂∂=∆zu y u x u u (4.2.1)式中,ρ是电荷密度,所占区域为Ω,0r 是Ω中任意一个点.如果不考虑其他因素的影响,对于无界空间中的电势u ,可以利用定积分中的微元法的思想求出来.有库仑定律知,位于0r 点的一个正的单位电荷,在无界空间中点r 处产生的电势是041),(r r r r G −=π (4.2.2)则以0r 为中心的小体积Ωd 在r 处产生的电势为Ω=d )(),(d 00r r r G u ρ因此,在r 处产生的电势为∫∫ΩΩΩ−==d 4)(d )(00r r r u r u πρ为了表述上的方便, 0r 处的体积微元Ωd 以后用0d r 表示,则有∫Ω−=000d 4)()(r r r r r u πρ这样,我们没有直接求解方程,而是通过寻找微元,利用积分的方式求出了方程的解.而点源产生的电势),(0r r G 称为泊松方程式(4.2.1)在无界空间中的格林函数,利用它,我们求出了泊松方程在无界空间的解.无界空间中的格林函数又叫做方程的基本解,因此式(4.2.2)又称为泊松方程的基本解.有时也称它为相应的齐次方程(即拉普拉斯方程)的基本解,记为).,(00r r G基本解式(4.2.2)是密度为0ρ的点源在空间产生的电势,因此它在空间除了0r r =点以外,满足方程001ρε−=∆G而在0r r =点有奇异性.由于格林函数是点源函数,因此在空间某一点有奇异性. 在一般的数学物理方程中,我们需要考虑的是满足一定边界条件和初始条件的解,因此相应的格林函数就比刚才所提到的要复杂.在这种情况下,一个点源所产生的场,同时要受到边界条件及初始条件的影响,而这些影响的本身也是待定的. 例如,在一个接地的导体空腔内的点0P 处放置一个正的单位点电荷(如图4-1),则在点P 处的电势不仅是点电荷本身所产生的场41r r −π,并且还要加上这个点电荷在导体内壁上感应电荷所产生的场.而感应电荷在导体内壁上的分布是未知的,我们只知道在边界上电势为零(接地).因此,在一般情况下,格林函数是一个点源在一定的边界条件和(或)初始条件下所产生的场.通过格林函数,我们可以求得任意分布的源所产生的场.4.3 格林公式 有界域上的格林函数为了进一步探讨利用格林公式函数求解数学物理方程,我们先来推出一个重要工具—格林公式,它是曲面积分中高斯公式的直接推论.设Ω是以足够光滑的曲面Γ为边界的有界域,),,(),,,(),,,(z y x R z y x Q z y x P 在Γ+Ω上是连续的,在Ω内具有一阶连续偏导数,则有如下的高斯公式∫∫∑++=Ω⎟⎟⎠⎞⎜⎜⎝⎛∂∂+∂∂+∂∂ΩS z n R y n Q x n P z R y Q x P d )],cos(),cos(),cos([d (4.3.1) 式中,Ωd 是体积元素;n 是曲面Γ的外法向量;S d 是Γ上的面积元素.设函数),,(),,,(z y x v z y x u 在Γ+Ω上一阶偏导数连续,在Ω内二阶偏导数连续,则在式(4.3.1)中,令z vR yv u Q x v uP ∂∂=∂∂=∂∂=,,则有∫∫∫∫∫∫ΓΩΩΩΩΩ∂∂=Ω⋅+Ω∆=Ω⎟⎟⎠⎞⎜⎜⎝⎛∂∂⋅∂∂+∂∂⋅∂∂+∂∂⋅∂∂+Ω∆=Ω⎟⎟⎠⎞⎜⎜⎝⎛∂∂+∂∂+∂∂S nvuv u v u z v z u y v y u x v x u v u z R y Q x P d d grad grad d )(d d )(d 或表示为Ω⋅−∂∂=Ω∆∫∫∫ΩΓΩd grad grad d d )(v u S nvuv u (4.3.2)式(4.3.2)称为格林第一公式.在式(4.3.2)中,交换v u ,的位置,则有Ω⋅−∂∂=Ω∆∫∫∫ΩΓΩd grad grad d d )(v u S nuvu v (4.3.3)式(4.3.2)减式(4.3.3)得∫∫ΓΩ⎟⎠⎞⎜⎝⎛∂∂−∂∂=Ω∆−∆S n u v n vu u v v u d d ][ (4.3.4) 式(4.3.4)称为格林第二公式.下面,我们以泊松方程第一类边值问题为例,进一步阐明格林函数的概念.⎪⎩⎪⎨⎧=−=∆Γ)6.3.4()5.3.4(1f u u ε式中, f 是在区域Ω上的边界Γ上给定的函数.