3.第三章
第三章自由基共聚合-3
f1
1 f2
[M1 ] [M1] [M2 ]
(3—12)
F1
1 F2
d[M1 ] d[M1] d[M2 ]
(3—13)
将式(3—11)、(3—12)、(3—13)合并并整理,可得到以摩尔 分数表示的共聚物组成方程。
F1
r1f12 f1f2
r1f12
2f1f 2
r2f
2 2
反过来, r1 < 1, r2 > 1的情况是类似的,只是曲线处于 对角线下方。
该类例子很多: 如丁二烯—苯乙烯体系( r1=1.35, r2=0.58, 50℃);氯乙烯—醋酸乙烯酯体系( r1=1.68, r2=0.23 );甲基 丙烯酸甲酯—丙烯酸甲酯体系( r1=1.91, r2=0.5 )。
即: 体系中自由基总浓度及两种自由基浓度都保持不变。 除引发速率和终止速率相等外,还要求M1·和M2 ·两自由基
相互转变的速率相等。
13
第三章 自由基共聚合
链引发 链增长
链终止
R + M1 ki1 R + M2 ki2
R M1 R M2
RiM1 RiM2
M1 + M1 k11 M1 + M2 k12 M2 + M1 k21 M2 + M2 k22
0
(3—4) (3—5)
根据稳态假定,M1·和M2·的引发速率分别等于各自的 终止速率:
RiM1 2R t11 R t12
(3—6)
RiM2 2R t22 R t12
(3—7)
16
第三章 自由基共聚合
根据稳态假定,M1·转变成M2·和M2·转变成M1·的速率相 等,即:
第三章 多相流流型及判别方法
体积与质量含气率:
x
多相混输技术的研究及其应用 2015-7-3 5
第三章 多相流流型及判别方法
对于截面含气率有:
1 1 1 w 1 Al wl g 1 s 1 A w w g g l
一、两相混合物密度 气液两相混合物密度有两种表示方法: (一)流动密度
(二)体积流量 单位时间内流过管路横截面的流体体积称为体积流量。对于气液两相混 输管路有:
Q Qg Ql
二、流速 (一)气相和液相速度 气相速度: 液相速度:
wg
Qg Ag
wl
Ql Al
(二)气相和液相的折算速度 气相折算速度:
多相混输技术的研究及其应用 2015-7-3 2
第三章 多相流流型及判别方法
y -0.6746608 x 4.2203391
x -1.028449 y 6.319154 y -0.2228661 x 3.361187
3)流型判别程序流程图
多相混输技术的研究及其应用 2015-7-3 24
第三章 多相流流型及判别方法
开始 输入已知数据 计算Bx,By,x,y P(x,y)在L1之下 吗? 否 P(x,y)在C4及L3 之右吗? 否 P(x,y)在L2之下 吗? 否 P(x,y)在C2之下 吗? 否 P(x,y)在C3之下 吗? 否 雾状流 按流型计算相关参数 输出流型 结束 是 环状流 是 冲击流 是 气团流 是 气泡流 是 波状流 否 P(x,y)在C1之下 吗? 是
散布流 不对称散 布流 移动床流
固定床流
图3-12 水平管液固两相流流型示意图
多相混输技术的研究及其应用 2015-7-3 18
[3] 第三章 复变函数的积分
第一节 解析函数的概念
➢ 一、积分的定义
有向曲线:设C为平面给定的一条光滑(或按段光滑)的曲线,如果选
定C的两个可能方向的一个作为正方向(或正向),则我们就把C称为有 向曲线.与曲线C反方向的曲线记为 C 1
简单闭曲线的正方向:当曲线上的点P顺此方向前进时,邻近P点的曲线
内部始终位于P点的左方,
如果把z0除去,虽然在除去z0的C的内部,函数处处解析,
但是这个区域已经不是单连通区域.
由此可猜想:积分的值与路径无关或沿闭曲线积分值为零的条件 与被积函数的解析性及区域的单连通性有关.究竟关系如何,下面我 们讨论此问题.
16
➢一、柯西积分定理
定理3.2(柯西—古萨基本积分定理) 设函数f (z)在单连通区域D内 处处解析,那么函数f (z)在D内沿任何一条封闭曲线C的积分为零,
G
(
Q x
P y
)dxdy.
证明: 因为函数f (z)在区域D内解析,故f (z)存在,(下面在f (z)连续的假设下证明)
因为u与v的一阶偏导数存在且连续,故应用格林公式得:
C f (z)dz C (u iv)(dx idy) C u(x, y)dx v(x, y)dy iC v(x, y)dx u(x.y)dy
k 1
k 1
k 1
其中sk是小弧段z¼ k1zk的长, | zk | xk2 yk2 sk
n
n
n
lim |
0
k 1
f
( k )zk
|
lim
0
|
k 1
f
( k ) || zk
|
lim
0
|
k 1
f
( k ) ||
第三章 生产过程组织3
.
企业生产过程的核心是基本生产过程,其他部分根据企业的生产规模、 管理模式、专业化程度等具体情况,包括在企业生产过程之中,或由专 门的单位来完成。
第三章 生产过程组织
2.纵向展开 ①工艺阶段 工艺过程是指直接改变劳动对象的性质、形状、大小等的过程。 ②工序 工艺工序 非工艺工序 工序:是指一个(或一组)工人,在一台机床(或一个工作地点), 对同一个(或同时对几个)工件所连续完成的那一部分工艺过程。 ③工步 工步:是在加工表面不变、加工工具不变、切削用量不变的条件下所 连续完成的那一部分工序
备货性生产和订货性生产的的主要区别
项目 产品特点 生产流程 库存 计划 设备 人员 备货性生产 量大、标准、好预测 稳定、标准、均衡 连接生产和市场的纽带 优化的标准计划 专用高效设备 专业化 定货性生产 量小、多变、难预测 不稳定、无标准、难均衡 不设成品库存 不便详细,近细远粗 通用设备 多种操作技能
第三章 生产过程组织
2.成批生产 特点:品种较多,单产品产量较小;成批轮番生产。 工作地或设备的有效工作时间短。机械化、自动化水平不高; 对工人的技术要求较高。 3.单件小批成产 特点: (1)品种繁多,每一品种的产量极少,生产重复率低。 (2)设计方面:一品一设计,设计质量不高。 (3)工艺方面:一品一工艺,工艺质量不高。 (4)生产组织方面:粗略分工,专业化水平低。设备集群式布 置,产品路线长。 (5)生产管理方面:粗略工时定额;协作关系不稳定,质量和 交货期不易保证。例行管理少,例外管理多。人员多。
小于0.025 小于
大量系数法
★计算工序的大量系数,参考表3-1,确定工
作地类型。工序的大量系数计算公式如下:
Kb=ti/r
式中: Kb—工序的大量系数; ti—工序的单件时间(分/件); r—零件平均生产节拍(分/件)。 — ★零件平均节拍可用下式计算:
生物苏教版必修3课件:第三章第三节 生物群落的演替(共35张PPT)
解析:选A。在原生演替过程中,生物总量是
逐渐增加的。先驱物种一般是较为低等的植物,
但某个阶段的生物种类数量在演替到这个阶段
时逐渐增加,由此阶段向另一个阶段演替时逐
渐减少。必须指出,演替能否达到顶极群落
(树林或森林)又决定于气候条件。
影响群落演替的因素
1.内部因素 (1)种内关系 ①种内互助:同一物种内部存在互相帮助,会 提高本物种的生存能力,在与其他物种的竞争 中会提高其优势地位,如蚂蚁、蜜蜂。 ②种内斗争:同一物种内部也会因食物、生存 空间等限制因素而发生斗争,种群数量增长的S 型曲线就能说明这一问题。
(1)火烧后的森林原有植被虽已被破坏,但由于原
有土壤条件、原始物种等的存在,因而该种群的
恢复过程应为次生演替。
(2)演替能否恢复到原始群落由多种因素制约,如
环境条件、变化程度,原始物种是否存在等,若 改变,则难以恢复。
(3)群落演替的总趋势是物种多样性增加。 (4)弃耕农田保留有原有土壤条件和部分原有物 种,属于次生演替;在保留有土壤条件的情况下 首先生长的植物应是草本植物;如果条件允许演
例2
【尝试解答】 【解析】
D
过度放牧、毁林开荒和围湖造田都可
导致生物群落结构简单化、生产力下降等,这些 属于逆行演替。而退耕还湖则会导致进展演替。
跟踪训练 (2011 年新疆伊犁高二检测)下列有关人类 活动对群落演替影响的表述,不正确的是( ) . A.人类的许多活动影响群落的演替 B.人类可建立人工群落,将演替的方向和速度置于 人为控制下 C.人类活动对生物群落演替的影响远远超过其他某 些自然因素 D.人类的活动对群落的演替均是具有破坏性的
思考感悟 2.是否所有的群落最终都可以演替为森林阶段? 试举例说明。
3. 第三章课后习题及答案
第三章1. (Q1) Suppose the network layer provides the following service. The network layer in the source host accepts a segment of maximum size 1,200 bytes and a destination host address from the transport layer. The network layer then guarantees to deliver the segment to the transport layer at the destination host. Suppose many network application processes can be running at the destination host.a. Design the simplest possible transport-layer protocol that will get application data to thedesired process at the destination host. Assume the operating system in the destination host has assigned a 4-byte port number to each running application process.b. Modify this protocol so that it provides a “return address” to the destination process.c. In your protocols, does the transport layer “have to do anything” in the core of the computernetwork.Answer:a. Call this protocol Simple Transport Protocol (STP). At the sender side, STP accepts from thesending process a chunk of data not exceeding 1196 bytes, a destination host address, and a destination port number. STP adds a four-byte header to each chunk and puts the port number of the destination process in this header. STP then gives the destination host address and the resulting segment to the network layer. The network layer delivers the segment to STP at the destination host. STP then examines the port number in the segment, extracts the data from the segment, and passes the data to the process identified by the port number.b. The segment now has two header fields: a source port field and destination port field. At thesender side, STP accepts a chunk of data not exceeding 1192 bytes, a destination host address,a source port number, and a destination port number. STP creates a segment which contains theapplication data, source port number, and destination port number. It then gives the segment and the destination host address to the network layer. After receiving the segment, STP at the receiving host gives the application process the application data and the source port number.c. No, the transport layer does not have to do anything in the core; the transport layer “lives” inthe end systems.2. (Q2) Consider a planet where everyone belongs to a family of six, every family lives in its own house, each house has a unique address, and each person in a given house has a unique name. Suppose this planet has a mail service that delivers letters form source house to destination house. The mail service requires that (i) the letter be in an envelope and that (ii) the address of the destination house (and nothing more ) be clearly written on the envelope. Suppose each family has a delegate family member who collects and distributes letters for the other family members. The letters do not necessarily provide any indication of the recipients of the letters.a. Using the solution to Problem Q1 above as inspiration, describe a protocol that thedelegates can use to deliver letters from a sending family member to a receiving family member.b. In your protocol, does the mail service ever have to open the envelope and examine theletter in order to provide its service.Answer:a.For sending a letter, the family member is required to give the delegate the letter itself, theaddress of the destination house, and the name of the recipient. The delegate clearly writes the recipient’s name on the top of the letter. The delegate then puts the letter in an e nvelope and writes the address of the destination house on the envelope. The delegate then gives the letter to the planet’s mail service. At the receiving side, the delegate receives the letter from the mail service, takes the letter out of the envelope, and takes note of the recipient name written at the top of the letter. The delegate than gives the letter to the family member with this name.b.No, the mail service does not have to open the envelope; it only examines the address on theenvelope.3. (Q3) Describe why an application developer might choose to run an application over UDP rather than TCP.Answer:An application developer may not want its application to use TCP’s congestion control, which can throttle the application’s sending rate at times of congestion. Often, designers of IP telephony and IP videoconference applications choose to run their applications over UDP because