一次函数中的面积问题讲义(含答案)

合集下载

一次函数之面积问题(与坐标轴围成的面积)(人教版)(含答案)

一次函数之面积问题(与坐标轴围成的面积)(人教版)(含答案)

一次函数之面积问题(与坐标轴围成的面积)(人教版)一、单选题(共8道,每道12分)1.已知一次函数和的图象都经过点A(2,0),且与y轴分别交于B,C两点,则△ABC的面积是( )A.1B.2C.4D.8答案:C解题思路:试题难度:三颗星知识点:坐标线段长互转2.已知一次函数y=kx+(k-3)与一次函数y=2x+b交于点C(1,3),则两条直线的函数图象与x 轴所围成的三角形的面积是( )A.1B.C. D.答案:D解题思路:试题难度:三颗星知识点:一次函数与坐标轴围成的图形面积3.已知一次函数y=kx+b的图象经过点B(0,10),且与正比例函数y=2x的图象相交于点A(2,a),则这两个函数图象与y轴所围成的三角形的面积是( )A.5B.10C.20D.40答案:B解题思路:试题难度:三颗星知识点:一次函数与坐标轴围成的图形面积4.已知一次函数y=kx+b的图象经过点(3,-3),且与直线y=4x-3的交点在x轴上,则此函数的图象与坐标轴围成的三角形的面积为( )A. B.C. D.答案:A解题思路:试题难度:三颗星知识点:一次函数与坐标轴围成的图形面积5.已知一次函数的图象经过点(-2,0),它与坐标轴围成的三角形面积等于1,则这个一次函数的函数表达式是( )A. B.C.或D.或答案:D解题思路:试题难度:三颗星知识点:一次函数与坐标轴围成的图形面积6.已知一次函数的图象过点(3,0),且与两坐标轴围成的三角形面积为3,则一次函数的表达式为( )A. B.C. D.答案:D解题思路:试题难度:三颗星知识点:一次函数与坐标轴围成的图形面积7.若直线y=kx+b与直线y=4x平行,且直线y=kx+b与两坐标轴围成的三角形的面积为2,则直线y=kx+b与x轴的交点坐标是( ).A.(1,0)B.(1,0)或(-1,0)C.(2,0)D.(2,0)或(-2,0)答案:B解题思路:试题难度:三颗星知识点:一次函数与坐标轴围成的图形面积8.若直线y=x+k,x=1,x=4和x轴围成的直角梯形的面积等于9,则k的值为( )A. B.C.或D.或答案:C解题思路:试题难度:三颗星知识点:一次函数与坐标轴围成的图形面积。

一次函数之面积问题 (讲义及答案)

一次函数之面积问题 (讲义及答案)

一次函数之面积问题(讲义)➢课前预习1.如图,在平面直角坐标系xOy中,已知A(1,2),B(3,5),C(6,3),求△ABC的面积.2.如图,直线l1:y=-3x+3与x轴交于点A,直线l2:362y x=-与x轴交于点B,直线l1,l2相交于点C.在直线l2上存在异于点C的另一点P,使得△ABP 与△ABC的面积相等,请求出点P的坐标.➢知识点睛1.坐标系中处理面积问题,要寻找并利用_____________的线,通常有以下三种思路:①__________________(规则图形);②__________________(分割求和、补形作差);③__________________(例:同底等高).2.坐标系中面积问题的处理方法举例①割补求面积(铅垂法):B1()2APB B AS PM x x=⋅⋅-△②转化求面积:l1l2如图,满足S△ABP=S△ABC的点P都在直线l1,l2上.➢精讲精练1.如图,在平面直角坐标系xOy中,已知A(-1,3),B(3,-2),则△AOB的面积为___________.2.如图,直线y=-x+4与x轴、y S△PAB=___________.第2题图第3题图3.如图,直线AB:y=x+1与x轴、y轴分别交于点A,B,直线CD:y=kx-2与x轴、y轴分别交于点C,D,直线AB与直线CD交于点P.若S△APD=4.5,则k的值为__________.4.如图,在平面直角坐标系xOy中,已知A(2,4),B(6,6),C(8,2),求四边形OABC的面积.5.如图,在平面直角坐标系xOy中,已知直线l1,l2相交于点A(2,1),点B(8,4)在l1上,l2的表达式为y=2x-3.C为l2上的一个动点,且在点A的右侧,若△ABC的面积为9,求点C的坐标.6.如图,在平面直角坐标系xOy中,直线l1:y=x与直线l2:y=-2x+3相交于点A,点B在直线l1上,且横坐标为4.C为l2上的一个动点,且在点A的左侧,若△ABC的面积为9,则点C的坐标为_____________.7.如图,直线112y x=-+与x轴、y轴分别交于点A,B,点C的坐标为(1,2),则坐标轴上是否存在点P,使S△ABP =S△ABC?若存在,求出点P的坐标;若不存在,请说明理由.8.已知直线112y x=-+与x轴、y轴分别交于点A,B,以A为直角顶点,线段AB为腰在第一象限内作等腰Rt△ABC,P为直线x=1上的动点,若△ABP 的面积与△ABC的面积相等,则点P的坐标为______________.【参考答案】➢ 课前预习1.1322. P (6,3) ➢ 知识点睛 1. 横平竖直①公式法;②割补法;③转化法 ➢ 精讲精练 1. 72 2. 8 3. 52 4. 245.C (4,5)6. (-1,5)7. 存在,点P 的坐标为51(0)(50)(0)(10)22--,,,,,或, 8. (13)(12)-,或,。

一次函数面积问题专题(含答案)

一次函数面积问题专题(含答案)

精心整理一次函数面积问题1、如图,一次函数的图像与x轴交于点B(-6,0),交正比例函数的图像于点A,点A的横坐标为-4,△ABC的面积为15,求直线OA的解析式。

2、直线y=x+3的图像与x轴、y轴分别交于A、B两点,直线a经过原点与线段AB 交于C,把△ABO的面积分为2:1的两部分,求直线a的函数解析式。

3)的图((的面积是,1),直线CD⊥x轴且△AOB面积二等分,若0),求m的值5、点B在直线y=-x+1上,且点A(2,06、直线y=-x+1与x轴y轴分别交点A、B,以线段AB为直角边在第一象限内作等腰直角△ABC, BAC=90°,点P(a,)在第二象限,△ABP的面积与△ABC面积相等,求a的值.7、如图,已知两直线y=0.5x+2.5和y=-x+1分别与x轴交于A、B两点,这两直线的交点为P(1)求点P的坐标(2)求△PAB的面积8、已知直线y=ax+b(b>0)与y轴交于点N,与x轴交于点A且与直线y=kx交于点M(2,3),如图它们与y轴围成的△MON的面积为5,求(1)这两条直线的函数关系式(29(1(210AB11(3)在直线BC上能否找到点P,使得△APC的面积为6,求出点P的坐标,若不能请说明理由。

12、已知直线y=-x+2与x轴、y轴分别交于点A和点B,另一直线y=kx+b(k≠0)经过点C(1,0),且把△AOB分为两部分,(1)若△AOB被分成的两部分面积相等,求k和b的值?(2)若△AOB被分成的两部分面积为1:5,求k和b的值13、直线y=-x+3交x,y坐标轴分别为点A、B,交直线y=2x-1于点P,直线y=2x-1交x14,0),15点分别是D和C?(1)求直线L l,L2的解析式???(2)求四边形ABCD的面积?(3)设直线L1,L2交于点P,求△PBC的面积答案:1、A(-4,5)?OA:y=-x2、C(-2,1)a:y=-x或C(-1,2)a:y=-2x3、(1)A(-n,0)B(m,0)P(,)(,)4、m=10-25、B6、a=4-7、P89、(1)A(,),(2)10、y=--x?11。

一次函数面积问题专题(含答案解析)

一次函数面积问题专题(含答案解析)

一次函數面積問題1、如图,一次函数的图像与X轴交于点B (- 6 , 0),交正比例函数的图像于点A,点A的横坐标为-4,△ ABC的面积为15,求直线OA的解析式。

2、直线y=x+3的图像与X轴、y轴分别交于A B两点,直线a经过原点与线段AB 交于。

,把厶ABO勺面积分为2:1的两部分,求直线a的函数解析式。

3、直线PA是一次函数y=x+n的图像,直线PB是一次函数y=-2x+m (m>n>0的图像,(1) 用m n表示A、B、P的坐标(2) 四边形PQoB勺面积是',AB=2求点P的坐标4、A AOB的顶点0( 0, 0) A (2, 1)、B (10, 1),直线CDL X 轴且△ AOB面积二等分,若D (m, 0),求m的值5、点B在直线y=-x+1上,且点B在第四象限,点A(2, 0)、0(0, 0),A ABo 的面积为2,求点B的坐标。

6直线y=- x+1与X轴y轴分别交点A B,以线段AB为直角边在第一象限内作等腰直角△ ABC N BAC=90 ,点P( a,])在第二象限,△ ABP勺面积与△ ABC7、如图,已知两直线y=0.5x+2.5和y=-x+1分别与X轴交于A、B两点,这两直线的交点为P(1)求点P的坐标(2)求厶PAB的面积8、已知直线y=ax+b (b>0)与y轴交于点N,与X轴交于点A且与直线y=kx交于点M (2, 3),如图它们与y轴围成的厶MoN勺面积为5,求(1)这两条直线的函数关系式(2)它们与X轴围成的三角形面积9、已知两条直线y=2x-3和y=5-x(1)求出它们的交点A的坐标(2)求出这两条直线与X轴围成的三角形的面积10、已知直线y=x+3的图像与X轴、y轴交于A B两点,直线I经过原点,与线段AB 交于点。

,把厶AoB的面积分为2:1的两部分,求直线I的解析式。

11、已知直线y=2x+3与直线y=-2x-1与y轴分别交于点A B(1)求两直线交点C的坐标(2)求厶ABe的面积(3)在直线BC上能否找到点P,使得△ APC的面积為6,求出点P的坐标,12、已知直线y=-x+2与X轴、y轴分别交于点A和点B,另一直线y=kx+b(k≠ 0)经过点C(1,0),且把△ AOB分为两部分,(1)若厶AOB被分成的两部分面积相等,求k和b的值(2)若厶AOB被分成的两部分面积为1:5,求k和b的值13、直线y=- x+3交X, y坐标轴分别为点A B,交直线y=2x-1于点P,直线-Iy=2x-1交X, y坐标轴分别为C。