在介绍格林函数之前,我们要引进空间的δ函数来表示点源的密度分布,有)()()()(0000z z y y x x r r −−−=−δδδδ⎩⎨⎧=∞≠=−000,,0)(r r r r r r δ )),,((1d )(00000Ω∈=−∫Ωz y x r r r r δ∫Ω=−)(d )()(00r f r r f r r δ用),(0r r G 表示位于0r 点的单位强度的正点源在第一类边界条件下产生的场,则),(0r r G 作为r 的函数满足⎪⎩⎪⎨⎧=−−=∆Γ)8.3.4(0)7.3.4()(1),(00G r r r r G δε以),(0r r G 乘式(4.3.5),)(r u 乘式(4.3.7),二式相减后在Ω上对r 积分,以r d 表示r 点处的体积微元,有∫∫∫ΩΩΩ−+−=∆−∆r r r r u r G r G u u G d )()(1d 1d )(0δερε利用格林第二公式及δ函数的性质,有)9.3.4(d ),()(d )(),(d ),()(d )(),(d ),()()(),(d )(),()(00000000∫∫∫∫∫∫ΓΩΓΩΓΩ∂∂−=∂∂−=⎦⎤⎢⎣⎡∂∂−∂∂+=S nr r G r f r r r r G S nr r G r u r r r r G S n r r G r u n r u r r G r r r r G r u ερερερ但这个表达式中所表示的意义与我们的初衷相矛盾.),(0r r G 表示的是位于0r 点的点源在r 点产生的场.但我们能证明),(),(00r r G r r G =,这样,式(4.3.9)可以改写成)10.3.4(d ),()(d )(),(d ),()(d )(),()(0000000000∫∫∫∫ΓΩΓΩ∂∂−=∂∂−=S nr r G r f r r r r G Snr r G r f r r r r G r u ερερ这样,式(4.3.1)的物理诠释就很清楚了:右方第一个体积分代表在区域Ω中体分布源)(0r ρ在r 点产生的场的总和,第二个面积分则表示了在边界上的源所产生的场. 下面我们来证明),(),(00r r G r r G =,由式(4.3.7)及式(4.3.8),我们有⎪⎩⎪⎨⎧=−−=∆Γ)12.3.4(0),()11.3.4()(1),(111r r G r r r r G δε⎪⎩⎪⎨⎧=−−=∆Γ)14.3.4(0),()13.3.4()(1),(222r r G r r r r G δε×),(2r r G 是式(4.3.11)—×),(1r r G 式(4.3.13),有)(),()(),()],(),(),(),([21122112r r r r G r r r r G r r G r r G r r G r r G −−−==∆−∆δδε两侧同时对r 积分,有∫∫ΩΩ−−−=∆−∆rr r r r G r r r r G r r r G r r G r r G r r G d )(),()(),(d )],(),(),(),([21122112δδε根据格林公式第二公式及δ函数的性质,有),(),(d ),(),(),(),(12212112r r G r r G S n r r G r r G n r r G r r G −=⎥⎦⎤⎢⎣⎡∂∂−∂∂∫Γε 则根据式(4.3.12)及式(4.3.14),有0),(),(),(),(2112=∂∂−∂∂Γnr r G r r G nr r G r r G 所以),(),(1221r r G r r G =这种性质在物理学中称为倒易性,如图4-2所示,即位于1r 点的点源,在一定的边界情况下,在2r 点产生的场等于位于2r 点的同样强度的点源,在相同的边界情况下在1r 点产生的场.我们称这种现象为格林函数的对称性.应当说明,在得式(4.3.9)时,我们利用格林公式把重积分化为曲面积分时,这要求G ∆(及u ∆)在积分区域Ω内连续为前提,由式(4.3.7)可明显看到G ∆不连续,这样的推导请参阅谷超豪等著《数学物理方程》(第二版).4.4 格林函数的应用在第1章里,我们从无源静电场的电位分布及稳恒温度场的温度分布推出了三维拉普拉斯方程0222222=∂∂+∂∂+∂∂=∆zu y u x u u作为描述稳定或平衡等状态的方程,它与初始状态无关,因而不能提初始条件.对于边界条件,常见的是如下两种现象.第一边值问题 在空间),,(z y x 中某一区域Ω的边界Γ上给定了连续函数f ,要找这样的函数),,(z y x u ,它在闭区域Γ+Ω上连续,且满足⎩⎨⎧==∆Γf u u 0第一边值问题也称为狄利克莱(Dirichlet)问题,或简称为狄氏问题.拉普拉斯方程的连续解,即具有二阶连续偏导数,并且满足拉普拉斯方程的连续函数,称为调和函数.因此, 狄氏问题也可以这样叙述:在区域Ω内找一个调和函数,它在边界Γ上的值是已知的.第二边值问题 在空间在空间),,(z y x 中某一区域Ω的边界Γ上给定了连续函数f ,要找这样的函数),,(z y x u ,它在闭区域Γ+Ω上连续,且满足⎪⎩⎪⎨⎧=∂∂=∆Γf nuu 0 式中,n 是曲面Γ的外法向矢量.第二边值问题也称为诺依曼(Neumann)问题.以上两个边值问题都是在边界Γ上给定某些条件,在区域内部求解拉普拉斯方程,这样的问题称为内问题.在应用中,我们还会碰上另一类现象,如确定某物体外部的稳恒温度场时,就归结为在区域Ω的外部求调和函数u 使之满足边界条件f u =Γ,这里Γ是区域Ω的边界,f 表示物体表面的温度分布.