they want to avoid TCP’s congestion control. Also, some applications do not need the reliable data transfer provided by TCP.4. (P1) Suppose Client A initiates a Telnet session with Server S. At about the same time, Client B also initiates a Telnet session with Server S. Provide possible source and destination port numbers fora. The segment sent from A to B.b. The segment sent from B to S.c. The segment sent from S to A.d. The segment sent from S to B.e. If A and B are different hosts, is it possible that the source port number in the segment fromA to S is the same as that fromB to S?f. How about if they are the same host?Yes.f No.5. (P2) Consider Figure 3.5 What are the source and destination port values in the segmentsflowing form the server back to the clients’ processes? What are the IP addresses in the network-layer datagrams carrying the transport-layer segments?Answer:Suppose the IP addresses of the hosts A, B, and C are a, b, c, respectively. (Note that a,b,c aredistinct.)To host A: Source port =80, source IP address = b, dest port = 26145, dest IP address = a To host C, left process: Source port =80, source IP address = b, dest port = 7532, dest IP address = cTo host C, right process: Source port =80, source IP address = b, dest port = 26145, dest IP address = c6. (P3) UDP and TCP use 1s complement for their checksums. Suppose you have the followingthree 8-bit bytes: 01101010, 01001111, 01110011. What is the 1s complement of the sum of these 8-bit bytes? (Note that although UDP and TCP use 16-bit words in computing the checksum, for this problem you are being asked to consider 8-bit sums.) Show all work. Why is it that UDP takes the 1s complement of the sum; that is , why not just sue the sum? With the 1s complement scheme, how does the receiver detect errors? Is it possible that a 1-bit error will go undetected? How about a 2-bit error?Answer:One's complement = 1 1 1 0 1 1 1 0.To detect errors, the receiver adds the four words (the three original words and the checksum). If the sum contains a zero, the receiver knows there has been an error. All one-bit errors will be detected, but two-bit errors can be undetected (e.g., if the last digit of the first word is converted to a 0 and the last digit of the second word is converted to a 1).7. (P4) Suppose that the UDP receiver computes the Internet checksum for the received UDPsegment and finds that it matches the value carried in the checksum field. Can the receiver be absolutely certain that no bit errors have occurred? Explain.Answer:No, the receiver cannot be absolutely certain that no bit errors have occurred. This is because of the manner in which the checksum for the packet is calculated. If the corresponding bits (that would be added together) of two 16-bit words in the packet were 0 and 1 then even if these get flipped to 1 and 0 respectively, the sum still remains the same. Hence, the 1s complement the receiver calculates will also be the same. This means the checksum will verify even if there was transmission error.8. (P5) a. Suppose you have the following 2 bytes: 01001010 and 01111001. What is the 1scomplement of sum of these 2 bytes?b. Suppose you have the following 2 bytes: 11110101 and 01101110. What is the 1s complement of sum of these 2 bytes?c. For the bytes in part (a), give an example where one bit is flipped in each of the 2 bytesand yet the 1s complement doesn’t change.0 1 0 1 0 1 0 1 + 0 1 1 1 0 0 0 0 1 1 0 0 0 1 0 1 1 1 0 0 0 1 0 1 + 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 1Answer:a. Adding the two bytes gives 10011101. Taking the one’s complement gives 01100010b. Adding the two bytes gives 00011110; the one’s complement gives 11100001.c. first byte = 00110101 ; second byte = 01101000.9. (P6) Consider our motivation for correcting protocol rdt2.1. Show that the receiver, shown inthe figure on the following page, when operating with the sender show in Figure 3.11, can lead the sender and receiver to enter into a deadlock state, where each is waiting for an event that will never occur.Answer:Suppose the sender is in state “Wait for call 1 from above” and the receiver (the receiver shown in the homework problem) is in state “Wait for 1 from below.” The sender sends a packet with sequence number 1, and transitions to “Wait for ACK or NAK 1,” waiting for an ACK or NAK. Suppose now the receiver receives the packet with sequence number 1 correctly, sends an ACK, and transitions to state “Wait for 0 from below,” waiting for a data packet with sequence number 0. However, the ACK is corrupted. When the rdt2.1 sender gets the corrupted ACK, it resends the packet with sequence number 1. However, the receiver is waiting for a packet with sequence number 0 and (as shown in the home work problem) always sends a NAK when it doesn't get a packet with sequence number 0. Hence the sender will always be sending a packet with sequence number 1, and the receiver will always be NAKing that packet. Neither will progress forward from that state.10. (P7) Draw the FSM for the receiver side of protocol rdt3.0Answer:The sender side of protocol rdt3.0 differs from the sender side of protocol 2.2 in that timeouts have been added. We have seen that the introduction of timeouts adds the possibility of duplicate packets into the sender-to-receiver data stream. However, the receiver in protocol rdt.2.2 can already handle duplicate packets. (Receiver-side duplicates in rdt 2.2 would arise if the receiver sent an ACK that was lost, and the sender then retransmitted the old data). Hence the receiver in protocol rdt2.2 will also work as the receiver in protocol rdt 3.0.11. (P8) In protocol rdt3.0, the ACK packets flowing from the receiver to the sender do not havesequence numbers (although they do have an ACK field that contains the sequence number of the packet they are acknowledging). Why is it that our ACK packets do not require sequence numbers?Answer:To best Answer this question, consider why we needed sequence numbers in the first place. We saw that the sender needs sequence numbers so that the receiver can tell if a data packet is a duplicate of an already received data packet. In the case of ACKs, the sender does not need this info (i.e., a sequence number on an ACK) to tell detect a duplicate ACK. A duplicate ACK is obvious to the rdt3.0 receiver, since when it has received the original ACK it transitioned to the next state. The duplicate ACK is not the ACK that the sender needs and hence is ignored by the rdt3.0 sender.12. (P9) Give a trace of the operation of protocol rdt3.0 when data packets and acknowledgmentpackets are garbled. Your trace should be similar to that used in Figure 3.16Answer:Suppose the protocol has been in operation for some time. The sender is in state “Wait for call fro m above” (top left hand corner) and the receiver is in state “Wait for 0 from below”. The scenarios for corrupted data and corrupted ACK are shown in Figure 1.13. (P10) Consider a channel that can lose packets but has a maximum delay that is known.Modify protocol rdt2.1 to include sender timeout and retransmit. Informally argue whyyour protocol can communicate correctly over this channel.Answer:Here, we add a timer, whose value is greater than the known round-trip propagation delay. We add a timeout event to the “Wait for ACK or NAK0” and “Wait for ACK or NAK1” states. If the timeout event occurs, the most recently transmitted packet is retransmitted. Let us see why this protocol will still work with the rdt2.1 receiver.• Suppose the timeout is caused by a lost data packet, i.e., a packet on the senderto- receiver channel. In this case, the receiver never received the previous transmission and, from the receiver's viewpoint, if the timeout retransmission is received, it look exactly the same as if the original transmission is being received.