一次函数面积专题附答案

一次函数面积专题附答案

一次函数面积专题学校:___________姓名:___________班级:___________考号:___________ 一、解答题1.如图,在平面直角坐标系中,△ABC 三个顶点的坐标分别是A (1,5),B (-3,-3)和C (7,2),求△ABC 的面积.【答案】30 【解析】 【分析】解法1:延长AC 交x 轴于点D ,先求出直线AC 的解析式,从而得出点D 的坐标,再利用=+-ABCAEDBEFCFDSSSS即可.解法2:分别过点A ,B ,C 向坐标轴作垂线,得到矩形BEFG ,然后利用矩形=---ABCBEACFACBGBEFG SS SSS就可得到所求三角形的面积.解法3:分别过点A ,B ,C 向坐标轴作垂线,得到矩形BEFG ,据勾股定理求得45AB =同理可得35AC =55BC =由勾股定理逆定理和三角形的面积公式即可得出答案. 解法4:作AM//y 轴交BC 于M ,先得出直线BC 解析式为1322y x =-,然后得出点M (1,-1),从而确定水平宽a =10,铅垂高h =6,再利用=+ABCABMACMS SS即可;【详解】解法1:如图2,延长AC 交x 轴于点D . 因为A (1,5),C (7,2),所以直线AC 的解析式为11122y x =-+,所以点D 的坐标为D (11,0).同理,可以求出点E 3,02⎛⎫- ⎪⎝⎭,点F (3,0),所以DE =252,EF =92,DF =8,所以1252783044ABCAEDBEFCFDSSSS=+-=+-=.解法2:如图3,分别过点A ,B ,C 向坐标轴作垂线,得到矩形BEFG . 因为A (1,5),B (-3,-3),C (7,2), 所以E (-3,5),F (7,5),G (7,-3),所以BE =8,BG =10,AE =4,AF =6,CF =3,CG =5, 所以801692530ABCBEACFACBGBEFG SS SSS=---=---=矩形.解法3:如图4,在Rt △ABE 中,因为A (1,5),B (-3,-3),E (-3,5), 所以根据勾股定理求得45AB = 同理可得35AC =55BC = 因为2224580125AC AB BC +=+==, 所以由勾股定理逆定理得90BAC ∠=︒. 所以1145353022ABCSAB AC =⋅=⨯=.解法4:如图5,由B (-3,-3),C (7,2)容易得到水平宽a =10, 所以直线BC 解析式为1322y x =-. 作AM//y 轴交BC 于M , 令x =1,代入1322y x =-得y =-1,则M (1,-1). 此时,可以得到铅垂高h =5+1=6. 所以1211130222ABCABMACMSSSAM h AM h a h =+=⋅+⋅=⋅=.2.如图,已知直线AB 经过A (2,0),B (0,1)两点,点P 的坐标为(-2,a ),且0<a <2.若△ABP 的面积是1,求a 的值.【答案】1 【解析】 【分析】方法1:先根据A 、B 两点坐标求出直线AB 的解析式为112y x =-+,再过点P 作QN x⊥轴,交直线AB 于点Q ,交x 轴于点N ,利用割补法建立关于a 的方程,求解即可;方法2:设直线BP 交x 轴于点Q ,利用P 、B 两点坐标求出直线PB 的解析式为112a y x -=+,进而求出Q 2,01a ⎛⎫⎪-⎝⎭,利用割补法建立关于a 的方程,求解即可; 方法3:过点O 作AB 的平行线于直线x =-2交于点P ,根据A 、B 两点坐标求出直线AB 的解析式为112y x =-+,由直线OP 与直线AB 平行,且过原点,得到直线OP 的解析式即可求解. 【详解】 方法1:如答图所示,过点P 作QN x ⊥轴,交直线AB 于点Q ,交x 轴于点N . 设直线AB 的解析式为y kx b =+.将A (2,0),B (0,1)两点坐标代入可得201k b b +=⎧⎨=⎩,解得121k b ⎧=-⎪⎨⎪=⎩. 则直线AB 的解析式为112y x =-+,令x =-2得y =2,则Q (-2,2). 由42(2)1ABPAQNPNAPQBSSSSa a =--=---=,解得a =1.方法2:设直线BP 交x 轴于点Q ,直线PB 的解析式为y kx b =+.将P (-2,a),B (0,1)两点坐标代入可得21k b ab -+=⎧⎨=⎩,解得121a k b -⎧=⎪⎨⎪=⎩. 则直线PB 的解析式为112ay x -=+.a =1时,显然成立; 1a ≠时,令y =0得x =2a 1-,则Q 2,01a ⎛⎫⎪-⎝⎭.如图所示,121212212121ABPABQPQASSSa a a ⎛⎫⎛⎫=-=⨯⨯--⨯⨯-= ⎪ ⎪--⎝⎭⎝⎭, 解得a =1,又1a ≠,故此时a 不存在.综上得a =1.方法3:如答图所示,过点O 作AB 的平行线于直线x =-2交于点P ,连接AP ,BP . 因为“平行线间的距离处处相等”,所以△ABP 与△AOB 同底等高,面积都是1. 设直线AB 的解析式为y kx b =+.将A (2,0),B (0,1)两点坐标代入可得201k b b +=⎧⎨=⎩,解得121k b ⎧=-⎪⎨⎪=⎩,则直线AB 的解析式为112y x =-+. 因为直线OP 与直线AB 平行,且过原点,所以直线OP 的解析式为12y x =-.令x =-2得a =1.3.如图,在平面直角坐标系中,一次函数y x b =-+的图象与正比例函数y kx =的图象都经过点()3,1B .(1)求一次函数和正比例函数的解析式;(2)若点(),P x y 是线段AB 上一点,且在第一象限内,连接OP ,设APO ∆的面积为S ,求面积S 关于x 的函数解析式. 【答案】(1)y =﹣x +4,13y x =;(2)S =2x (0<x ≤3). 【解析】 【分析】(1)把B (3,1)分别代入y =﹣x +b 和y =kx 即可得到结论; (2)根据三角形的面积公式即可得到结论. 【详解】(1)把B (3,1)分别代入y =﹣x +b 和y =kx 得1=﹣3+b ,1=3k ,解得:b =4,k 13=,∴y =﹣x +4,y 13=x ;(2)∵点P (x ,y )是线段AB 上一点,∴S 12OA =•xP 142x =⋅⋅=2x (0<x ≤3).【点睛】本题考查了两直线相交或平行,三角形面积的求法,待定系数法确定函数关系式,正确的理解题意是解题的关键.4.如图,在平面直角坐标系中,一次函数12y x m =-+的图象1l 分别与x ,y 轴交于A ,B 两点,正比例函数的图象2l 与1l 交于点()2,4C .(1)求m 的值及2l 的解析式;(2)若点M 是直线12y x m =-+上的一个动点,连接OM ,当AOM 的面积是BOC 面积的2倍时,请求出符合条件的点M 的坐标;(3)一次函数2y kx =+的图象为3l ,且1l ,2l ,3l 不能围成三角形,直接写出k 的值.【答案】(1)5m =,2l 的解析式为2y x =(2)()6,2M 或()142,(3)12k =-或2或1【解析】 【分析】(1)设2l 的解析式为1y k x =,将点C 的坐标代入12,l l 的解析式,即可求解;(2)设1(,5)2M a a -+,进而根据题意列出方程,解方程求解即可;(3)根据题意,则31l l ∥或32l l ∥,进而即可求得k 的值 (1)2l 与1l 交于点()2,4C .设2l 的解析式为1y k x =,将点C 的坐标代入12,l l 的解析式,可得, 1422m =-⨯+,142k =,解得5m =,12k =,∴2l 的解析式为2y x = (2)设1(,5)2M a a -+,152y x =-+,令0x =,则5y =,令0y =,则10x =()0,5B ∴,()10,0A又()2,4C∴11111525,105522222BOCC AOMM M SBO x S OA y y a =⨯=⨯⨯==⨯=⨯⨯=⨯-+ AOM 的面积是BOC 面积的2倍,∴1552a ⨯-+2=⨯5即1522a -+=解得6a =或14∴()6,2M 或()142, (3)一次函数2y kx =+的图象为3l ,且1l ,2l ,3l 不能围成三角形,∴31l l ∥或32l l ∥当3l 过点C (2,4)时,将点C 坐标代入y =kx +2并解得:k =l ,∴12k =-或2或1【点睛】本题考查了一次函数综合,求一次函数解析式,求一次函数与坐标轴围成的三角形面积,一次函数与坐标轴的交点问题,一次函数的平移,掌握一次函数的性质是解题的关键. 5.如图,在平面直角坐标系中,一次函数332y x =-+与y 轴交于点A ,与x 轴交于点B ,过点B 作AB 的垂线,垂线与反比例函数()10my m x=≠交于C 、D 两点,且AB BC =.(1)求反比例函数()10my m x=≠的表达式,及经过点C 、D 的一次函数表达式()20y kx b k =+≠;(2)请直接写出使12y y >的x 取值范围; (3)求出ABD △的面积. 【答案】(1)110y x =,22433y x =- (2)3x <-或05x << (3)656【解析】 【分析】(1)由一次函数y =﹣32x +3求得A 、B 的坐标,然后通过证得△ABO ≌△BCF ,求得C(5,2),然后利用待定系数法即可求得函数的解析式; (2)求得D 的坐标,然后根据图象即可求得;(3)利用三角形面积公式,根据S △ABD =S △ABE +S △ADE 求得即可. (1)解:∵332y x =-+ 与y 轴交于点A ,与x 轴交于点B ,∴A (0,3),B (2,0), 如图,过点C 作CF ⊥x 轴于点F ,∵AB ⊥CD ,∴∠ABO +∠CBF =90°, ∵∠ABO +∠BAO =90°, ∴∠BAO =∠CBF , 在△ABO 和△BCF 中,BAO CBF AOB BFC AB BC =⎧⎪=⎨⎪=⎩∠∠∠∠ , ∴△ABO ≌△BCF (AAS ), ∴BF =AO =3,CF =OB =2, ∴C (5,2), ∵反比例函数y 1=mx(m ≠0)过点C , ∴m =5×2=10, ∴反比例函数110y x=, 将B (2,0),C (5,2)代入y 2=kx +b (k ≠0)得2052k b k b +=⎧⎨+=⎩,解得2343k b ⎧=⎪⎪⎨⎪=-⎪⎩,∴经过点C 、D 的一次函数表达式为22433y x =- ; (2)由102433y xy x ⎧=⎪⎪⎨⎪=-⎪⎩, 解得52=⎧⎨=⎩x y 或3103x y =-⎧⎪⎨=-⎪⎩,∴D 横坐标为﹣3.∴y 1>y 2的x 取值范围:x <﹣3或0<x <5; (3)ABD ADE ABE S S S =+△△△ 12D AE x =1·2B AE x + 656=. 【点睛】本题主要考查了反比例函数与一次函数交点问题,求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.6.如图,已知一次函数1y k x b =+与反比例函数2k y x=的图象交于第一象限内的点()1,6A 和()6,B m ,与x 轴交于点C .(1)分别求出这两个函数的表达式;(2)①观察图象,直接写出不等式21k k x b x+≥的解集;②请连接OA 、OB ,并计算△AOB 的面积;(3)是否存在坐标平面内的点P ,使得由点O ,A ,C ,P 组成的四边形是平行四边形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.【答案】(1)反比例函数的表达式是:y =6x ,一次函数表达式是:y =﹣x +7 (2)①x <0或1≤x ≤6;352(3)存在点P 的坐标为(8,6)或(﹣6,6)或(6,﹣6)使得由点O ,A ,C ,P 组成的四边形是平行四边形【解析】【分析】(1)直接利用待定系数法分别求出一次函数与反比例函数解析式;(2)①利用函数图象结合其交点得出不等式k 1x +b ≥2k x的解集;②如图所示,过点A 作AD ⊥x 轴于D ,过点B 作BE ⊥x 轴于B ,则2==32AOD BOE k S S =△△,再根据=AOB BOE AOD ADEB S S S S ++△△△梯形进行求解即可;(3)利用平行四边形的性质结合当AP 为边和AP 为对角线两种情况分别得出答案即可.(1)解:∵点A (1,6)在反比例函数y =2k x 的图象上, ∴6=21k , 解得:k 2=6,∴反比例函数的表达式是:y =6x; ∵B (6,m )在反比例函数y =6x的图象上, ∴m =66=1,∴B (6,1),将点A (1,6),B (6,1)代入y =k 1x +b ,可得: 11616k b k b =+⎧⎨=+⎩, 解得:117k b =-⎧⎨=⎩, ∴一次函数表达式是:y =﹣x +7;(2)解:①∵点A (1,6),B (6,1),∴不等式k 1x +b ≥2k x的解集是:x <0或1≤x ≤6; 故答案为:x <0或1≤x ≤6;②如图所示,过点A 作AD ⊥x 轴于D ,过点B 作BE ⊥x 轴于B , ∴2==32AOD BOE k S S =△△, ∵A (1,6),B (6,1),∴OD =1,AD =6,OE =6,BE =1,∴DE =5,∵=AOB BOE AOD ADEB S S S S ++△△△梯形,∴()35===22AOB ADEB AD BE DE S S +⋅△梯形;(3)解:∵C是直线AB与x轴的交点,∴点C的坐标为(7,0),如图3-1所示:当AP为边时,∴AP∥OC,AP=OC=7,∵A(1,6),∴P点坐标为:(8,6)或(-6,6);当AP为对角线时,如图3-2所示,∵AP与OC的中点坐标相同,∴1072260022PPxy++⎧=⎪⎪⎨++⎪=⎪⎩,∴66PPxy=⎧⎨=-⎩,∴点P的坐标为(6,-6);综上所述存在点P的坐标为(8,6)或(﹣6,6)或(6,﹣6)使得由点O,A,C,P 组成的四边形是平行四边形.【点睛】此题主要考查了反比例函数的综合以及待定系数法求一次函数解析式、平行四边形的性质等知识,正确数形结合分析是解题关键.7.如图,一次函数y=kx+b(k>0)的图象经过点C(−3,0),且与两坐标轴围成的三角形的面积为3.(1)求一次函数的解析式;(2)若反比例函数myx的图象与该一次函数的图象交于一、三象限内的A,B两点,且AC=2BC,求m的值.【答案】(1)一次函数的解析式为y=23x+2;(2)m的值为12.【解析】【分析】(1)根据一次函数y=kx+b(k>0)的图象经过点C(-3,0),得到-3k+b=0①,点C到y轴的距离是3,解方程即可得到结论;(2)如图,作AD⊥x轴于点D,BE⊥x轴于点E,则AD∥BE.根据相似三角形的性质得到AD=2BE.设B点纵坐标为-n,则A点纵坐标为2n.求得A(3n-3,2n),B(-3-32 n,-n),根据反比例函数y=mx的图象经过A、B两点,列方程即可得到结论.(1)解:∵一次函数y=kx+b(k>0)的图象经过点C(-3,0),∴-3k+b=0①,点C到y轴的距离是3,∵k>0,∴b>0,∵一次函数y=kx+b的图象与y轴的交点是(0,b),∴12×3×b=3,解得:b=2.把b=2代入①,解得:k=23,则函数的解析式是y=23x+2.故这个函数的解析式为y=23x+2;(2)解:如图,作AD⊥x轴于点D,BE⊥x轴于点E,则AD∥BE.∵AD∥BE,∴△ACD∽△BCE,∴AD ACBE BC=2,∴AD=2BE.设B点纵坐标为-n,则A点纵坐标为2n.∵直线AB的解析式为y=23x+2,∴A(3n-3,2n),B(-3-32n,-n),∵反比例函数y=mx的图象经过A、B两点,∴(3n-3)•2n=(-3-32n)•(-n),解得n1=2,n2=0(不合题意舍去),∴m=(3n-3)•2n=3×4=12.【点睛】本题考查了反比例函数与一次函数的交点问题,待定系数法求一次函数的解析式,三角形的面积,相似三角形的判定与性质,一次函数、反比例函数图象上点的坐标特征,难度适中.正确求出一次函数的解析式是解题的关键.8.如图,反比例函数kyx=的图象与一次函数12y x=-的图象分别交于M,N两点,已知点M(-2,m).(1)求反比例函数的表达式;(2)点P为y轴上的一点,当点P的坐标为(5时,求△MPN的面积.【答案】(1)2 yx =-(2)5【解析】【分析】(1)把M(-2,m)代入函数式y=-12x中,求得m的值,从而求得M的坐标,代入y=kx可求出函数解析式;(2)根据反比例函数与正比例函数的中心对称性求得N的坐标,然后利用S△MPN=S△MOP+S△NOP求得即可.(1)解:∵点M(-2,m)在一次函数y=-12x的图象上,∴m=-12×(-2)=1.∴M(-2,1).∵反比例函数y=kx的图象经过点M(-2,1),∴k=-2×1=-2.∴反比例函数的表达式为y=-2x;(2)解:∵反比例函数y=kx的图象与一次函数y=-12x的图象分别交于M,N两点,M(-2,1),∴N(2,-1),∵点P为y轴上的一点,点P的坐标为(0,5),∴OP=5,∴S△MPN=S△MOP+S△NOP=12×5×2+12×5×2=25.【点睛】本题考查了反比例函数与一次函数的交点问题,本题利用了待定系数法求函数解析式以及利用中心对称求两个函数的交点,三角形的面积等知识.9.如图,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数ymx(m≠0)的图象相交于A,B两点,过点A作AD⊥x轴于点D,AO=5,OD:AD=3:4,B点的坐标为(﹣6,n)(1)求一次函数和反比例函数的表达式;(2)求△AOB的面积;(3)P是y轴上一点,且△AOP是等腰三角形,请直接写出所有符合条件的P点坐标.【答案】(1)y23=x+2,y12x=;(2)△AOB的面积S9=;(3)P点坐标为:(0,8)或(0,5)或(0,﹣5)或(0,258)【解析】【分析】(1)设OD=3a,AD=4a,则AO=5a=5,解得:a=1,故点A(3,4),故反比例函数的表达式为:y=12x,故B(-6,2),将点A、B的坐标代入一次函数表达式,即可求解;(2)△AOB的面积S=12×OM×(xA-xB)=12×2×(3+6)=9;(3)分AP=AO、AO=PO、AP=PO三种情况,分别求解即可.(1)解:AO=5,OD:AD=3:4,设:OD=3a,AD=4a,则AD=5a=5,解得:a=1,故点A(3,4),则m=3×4=12,故反比例函数的表达式为:y12x=,故B(﹣6,﹣2),将点A、B的坐标代入一次函数表达式y=kx+b得:4326k bk b=+⎧⎨-=-+⎩,解得:232kb⎧=⎪⎨⎪=⎩,故一次函数的表达式为:y23=x+2;(2)解:设一次函数y23=x+2交y轴于点M(0,2),∵点A(3,4),B(﹣6,﹣2),∴△AOB的面积S12=⨯OM×(xA﹣xB)12=⨯2×(3+6)=9;(3)解:设点P(0,m),而点A、O的坐标分别为:(3,4)、(0,0),AP2=9+(m﹣4)2,AO2=25,PO2=m2,当AP=AO时,9+(m﹣4)2=25,解得:m=8或0(舍去0);当AO=PO时,同理可得:m=±5;当AP=PO时,同理可得:m258 =;综上,P点坐标为:(0,8)或(0,5)或(0,﹣5)或(0,258).【点睛】本题考查了反比例函数与一次函数综合,等腰三角形的判定与性质,利用形数结合解决此类问题,是非常有效的方法.10.如图,一次函数y=kx+b(k≠0)的图象与反比例函数y=mx(m≠0)的图象交于二、四象限内的A、B两点,与x轴交于C点,点A的坐标为(−3,4),点B的坐标为(6,n).(1)求该反比例函数和一次函数的解析式;(2)连接OB,求△AOB的面积;(3)在x轴上是否存在点P,使△APC是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.【答案】(1)反比例函数的解析式为y=-12x;一次函数的解析式为y=-23x+2;(2)S△AOB=9;(3)存在.P点坐标为(-3,0)、(-173,0).【解析】【分析】(1)先把A(-3,4)代入反比例函数解析式得到m的值,从而确定反比例函数的解析式为y =-12x;再利用反比例函数解析式确定B 点坐标为(6,-2),然后运用待定系数法确定所求的一次函数的解析式为y =-23x +2; (2)先依据一次函数求得点C 的坐标,进而得到△AOB 的面积;(3)过A 点作AP 1⊥x 轴于P 1,AP 2⊥AC 交x 轴于P 2,可得P 1点的坐标为(-3,0);再证明Rt △AP 2P 1∽Rt △CAP 1,利用相似比计算出P 1P 2的长度,进而得到OP 2的长度,可得P 2点的坐标为(-173,0),于是得到满足条件的P 点坐标. (1)解:将A (-3,4)代入y =m x ,得m =-3×4=-12, ∴反比例函数的解析式为y =-12x ; 将B (6,n )代入y =-12x,得6n =-12, 解得n =-2,∴B (6,-2), 将A (-3,4)和B (6,-2)分别代入y =kx +b (k ≠0),得3462k b k b -+=⎧⎨+=-⎩, 解得232k b ⎧=-⎪⎨⎪=⎩, ∴所求的一次函数的解析式为y =-23x +2; (2)解:当y =0时,-23x +2=0, 解得:x =3,∴C (3,0),∴S △AOC =12×3×4=6,S △BOC =12×3×2=3, ∴S △AOB =6+3=9;(3)解:存在.过A 点作AP 1⊥x 轴于P 1,AP 2⊥AC 交x 轴于P 2,如图,∴∠AP 1C =90°,∵A 点坐标为(-3,4),∴P 1点的坐标为(-3,0);∵∠P 2AC =90°,∴∠P 2AP 1+∠P 1AC =90°,而∠AP 2P 1+∠P 2AP 1=90°,∴∠AP 2P 1=∠P 1AC ,∴Rt △AP 2P 1∽Rt △CAP 1, ∴11211AP PP CP AP =,即12464PP =, ∴P 1P 2=83, ∴OP 2=3+83=173, ∴P 2点的坐标为(-173,0), ∴满足条件的P 点坐标为(-3,0)、(-173,0). 【点睛】本题考查了反比例函数与一次函数交点问题,解决问题的关键是了解反比例函数图象上点的坐标特征和待定系数法确定函数解析式;会运用三角形相似知识求线段的长度.。