这样的问题称为拉普拉斯方程的外问题. 限于篇幅,本书仅讨论如何利用格林函数求解狄利克莱问题⎩⎨⎧==∆Γ)2.4.4()1.4.4(0fu u至于其他的问题,求解的思考方法是想像的,可查阅相关的书籍.由式(4.4.1)知源的分布密度函数0=ρ,所以上节给出的求解公式就变为∫Τ∂∂−=S nr r G r f r u d ),()()(00 (r 在曲面Γ上) 或∫Τ∂∂−=S nr r G r f r u d ),()()(00 (0r 在曲面Γ上) (4.4.3) 此处介电常数1=ε. 这样,对一个由曲面Γ围成的区域Ω来说,只要求出了格林函数),(0r r G ,则这个区域内狄氏问题的解就可以由式(4.4.3)求出.实际上,求解边值问题式(4.3.7)—式(4.3.8)是很困难的,因此有必要对格林函数),(0r r G 作进一步的剖析.在本章中,我们定义了方程的基本解),(00r r G ,它满足方程式(4.3.7))(),(000r r r r G −−=∆δ但不满足边界条件式(4.3.8).于是我们设)(),(),(000r V r r G r r G +=代入式(4.3.7)及边界条件式(4.3.8),则有⎩⎨⎧−==∆ΓΓ00G V V这样,只要找到满足边界条件ΓΓ−=0G V的调和函数V ,那么就可以由基本解得到格林函数),(0r r G .事实上,当区域的边界具有特殊的对称性时,格林函数是用镜像法(静电源像法)求得的.所谓静像法,就是在区域Ω外找出点0M 关于边界Γ的像点(对称点)1M ,然后在1M 上放置适当的负电荷,由它所产生的负电位与点0M 处单位电荷产生的电位在曲面Γ上相互抵消.此时,放置在0M ,1M 两点处的电荷所形成的电场在Ω内的电位就是所要求的格林函数.下面,我们以寻求半空间、球域的格林函数为例来说明镜像法的具体应用.例3 求解上半空间0>z 内的狄利克莱问题⎪⎩⎪⎨⎧+∞<<−∞=>=∂∂+∂∂+∂∂=)5.4.4(),(0)4.4.4()0(00222222y x u z z uy u xu z解 先求出格林函数),(0r r G .为此在上半空间0>z 中任意一点),,(0000z y x r 处置一单位正电荷,在点0x 关于平面0=z 的对称点),,(0001z y x r −处置一单位负电荷,如图4-3所示.由它们所形成的静电场的电势在平面0=z 上恰好为零.因此上半空间的格林函数为⎟⎟⎠⎞⎜⎜⎝⎛−−−=1001141),(r r r r r r G π(4.4.6)为了利用式(4.4.3)求解问题式(4.4.4),式(4.4.5)需要计算边界曲面上的nG∂∂值.由于在平面0=z 上的外法线方向是Oz 轴的负向,所以)7.4.4(])()[(210])()()[(])()()[(4123220200232020200232020200000z y y x x z z z z y y x x z z z z y y x x z z z G nG z z +−+−−==⎪⎭⎪⎬⎫++++++−⎪⎩⎪⎨⎧−+−+−−=∂∂−=∂∂=ππ则定解问题式(4.4.4),式(4.4.5)的解为∫∫+∞∞−+∞∞−+−+−=ηξηξηξπd d ])()[(),(21),,(23222z y x zf z y x u (4.4.8)用同样的方法,我们可以求出球域上的格林函数,并给出球域内的狄利克莱问题的解.设有一球心在原点,半径为R 的球面Γ.在球内任取一点),,(0000z y x r ,在0Or 的延长线上截取线段1Or ,令00ρ=Or ,11ρ=Or ,使210R =⋅ρρ,这样的点1r 称为点0r 关于球面Γ的反演点(或对称点),如图4-4所示.我们在点0r 处放置一单位正电荷,在点1r 处放置一q 单位的负电荷,通过选择恰当的q 值,使得这两个点电荷所产生的电势在球面Γ为零.即P r qP r 10441ππ=或 Pr P r q 01=式中,P 为球面Γ上任意一点.由于三角形△P Or 1与△P Or 0在点O 处有公共角,且夹这个角的两条边成比例1ρρRR=,因此这两个三角形相似.于是得到01ρRP r P r =因此ρRq =即只要在点1r 处放ρR单位的负电荷,则由0r 及1r 处点源产生的电势在球面上为零,这样,球域内的格林函数为⎟⎟⎠⎞⎜⎜⎝⎛−−−=10001141),(r r R r r r r G ρπ(4.4.9) 式中,r 为球域内任意一点,记0ρ=Or .下面,我们利用格林函数来求解球域内的狄利克莱问题⎩⎨⎧==∆Γf u u 0Ω∈),,(z y x 由式(4.3.9)得(介电常数)1=εS nr r G r f r u d ),()()(00∫Γ∂∂−=因此,我们要计算Γ∂∂n G,由 γρρρρcos 21102200−+=−r rγρρρρcos 21112211−+=−r r012ρρ⋅=R式中,γ是向量0Or 与Or 的夹角.