• Suppose now that an ACK is lost. The receiver will eventually retransmit the packet on atimeout. But a retransmission is exactly the same action that is take if an ACK is garbled. Thus the sender's reaction is the same with a loss, as with a garbled ACK. The rdt 2.1 receiver can already handle the case of a garbled ACK.14. (P11) Consider the rdt3.0 protocol. Draw a diagram showing that if the network connectionbetween the sender and receiver can reorder messages (that is, that two messagespropagating in the medium between the sender and receiver can be reordered), thenthe alternating-bit protocol will not work correctly (make sure you clearly identify thesense in which it will not work correctly). Your diagram should have the sender on theleft and the receiver on the right, with the time axis running down the page, showingdata (D) and acknowledgement (A) message exchange. Make sure you indicate thesequence number associated with any data or acknowledgement segment.Answer:15. (P12) The sender side of rdt3.0 simply ignores (that is, takes no action on) all received packetsthat are either in error or have the wrong value in the ack-num field of anacknowledgement packet. Suppose that in such circumstances, rdt3.0 were simply toretransmit the current data packet . Would the protocol still work? (hint: Consider whatwould happen if there were only bit errors; there are no packet losses but prematuretimeout can occur. Consider how many times the nth packet is sent, in the limit as napproaches infinity.)Answer:The protocol would still work, since a retransmission would be what would happen if the packet received with errors has actually been lost (and from the receiver standpoint, it never knows which of these events, if either, will occur). To get at the more subtle issue behind this question, one has to allow for premature timeouts to occur. In this case, if each extra copy of the packet is ACKed and each received extra ACK causes another extra copy of the current packet to be sent, the number of times packet n is sent will increase without bound as n approaches infinity.16. (P13) Consider a reliable data transfer protocol that uses only negative acknowledgements.Suppose the sender sends data only infrequently. Would a NAK-only protocol bepreferable to a protocol that uses ACKs? Why? Now suppose the sender has a lot ofdata to send and the end to end connection experiences few losses. In this second case ,would a NAK-only protocol be preferable to a protocol that uses ACKs? Why?Answer:In a NAK only protocol, the loss of packet x is only detected by the receiver when packetx+1 is received. That is, the receivers receives x-1 and then x+1, only when x+1 is received does the receiver realize that x was missed. If there is a long delay between the transmission of x and the transmission of x+1, then it will be a long time until x can be recovered, under a NAK only protocol.On the other hand, if data is being sent often, then recovery under a NAK-only scheme could happen quickly. Moreover, if errors are infrequent, then NAKs are only occasionally sent (when needed), and ACK are never sent – a significant reduction in feedback in the NAK-only case over the ACK-only case.17. (P14) Consider the cross-country example shown in Figure 3.17. How big would the windowsize have to be for the channel utilization to be greater than 80 percent?Answer:It takes 8 microseconds (or 0.008 milliseconds) to send a packet. in order for the sender to be busy 90 percent of the time, we must have util = 0.9 = (0.008n) / 30.016 or n approximately 3377 packets.18. (P15) Consider a scenario in which Host A wants to simultaneously send packets to Host Band C. A is connected to B and C via a broadcast channel—a packet sent by A is carriedby the channel to both B and C. Suppose that the broadcast channel connecting A, B,and C can independently lose and corrupt packets (and so, for example, a packet sentfrom A might be correctly received by B, but not by C). Design a stop-and-wait-likeerror-control protocol for reliable transferring packets from A to B and C, such that Awill not get new data from the upper layer until it knows that B and C have correctlyreceived the current packet. Give FSM descriptions of A and C. (Hint: The FSM for Bshould be essentially be same as for C.) Also, give a description of the packet format(s)used.Answer:In our solution, the sender will wait until it receives an ACK for a pair of messages (seqnum and seqnum+1) before moving on to the next pair of messages. Data packets have a data field and carry a two-bit sequence number. That is, the valid sequence numbers are 0, 1, 2, and 3. (Note: you should think about why a 1-bit sequence number space of 0, 1 only would not work in the solution below.) ACK messages carry the sequence number of the data packet they are acknowledging.The FSM for the sender and receiver are shown in Figure 2. Note that the sender state records whether (i) no ACKs have been received for the current pair, (ii) an ACK for seqnum (only) has been received, or an ACK for seqnum+1 (only) has been received. In this figure, we assume that theseqnum is initially 0, and that the sender has sent the first two data messages (to get things going).A timeline trace for the sender and receiver recovering from a lost packet is shown below:Sender Receivermake pair (0,1)send packet 0Packet 0 dropssend packet 1receive packet 1buffer packet 1send ACK 1receive ACK 1(timeout)resend packet 0receive packet 0deliver pair (0,1)send ACK 0receive ACK 019. (P16) Consider a scenario in which Host A and Host B want to send messages to Host C. HostsA and C are connected by a channel that can lose and corrupt (but not reorder)message.Hosts B and C are connected by another channel (independent of the channelconnecting A and C) with the same properties. The transport layer at Host C shouldalternate in delivering messages from A and B to the layer above (that is, it should firstdeliver the data from a packet from A, then the data from a packet from B, and so on).Design a stop-and-wait-like error-control protocol for reliable transferring packets fromA toB and C, with alternating delivery atC as described above. Give FSM descriptionsof A and C. (Hint: The FSM for B should be essentially be same as for A.) Also, give adescription of the packet format(s) used.Answer:This problem is a variation on the simple stop and wait protocol (rdt3.0). Because the channel may lose messages and because the sender may resend a message that one of the receivers has already received (either because of a premature timeout or because the other receiver has yet to receive the data correctly), sequence numbers are needed. As in rdt3.0, a 0-bit sequence number will suffice here.The sender and receiver FSM are shown in Figure 3. In this problem, the sender state indicates whether the sender has received an ACK from B (only), from C (only) or from neither C nor B. The receiver state indicates which sequence number the receiver is waiting for.20. (P17) In the generic SR protocol that we studied in Section 3.4.4, the sender transmits amessage as soon as it is available (if it is in the window) without waiting for anacknowledgment. Suppose now that we want an SR protocol that sends messages twoat a time. That is , the sender will send a pair of messages and will send the next pairof messages only when it knows that both messages in the first pair have been receivercorrectly.Suppose that the channel may lose messages but will not corrupt or reorder messages.Design an error-control protocol for the unidirectional reliable transfer of messages.Give an FSM description of the sender and receiver. Describe the format of the packetssent between sender and receiver, and vice versa. If you use any procedure calls otherthan those in Section 3.4(for example, udt_send(), start_timer(), rdt_rcv(), and soon) ,clearly state their actions. Give an example (a timeline trace of sender and