一次函数的面积问题

一次函数的面积问题

一次函数的面积问题
一次函数是初中数学知识体系中比较重要的部分,可以说是每年中考的必考内容,其中将一次函数与面积综合问题一起进行考查,是目前一类热点题型,这充分体现了数形结合与分类讨论的数学思想,要求学生理解点坐标的几何意义,能在坐标系中表示出线段的长度,会将面积问题转化为线段、坐标的关系问题,同时对于较复杂的问题能够依据题意画出图象,并借助图象进行分析与解答。

本部分主要讲解了一次函数与面积的相关综合问题,旨在帮助老师、学生总结一次函数与面积问题的相关类型。

1.三角形的底在坐标轴上
三角形的底在坐标轴上时,利用点到坐标轴的距离求出高后直接求面积即可.
【注意】点到坐标轴的距离要带绝对值.
2.三角形的底平行于坐标轴
三角形的底平行于坐标轴时,利用平行于坐标轴的直线上的两点间距离求出底和高,最后用面积公式求出面积即可.
3.补形法
如果三角形的边都不平行于坐标轴,可以采用补形法构造出有边平行于坐标轴的三角形或四边形后再求解.
4.分割法
通过作平行于坐标轴的直线将三角形分成左右两个三角形或上下两个三角形来求解面积.
5.平行线转移法
通过作平行线,利用平行线间的距离处处相等和底高关系转移三角形面积.。