所以⎥⎥⎦⎤⎢⎢⎣⎡+−−−+=40222002200cos 21cos 2141),(R M M G γρρρρργρρρρπ在球面Γ上 2302022022340222002202302020)cos 2(41)cos 2()cos ()cos 2(cos 41γρρρπργρρρργρργρρρργρρπρρR R R R RR R R R RG G −+−−==⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−−−−+−−==∂∂=ΓΓ∂∂ 所以狄氏问题的解为S f R R R R r u d )cos 2(41)(23022220∫∫Γ−+−=γρρρπ (4.4.10)为了方便解释物理现象,我们也可以利用格林函数的倒易性,求出球内任一点r 处的电势)(r u .在球面上应用球坐标系,上式变为∫∫−+−=ππθϕϕγρρρθϕπθϕρ202302222000d d sin )cos 2(),,(4),(R R R R f Ru (4.4.11)式中, ),(000θϕρ是点0r 的坐标;),,(θϕR 是球面Γ上点P 的坐标;γcos 是向量0Or 与OP 的余弦.因为向量0Or 与Or 的方向余弦分别是)cos ,sin sin ,sin (cos )cos ,sin sin ,sin (cos 00000ϕϕθϕθϕϕθϕθi所以可得)cos(sin sin cos cos )cos cos sin (sin sin sin cos cos cos 0000000θθϕϕϕϕθϕθθϕϕϕϕγ−+=++=式(4.4.10)及式(4.4.11)称为球的泊松公式.例4 设有一半径为R 的均匀球,球心在坐标原点,上半球面的温度保持为C o0,下半球面的温度保持为C o2,求:(1) 球内温度的稳定分布; (2) 球内z 轴上温度的分布; (3) 球心的温度.解 这个问题的数学描述为⎪⎪⎩⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧<<<<=<=∆=πϕππϕρρ2,220,0)(0R u R u由泊松公式,球内任一点),(0θϕρ处的温度为∫∫∫∫−+−=−+−=ππππθϕϕγρρρπθϕϕγρρρθϕπθϕρ2023020220220023020222000d d sin )cos 2(2d d sin )cos 2(),,(4),(R R R R R R R R f Ru若只考虑z 轴上的温度,即00=ϕ(上半轴)或πϕ=1(下半轴), 可知:当00=ϕ时,ϕγcos cos =,则⎟⎟⎠⎞⎜⎜⎝⎛+−+−===⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡−+−−=−+−=∫∫2020202210202022202230222200112)cos 2(d d sin )cos 2(2),0,(ρρρρπϕπϕϕρρρρθϕϕϕρρρρπθρπππR R R R R R R R R R R Ru当πϕ=0时ϕγcos cos −=,故⎟⎟⎠⎞⎜⎜⎝⎛+−−−=202002020011),,(ρρρρθπρR R R u 当00→ρ时,应用洛必达法则有1),,(lim )0,0,0(00000==→θϕρρu u即球心温度为C o1。
拉普拉斯方程的格林函数法
然出现感应电荷, 内任意一点的电位,就是点电荷的
电位 1 和感应电荷的电位 内4的rM电0M位.
v
的叠加,
Green函数=
➢将 上的感应电荷用一个等价的点电荷代替,使得这
个“虚”的电荷和真实的点电荷一起,在 内给出和原
来的问题同样的解
M0
M1
4.4 两种特殊区域的格林函数 及狄氏问题的解
4.4 两种特殊区域的格林函数及狄氏问题的解
r
2
2
同理可得 因此
1 r
u n
dS
1
u n
dS
4
u n
u
n
1 r
1 r
u n
dS
4
u
4
u n
0
4.2 格 林 公 式
令 0, 则
lim 0 u uM0
于是
lim
0
4
u n
0
u
M
0
1
4
u M
n
1 rM0M
1 rM0M
u M
n dS
4.2 格 林 公 式
4.3 格林函数
要想确定格林函数, 需要找一个调和函数 v , 它满
1
足: 易,
但v 对| 于4一 r些M0特M .殊对的于区一域般, 的如区半域空,间确,定球v域并等不, 容格
林函数可以通过初等方法得到. 我们通常使用“电
象法”求解。
4.3 格林函数
Green函数的物理意义
➢在接地的闭曲面中放上点电荷之后,在 面内侧必
边界条件:
1) 第一边值问题
u 0 ()
u | f .