receiver)showing how your protocol recovers from a lost packet.Answer:21. (P18) Consider the GBN protocol with a sender window size of 3 and a sequence numberrange of 1024. Suppose that at time t, the next in-order packet that the receiver isexpecting has a sequence number of k. Assume that the medium does not reordermessages. Answer the following questions:a. What are the possible sets of sequence number inside the sender’s window at timet? Justify your Answer.b .What are all possible values of the ACK field in all possible messages currentlypropagating back to the sender at time t? Justify your Answer.Answer:a.Here we have a window size of N=3. Suppose the receiver has received packet k-1, and hasACKed that and all other preceeding packets. If all of these ACK's have been received by sender, then sender's window is [k, k+N-1]. Suppose next that none of the ACKs have been received at the sender. In this second case, the sender's window contains k-1 and the N packets up to and including k-1. The sender's window is thus [k- N,k-1]. By these arguments, the senders window is of size 3 and begins somewhere in the range [k-N,k].b.If the receiver is waiting for packet k, then it has received (and ACKed) packet k-1 and the N-1packets before that. If none of those N ACKs have been yet received by the sender, then ACKmessages with values of [k-N,k-1] may still be propagating back. Because the sender has sent packets [k-N, k-1], it must be the case that the sender has already received an ACK for k-N-1.Once the receiver has sent an ACK for k-N-1 it will never send an ACK that is less that k-N-1.Thus the range of in-flight ACK values can range from k-N-1 to k-1.22. (P19) Answer true or false to the following questions and briefly justify your Answer.a. With the SR protocol, it is possible for the sender to receive an ACK for a packet thatfalls outside of its current window.b. With CBN, it is possible for the sender to receiver an ACK for a packet that fallsoutside of its current window.c. The alternating-bit protocol is the same as the SR protocol with a sender and receiverwindow size of 1.d. The alternating-bit protocol is the same as the GBN protocol with a sender andreceiver window size of 1.Answer:a.True. Suppose the sender has a window size of 3 and sends packets 1, 2, 3 at t0 . At t1 (t1 > t0)the receiver ACKS 1, 2, 3. At t2 (t2 > t1) the sender times out and resends 1, 2, 3. At t3 the receiver receives the duplicates and re-acknowledges 1, 2, 3. At t4 the sender receives the ACKs that the receiver sent at t1 and advances its window to 4, 5, 6. At t5 the sender receives the ACKs 1, 2, 3 the receiver sent at t2 . These ACKs are outside its window.b.True. By essentially the same scenario as in (a).c.True.d.True. Note that with a window size of 1, SR, GBN, and the alternating bit protocol arefunctionally equivalent. The window size of 1 precludes the possibility of out-of-order packets (within the window). A cumulative ACK is just an ordinary ACK in this situation, since it can only refer to the single packet within the window.23. (Q4) Why is it that voice and video traffic is often sent over TCP rather than UDP in today’sInternet. (Hint: The Answer we are looking for has nothing to do with TCP’s congestion-control mechanism. )Answer:Since most firewalls are configured to block UDP traffic, using TCP for video and voice traffic lets the traffic though the firewalls24. (Q5) Is it possible for an application to enjoy reliable data transfer even when the applicationruns over UDP? If so, how?Answer:Yes. The application developer can put reliable data transfer into the application layer protocol. This would require a significant amount of work and debugging, however.25. (Q6) Consider a TCP connection between Host A and Host B. Suppose that the TCP segmentstraveling form Host A to Host B have source port number x and destination portnumber y. What are the source and destination port number for the segments travelingform Host B to Host A?Answer:Source port number y and destination port number x.26. (P20) Suppose we have two network entities, A and B. B has a supply of data messages thatwill be sent to A according to the following conventions. When A gets a request fromthe layer above to get the next data (D) message from B, A must send a request (R)message to B on the A-to-B channel. Only when B receives an R message can it send adata (D) message back to A on the B-to-A channel. A should deliver exactly one copy ofeach D message to the layer above. R message can be lost (but not corrupted) in the A-to-B channel; D messages, once sent, are always delivered correctly. The delay alongboth channels is unknown and variable.Design(give an FSM description of) a protocol that incorporates the appropriatemechanisms to compensate for the loss-prone A-to-B channel and implementsmessage passing to the layer above at entity A, as discussed above. Use only thosemechanisms that are absolutely necessary.Answer:Because the A-to-B channel can lose request messages, A will need to timeout and retransmit its request messages (to be able to recover from loss). Because the channel delays are variable and unknown, it is possible that A will send duplicate requests (i.e., resend a request message that has already been received by B). To be able to detect duplicate request messages, the protocol will use sequence numbers. A 1-bit sequence number will suffice for a stop-and-wait type of request/response protocol.A (the requestor) has 4 states:• “Wait for Request 0 from above.” Here the requestor is waiting for a call from above to request a unit of data. When it receives a request from above, it sends a request message, R0, to B, starts a timer and make s a transition to the “Wait for D0” state. When in the “Wait for Request 0 from above” state, A ign ores anything it receives from B.• “Wait for D0”. Here the requestor is waiting for a D0 data message from B. A timer is always running in this state. If the timer expires, A sends another R0 message, restarts the timer and remains in this state. If a D0 message is received from B, A stops the time and transits to the “Wait for Request 1 from above” state. If A receives a D1 data message while in this state, it is ignored.• “Wait for Request 1 from above.” Here the requestor is again waiting for a call from above to request a unit of data. When it receives a request from above, it sends a request message, R1, to B, starts a timer and makes a transition to the “Wait for D1” state. When in the “Wait for Request 1 from above” state, A ignores anything it receives from B.• “Wait for D1”. Here the requestor is waiting for a D1 data message from B. A timer is always running in this state. If the timer expires, A sends another R1 message, restarts the timer and remains in this state. If a D1 message is received from B, A stops the timer and transits to the “Wait for Request 0 from above” state. If A receives a D0 data message while in this state, it is ignored.The data supplier (B) has only two states:。
第三章人力规划3
例:某公司目前员工是200人,在三年后由于业务发展 需要增加100人,但由于技术提高后可节省25人,试问三年 后公司需要的人力资源数是多少? 根据公式,即得:
NHR = 200+100–25 = 275(人)
特点:根据经验来预测,要求预测人员素 质高,比较适用于技术稳定的企业的中短期 人力资源的预测。
O:指目前每人的平均其他支出;
a%:指未来企业计划每年人类资源成本增加的平均百分数; T:指未来一段时间的年限。
例:某公司计划三年后人力成本总额控制在300万元/ 月。目前员工的平均工资是1000元/月;平均奖金是 200元/月;平均福利是720元/月;平均其他收入是80 元/月。公司计划对人力资源成本投入按5%的比率增 长。请预测该公司三年后的人力资源数量。
人力资源需求预测程序图
3、需求预测的类型 (1)短期预测 : 一年以内
(2)中期预测:
(3)长期预测:
一年到三年
五年以上
4、人力资源需求预测的方法
经验预测法 描述法 工作研究法 德尔菲法
自上而下 自下而上
定性预测方法 人 力 资 源 需 求 预 则 方 法 定量预测方法
工作定额法趋 势分析法 生产率分析法 技能组合法 时间序列法 回归分析法
100
190 150
70
100 80
80
110 110
120
200 160
70
60 80
80
80 110
120
120 150
该公司对人力的需求量究竟是多少?方法有以下
三种: ①计算最低需求、最可能需求和最高需求的算术 平均值,得到人力需求量。 NHR=(80+110+150)÷3=114(人) ②计算加权平均值,得到人力需求量。一般地最 低需求、最可能需求和最高需求所赋的权重分别 是0.2、0.5、0.3。 NHR=80×0.2+110×0.5+150×0.3=116(人) ③用中位数计算人力资源需求量。 将第三次判断的结果按预测值的大小由低到高排 列:
第3章 第三章随机向量
3 x, 0 x 1, x y x, p ( x, y ) 2 0, 其他 .