沪教版八年级 一次函数中的面积问题,带答案

沪教版八年级   一次函数中的面积问题,带答案

1.能由一次函数的知识求有关图形的面积;2.能由已知图形的面积解决一次函数的有关问题; 3.体会一次函数的有关面积问题的解决思路.(此环节设计时间在10—15分钟)回顾上次课的预习思考内容,要求学生先画出一次函数的大致图形再解题.1.直线1y x =--与x 轴相交于点 ,与y 轴相交于点 ,与坐标轴围成的三角形面积为 .2.一次函数的图像经过(3,5),(—4,—9),则此一次函数的解析式为 ,一次函数与坐标轴围成的三角形面积为 .3.直线34y x =-+与直线21y x =-相交于P ,直线34y x =-+与x 轴相交于点A ,直线21y x =- 与x 轴相交于点B ,交点P 的坐标为 ,△ABP 面积为 . 参考答案:1.(—1,0),(0,—1),12; 2.21y x =-,14; 3.4(,0)3,1(,0)2,(1,1),512; 归纳总结:一次函数与坐标轴围成的面积可以推到出相应公式:22b S k∆=(此环节设计时间在50-60分钟)案例1:问题1:如图,已知直线l :22y x =-+与直线m :y x =交于点T ,求直线l 和直线m 与x 轴所围成的图形面积。

参考答案:解:由题意:(3,0),(0,3)A B - ∴1922AOBS OA OB =⋅= ∴11113232BOC AOBSOB C D S =⋅==∴11C D = 代入3y x =+得1(1,2)C -, 设直线l 的解析式:y kx = 代入1(1,2)C -得2k =- ∴直线l 的解析式2y x =- 同理:2(2,1)C -,∴直线l 的解析式12y x =-试一试:已知直线2y x =-+与x 轴、y 轴分别交于A 点和B 点,另一条直线(0)y kx b k =+≠经过点C (1,0),且把△AOB 分成两部分。

若△AOB 被分成的两部分面积比为1:5,求k 和b 的值.参考答案:22,33k b =-=或2,2k b ==-此环节设计时间在30分钟左右(20分钟练习+10分钟互动讲解)。

专题07 一次函数中的面积问题精讲(解析版)

专题07 一次函数中的面积问题精讲(解析版)

专题07 一次函数中的面积问题精讲一、平面直角坐标系中面积的几种求法面积问题是中考的一个重点知识点,考查方式灵活多样,很多题目有创新性,能很好考查学生的灵活运用知识的能力.我们除了要熟知常见图形的面积公式外,在平面直角坐标系中还要懂得以下几种面积的方法: 方法一、割补法割补方法不仅仅只有一种,要灵活使用.方法二、铅垂高、水平宽法=21=2ABC ABC S CD OAS CE OB⨯⨯⨯⨯△△ 二、典型例题选讲题1. 如图1-1所示,把Rt △ABC 放在直角坐标系内,其中∠CAB =90°,BC =5,点A 、B 的坐标分别为(1,0)、(4,0).将△ABC 沿x 轴向右平移,当点C 落在直线y =2x ﹣6上时,线段BC 扫过的面积为( )图1-1A .4B .8C .16D .12 【答案】C .【解析】如图1-2所示.图1-2设C 点移动到直线y =2x ﹣6上的点为C ’. ∵点A 、B 的坐标分别为(1,0)、(4,0), ∴AB =3.∵∠CAB =90°,BC =5,∴在Rt △ABC 中,由勾股定理得:AC =4. ∴A ′C ′=4.∵点C ′在直线y =2x -6上, ∴2x -6=4,解得 x =5.即OA ′=5, ∴CC ′=5-1=4.∴四边形BB ’C ’C 是平行四边形,面积 =4×4=16. 即线段BC 扫过的面积为16,故答案为:C .题2. 已知一次函数2y x a =+与y x b =-+的图象都经过A (2-,0),且与y 轴分别交于B 、C 两点,则△ABC 的面积为 ( ).A . 4B . 5C . 6D . 7 【答案】C .【解析】因为y =2x +a 与y =-x +b 的图象都经过A (-2,0), 所以0=2×(-2)+a , 解得:a =4, 又因为0=2+b 解得:b =-2y =2x +4、y =-x -2与y 轴分别交于B 、C 两点 ∴B (0.4),C (0,-2),三角形ABC 的面积=2×6÷2=6. 故答案为:C .题3. (河北中考)如图3-1所示,在平面直角坐标系xOy 中,A (0,5),直线x =-5与x 轴交于点D ,直线y =-38x -398与x 轴及直线x =-5分别交于点C ,E .点B ,E 关于x 轴对称,连接AB . (1)求点C ,E 的坐标及直线AB 的解析式; (2)若S =S △CDE +S 四边形ABDO ,求S 的值;(3)在求(2)中S 时,嘉琪有个想法:“将△CDE 沿x 轴翻折到△CDB 的位置,而△CDB 与四边形ABDO 拼接后可看成△AOC ,这样求S 便转化为直接求△AOC 的面积,如此不更快捷吗?”但大家经反复验算,发现S △AOC ≠S ,请通过计算解释他的想法错在哪里.图3-1【答案】见解析【解析】解:(1)y =-38x -398,令y =0,有0=-38x -398,解得:x =-13,即C (-13,0).令x =-5,则有y =-38×(-5)-398=-3,即E (-5,-3).∵点B ,E 关于x 轴对称, ∵B (-5,3). ∵A (0,5),∵设直线AB 的解析式为y =kx +5, ∵-5k +5=3, ∵k =25,∵直线AB 的解析式为y =25x +5.(2)由(1)知E (-5,-3), ∵DE =3. ∵C (-13,0),∵CD =-5-(-13)=8, ∵S ∵CDE =12CD ·DE =12.由题意知OA =5,OD =5,BD =3, ∵S 四边形ABDO =12(BD +OA )·OD =20,∵S =S ∵CDE +S 四边形ABDO =12+20=32.(3)由(2)知S =32,在∵AOC 中,OA =5,OC =13, ∵S ∵AOC =12OA ·OC =652=32.5,∵S ≠S ∵AOC .理由:由(1)知直线AB 的解析式为y =25x +5,令y =0,则0=25x +5,∵x =-252≠-13,∵点C 不在直线AB 上,即点A ,B ,C 不在同一条直线上, ∵S ∵AOC ≠S .题4. 已知一次函数的图象过点(0,3),且与两坐标轴所围成的三角形面积为3, 则其表达式为( ) A . y =1.5x +3B . y =-1.5x +3C . y =1.5x +3或y =-1.5x +3D . y =1.5x -3或y =-1.5x -3【答案】C .【解析】解:设该一次函数与x 轴的交点坐标为(a ,0), 由题意得:1332a ⨯⨯=, 解得:a =±2, 当a =2时,设直线解析式为y =kx +3,将(2,0)代入,求得k =-1.5; 同理求得,当a =-2时,k =1.5.所以函数解析式为:y =1.5x +3或y =-1.5x +3,故答案为C .题5. 如图5-1所示,已知一次函数y =kx +b 的图象经过A (-2,-1),B (1,3)两点,并且交x 轴于点C ,交y 轴于点D .图5-1(1)求该一次函数的解析式;(2)求∵AOB 的面积. 【答案】见解析.【解析】解:(1)把A (-2,-1),B (1,3)代入y =kx +b ,得:⎩⎪⎨⎪⎧-2k +b =-1,k +b =3. 解得⎩⎨⎧k =43,b =53.∵一次函数的解析式为y =43x +53.(2)把x =0代入y =43x +53,得y =53,∵D 点坐标为(0,53).∵S ∵AOB =S ∵AOD +S ∵BOD =12×53×2+12×53×1=52.题6. 已知,一次函数y kx b =+的图像与正比例函数13y x =交于点A ,并与y 轴交于点(0,4)B -,△AOB 的面积为6,则kb = 【答案】203-或4. 【解析】解:因为一次函数y kx b =+的图像与y 轴交于点(0,4)B -, ∴b =-4,OB =4, 设A 点横坐标为a , 因为△AOB 的面积为6, 所以162a OB ⨯⨯=, 即a =3或-3,点A 的坐标为(3,1)或(-3,-1) 将A 点坐标代入4y kx =-,得: k =53或-1 所以kb = 203-或4. 故答案为:203-或4.题7. 如图7-1所示,点G ,D ,C 在直线a 上,点E ,F ,A ,B 在直线b 上,若a ∥b ,Rt △GEF 从如图所示的位置出发,沿直线b 向右匀速运动,直到EG 与BC 重合.运动过程中△GEF 与矩形ABCD 重合部分的面积(S )随时间(t )变化的图象大致是( )图7-1A B C D【解析】根据题意可得:①F、A重合之前没有重叠面积;②F、A重叠之后,重叠部分面积逐渐增大,且增加的速度越来越快;③△EFG完全进入且F与B重合之前,重叠部分的面积是三角形的面积,不变,④F与B重合之后,重叠部分的面积逐渐减小,减小的速度越来越慢,直至最后重叠部分的面积为0.综上所述,只有B选项图形符合.故答案为:B.题8. 如图8-1所示,已知直线y=2x+3与直线y=-2x-1.(1)求两直线交点C的坐标;(2)求∵ABC的面积.(3)在直线BC上能否找到点P,使得S∵APC=6,若能,请求出点P的坐标,若不能请说明理由。

一次函数中的面积问题(学生版)

一次函数中的面积问题(学生版)

知识点:1、关于一次函数的面积问题利用面积求解析式 2、利用解析式求面积以及对于动点问题学会熟练的解决 考点分析:1、一次函数的解析式与面积的充分结合重点:1、一次函数与面积的综合结合与运用 2、对于动点问题与一次函数的熟练结合与把握 一次函数相关的面积问题画出草图,把要求的图形构建出来,根据面积公式,把直线与坐标轴的交点计算出来,把坐标转化成线段,代入面积公式求解。

规则图形 (公式法)不规则图形 (切割法) 不含参数问题含参数问题 (用参数表示点坐标,转化成线段)注意:坐标的正负、线段的非负性。

求面积时,尽量使底或高中的一者确定下来(通过对图像的观察,确定底和高),然后根据面积公式,建立等式。

一、典例精讲一、利用面积求解析式1、直线b x y +=2与坐标轴围成的三角形的面积是9,则b =________.2、已知直线y=x+3的图象与x 轴、y 轴分别交于A 、B 两点,直线 经过原点,与线段AB 交于点C ,把,△AOB 的面积分为2:l 两部分,求直线 名的解析式.3、如图,已知直线PA :)0(>+=n n x y 与x 轴交于A,与y 轴交于Q,另一条直线x n m m x y 与)(2>+-=轴交于B,与直线PA 交于P 求: (1)A,B,Q,P 四点的坐标(用m 或n 表示)若AB=2,且S 四边形PQOB=65,求两个函数的解析式.3、已知直线2+-=x y 与x 轴、y 轴分别交于A 点和B 点,另一条直线b kx y +=)0(≠k 经过点)0,1(C ,且把AOB∆分成两部分(1)若AOB ∆被分成的两部分面积相等,则k 和b 的值(2)若AOB ∆被分成的两部分面积比为1:5,则k 和b 的值5、已知一次函数332y x =-+的图象与y 轴、x 轴分别交于点A 、B ,直线y kx b =+经过OA 上的三分之一点D ,且交x 轴的负半轴于点C ,如果AOB DOC S S ∆∆=,求直线y kx b =+的解析式.二、利用解析式求面积 1、直线b kx y +=过点A (-1,5)和点)5,(-m B 且平行于直线x y -=,O 为坐标原点,求AOB∆的面积.2、 如图,所示,一次函数b kx y +=的图像经过A ,B 两点,与x 轴交于C求:(1)一次函数的解析式; (2)AOC ∆的面积3、已知,直线y=2x+3与直线y=-2x-1.求两直线交点C 的坐标;(2)求△ABC 的面积.(3)在直线BC 上能否找到点P,使得S △APC =6, 若能,请求出点P 的坐标,若不能请说明理由。