狄利克雷(Direchlet)问题 2)第二边值问题
拉普拉斯方程的格林函数法
拉普拉斯方程的格林函数法
本次课主要内容
4.1 拉普拉斯方程边值问题的提法4.2 格林公式
4.1拉普拉斯方程边值问题的提法
狄氏问题
•在区域Ω内找一个调和函数,它在边界Γ上的值为已知。
3、内问题与外问题
以上两个边值问题都是在边界Γ上给定某些边界条件,在区域内部求拉普拉斯方程的解,这样的问题称为内问题。
重点讨论内问题
4.2 格林公式
二个格林公式
借助于二个格林公式,可以得到拉氏方程的狄氏问题与牛曼问题的解的积分表达式。
为何引入格林公式
积分公式的起点是通过直接积分或分部积分将未知函数从微分号下解脱出来
我们要求解的数值方程中均含有Δ,格林公式是将未知函数从微分算符Δ下解脱出来的工具。
而格林公式则是曲面积分中高斯公式的直接推论。
两个推论(Gauss 公式)
格林公式建立了区域Ω中的场与边界Γ上的场之间的关系。
因此,利用格林公式可以将区域中场的求解问题转变为边界上场的求解问题。
格林公式说明了两种标量场之间应该满足的关系。
因此,如果已知其中一种场的分布特性,即可利用格林公式求解另一种场的分布特性。
3、调和函数的性质
1、定义:如果函数u(x,y,z)满足:(1)在具有二阶连续偏导数;Ω+Γ称u 为Ω上的调和函数。
2、调和函数的性质。
2
∇=u (2)。
数学物理方程课件第四章拉普拉斯方程的格林函数法
r M 0 M
M 1
1
4 xx02 y y02 zz02
解:
1
4 xx02 y y02 zz02
u(M 0)G (M n,M 0)f(M )dS G(M z,M0)|z0 f(x,y)dS
数学物理方程与特殊函数
第4章格林函数法
1
1
G ( M , M 0 ) 4 x x 0 2 y y 0 2 z z 0 2 4 x x 0 2 y y 0 2 z z 0 2
调和函数的积分表达式
k
拉 普l1r拉n 斯1
1 方x程2的基y本2 解z
ln 1
2
r
x2 y2
三维 二维
1 1 1 u
u (M 0)4 S(u n(r)r n)d S
调和函数在区域内任一点的值可以通过积分表达式用这个
函数在区域边界上的值和边界上的法向导数来表示。
2 牛曼内问题有解的必要条件
V (u 2 v v 2 u )d V S (u n v v u n )d S
一 拉普拉斯方程边值问
题 的 1提 第法一边值问题(狄氏问题)
第四章
拉普 u f
2 第二边值问题(牛曼问题)
拉斯方程的格 u f 林函数法 n
3 内问题与外问题
4 调和函数:具有二阶偏导数并且满足拉普拉斯方程 的连续函数。
二 格林公式及其结论
V (u 2 v )d V S u n vd S V u v d V 格V 林(u 公 2 式v 的v 结 2 论u ):d V S (u n v v u n )d S
半空间的格林函数
1 1 1
G(M,M0)4rM
r M 0 M
M 1
M0q d
第四章 Laplace方程的格林函数法
第四章 Laplace方程的格林函数法第四章laplace方程的格林函数法在第二、三两章,系统介绍了求解数学物理方程的三种常用方法―分离变量法、行波法与积分变换法,本章来介绍laplace方程的格林函数法。
先讨论此方程解的一些重要性质,在建立格林函数的概念,然后通过格林函数建立laplace方程第一边值问题解的积分表达式。
§4.1laplace方程边值问题的提法在第一章,从无源静电场的电位原产及稳恒温度场的温度原产两个问题推论出来了三维laplace方程2u2u2uuu2220xyz2做为叙述平衡和均衡等物理现象的laplace方程,它无法加初始条件。
至于边界条件,例如第一章所述的三种类型,应用领域得较多的就是如下两种边值问题。
(1)第一边值问题在空间(x,y,z)中某一个区域?的边界?上给定了连续函数f,要求这样一个函数u(x,y,z),它在闭域(或记作?)上连续,在?内有二阶连续偏导数且满足laplace方程,在?上与已知函数f相重合,即u?(4.1)?f第一边值问题也称为狄利克莱(dirichlet)问题,或简称狄氏问题,§2.3中所讨论过的问题就是圆域内的狄氏问题。
1laplace方程的连续解,也就是所,具有二阶连续偏导数并且满足laplace方程的连续函数,称为调和函数。
所以,狄氏问题也可以换一种说法:在区域?内找一个调和函数,它在边界?上的值为已知。
(2)第二边值问题在某扁平的闭合曲面?上得出连续函数f,建议找寻这样一个函数u(x,y,z),它在?内部的区域?中就是调和函数,在上连续,在?上任一点处法向导数u存有,并且等同于未知函数f?n在该点的值:unf(4.2)这里n就是?的外法向矢量。
第二边值问题也称纽曼(neumann)问题。
以上两个问题都就是在边界?上取值某些边界条件,在区域内部建议满足用户laplace 方程的求解,这样的问题称作内问题。
在应用中我们还会遇到dirichlet问题和neumann问题的另一种提法。
格林函数法
两种边值问题: 两种边值问题:
第一边值问题
u |Γ = f .