问X, Y是否独立? 解
x 3 2 x x d y 3 x , 0 x 1, p X ( x ) p ( x, y ) d y 2 0, 其他 .
例3 设 (X, Y) 的联合分布列如下, 问X, Y是否独立?
X Y
0 1 2
1 2 20 2 20 4 20
0 1 20 1 20 2 20
2 2 20 2 20 4 20
解
X p
易得X和Y的边缘分布律分别为:
0 1 4 1 1 4 2 2 4 Y p 1 2 5 0 1 5 2 2 5
3.4 条件分布与随机变量的独立性
e
dt
1 e 2
( x ).
pY ( y )
1 e 2
y2 2
( y ).
本节
上页
下页
3.3 连续型随机向量及分布
本章
上页
下页
3.4 条件分布与随机变量的独立性
1.离散型条件分布
2.连续型条件分布
3.随机变量的独立性
本章
上页
下页
3.4 条件分布与随机变量的独立性
( xi , yi )(i, j 1,2,), 且 P( X xi ,Y y j ) pij ,
则我们把它称为(X,Y)的联合分布列.
本节
上页
下页
3.2 离散型随机向量及分布
联合分布列:
X
Y
x1 xi
高中数学人教A版必修3课件:第三章3.1 3.1.1
解析: 949÷1 006≈0.943 34,1 430÷1 500≈0.953 33,1 917 ÷2 015≈0.951 36, 2 890÷3 050≈0.947 54, 4 940÷5 200=0.95. 都稳定于 0.95,故所求概率约为 0.95.
பைடு நூலகம்
探究点一
事件类型的判断
指出下列事件是必然事件、 不可能事件, 还是随机事件. (1)2012 年奥运会在英国伦敦举行; (2)甲同学今年已经上高一,三年后他被北大自主招生录取; (3)A 地区在“十三五”规划期间会有 6 条高速公路通车; (4)在标准大气压下且温度低于 0 ℃时,冰融化. [解] (1)是必然事件,因事件已经发生.
能再连任下届总统,是不可能事件,④是必然事件.
3. 某出版公司对发行的三百多种教辅用书实行跟踪式问卷调查, 连续五年的调查结果如表所示: 发送问卷数 返回问卷数 1 006 949 1 500 1 430 2 015 1 917 3 050 2 890 5 200 4 940
则本公司问卷返回的概率约为( A ) A.0.95 C.0.93 B.0.94 D.0.92
(2)(3)是随机事件,其事件的结果在各自的条件下不确定. (4)是不可能事件,在本条件下,事件不会发生.
对事件分类的两个关键点 (1)条件:在条件 S 下事件发生与否是与条件相对而言的,没有 条件,就无法判断事件是否发生; (2)结果发生与否:有时结果较复杂,要准确理解结果包含的各 种情况.
1.(1)下面的事件: ①在标准大气压下, 水加热到 80℃时会沸腾; ②a, b∈R, 则 ab=ba; ③一枚硬币连掷两次, 两次都出现正面向上.其中是不可能事件的为( B A.② C.①② B.① D.③ )
人教版高中物理选择性必修第3册 第三章 3.3能量守恒定律
新课讲解
一、探索足迹
人类对能量的认识
人类对能量的认识能量的概念是人类在对物质运动规律进行长期探索中 建立起来的。所有自然现象都涉及能量,人类的任甸活动都离不开能量。能 量具有不同的形式,有描述热运动的内能、描述机械运动的机械能、描述光 辐射的光能,等等。不同形式的运动都可以用能量来描述。
它的臂可以弯曲.臂上有槽,小球沿凹槽滚向伸长 的臂端,使力矩增大.转到另一侧,软臂开始弯曲,向 轴心靠拢.设计者认为这样可以使机器获得转矩.然而, 他没有想到力臂虽然缩短了,阻力却增大了,转轮只 能停止在原地.
软臂永动机
阿基米得螺旋永动机 1681年,英国有一位著名的医生弗拉德提出一个建
议,利用阿基米得螺旋.
解析:A.布朗运动是小颗粒的运动,只是间接反映了液体分子的 无规则运动,故A错误; B.用油膜法测分子直径的实验中,应使用油酸溶液滴到水面上, 便于稀释后紧密排列在水面上,故B错误; C.第一类永动机违背了能量守恒定律,故C正确; D.由热力学第一定律△U=W+Q可知,空气向外界散出0.8×105J 的热量,故D错误; 故选C。 答案:C
在转轮边沿安装一系列的容器,容器中充了一 些水银,他想水银在容器中移动有可能使转轮永远 地转动,但是经过仔细研究之后,得出了否定的结 论.他从许多类似的设计方案中认识到永动机的尝试 是注定要失败的.他写道:“永恒运动的幻想家们!
你们的探索何等徒劳无功!还是去做淘金者吧!” 达·芬奇设想的永动机
滚球永动机 17世纪,英国有一个被关在伦敦塔下叫马尔基斯的犯人, 他做了一台可以转动的“永动机”,如图所示.
二、能量守恒定律
1 、内容:能量既不会凭空产生,也不会凭空消失,它只能从一种 形式转化为别的形式,或者从一个物体转移到别的物体,在转化或转 移的过程中其总量不变。
人教版高中数学必修三第三章第3节 3.3.1 几何概型 课件(共17张PPT)
【变式2】:圆O是边长为2的正方
形的内切圆 , 向这个正方形中随机
地投一点M,设M落在正方形中任一
点的可能性是相同的,试求点M落圆
O中的概率.
O
4
•M
知识探究(二):几何概型的概率
【变式3】一只小虫在一个棱长为20cm盛满 水的正方体容器中游动, 假设小虫出现在容 器中的任意一个位置均为等可能的, 记“它 所在的位置距离正方体中心不超过10cm”为 事件A, 那么事件A发生的概率是多少?
B
N
N
B
B
N
BB
N
N
B
知识探究(一):几何概型的概念
思考 3:上述每个扇形区域对应的圆弧的长度(或 扇形的面积)和它所在位置都是可以变化的,从 结论来看,甲获胜的概率与字母 B 所在扇形区域 的哪个因素有关?
B
N
N
B
B
N
BB
N
N
B
与扇形的弧长(或面积)有关.
知识探究(一):几何概型的概念 思考 4:如果每个事件发生的概率只与构成该事 件区域的长度(面积或体积)成比例,则称这样 的概率模型为几何概型. 参照古典概型的特性, 几何概型有哪两个基本特征?
所有基本事件构成 的区域是什么?
事件A构成的区域 是什么?
在线段AB上任取一
3m
点
A
B
3m
取到线段AB上某一点 A
B
3m
线段AB(除两端外) A
B
线段CD
1m
AC DB
知识探究(二):几何概型的概率
【变式1】:在等腰直角三角形 ABC中,在斜边AB上任取一点M,
求AM的长大于AC的长的概率.