2022中考专项·一次函数中的图形面积问题(解析版)

2022中考专项·一次函数中的图形面积问题(解析版)

专题01 一次函数中地图形面积问题【模型展示】一、如何求下列阴影部分三角形地面积二、如何求下面两个阴影三角形地面积【例题精讲】1、如图,直线6y kx =+与x 轴、y 轴分别相交于点,E F ,点E 地坐标为(8,0)-,点A 地坐标为(6,0)-.点(,)P x y 是第二象限内地直线上地一个动点.(1)求k 地值(2)当点P 运动过程中,试写出OPA ∆地面积S 与x 地函数关系式,并写出自变量x 地取值范围;(3)求当P 运动到什么位置(求P 地坐标)时,四边形AOFP 地面积为1838,并说明理由.xx解:(1)∵直线y = kx +6与x 轴相交于点E (﹣8,0) ∵086k =-+ 解得 34k = (2)对于直线364y x =+,∵点P (x ,y )是第二象限内地直线上地一个动点, ∵可设3,64P x x ⎛⎫+ ⎪⎝⎭ (-8<x <0), 则P 点到x 轴得距离为364h x =+, 又A (﹣6,0), ∵AO=66-= ∵11366224OPA S AO h x ∆⎛⎫=⋅=⨯⨯+ ⎪⎝⎭∵ 9184S x =+(-8<x <0) (3)对于直线364y x =+, 由 x=0,得 6y = ∵F (0,6), 则OF=6 ∵3,64P x x ⎛⎫+ ⎪⎝⎭(-8<x <0)到y 轴地距离为x =-x ∵()116322OFP S FO x x x ∆=⋅=⨯⨯-=- ∵OPA OFP AOFP S S S ∆∆+四边形= ∵()918318348x x ++-= 解得132x =-,符合题意, 此时37648x += ∵P 137,28⎛⎫- ⎪⎝⎭2、如图,直线y =+与x 轴相交于点A ,与直线y =相交于点P .(1)求点P 地坐标.(2)请判断OPA ∆地形状并说明理由.(3)动点E 从原点O 出发,以每秒1个单位地速度沿着O P A →→地路线向点A 匀速运动(E 不与点,O A 重合),过点E 分别作EF x ⊥轴于F ,EB y ⊥轴于B ,设运动t 秒时,矩形EBOF 与OPA ∆重叠部分地面积为S ,求:S 与t 之间地函数关系式.参考答案:(1)点P地坐标为(2,(2)△POA 是等边三角形(3)当0<t ≤4时,如图,在Rt ∵EOF 中,∵∵EOF=60°,OE=t ,∵EF=32t,OF=12t ,∵212S OF EF =⋅= 当4<t <8时,如图,设EB 与OP 相交于点C ,∵CE=PE=t -4,AE=8-t ,∵AF=4-12t,EF=3(8)2t - ∵OF=OA -AF=12t∵21()28S CE OF EF =+⋅=-+-【针对训练】1、如图,一次函数y =k 1x +b 地图象与y 轴交于点B (0,﹣6),与x 轴交于点C ,且与正比例函数y =k 2x 地图象交于点A (1,﹣4).(1)分别求出这两个函数地表达式及△AOC 地面积;(2)将正比例函致y =k 2x 地图象沿y 轴向下平移3个单位长度后得到直线l ,请写出直线l 对应地函数表达式.解:(1)∵一次函数经过点B(0,﹣6),A(1,﹣4),得到,∴,∵y=2x﹣6,∴C(3,0),∵正比例函数经过A(1,﹣4),∴k2=﹣4,∴y=﹣4x;∴△AOC地面积=×3×4=6;(2)将y=﹣4x沿着y轴向下平移3个单位长度后得到y=﹣4x﹣3.2、如图,在平面直角坐标系中,把点A(﹣2,3)向右平移4个单位长度,再向下移2个单位长度得到点B.(1)求直线AB地解析式;(2)直线AB与x轴交于点C,将直线OB沿BA方向从点B开始平移到点A停止,直线OB在平移过程中交AB于点E,交x轴于点F,记△EFC地面积为S,求S地取值范围.解:(1)∵把点A(﹣2,3)向右平移4个单位长度,再向下移2个单位长度得到点B, ∴B(2,1),设直线AB地解析式为y=kx+b,∴,解得,∴直线AB地解析式为y=﹣+2;(2)由直线AB:y=﹣x+2可知C(4,0),∵B(2,1),∴直线OB地解析式为y=x,∴设平移后地解析式为y=x+n,把A(﹣2,3)代入得3=+n,解得n=4,∴直线EF经过A时地解析式为y=+4,令y=0,则x=﹣8,∴此时S有最大值,S=CF•y A=(8+4)×3=18,当直线EF与OB重合时,S有最小值,S=OC•y B=×2=4,∴S地取值范围为4≤S≤18.3、如图,在平面直角坐标系中,直线l1与x轴交于点A,与y轴交于点B(0,4),OA=OB,点C(﹣3,n)在直线l1上.(1)求直线l1和直线OC地解析式;(2)点D是点A关于y轴地对称点,将直线OC沿y轴向下平移,记为l2,若直线l2过点D,与直线l1交于点E,求△BDE地面积.解:(1)∵点B(0,4),OA=OB,∴OA=OB==2,∴A(﹣2,0),设AB解析式y=kx+b,∴解得:,∴直线I1地解析式:y=2x+4,∵C(﹣3,n)在直线I1上,∴n=﹣3×2+4n=﹣2∴C(﹣3,﹣2)设OC地解析式:y=k1x∴﹣2=﹣3k1k1=,∴直线OC解析式y=x;(2)∵D点与A点关于y轴对称∴D(2,0)设DE解析式y=x+b′,∴0=×2+b′,∴b′=﹣,∴DE解析式y=x﹣,当x=0,y=﹣,解得:,∴E(﹣4,﹣4),∴S△BDE=×(2+2)(4+4)=16.4、如图,直线l1:y=﹣x与直线l2相交于点A,已知点A地纵坐标为,直线l2交x轴于点D,已知点D横坐标为﹣4,将直线l1向上平移3个单位,得到直线l3,交x轴于点C,交直线l2于点B.(1)求直线l2地函数表达式;(2)求△BOC地面积.解:(1)∵直线l1:y=﹣x与直线l2相交于点A,已知点A地纵坐标为, ∴A(﹣1,),设直线l2地函数表达式为y=kx+b,将A(﹣1,),D(﹣4,0)代入得, 解得,∴直线l2为y=x+2;(2)将直线l1向上平移3个单位,得到直线l3为y=﹣x+3,解得,∴B(,),在直线l3为y=﹣x+3中,令y=0,则x=2,∴C(2,0),∴S△BOC==.5、如图,在平面直角坐标系中,一次函数y=kx+b地图象与x轴交于点A(﹣3,0),与y轴交于点B,且与正比例函数y=x地图象交点为C(m,4).(1)求一次函数y=kx+b地解析式;(2)求△BOC地面积;(3)若点D在第二象限,△DAB为等腰直角三角形,则点D地坐标为.解:(1)∵点C在正比例函数图象上,∴m=4,解得:m=3,∵点C(3,4)、A(﹣3,0)在一次函数图象上,∴代入一次函数解析式可得,解这个方程组得,∴一次函数地解析式为y=x+2;(2)在中,令x=0,解得y=2,∴B(0,2)∴S△BOC=×2×3=3;(3)过点D1作D1E⊥y轴于点E,过点D2作D2F⊥x轴于点F,如图, ∵点D在第二象限,△DAB是以AB为直角边地等腰直角三角形,∴AB=BD2,∵∠D1BE+∠ABO=90°,∠ABO+∠BAO=90°,∴∠BAO=∠EBD1,∵在△BED1和△AOB中,∴△BED1≌△AOB(AAS),∴BE=AO=3,D1E=BO=2,即可得出点D地坐标为(﹣2,5);同理可得出:△AFD2≌△AOB,∴FA=BO=2,D2F=AO=3,∴点D地坐标为(﹣5,3),∵∠D1AB=∠D2BA=45°,∴∠AD3B=90°,∴D3(,),综上可知点D地坐标为(﹣2,5)或(﹣5,3)或(,).故答案为:(﹣2,5)或(﹣5,3)或(,).6、如图1,在平面直角坐标系中,OB=10,F是y轴正半轴上一点.(1)若OF=2,求直线BF地解析式;(2)设OF=t,△OBF地面积为s,求s与t地函数关系(直接写出自变量t地取值范围);(3)如图3,在(2)地条件下,过点B作BA⊥x轴,点C在x轴上,OF=OC,连接AC,CD⊥直线BF于点D,∠ACB =2∠CBD,AC=13,OF=OC,AC.BD交于点E,求此时t地值.解:(1)∵OB=10,OF=2,∴B(﹣10,0),F(0,2),设直线BF地解析式为y=kx+b,∵直线y=kx+b经过点B(﹣10,0),F(0,2),∴,解得:,∴直线BF地解析式为y=x+2;(2)△OBF地面积为S==5t(t>0);(3)如图,延长AB至点R,使BR=AB,连接CR,延长CD交y轴于点T,过点T,作TM∥x轴交BA地延长线于点M,过点T作TK⊥CR交RC地延长线于点K,连接RT,∵AB⊥BC,AB=BR,∴BC垂直平分AR,∴AC=CR=13,∴∠ACB=∠RCB,设∠CBD=α,则∠ACB=2α,∵BD⊥CD,∴∠BDC=90°,∴∠BCD=90°﹣α,∵∠ACB=∠RCB=2α,∴∠ACK=180°﹣4α,∴∠KCT=∠BCK﹣∠BCD=∠BCA+∠ACK﹣∠BCD=90°﹣α, ∴∠KCT=∠BCD,∵TK⊥KR,OT⊥OC,∴OT=TK,∵TC=TC,∴Rt△OTC≌Rt△KTC(HL),∴OC=CK=TK=t,∵OF=OC,∠BOF=∠TOC,∠FBO=∠OTC,∴△BOF≌△TOC(AAS),∴OB=OT=10,∴TK=10,∵∠ABO+∠BOT=90°+90°=180°.∴MB∥OT,∵MT∥OB,∴四边形OBMT为平行四边形,∵OB=OT,∠BOT=90°.∴四边形OBMT为正方形,∴MB=MT=OT=10,∴MT=TK,∵RT=RT,∴Rt△RMT≌Rt△RTK(HL),∴RK=RM=CR+CK=13+t,∴BR=RM﹣MB=3+t,∵BC=OB+OC=10+t,在Rt△BRC中,BR2+BC2=RC2,∴(3+t)2+(10+t)2=132,解得:t=2(t=﹣15舍去).∴t地值为2.7、如图1.在平面直角坐标系中,一次函数y=﹣x+2地图象与x轴,y轴分别交于点A.点C,过点1作AB⊥x轴,垂足为点A,过点C作CB⊥y轴,垂足为点C,两条垂线相交于点B.(1)线段OC,OA,AC地长分别为OC=,OA=,AC=,∠ACO=度.(2)将图1中地△ABC折叠,使点A与点C重合,再将折叠后地图形展开,折痕DE交AB于点D,交AC于点E,连接CD,如图2,求线段AD地长;(3)点M是直线AC上一个动点(不与点A、点C重合).过点M地另一条直线MN与y轴相交于点N.是否存在点M,使△AOC与△MCN全等?若存在,请求出点M地坐标;若不存在,请说明理由.解:(1)∵一次函数y=﹣x+2地图象与x轴,y轴分别交于点A,点C, ∴A(2,0),C(0,2),∴OA=2,OC=2,∵AB⊥x轴,CB⊥y轴,∠AOC=90°,∴四边形OABC是矩形,∴AB=OC=8,BC=OA=4,在Rt△ABC中,根据勾股定理得,AC===4, ∴∠ACO=30°.故答案为:2;2;4;30.(2)由(1)知,BC=2,AB=2,由折叠知,CD=AD,在Rt△BCD中,BD=AB﹣AD=2﹣AD,根据勾股定理得,CD2=BC2+BD2,即:AD2=4+(2﹣AD)2,∴AD=;(3)①如图1,MN⊥y轴,若△AOC≌△MNC,则CN=CO,∴M点地纵坐标为4,代入y=﹣x+2得,x=﹣2,∴.②如图2,MN⊥AC,MP⊥y轴,∵S△MCN=S△AOC=,∴CN=AC=4,∴PM=,∴M点地橫坐标为或﹣,代入y=﹣x+2得,y=﹣3+2或y=3+2.∴M点地坐标为()或(﹣).综合以上可得M点地坐标为(﹣2,4)或()或(﹣).8、在平面直角坐标系xOy中,直线y=﹣x+2与x轴、y轴分别交于A、B两点,直线BC交x轴负半轴于点C,∠BCA=30°,如图①.(1)求直线BC地解析式.(2)在图①中,过点A作x轴地垂线交直线CB于点D,若动点M从点A出发,沿射线AB方向以每秒个单位长度地速度运动,同时,动点N从点C出发,沿射线CB方向以每秒2个单位长度地速度运动,直线MN 与直线AD交于点S,如图②,设运动时间为t秒,当△DSN≌△BOC时,求t地值.(3)若点M是直线AB在第二象限上地一点,点N、P分别在直线BC、直线AD上,是否存在以M、B、N、P为顶点地四边形是菱形.若存在,请直接写出点M地坐标;若不存在,请说明理由.解:(1)∵直线y=﹣x+2与x轴、y轴分别交于A、B两点,∴x=0时,y=2,y=0时,x=2,∴A(2,0),B(0,2),∴OB=AO=2,在Rt△COB中,∠BOC=90°,∠BCA=30°,∴OC=2,∴C(﹣2,0),设直线BC地解析式为y=kx+b,代入B,C两点地坐标得,,∴k=,b=2,∴直线BC地解析式为y=x+2;(2)分别过点M,N作MQ⊥x轴,NP⊥x轴,垂足分别为点Q,P.(Ⅰ)如图1,当点M在线段AB上运动时,∵CN=2t,AM=t,OB=OA=2,∠BOA=∠BOC=90°,∴∠BAO=∠ABO=45°,∵∠BCO=30°,∴NP=MQ=t,∵MQ⊥x轴,NP⊥x轴,∴∠NPQ=∠MQA=90°,NP∥MQ,∴四边形NPQM是矩形,∴NS∥x轴,∵AD⊥x轴,∴AS∥MQ∥y轴,∴四边形MQAS是矩形,∴AS=MQ=NP=t,∵NS∥x轴,AS∥MQ∥y轴,∴∠DNS=∠BCO,∠DSN=∠DAO=∠BOC=90°,∴当DS=BO=2时,△DSN≌△BOC(AAS),∵D(2,+2),∴DS=+2﹣t,∴+2﹣t=2,∴t=(秒);(Ⅱ)当点M在线段AB地延长线上运动时,如图2,同理可得,当DS=BO=2时,△DSN≌△BOC(AAS),∵DS=t﹣(+2),∴t﹣(+2)=2,∴t=+4(秒),综合以上可得,t=秒或t=+4秒时,△DSN≌△BOC.(3)存在以M、B、N、P为顶点地四边形是菱形:M(﹣2﹣2,2+4)或M(﹣2﹣4,2+6)或M(﹣2+2,2).∵M是直线AB在第二象限上地一点,点N,P分别在直线BC,直线AD上,∴设点M(a,﹣a+2),N(b,b+2),P(2,c),点B(0,2),(Ⅰ)当以BM,BP为邻边构成菱形时,如图3,∵∠CBO=60°,∠OBA=∠OAB=∠PAF=45°,∴∠DBA=∠MBN=∠PBN=75°,∴∠MBE=45°,∠PBF=30°,∴MB=ME,PF=AP,PB=2PF=AP,∵四边形BMNP是菱形,∴,解得,a=﹣2﹣2,∴M(﹣2﹣2,2+4)(此时点N与点C重合),(Ⅱ)当以BP为对角线,BM为边构成菱形时,如图4,过点B作EF∥x轴,ME⊥EF,NF⊥EF,同(Ⅰ)可知,∠MBE=45°,∠NBF=30°,由四边形BMNP是菱形和BM=BN得:,解得:a=﹣2﹣4,∴M(﹣2﹣4,2+6),(Ⅲ)当以BM为对角线,BP为边构成菱形时,如图5,作NE⊥y轴,BF⊥AD,∴∠BNE=30°,∠PBF=60°,由四边形BMNP是菱形和BN=BP得,,解得:a=﹣2+2,∴M(﹣2+2,2).综合上以得出,当以M、B、N、P为顶点地四边形是菱形时,点M地坐标为:M(﹣2﹣2,2+4)或M (﹣2﹣4,2+6)或M(﹣2+2,2).。