这类问题也叫做狄利克雷 问题。 这类问题也叫做狄利克雷(Dirichlet)问题。 狄利克雷 问题
拉普拉斯方程的连续解,也叫调和函数, 拉普拉斯方程的连续解,也叫调和函数,所以 调和函数 狄利克雷问题也可以叙述为: 狄利克雷问题也可以叙述为:在区域 Ω 内找 一个调和函数, 上的值已知。 一个调和函数 它在边界 Γ 上的值已知。 第二边值问题 在光滑的闭曲面 Γ 上给出连续函数 f,寻找函数 , u(x,y,z) :在 Γ 的内部 Ω 是调和函数 在 ( Ω + Γ ) 是调和函数, 上连续, 上连续,在 Γ 上任一点法向导数存在并且等于 已知函数 f ,即: ∂u =f ∂n Γ 这类问题也叫做纽曼 纽曼(Neumann)问题。 问题。 这类问题也叫做纽曼 问题
在球面坐标下, 拉普拉斯方程为: 在球面坐标下, 拉普拉斯方程为:
1 ∂ 2 ∂u 1 ∂ ∂u 1 ∂2u =0 r + 2 sin θ + 2 2 2 2 r ∂r ∂r r sin θ ∂θ ∂θ r sin θ ∂ϕ
球对称解 u=u(x,y,z)在以原点为中心的同一球面的 在以原点为中心的同一球面的 值为常数。 的函数:u=u(r)。 值为常数。u 仅为半径 r 的函数 。
(
)
两式相减, 两式相减 得
2 2
第二格林公式
∂v ∂u ∫∫∫ (u∇ v − v∇ u)dV = ∫∫ (u ∂n − v ∂n )dS Ω Γ
利用格林公式, 可以得到调和函数的一些性质: 利用格林公式, 可以得到调和函数的一些性质: 1) 纽曼内问题有解的必要条件 内的调和函数, 设 u 是以 Γ 为边界的区域 Ω 内的调和函数, 在 上有一阶连续偏导数, Ω + Γ上有一阶连续偏导数, 则在第二格林公式 为上述调和函数 调和函数, 中取 u 为上述调和函数,取 v ≡ 1, 有
第四章格林函数法课件
特点:除 M0(x0,y0,z0)点外,任一点满足Laplace方程。
同学们自己验证。
PPT学习交流
2
二维Laplace方程的基本解:
1
1
u(x,y)ln ln
rM M 0
(xx0)2(yy0)2
特点:除 M0(x0, y0) 点外,任一点满足Laplace方程。
同学们自己验证。 问题:基本解是否为整个区域内的解?
n
n
从而得证
1
1 1 u (M )
Ò u (M 0) 4
[u (M ) ( )
nrM M 0 rM M 0
]d S n
PPT学习交流
8
4 调和函数的基本性质
性质1:设 u ( x, y , z ) 在有界区域 内为调和函数,且在
上有一阶连续偏导数,则
Ò
u n
dS
0
证:令 v 1 将 u , v 代入第二Green公式即可。
uv
PPT学习交流
11
证明:用反证法
若在 内有 u v ,即 uv0 ,而在边界上 uv0 , 说明 u v 在内部可能取最大值。
推论2:狄利克莱问题 的解唯一。
u0, u f
(x, y,z)
证明:设 u 1 和 u 2 均为该问题的解,则 u u1 u2 满足
由极值原理, u 0
u0, u 0
于是
r rMM0
r2 MM0
2
乙 u n(rM 1 M 0)d S1 2 u d S1 24 2u4 u
乙 rM 1M0 u ndS1 u ndS4 u n
PPT学习交流
7
代入上式,得
Ò [u( 1)1u]dS4 u4 u0
第四章_拉普拉斯方程的格林函数法
注:对于外问题来说,求解通常都是在无界区域上,
这时需不需要对解加些限制条件呢?看下面一例子。
易知
u 0, r 1,
u 1 r 1
其中r x2 y2 z2
u 1,
u 1/ r
都是上述定解问题的解,即解不唯一.为了保证解的唯一性,
n
的值,所以要想求得狄氏问题的解就要想法消去积分公式中的
u 。故而我们需要引入格林函数。 n
在第二格林公式 (u2v
v2u)dV
(u
v n
v
u )dS, n
中取u, v C1(),并且都是内的调和函数.则
(u
v n
v
u )dS n
P Q R
(
x
y
z
) dV
Pdydz
Qdzdx Rdxdy
其中取外侧位正向.
由两类曲面积分之间的关系得高斯公式的另一种形式:
(
P x
Q y
R z
)dV
(P cos(n, x) Q cos(n, y) R cos(n, z))dS.
Ka表示以M0 (x0, y0, z0 )为中心,以a为半径且完全落在内部的球面,
则成立下面平均值公式
1
u(M0 ) 4 a2 Ka udS
证明: 将调和函数的积分公式应用到Ka可得
u(M 0 )
1
4
(u(M )
n
(1) r
1 r
4第四章格林函数法
则 u ( M 2 ) u ( M 1 ) 。以 M 2 为中心,以小于 d 的数为半径 在 内作球 k 2 ,在 k 2上 u ( M ) u ( M 2 ) u ( M 1 ) 点 N 一定包含在以某点 M n
c1 d 2 dV V (r ) 0 其通解为: (r ) c2 , (r 0, c1 , c2 为任意常数)。 r dr dr 1 1 若取 c1 , c2 0 ,则得到特解 V0 (r ) 4r ,称此解为 4
三维Laplace方程的基本解,它在研究三维拉普拉斯方程中 起着重要的作用. 对二维拉普拉斯方程 u uxx u yy 0,其极坐标形式为:
数学物理方程与特殊函数
第4章格林函数法
4.2.1 格林函数的定义 设在 内有 u 0, v 0; u, v 在 上有一阶连续 1 v u 偏导数,则由格林第二公式有 0 (u n v n )dS (2) 4 将(1)和(2)两式加起来:
u(M 0 ) 1 4 1 1 u u (v ) (v ) dS (3) n rMM 0 rMM 0 n
4.1.4 调和函数的性质
u u 0, | f . n
u n dS f dS 0.