知识探究(二):几何概型的概率
3.《空乘服务概论》第三章 空乘服务思想与服务文化
2. 实现空乘人员的思想行动一致性
3. 从空乘服务目标到乘客满意的桥梁
4. 航空公司检验为乘客服务状态的标准
第三章 空乘服务思想与服务文化
第一节 空乘服务思想的内涵及作用
案例讨论:
P68 案例说明了空乘服务思想的什么问题? P71 案例说明了空乘思想的什么问题? P72 案例说明了空乘思想的什么作用?
战胜困难。
第三章 空乘服务思想与服务文化
第二节 空乘服务思想体系
航空服务的微观思想:信息卡阅读
•东航核心价值观
进
发展是硬道理,进取和创新是公司可持续发展的动力。 公司发展是保证安全前提下的发展,是确保服务质量的发展,是社会效益和企业效益 相和谐的发展。同时,公司发展也是促进员工成长的发展,是实现与合作者共赢的发展。 树立忧患意识,才能赢得发展、不断前进。我们要始终保持发展的意愿,积极战胜困 难,并付诸行动。 与时俱进是公司基业长青的保证,开拓创新是赢得市场的有效方针。我们尊重和鼓励
第一节 空乘服务思想的内涵及作用
01
空乘服务思想的内涵
02
空乘服务思想的作用
什么是空乘服务思想?
第三章 空乘服务思想与服务文化
第一节 空乘服务思想的内涵及作用
什么是空乘服务思想? 乘客刁难,乘务员据理力争,“我没有错啊, 有错的是乘客”
第三章 空乘服务思想与服务文化
第一节 空乘服务思想的内涵及作用
第三章 空乘服务思想与服务文化
第二节 空乘服务思想体系
航空服务的微观思想:信息卡阅读
•东航核心价值观
共
公司发展和社会、客户、股东、员工的利益相一致,同舟共济、和谐与共的发展是 我们坚定不移的信念。公司相信员工满意是客户满意的前提,坚信事业成功来自全体员 工的共同努力。 公司尊重员工的个性,同时要求员工具有团队意识、整体意识和大局意识。 公司接受地域文化的差异,但是更强调服从企业整体战略。公司承认利益的个体性, 但是更强调团队管理的整体性,强调团队整体利益高于一切。惟有同心同德,才能不断
北师大版九年级上册数学课件 第三章 3
若分别用A,B表示甲、乙两人,用1,2,3表示石头、剪刀、布,则A1表示 甲出石头、 B2表示乙出剪刀,依次类推.于是,游戏的所有结果用“树状图”表
示.
新课讲解
分析:
新课讲解
所有结果是9种,且出现的可能性相等.因此,一次游
戏时:
(1)甲获胜的结果有(A1,B2),(A2, B3),(A3, B1)这3 种,故甲
P(A)=
答:在一次随机试验中他能打开箱子的概率为
新课讲解
练一练
1 同时抛掷两枚质地均匀的硬币,则下列事件发生的 概率最大的是( C ) A.两正面都朝上 B.两背面都朝上 C.一个正面朝上,另一个背面朝上 D.三种情况发生的概率一样大
新课讲解
知识点2 用概率说明几何游戏的公平性
甲、乙两人要去风景区游玩,仅知道每天开往风景区有3辆汽车, 并且舒适程度分别为上等、中等、下等3 种,但不知道怎样区分这些 车,也不知道它们会以怎样的顺 序开来.于是他们分别采用了不同的乘 车办法:甲乘第1辆 开来的车.乙不乘第1辆车,并且仔细观察第2辆车 的情况, 如比第1辆车好,就乘第2辆车;如不比第1辆车好,就乘第 3 辆车.试问甲、乙两人的乘车办法,哪一种更有利于乘上舒 适度较好的 车?
记了自己设定的密码,求在一 次随机试验中他能打开箱子的概率.
设在一次随机试验中他能打开箱子的事件为A. 根据 题意,在一次
随机试验中选择的号码应是000〜999 中的任意一个3位数,所有可 能出现的结果共有1000种, 且出现每一种结果的可能性相等.要能 打开箱子, 即选择的 号码与密码相同的结果只有1种,所以
1
2
3
4
D
(1,1) (1,2) (1,3) (1,4)
3. 第三章 旋塞阀 (Plug Valve)
旋塞材料Plug Materials
SAV Spec.
Used for
Carbon Steel
ASTM A105/A216 Gr.WCB
2”以上 Case Hardened NACE ENP:0.003”
BS 970 Gr. 070 M20
½” to1½” Case Hardened NACE ENP:0.003”
Bodies all types, except ½”~1” screwed end
BS 1504-161 Grade 480
Casting
ASTM A105/Max Hardness RC 22 Bodies screwed
Max. C: 0.25%
end ½”~1”
screwed end size
阀杆材质
SAV Specification
ALLOY BS 970 Gr. 709M40 STEEL (1% Cr. 1/2% Mo)
Max. Hardness Rc.22
Used for
All classes ½”to 4”
Some larger sizes
Comparable Specifications AISI4140
255.3
埋地式旋塞阀Walworth
ANSI 150 to 2500 ANSI 150
ANSI 150 ANSI 300
ANSI 300 ANSI 600 ANSI 600 ANSI 900 ANSI 900 ANSI 1500 ANSI 1500 ANSI 2500
型号尺寸匹配表
Screwed / Socked Ends Short & Regular Pattern
教科版高中物理选择性必修第三册第三章第3节热力学第二定律
全部转化(自发) 对第三者有影响
内能(热)
2.注意:在热力学第二定律的表述中,“自发地”“不产生其他影响”“单一热源”“不可能”的含义
①“自发地”是指热量从高温物体“自发地”传给低温物体的方向性.在传递过程中不会对其他物体 产生影响或借助其他物体提供能量等.
②“不产生其他影响”的含义是发生的热力学宏观过程只在本系统内完成,对周围环境不产生热 力学方面的影响.如吸热、放热、做功等.
机械能和内能的转化过程具有方向性
自发 全部
自发 全部ຫໍສະໝຸດ 思考:满足能量守恒定律的过程是否都能实现呢?
物体间的传热
温度由高到低
热现象
气体的膨胀 扩散现象
特定的方向
体积由小到大 密度由密到疏
有摩擦的机械运动
由机械能到内能
无数事实告诉我们,凡是实际的过程,一切与热现象有关的宏观
自然过程都是不可逆的。
反映宏观自然过程的方向性的定律就是热力学第二定律。
一辆汽车在水平地面上滑行,由于克服摩擦力做功,最后要停 下来。在这个过程中,物体的动能转化成为内能,使物体和地面的 温度升高.
我们能不能看到这样的现象:一辆汽车靠降低温度,可以把内 能自发地转化为动能,使汽车运动起来.
有人提出这样一种设想,发明一种热机,用它把物体与地面 摩擦所生的热量都吸收过来并对物体做功,将内能全部转化为动 能,使因摩擦停止运动的物体在地面上重新运动起来,而不引起 其它变化.