中考数学复习考点知识归类讲解08 一次函数中的面积问题

中考数学复习考点知识归类讲解08 一次函数中的面积问题

中考数学复习考点知识归类讲解专题08 一次函数中的面积问题知识对接考点一、怎样解一次函数中的面积问题(1)如果三角形有一边在坐标轴上(或平行于坐标轴)直接用面积公式求面积.(2)如果三角形任何一边都不在坐标轴上,也不平行于坐标轴,则需转化为几个有边在坐标轴上的三角形面积之和(或差).专项训练一、单选题1.在平面直角坐标系中,点O(0,0),A(5,3),B(4,0),直线y=mx﹣5m+3将△OAB 分成面积相等的两部分,则m的值为()A.1 B.2 C.3 D.﹣12.将一次函数y=2x+4的图象与坐标轴围成的三角形面积是()A.4 B.5 C.6 D.73.如图,在平面直角坐标系中,已知点A坐标为(4-,5),点B坐标为(0,3),点D在x轴上.若线段DB交直线12y x=-于点C,当点D从点O向x轴负半轴方向运动时,△ABC面积的变化趋势是()A .先变大再变小B .先变小再变大C .无法确定D .保持不变 4.直线24y x =-与两坐标轴所围成三角形的面积等于()A .2B .4C .8D .165.一次函数y =2x +4的图象与坐标轴分别交于A ,B 两点,O 为坐标原点,则△AOB 的面积()A .6B .8C .2D .46.如图,点A ,B ,C 在一次函数y = -2x +m 的图象上,它们的横坐标依次为-1,1,2,分别过这些点作x 轴与y 轴的垂线,则图中的阴影部分的面积之和是()A .1B .3C .3(m -1)D .()322m -7.如图,直线l 分别与x 轴,y 轴相交于点A (5,0),B (0,4),点E (2.5,m )在l 上,直线y =kx +b 经过点E ,并与x 轴相交于点F .若EF 将△AOB 分割为左右两部分,且四边形OFEB 与△FEA 的面积之比为3:2,则线段OF 的长为( )A .0.5B .1C .1.5D .28.已知a ,b ,c 分别是Rt △ABC 的三条边长,c 为斜边长,∠C =90°,我们把关于x的形如y =a b x c c 的一次函数称为“勾股一次函数”.若点P (﹣1)在“勾股一次函数”的图象上,且Rt △ABC 的面积是92,则c 的值是( )A .6B .12C .D .9.如图①,在矩形ABCD 中,动点P 从点B 出发,沿BC ,CD ,DA 运动至点A 停止.设点P 运动的路程为x ,ABP △的面积为y ,如果y 关于x 的函数图像如图②所示,则ABC 的面积是()A .6B .12C .16D .2110.如图,在平面直角坐标系xOy 中,半径为2的⊙O 与x 轴的正半轴交于点A ,点B 是⊙O 上一动点,点C 为弦AB 的中点,直线y =34x ﹣3与x 轴、y 轴分别交于点D 、E ,则△CDE 面积的最小值为( )A .3.5B .2.5C .2D .1.2二、填空题 11.在平面直角坐标系中,□OABC 的边OC 落在x 轴的正半轴上,且点C (4,0),B (6,2),直线y =2x +1以每秒1个单位的速度向右平移,经过_______秒该直线可将□OABC 的面积平分.12.已知平行四边形ABCD 三个顶点的坐标分别为A (﹣1,0),B (5,0),C (7,4).直线y =kx +1将平行四边形ABCD 分成面积相等的两部分,则k 的值为______.13.在平面直角坐标系xOy 中,直线24y x =-+与两坐标轴围成三角形的面积_______.14.直线m 过A (1,﹣4)和B (5,4)两点,则它与坐标轴围成的面积=__.15.如图,已知一次函数y =kx +b 的图象与反比例函数y =m x的图象交于点A (3,a ),点B (14﹣2a ,2).若一次函数图象与y 轴交于点C ,点D 为点C 关于原点O 的对称点,则△ACD 的面积____.三、解答题16.(1)如图1,梯形ABCD 中对角线交于点O ,AB ∥CD ,请写出图中面积相等的三角形;(2)如图2,在直角坐标系中,O 是坐标原点,点A (﹣2,3),B (2,1).①分别求三角形ACO 和三角形BCO 的面积及点C 的坐标;②请利用(1)的结论解决如下问题:D 是边OA 上一点,过点D 作直线DE 平分三角形ABO 的面积,并交AB 于点E (要有适当的作图说明).17.如图,已知四边形ABCD 的四个顶点的坐标为(1,1),(3,1)A B ---,(1,2),(1,1)C D -.请用不含刻度的直尺和圆规作图并解答问题:(1)请在图中作出这个平面直角坐标系;(2)过点A 作一条直线把四边形ABCD 的面积二等分,并直接写出该直线对应的函数表达式.18.如图,在平面直角坐标系中,过点()0,6C 的直线AC 与直线OA 相交于点()4,2A ,动点M 在线段OA 和射线AC 上运动,试解决下列问题:(1)求直线AC 的表达式;(2)求OAC 的面积;(3)是否存在点M ,使OMC 的面积是OAC 的面积的14?若存在,求出此时点M 的坐标;若不存在,请说明理由.19.ABC 在平面直角坐标系中的位置如图所示,点C 在y 轴正半轴上,6OC =,OA ,OB60OB -=.过点A 的直线交BC 于点D ,ABD △的面积等于ABC 面积的13,请解答下列问题:(1)求点A ,点D 的坐标:(2)过点B 作BH AC ⊥于H ,交y 轴于点G ,求线段OG 的长;(3)点M 在y 轴上,平面内是否存在点N ,使以A ,B ,M ,N 为顶点的四边形是菱形?若存在,直接写出点N 坐标;若不存在,请说明理由.20.设一次函数11y k x b =+(10k ≠)的图像为直线1l ,一次函数22y k x b =+(20k ≠)的图像为直线2l ,若12k k =,且12b b ≠,我们就称直线1l 与直线2l 互相平行.解答下面的问题:(1)求过点()1,4P 且与已知直线21y x =--平行的直线l 的函数表达式;(2)设(1)中的直线l 分别与x 轴、y 轴交于A 、B 两点,直线21y x =--分别与x 轴、y 轴交于C 、D 两点,求四边形ABCD 的面积.21.如图,已知直线11:l y x b =+经过点()5,0A -,交y 轴于点B ,直线22:24l y x =--与直线11:l y x b =+交于点C ,交y 轴于点D .(1)求b 的值.(2)求BCD △的面积(3)当210y y ≤<时,则x 的取值范围是________.(直接写出结果)22.如图,已知直线AB 过点A (5,0)、B (0,﹣5),交直线OC 于点C ,且直线OC 的解析式为y 32x =-.(1)求直线AB 的解析式;(2)求△AOC 的面积;(3)若点P 在直线OC 上,且△BCP 的面积是△AOC 面积的2倍,求点P 的坐标.23.如图,直线1l :23y x =-与x 轴交于点A ,直线2l 经过点()()4,0,0,2B C ,与1l 交于点D .l的解析式;(1)求直线2(2)求ABD△的面积.。