6
下午10时1分
数学物理方程与特殊函数
第4章格林函数法
性质2 (平均值定理) 设函数 u(M ) 在区域 内调和, M 0 是 内任意一点,若 a 是以 M 0 为中心,a为半径 的球面,此球完全落在区域 的内部,则有 1 u(M 0 ) udS(调和函数的球面平均值公式) 2 a 4a 证明: 由调和函数的积分表示:
数学物理方程第四章 格林函数法
为边界的有界连通区域,u(x, y, z)在 上有连续
的一阶偏导数,在 内调和,定点 M 0 (x0 , y0 , z0 ) , r 为定点M 0到变点 M (x, y, z) 距离: 则有
u(M0 )
1
4
1 [ r
u n
u
(1)]ds n r
(2.9)
故不提初始条件!只给出边界条件就可以. 下面看边界条件的提法.
(1) 第一边值问题(狄利克雷(Dirichlet)问题)
设方程(1.1)的空间变量(x, y, z) , 为 R3的开区域。如果
u(x, y, z)满足方程(1.1),且在 边界 上直接给定了u(x, y, z)
的具体函数形式 f (x, y, z),即
u(x, y, z) f (x, y, z)
(1.2)
则称问题(1.1)~(1.2)为拉普拉斯第一边值问题或狄利克雷
(Dirichlet)问题,u(x, y, z) 为此问题的解。
2u 2u 2u
u
x 2
y 2
z 2
0
u( x, y,z) f ( x, y,z),
u, v互 换
v
u v u v u v
( uv )dV
u
n
ds
(
x
x
y
y
z
z
)dV
(2.2)
u
u v u v u v
(vu)dV
v
n
ds
(
x
x
y
y
z
格林函数法
本章讨论的主要是用格林函数法求拉普拉斯 方程边值问题
§4.1 格林公式及其应用
§4.1.1 球对称解
通过变换:⎧ x = r sinθ cosϕ
⎪⎪ ⎨
y
=
r
sin θ
sin ϕ
⎪⎪⎩z = r cosθ
(0 ≤ θ ≤ π ) (0 ≤ ϕ ≤ 2π )
可以将直角坐标系下的拉普拉斯方程:
u(M0 )
=
−∫∫ Γ
f (x,y,z)
∂G ∂n
dS
(4.20)
对于泊松方程的狄利克雷问题:
7
⎧⎪+u = F , 在 内 ⎨⎪⎩u Γ = f (x,y,z)
如果在 +上具有一阶连续偏导数的解,则此 解可表示为:
u(M 0 )
=
−∫∫ Γ
f
∂G ∂n
dS
−
∫∫∫ FGdΩ Ω
小结:狄利克雷问题:
3/2
于是球域内狄利克雷问题的解为
∫∫ ( ) u(M0) =
1 4π R
Γ
f (x,y,z)
R2 − r02 R2 + r02 − 2Rr0 cos γ
3/2 dS
(4.31)
14
在球坐标系中,上式可化为
∫ ∫ u(r0,θ0,ϕ0)
=
R 4π
2π 0
π f (R,θ,ϕ)
0
( ) R2 − r02
∫∫ u(M0)
=
1 4πa2
Γa
u(M)dS
(4.13)
性质3(极值原理)若函数u(x,y,z)在 内调和, 在 +上连续,且不为常数,则它的最大值、最
小值只能在边界上达到。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其中n为曲面的单位外法向矢量.
令 F ( P,Q,R )则Gauss公式等价于
Gauss公式的实质
divFdV F ndS.
表达了空间闭区域上的三重积分与其边界曲 面上的曲面积分之间的关系.
一、格林公式
设u(x, y, z), v(x, y, z) C2 () C1(), 令F uv,即
二. 边值问题的提法:
1)第一边值问题(Dirichlet问题/狄氏问题)
数学解释:
2u 0, in
u f
在内寻求一个调和函数u, 它在边界上与已知
连续函数f 吻合,即u f .
2)第二边值问题(Neumann问题/牛氏问题)
2u 0, in
u
f
,若解u C1()存在,
则可表示为
u(M 0 )
f
(M )
GdS n
GFdV
注4:二维Laplace方程狄氏问题的格林函数
1 1
G(M , M 0 ) 2 ln rMM0 v, 格林函数的性质
2v 0, in
1 r
1
2
udS
因此可得
u
n
1 r
dS
1
2
udS
4 u , 其中u
4 2 是函数u
在球面 上的平均值.
____
____
同理可得
1 r
udS n
1
udS n
4
u , n
因
1 r
有奇异点M
0,所以不能在内直接采用Green公式。为此,
我们以M0 (x0 , y0 , z0 )为中心,作一个半径为(充分小的正数)的
球域K,球面
,显然函数
1 r
在
\
K内任意次连续可微。
取u为调和函数,并假定其在上有一阶连续偏导数,取v 1/ r
由第二格林公式
1 u(M ) (
n 4 rMM0
v)dS
令G(M , M0 )
1
4
1 rMM 0
v,
2v 0, in
其中调和函数v满足
1
v
4 rMM0
则
u(
M
0
)
u(M
)
G n
dS.