Q1
Q1
,热机从热源吸取的热量Q1全部变
成功W,即Q2=0,该机器唯一的结果就是从单一热源吸取热量全部变成功而不
产生其它影响。此时热机的效率η=1(100%), η=1的热机称为第二类永动机。
4.理解:
第三章 经典需求理论3
瓦尔拉斯需求和间接效用函数
命题3.G.4 罗伊恒等式。假设u()是一个连续效用函数 ,代表定义在消费集X上的局部非饱和的和严格凸的 偏好关系。并且假设间接效用函数是可微的,则
1 x( p, w) p v( p, w) wv( p, w) v( p, w) / pl xl ( p, w) , l 1,, L v( p, w) / w
3.I 经济变化的福利评价
福利分析关心的是如何评价消费者的环境 变化对其福利的影响(效用)。以偏好 法为基础的。 考虑理性、连续、局部非饱和的偏好关系。 假设支出函数和间接效应函数是可微的。
两个特别的选择是p0和p1。两种关于福利变化的度量, 等价变化(EV)和补偿变化(CV)。令
u 0 v( p 0 , w), u1 v( p1 , w) e( p , u ) e( p , u ) w
当政府要决定对哪种商品进行征税时,便出现了一个 有趣的比较多个可能的新价格向量的情形。例如, 政府考虑以下两个不同的、但税收收入均为T的征税 方案。
利用部分信息进行福利分析
命题3.I.2 假设消费者具有局部非饱和的理性偏好。 若 ( p1 p0 ) x0 0 ,则消费者在价格-财富状况 (p1,w)下的状况好于在(p0,w)下。
有L种商品的一般情形,常微分方程(3.H.1)代之以 初始条件为 p0 , e( p0 ) w0 的偏微分方程组
e( p) x1 ( p, e( p)) p1 e( p) xL ( p, e( p)) pL
(3.H.2)
结论:可以逆推出一个潜在的支出函数的 充要条件是Slutsky替代矩阵的对称性和 半负定性。
3.H 可积性
How to do this
第三章-群落
高位 芽
地上 芽
3)地面芽植物:更新芽位子近地面土层内,冬季地上 部分全枯死,即为多年生草本植物。 4)隐芽植物:更新芽位于较深土层中或水中,多为鳞 茎类、块茎类和根茎类。 5)一年生植物: 以种子越冬。
地面 芽
隐芽
层片 :指由相同生活型或相似生态要求的不 同植物的组合。是群落结构的基本单位之一。 层片与生活型是构成群落结构两个主要部分。
群落生态学:它是研究生物群落与环境相互关系及 其规律的学科,群落生态学是生态学的一个重要分支的 科学。
3.2群落的种类组成
一、种类组成的性质分析
(1)群落最小面积:是指在一个群落里,至少要
求这样大的空间,才能包括组成群落的大多数物种。 群落最小面积能够表现群落结构的主要特征。组成 群落的物种越丰富,群落的最小面积越大。
个体学派的理论依据
群落的存在依赖于特定的环境与物种的组合,环 境的连续变化使人们无法划分出一个个独立的群落 实体。 在自然界没有任何两个群落是相同或相互密切关 联的,人们研究的群落单元是连续群落中的一个片 断。 不连续的情况只发生在不连续的生境,如地形、 土壤的改变,通常情况下生境与群落都是连续的。
如图:南京地区自然植物群落下优势种- 枫香、栓皮栎
B.亚优势种:指的是它的个体数量与作用都次于优势种, 但在决定群落环境方面仍起着一定作用的种类。 C.伴生种:为群落成见种类,它与优势种相伴存在,但 不起主要作用 。 D.偶见种:偶见种是那些在群落中出现频率很低的种类, 多半数量稀少,应当加以保护起来,例如亚热带常绿阔 叶林的观光木。
影响群落结构的因素 生物因素; 干扰; 空间异质性; 岛屿化;
生物因素-竞争
资源利用 → 生态位重叠 → 竞争 → 生态位分化 → 性 状替代、特化 → 共存竞争 →排斥 同资源种团:生物群落中,以 同一方式利用共同资源的物 种集合,
第三章 多相流流型及判别方法
液相折算速度:
Ql wsl A
(三)气液两相混合物速度 Q g Ql wm A (四)气液两相混合物的质量流速 G wG A 三、滑差和滑动比 w wg wl 滑差:
多相混输技术的研究及其应用 2013-7-11 3
第三章 多相流流型及判别方法
滑动比:
f
(二)真实密度
G Q
Al g 1 Al l
Al
g 1 l
六、两相混合物粘度 (一)杜克勒(Dukler)计算式:
多相混输技术的研究及其应用 2013-7-11 6
第三章 多相流流型及判别方法
m g (1 )l
第三章 多相流流型及判别方法
多相流中各相介质的分布情况称为流型(又称多相流流动结构)。 在多相流分析中,最核心的部分是多相流的流型确定。流型不同,多相 流动的流动特性和传热、传质性能均不同。下面以石油工业中广泛应用 的气—液两相流、液—液两相流、气—液—液三相流的流型分析为例, 讨论多相流的流型及其判别方法。
多相混输技术的研究及其应用 2013-7-11 21
第三章 多相流流型及判别方法
1.E+06 L1 C3 弥散流 C4 1.E+05
2 G g /Aθ ,千克/(米 .时)
波浪流 C1 环状流 C2 冲击流 气泡流
1.E+04 L2 L3
分层流 1.E+03 气团流
1.E+02 1.E-01
1.E+00
第三章 多相流流型及判别方法
1、水平不加热气液两相流流型
气泡流
塞状流
分层流
波状流
弹状流
环状流
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由于弯曲带板定义式计算十分复杂,我国《海船 规范》规定,安装在平板上的主要构件带板的有效 面积为: 2
A 10 fbtp
(cm )
f 0.3(l / b)2 / 3,但不大于1;b—主要构件支承面积
t 平均宽度,m;l —主要构件长度,m; p —带板的 平均厚度,mm。 中国船舶检验局颁布的《内河钢船建造规范》 (1991)规定:强骨材带板宽度取其跨度的1/6,即 be=l/6,但不大于负荷平均宽度亦不小于普通骨材 间距。
§3 典型船体结构 的局部强度计算
1. 船底结构的强度计算
船底是船体梁的下翼板,受到很大的总纵弯曲 应力,此外还承受机器重量、货物重量、压载水及 舷外水压力等横向荷重作用。在波浪中高速航行的 船舶底部,特别是首部附近的船底还受到很大的冲 击力。 在总纵强度校核时,船底纵桁应力要与总纵弯 曲应力合成,此时船底板架的计算载荷应取相应的 总纵弯曲计算时的载荷状态和波浪位置的水头高度。 在局部强度计算时,船底板架计算水头为舷外水压 与货物反压力之差值。
h d hB / 2
d为载重吃水(m),hB为半波高。
§2
船体骨架 的带板
船体结构中的骨架都是焊接在钢板上的,当骨 架受力发生变形时,与它连接的板也一起参加骨架 抵抗变形。因此,为估算骨架的承载能力,也应当 把一定宽度的板作为它的组成部分来计算骨架梁的 剖面积、惯性矩和剖面模数等几何要素,这部分板 称为带板或附连翼板。 因骨架的受力情况不同,带板宽度有两种不同 的定义和数值,即 (1)压杆的(稳定性)带板宽度,We; (2)梁的(弯曲)带板宽度,be。
M 3Q1B /8
Q=qbL,Q1=qaB,b为纵桁间距,q为载荷强度; γ1、γ2、γ3影响系数,根据板架长宽比和中桁材 与旁桁材惯性比值查表确定。
2.甲板结构的强度计算
最上层连续甲板是船体梁的上甲板,它对保证船 体总纵强度起重要作用,称为强力甲板。 下甲板主 要承受货物重量,因此首先应保证其局部强度。无 论哪层甲板都承受均布荷重。 民船中不载货的上层露天甲板,承受甲板上浪的 水压力,其水头高度可按规范规定计算。《海船规 范》规定,露天强力甲板计算水头高度为1.2~1.5m 之间,且不小于下式计算值: 1 100 3L h0 1.2 ( 150 ) (m) 500 D d L-船长(m),D -型深(m),d -吃水(m)。