最新一次函数之面积问题(讲义及答案)资料

最新一次函数之面积问题(讲义及答案)资料

一次函数之面积问题(讲义)一、知识点睛1. 坐标系中处理面积问题,要寻找并利用_____________的线,通常有以下三种思路:①__________________(规则图形);②__________________(分割求和、补形作差); ③__________________(例:同底等高). 2. 坐标系中面积问题的处理方法举例①割补求面积(铅垂法):2△APB S ah = 12△APB S ah= ②转化求面积:l 1l 2如图,满足S △ABP =S △ABC 的点P 都在直线l 1,l 2上.二、精讲精练1. 如图,在平面直角坐标系中,已知A (-1,3),B (3,-2),则△AOB 的面积为___________.2. 如图,直线y =-x +4与x 轴、y 轴分别交于点A ,点B ,点P的坐标为(-2,2),则S △P AB =___________.第2题图 第3题图3. 如图,直线AB :y =x +1与x 轴、y 轴分别交于点A ,点B ,直线CD :y =kx -2与x 轴、y 轴分别交于点C ,点D ,直线AB 与直线CD 交于点P .若S △APD =4.5,则k =__________. 4. 如图,直线112y x =+经过点A (1,m ),B (4,n),点C 的坐标为(2,5),求△ABC 的面积.5.如图,在平面直角坐标系中,已知A(2,4),B(6,6),C(8,2),求四边形OABC的面积.6.如图,直线112y x=-+与x轴、y轴分别交于A,B两点,C(1,2),坐标轴上是否存在点P,使S△ABP=S△ABC?若存在,求出点P的坐标;若不存在,请说明理由.7.如图,已知直线m的解析式为112y x=-+,与x轴、y轴分别交于A,B两点,以线段AB为直角边在第一象限内作等腰Rt△ABC,且∠BAC=90°,点P为直线x=1上的动点,且△ABP的面积与△ABC的面积相等.(1)求△ABC的面积;(2)求点P的坐标.8.如图,直线P A:y=x+2与x轴、y轴分别交于A,Q两点,直线PB:y=-2x+8与x轴交于点B.(1)求四边形PQOB的面积.(2)直线P A上是否存在点M,使得△PBM的面积等于四边形PQOB的面积?若存在,求出点M的坐标;若不存在,请说明理由.三、回顾与思考_____________________________________________________________________________________________________________________________________________________________________【参考答案】一、知识点睛1.横平竖直;①公式法;②割补法;③转化法.二、精讲精练 1.722.83.524.925.246.123451(0)(50)(0)(10)22P P P P --,或,或,或,7.(1)52;(2)12(13)(12)P P -,或,8.(1)10;(2)12162242()()3333M M -,或,。

一次函数面积问题专题(含答案)

一次函数面积问题专题(含答案)

一次函数面积问题专题(含答案)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(一次函数面积问题专题(含答案))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为一次函数面积问题专题(含答案)的全部内容。

一次函數面積問題1、如图,一次函数的图像与x轴交于点B(—6,0),交正比例函数的图像于点A,点A的横坐标为—4,△ABC的面积为15,求直线OA的解析式。

2、直线y=x+3的图像与x轴、y轴分别交于A、B两点,直线a经过原点与线段AB交于C,把△ABO的面积分为2:1的两部分,求直线a的函数解析式.3、直线PA是一次函数y=x+n的图像,直线PB是一次函数y=-2x+m(m〉n>0)的图像,(2)四边形PQOB的面积是,AB=2,求点P的坐标4、△AOB的顶点O(0,0)、A(2,1)、B(10,1),直线CD⊥x轴且△AOB面积二等分,若D(m,0),求m的值5、点B在直线y=—x+1上,且点B在第四象限,点A(2,0)、O(0,0),△ABO 的面积为2,求点B的坐标。

6、直线y=—x+1与x轴y轴分别交点A、B,以线段AB为直角边在第一象限内作等腰直角△ABC,ÐBAC=90°,点P(a,)在第二象限,△ABP的面积与△ABC面积相等,求a的值.7、如图,已知两直线y=0.5x+2.5和y=—x+1分别与x轴交于A、B两点,这两直线的交点为P(1)求点P的坐标(2)求△PAB的面积8、已知直线y=ax+b(b〉0)与y轴交于点N,与x轴交于点A且与直线y=kx交于点M(2,3),如图它们与y轴围成的△MON的面积为5,求(1)这两条直线的函数关系式(2)它们与x轴围成的三角形面积9、已知两条直线y=2x-3和y=5—x(1)求出它们的交点A的坐标(2)求出这两条直线与x轴围成的三角形的面积。

一次函数面积问题专题(含答案)

一次函数面积问题专题(含答案)

一次函數面積問題1、如图,一次函数的图像与x轴交于点B(-6,0),交正比例函数的图像于点A,点A的横坐标为-4,△ABC的面积为15,求直线OA的解析式。

2、直线y=x+3的图像与x轴、y轴分别交于A、B两点,直线a经过原点与线段AB交于C,把△ABO的面积分为2:1的两部分,求直线a的函数解析式。

3、直线PA是一次函数y=x+n的图像,直线PB是一次函数y=-2x+m(m>n>0)的图像,(1)用m、n表示A、B、P的坐标(2)四边形PQOB的面积是,AB=2,求点P的坐标4、△AOB的顶点O(0,0)、A(2,1)、B(10,1),直线CD⊥x轴且△AOB面积二等分,若D(m,0),求m的值5、点B在直线y=-x+1上,且点B在第四象限,点A(2,0)、O(0,0),△ABO 的面积为2,求点B的坐标。

6、直线y=-x+1与x轴y轴分别交点A、B,以线段AB为直角边在第一象限内作等腰直角△ABC, BAC=90°,点P(a,)在第二象限,△ABP的面积与△A BC 面积相等,求a的值.7、如图,已知两直线y=0.5x+2.5和y=-x+1分别与x轴交于A、B两点,这两直线的交点为P(1)求点P的坐标(2)求△PAB的面积8、已知直线y=ax+b(b>0)与y轴交于点N,与x轴交于点A且与直线y=kx交于点M(2,3),如图它们与y轴围成的△MON的面积为5,求(1)这两条直线的函数关系式(2)它们与x轴围成的三角形面积9、已知两条直线y=2x-3和y=5-x(1)求出它们的交点A的坐标(2)求出这两条直线与x轴围成的三角形的面积10、已知直线y=x+3的图像与x轴、y轴交于A、B两点,直线l经过原点,与线段AB交于点C,把△AOB的面积分为2:1的两部分,求直线l的解析式。

11、已知直线y=2x+3与直线y=-2x-1与y轴分别交于点A、B(1)求两直线交点C的坐标(2)求△ABC的面积(3)在直线BC上能否找到点P,使得△APC的面积為6,求出点P的坐标,若不能请说明理由。

一次函数压轴题专题突破6:一次函数与面积问题(含解析)

一次函数压轴题专题突破6:一次函数与面积问题(含解析)