称G(M , M 0 )为三维Laplace方程狄氏问题的格林函数。这种
n
的值,所以要想求得狄氏问题的解就要想法消去积分公式中的
u 。故而我们需要引入格林函数。 n
在第二格林公式 (u2v
v2u)dV
(u
v n
v
u )dS, n
中取u, v C1(),并且都是内的调和函数.则
(u
v n
v
u )dS n
(u2v
v2u)dV
(u
v n
v
u )dS n
二、调和函数的基本性质
(1)调和函数的积分表达式
定理: 设u为调和函数且在+上有一阶连续偏导,则内任一点
M
的值为
0
u(M
0
)
1
4
u(M
)
n
1 rMM 0
4)牛曼外问题
2u 0, in '
u
n'
f
, limu(x, y, z) 0 r
数学解释:求函数u(x, y, z)在外部区域'内调和,在'=' 上
连续且满足边界条件.
§2 格林公式
高斯定理 : 设是以光滑或者分片光滑闭曲面为边界的 有界区域, P(x, y, z),Q(x, y, z), R(x, y, z)在 上连续,在 内具有一阶连续偏导数, 则
此处
u n
是
u n
在上的平均值._源自__将两式带入可得
u
n
1 r
1 r
u n
dS
4 u
4
u n
0
当
0时,有 lim u 0
u(M0), (
u连续)
____
lim 4 u 0( u一阶连续可微, u 有界)
这样的问题称为Laplace方程外问题。
注:对于外问题来说,求解通常都是在无界区域上,
这时需不需要对解加些限制条件呢?看下面一例子。
易知
u 0, r 1,
u 1 r 1
其中r x2 y2 z2
u 1,
u 1/ r
都是上述定解问题的解,即解不唯一.为了保证解的唯一性,
格林函数法求解场方程得到是积分形式的解
§1 拉普拉斯方程边值问题的提法
三维Laplace方程:
2u
2u x2
2u y 2
2u z 2
0,
(x,
y,
z)
一. 调和函数:
Laplace方程的连续解,即具有二阶连续偏导数并满足Laplace
方程的连续函数. (1.u C2 () C0 () 2. 2u 0)
(u2 1 1 2u)dV (u (1) 1 u )dS,
K
rr
n r r n
注意到2u
2
1 r
0, 则
u
n
1 r
1 r
u n
dS
0
在球面
上, n
1 r
r
Ka表示以M0 (x0, y0, z0 )为中心,以a为半径且完全落在内部的球面,
则成立下面平均值公式
1
u(M0 ) 4 a2 Ka udS
证明: 将调和函数的积分公式应用到Ka可得
u(M 0 )
1
4
(u(M )
n
(1) r
1 r
u )dS n
1
4
(u(M
u
vdV
中取u=v=u1 u2,可得 v vdV 0
v 0 in v C(常数).
对狄氏问题由边界条件知道C 0 v 0. 从而狄氏问题有 唯一解;对牛曼问题,解除了相差一个常数外也是唯一确定的。
注:利用调和函数的极值原理,可证狄氏问题在 C2 () C0 ()
通常我们要加一些限制条件.
lim u(x, y, z) 0
r
三维问题
r 时,u(x, y)有界 二维问题
3)狄氏外问题
2u 0, in ' R3 \
u
f ,lim u(x, r
y, z)
0
数学解释: 求函数u(x, y, z)在外部区域'内调和,在'=' 上 连续且满足边界条件.
P u v ,Q u v , R u v
x
y
z
代入Guass公式可得
u2vdV
u
vdS n
u
vdV
此公式称为第一格林公式
若令上述公式中u, v对换,可得
v2udV
v
udS n
u
vdV
两式相减可得第二格林公式
)
r
(1) r
1 r
u )dS n
1
1 1 u
1
1 u
4
(u(M
)(
r2
)
r
)dS n
4 a2
u(M
)dS
4 a
dS n
1
4 a2
u(M
)dS
(4)Laplace方程解的唯一性问题
定理:狄氏问题在C2 () C1()内解唯一,牛曼问题除相差一个
第四章 拉普拉斯方程的格林函数法
第一节 拉普拉斯方程边值问题的提法 第二节 格林公式 第三节 格林函数 第四节 两种特殊区域的格林函数及狄氏
问题的解
格林函数法
格林函数:又称点源影响函数,是数学物理中的一个重要概念 格林函数代表一个点源在一定的边界条件和初始条件下所产生的 场,知道了点源的场就可以用迭加的方法计算出任意源所产生的场。
P Q R
(
x
y
z
) dV
Pdydz
Qdzdx Rdxdy
其中取外侧位正向.
由两类曲面积分之间的关系得高斯公式的另一种形式:
(
P x
Q y
R z
)dV
(P cos(n, x) Q cos(n, y) R cos(n, z))dS.
1 rMM 0
u n
dS
证明:为求调和函数在该点的值,构造一个函数
v
1
1