2) 船底纵骨弯曲应力计算
船底纵骨由肋板支持,纵骨结构、载荷对称于肋板,因此 可以把纵骨当作两端固定受均布荷重q的在肋板上的单跨梁 计算,其弯矩为: qba 2
M 0 12 (N M) 2 M qba (N M) 1 24
(支座处)
(跨中处)
a-纵骨跨距;b -纵骨间距;q -分布载荷强度,分别取
总之,正确分析结构变形特点才能作到力学上 等价,这是模型化的关键。同时还应注意结构对称 化的应用。
3.载荷模型化
载荷模型化的目的是,选择船舶在营运中可能遇 到的较危险的和经常性的荷重情况,并能用有限参 数来描述实际载荷。具体应考虑如下问题: (1) 作用于结构上的载荷工况; (2) 计算载荷的性质(不变荷重、静变荷重、动变荷 重和冲击荷重)与载荷类型(经常性荷重、偶然性 荷重); (3)载荷大小,并决定施加在哪些构件上; (4)载荷的组合与搭配。
第3章 船体结构局部 强度计算
§1 局部强度计 算的力学模型
船体在外力作用下除发生总纵弯曲变形外,各 局部结构,如船底、甲板、船侧和舱壁板架以及横 向肋骨框架也会因局部载荷作用而发生变形、失稳 或破坏。研究它们的强度问题你入局部强度。局部 强度的内容很多,除上述板梁和框架外,各种骨材 以及壳板的强度计算也是局部强度讨论的对象。 在进行局部强度计算时,首先,应根据结构受力 与变形特点,把实际复杂的结构抽象为可以用力学 方法计算的简化模型(称为力学模型或计算模型); 然后,对共力学模型进行内力和应力分析并进行强 度校核。力学模型的建立是与计算方法相联系的, 用船舶结构力学方法进行局部强度计算时,只能将 船体各部分结构简化为板架、刚架、连续梁和板等 结构进行计算,而且载荷也只能取比较简单情况。
1)受压骨架带板宽度
b
a
s
We /2
cr s
由船舶结构力学知,长为b宽为a,筒形弯曲刚度为 D的矩形板格的临界压力为F cr =kπ 2 D/b 2 。若令有效 宽度内的压应力达到板格的临界应力 cr 。和板的屈 2 2 2 s,则 服极限 4 D 4 Et
2 于是可得带板宽度为: e
中拱和中垂时的水压力。于是纵骨弯曲应力为:
3 M / W (MPa)
W为纵骨带带板的剖面模数,mm3。
3) 船底板架计算
船底板架由多根交叉构件和很多主向梁组成的板 架。其结构强度比强力甲板靠近船体剖面中和轴线。 因此在船体中拱变形时船底板架不易失稳,其主要 矛盾是强度问题。 对于横骨架式板架,主向梁(实肋板)承受肋板 间距范围内荷重,交叉构件只承受节点反力,如图 所示。 实肋板 组合肋板
1) 船底外板的强度计算
受均布水压力作用的船底板,可作为四周刚性固 底纵桁 y 定的刚性板来计算。 实 实 (1)横骨架式船底板 肋 肋 c板 1 2 板 检查三点。 x 若c/s>2,则长边中点(2点)的 最大应力(沿船长方向)用下式计算: 底纵桁 s ( 4 )x 0.5q(s / t )2 (N/mm2 ,MPa) 板中点(1点)沿船长方向的应力为:
3.骨架的支座简化
将局部构件或结构从整体结构中分离出来进行局 部强度计算,需考虑相邻构件对计算结构的影响, 即支座。在船体结构计算中,通常有三种支座情况: (1)自由支持在刚性支座上;(2)刚性固定;(3)弹性 支座和弹性固定。 肋板 纵骨 如船底纵骨:
因实肋板刚性远大于纵骨, 且变形以肋板为支点左右 对称,因此计算船底纵骨 强度时可按两端刚性固定 的单跨梁来进行。
s cr
W (1 t ) 12(1 )W
2
2 e
4 2 E We t 2 12 (1 ) S
2)骨架弯曲带板宽度
骨架弯曲时与腹板连接的面板也跟着伸长或缩短, 板变形的主要原因是腹板边缘给它的剪切,其次才 是弯曲影响。在腹板上面的面板部分弯曲应力最大, 沿面板宽度离开腹板逐渐减小,这种现象称为“剪 切滞后”效应。带板宽度be 就是将面板宽度b中的弯 曲应力化成腹板上面的面板中的应力时所需要的面 板宽度。计算 be 时所用的应力 x是骨架弯曲时其带 板x方向(骨架方向)的正应力。将 x沿y方向(横向) 从 零积分到b/2就得到轴向力x的一半。因此,弯曲带 b/2 b/2 板宽度定义为: 2 x dy t 2 x dy X be 0 0 max t max t max
计算板架时,其长度、宽度取相应的支持构件间距离,如 船底板架和甲板板架的长度取横舱壁之间的距离,宽度取组 成肋骨框架梁中和轴的跨距,或取为船宽。 对于如图所示的肋骨刚架,其长度、宽度取组成肋骨框架 梁的中和轴线交点间距离,用中和轴线代替实际构件,不计梁 拱及舭部的弯曲。肘板和开孔 (人孔、减轻孔等) 而引起的构 件剖面变化也不予考虑,即在内力(弯矩、切力)计算时把每 一构件作为等直梁处理。
a a Q=γhaB=qaB b b b b B b b L Rj1 Rj2 Rj3 Rj4 L 交叉构件 b b 主向 主向梁
对于纵骨架式板架,载荷通过纵骨传给实肋板, 交叉构件也只承受节点反力,如图所示。
a a
实肋板 纵骨
Q=γhaB=qaB
主向梁
b b b B b b L Rj1 Rj2 Rj3 b
(4)计算工具 使用的计算工具愈先进,计算简图 则可以更精确些,电子计算机的使用使许多复杂的 计算图形可采用。 此外,必须注意,从实际结构得出合理的计算简 图是一方面;另一方面,在选定计算简图之后,还 应采用适当的结构措施,使所设计出的结构体现计 算简图的要求。
2.构件几何尺寸的简化
在进行局部强度计算时,不可能也没有必要对 实际结构的各种因素加以考虑。在确定几何要素 (如 跨距、宽度、带板尺寸、剖面模数等)时,将结构 作 一些“理想化”处理。
l
而甲板纵骨,在船舶中垂弯曲时受轴向压力作用。纵骨 稳定性计算时,根据其变形特点可作为两端自由支持的单跨 梁来计算。 肋骨框架由于肋板刚度远大于肋骨,故肋骨下端可作刚性 固定;当甲板上无荷重,又可进一步按船舶结构力学方法, 可算出其弹性固定端的转角和柔性系数而简化为弹性固定的 单跨梁。 板架的交叉构件(龙骨、纵桁)在横舱壁处的固定条件取 决于相邻板架的刚度、跨度和载荷之比。精确计算相邻板架 的相互影响,必须对它们进行连续板架计算;但实用上,通 常引入横舱壁的支座固定系数χ考虑相邻板架的影响。在多 数情况下,交叉构件在横舱壁处可以认为是刚性固定的。船 底板架在舷侧处的固定情况可通过肋骨刚架计算确定,通常 计算中可近似认为自由支持在舷侧,因为肋骨的刚度比肋板 小得多。
b
b
l
R之比为L/B<0.8时,中桁材舱壁处 与跨中的弯矩十分接近,因此可将中桁材当单跨梁 处理进行强度校核计算。其弯矩为:
M 0 QB /12 (支座处) M1 QB / 24 (跨中处)
对于L/B>0.8的板架,可按近似公式计算: 中桁材弯矩: M 0 1QB /12 M 1 2QB / 24 央肋板在中伤材处弯矩:
船体结构是在线弹性范围内进行强度校核,因此 在复杂载荷作用时可以应用迭加原理计算。 局部强度计算载荷主要有货物重量和水压力,一 般不计结构自重影响。 货物重量通常用水头高度h表示,即h=H/1.35(m), H为货舱载货高度(m)。 对于水压力,一般以船舶静置于波浪上的静水压 力作为计算载荷,因此水头高度为:
1.建立计算力学模型的原则
船体结构的强度计算, 首先应根据结构的实际受 力情况,将具体结构抽象化为计算简图—力学模型, 然后对计算简图采用力学分析力法进行结构分析。 所谓结构的计算简图,就是将实际结构经过简 化的计算模型。由于实际结构的繁杂性,完全按结 构的实际情况进行力学分析是不可能的,也是不必 要的。因此,对实际结构进行力学计算之前,必须 对结构进行简化,略去不重要的细节,表现其基本 特点,用一个简化的图形代替实际结构。但其力学 模型必须:(1)反映实际结构的工作性能;(2)便于计 算。