一次函数压轴题之面积问题1.如图,直线y=﹣2x+7与x轴、y轴分别相交于点C、B,与直线y=x相交于点A.(1)求A点坐标;(2)如果在y轴上存在一点P,使△OAP是以OA为底边的等腰三角形,则P点坐标是;(3)在直线y=﹣2x+7上是否存在点Q,使△OAQ的面积等于6?若存在,请求出Q点的坐标,若不存在,请说明理由.2.如图,直线y=﹣2x+4与x轴、y轴分别交于A、B两点,P是直线AB上的一个动点,点C的坐标为(﹣4,0),PC交y轴点于D,O是原点.(1)求△AOB的面积;(2)线段AB上存在一点P,使△DOC≌△AOB,求此时点P的坐标;(3)直线AB上存在一点P,使以P、C、O为顶点的三角形面积与△AOB面积相等,求出P点的坐标.3.直线y=kx+3和x轴、y轴的交点分别为B、C,∠OBC=30°,点A的坐标是(﹣,0),另一条直线经过点A、C.(1)求点B的坐标及k的值;(2)求证:AC⊥BC;(3)点M为直线BC上一点(与点B不重合),设点M的横坐标为x,△ABM的面积为S.①求S与x的函数关系式;②当S=6时,求点M的坐标.4.如图1,已知直线y=2x+2与y轴,x轴分别交于A,B两点,以B为直角顶点在第二象限作等腰Rt△ABC (1)求点C的坐标,并求出直线AC的关系式;(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于点M,P(﹣,k)是线段BC上一点,在x轴上是否存在一点N,使△BPN面积等于△BCM面积的一半?若存在,请求出点N的坐标;若不存在,请说明理由.5.已知y关于x的一次函数y=mx+2﹣2m(m≠0且m≠1),其图象交x轴于点A,交y轴于点B.(0为坐标系的原点)(1)若OB=6,求这时m的值;(2)对于m≠0的任意值,该函数图象必过一定点,请求出定点的坐标;(3)是否存在m的值,使△OAB的面积为8?若存在,求出m的值;若不存在,请说明理由.6.如图,在平面直角坐标系中,O为坐标原点,直线y=﹣x+8与x轴交于点A,与y轴交于点B.(1)A点坐标为,B点坐标为;(2)若动点D从点B出发以4个单位/秒的速度沿射线BO方向运动,过点D作OB的垂线,动点E从点O 出发以2个单位/秒的速度沿射线OA方向运动,过点E作OA的垂线,两条垂线相交于点P,若D、E两点同时出发,此时,我们发现点P在一条直线上运动,请求这条直线的函数解析式.(3)若点P也在直线y=3x上,点Q在坐标轴上,当△ABP的面积等于△BAQ面积时,请直接写出点Q的坐标.7.如图,一次函数y=x+3的函数图象与x轴,y轴分别交于点A,B.(1)若点P(﹣2,m)为第三象限内一个动点,请问△OPB的面积会变化吗?若不变,请求出面积;若变化,请说明理由.(2)在(1)的条件下,试用含m的代数式表示四边形APOB的面积;若△APB的面积是6,求m的值.8.如图1,在直角坐标系中,过A(2,0),B(0,﹣4)两点的直线与直线y=﹣x+5交于点E,直线y=﹣x+5分别交x轴、y轴于C,D两点,(1)求直线AB的解析式和点E的坐标;(2)在射线EB上有一点M,使得点M到直线DC的距离为3,求点M的坐标;(3)在(1)的基础上,过点O,A,P,Q(0,2)作正方形OAPQ如图2,将正方形OAPQ沿x轴正方向平移,得到正方形O′A′P′Q′,当点A与点C重合时停止移动.设点A'的坐标为(t,0),正方形O′A′P′Q′与△ACE重叠部分的面积为S,直接写出S与t之间的函数关系式和相应t的取值范围.9.如图,直线OC、BC的函数关系式分别是:y1=x和y2=﹣2x+6,动点P(x,0)在OB上运动(0<x<3).(1)求点C的坐标,并回答当x取何值时y2<y1?(2)P点在运动过程中,当△COP为等腰三角形时,求点P的坐标;(3)是否存在点P,使CP将△COB分成的两部分面积之比为1:2?若存在,请求出点P的坐标;若不存在,请说明理由.10.如图,点A(0,1)、B(2,0),点P从(4,0)出发,以每秒2个单位长度沿x轴向坐标原点O匀速运动,同时,点Q从点B出发,以每秒1个单位长度沿x轴向坐标原点O匀速运动,过点P作x轴的垂线l,过点Q作AB的垂线l2,它们的交点为M.设运动的时间为t(0<t<2)秒(1)写出点M的坐标(用含t的代数式表示);(2)设△MPQ与△OAB重叠部分的面积为S,试求S关于t的函数关系式及t的取值范围.11.直线y=x﹣6与x轴、y轴分别交于A、B两点,点E从B点出发,以每秒1个单位长度的速度沿线段BO向O点移动(不考虑点E与B、O两点重合的情况),过点E作EF∥AB,交x轴于点F,将四边形ABEF沿直线EF折叠后,与点A对应的点记作点C,与点B对应的点记作点D,得到四边形CDEF,设点E的运动时间为t秒.(1)画出当t=2时,四边形ABEF沿直线EF折叠后的四边形CDEF(不写画法);(2)在点E运动过程中,CD交x轴于点G,交y轴于点H,试探究t为何值时,△CGF的面积为;(3)设四边形CDEF落在第一象限内的图形面积为S,求S关于t的函数解析式,并求出S的最大值.12.如图,在平面直角坐标系中,以点B(0,8)为端点的射线BG∥x轴,点A是射线BG上一个动点(点A与点B不重合),在射线AG上取AD=OB,作线段AD的垂直平分线,垂足为E,且与x轴交于点F,过点A 作AC⊥OA,交射线EF于点C,连接OC、CD.设点A的横坐标为t.(1)用含t的式子表示点E的坐标为;(2)当t为何值时,∠OCD=180°?(3)当点C与点F不重合时,设△OCF的面积为S,求S与t之间的函数解析式.13.如图,在平面直角坐标系中,直线与x轴交于点A,与y轴交于点B,动点P从点A出发沿折线AO﹣OB﹣BA运动,点P在AO、OB、BA上运动的速度分别为每秒3个单位长度、4个单位长度、5个单位长度,直线l从与x轴重合的位置出发,以每秒个单位长度的速度沿y轴向上平移,移动过程中直线l 分别与直线OB、AB交于点E、F,若点P与直线l同时出发,当点P沿折线AO﹣OB﹣BA运动一周回到点A 时,直线l和点P同时停止运动,设运动时间为t秒,请解答下列问题:(1)求A、B两点的坐标;(2)当t为何值时,点P与点E重合?(3)当t为何值时,点P与点F重合?(4)当点P在AO﹣OB上,且点P、E、F不在同一直线上时,设△PEF的面积为S,请直接写出S关于t的函数解析式,并写出t的取值范围.14.如图1,直线y=﹣2x+8分别交y轴、x轴于A、B两点.(1)求点A、B的坐标:(2)如图1,点P为线段AB上的动点(点P不与点A、B重合),过点P作PE⊥x轴于点E,作PF⊥y轴于点F,求矩形PEOF的面积S1与点P的横坐标m之间的函数关系式,并求出当m为何值时,S1最大,最大值是多少?(3)在(2)的条件下,当S1最大时,将直线l从与直线AB重合的位置出发,沿y轴负方向向下平移a(0<a≤8)个单位,设直线l扫过矩形PEOF的面积为S2,求S2与a之间的函数关系式,并在图2中画出他们之间的函数关系图象(画出草图即可).15.如图,在平面直角坐标系中,矩形OABC的边OA=2,OC=6,在OC上取点D将△AOD沿AD翻折,使O 点落在AB边上的E点处,将一个足够大的直角三角板的顶点P从D点出发沿线段DA→AB移动,且一直角边始终经过点D,另一直角边所在直线与直线DE,BC分别交于点M,N.(1)填空:D点坐标是(,),E点坐标是(,);(2)如图1,当点P在线段DA上移动时,是否存在这样的点M,使△CMN为等腰三角形?若存在,请求出M点坐标;若不存在,请说明理由;(3)如图2,当点P在线段AB上移动时,设P点坐标为(x,2),记△DBN的面积为S,请直接写出S与x 之间的函数关系式,并求出S随x增大而减小时所对应的自变量x的取值范围.16.如图,直线y=﹣x+4与坐标轴分别交于点A、B,与直线y=x交于点C.在线段OA上,动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,同时动点P从点A出发向点O做匀速运动,当点P、Q其中一点停止运动时,另一点也停止运动.分别过点P、Q作x轴的垂线,交直线AB、OC于点E、F,连接EF.若运动时间为t秒,在运动过程中四边形PEFQ总为矩形(点P、Q重合除外).(1)求点P运动的速度是多少?(2)当t为多少秒时,矩形PEFQ为正方形?(3)当t为多少秒时,矩形PEFQ的面积S最大?并求出最大值.17.如图1,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连接AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD.(1)求直线AB的解析式;(2)当点P运动到点(,0)时,求此时DP的长及点D的坐标;(3)是否存在点P,使△OPD的面积等于?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.18.如图,在直角梯形OABC中,AB∥OC,BC⊥x轴于点C,A(1,2),C(3,0).动点P从O点出发,沿x 轴正方向以每秒1个单位长度的速度移动.过P点作PQ⊥直线OA,垂足为Q.设P点移动的时间为t秒(0<t≤7),△OPQ与直角梯形OABC重叠部分的面积为S.(1)写出点B的坐标:;(2)当t=7时,求直线PQ的解析式,并判断点B是否在直线PQ上;(3)求S关于t的函数关系式;(4)连接AC.是否存在t,使得PQ分△ABC的面积为1:3?若存在,直接写出t的值;若不存在,请说明理由.19.如图,梯形OABC中,BC∥AO,∠BAO=90°,B(﹣3,3),直线OC的解析式为y=﹣x,将△OBC 绕点C顺时针旋转60°后,O到O1,B到B1,得△O1B1C.(1)求证:点O1在x轴上;(2)将点O1运动到点M(﹣4,0),求∠B1MC的度数;(3)在(2)的条件下,将直线MC向下平移m个单位长度,设直线MC与线段AB交于点P,与线段OC的交于点Q,四边形OAPQ的面积为S,求S与m的函数关系式,并求出m的取值范围.20.如图(1)(2),直线y=﹣x+4与两坐标轴分别相交于A、B点,点M是线段AB上任意一点(A、B两点除外),过M分别作MC⊥OA于点C,MD⊥OB于D.(1)若点M的横坐标是a,则点M的纵坐标是(用含a的代数式表示)(2)当点M在AB上运动时,你认为四边形OCMD的周长是否发生变化?并说明理由;(3)当点M运动到什么位置时,四边形OCMD的面积有最大值?最大值是多少?(4)当四边形OCMD为正方形时,将四边形OCMD沿着x轴的正方向移动,设平移的距离为b(0<b<4),正方形O′CMD与△AOB重叠部分的面积为S.试求S与b的函数关系式并画出该函数的图象.21.如图1,在等腰梯形ABCD中,AB∥CO,E是AO的中点,过点E作EF∥OC交BC于F,AO=4,OC=6,∠AOC=60°.现把梯形ABCO放置在平面直角坐标系中,使点O与原点重合,OC在x轴正半轴上,点A、B在第一象限内.(1)求点E的坐标;(2)点P为线段EF上的一个动点,过点P作PM⊥EF交OC于点M,过M作MN∥AO交折线ABC于点N,连接PN.设PE=x.△PMN的面积为S.①求S关于x的函数关系式;②△PMN的面积是否存在最大值,若不存在,请说明理由.若存在,求出面积的最大值;(3)另有一直角梯形EDGH(H在EF上,DG落在OC上,∠EDG=90°,且DG=3,HG∥BC).现在开始操作:固定等腰梯形ABCO,将直角梯形EDGH以每秒1个单位的速度沿OC方向向右移动,直到点D与点C重合时停止(如图2).设运动时间为t秒,运动后的直角梯形为E′D′G′H′;探究:在运动过程中,等腰梯ABCO 与直角梯形E′D′G′H′重合部分的面积y与时间t的函数关系式.22.如图,直线AB与两坐标轴分别相交于A、B点,OA=OB=4,点M是线段AB上一动点(A、B两点除外),过M分别作MC⊥OA于点C,MD⊥OB于点D.(1)写出直线AB的函数解析式;(2)设点M的横坐标为x,写出四边形OCMD的面积S与x的函数关系式,当点M运动到什么位置时,四边形OCMD的面积有最大值?最大值是多少?(3)探究:当四边形OCMD为正方形时,将四边形OCMD沿着x轴的正方向移动,设平移的距离为a(0<a <4),正方形OCMD与△AOB重叠部分的面积为S,试求S与a的函数关系式,并画出该函数的图象.23.如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线y=﹣+b交折线OAB于点E.记△ODE的面积为S.(1)当点E在线段OA上时,求S与b的函数关系式;并求出b的范围;(2)当点E在线段AB上时,求S与b的函数关系式;并求出b的范围;(3)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形OA1B1C1,试探究OA1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出该重叠部分的面积;若改变,请说明理由.24.如图a,矩形ABCD的两条边在坐标轴上,点D与原点重合,对角线BD所在直线函数式为,AD =8,矩形ABCD沿DB方向以每秒一个单位长度运动,同时点P从点A出发做匀速运动,沿矩形ABCD的边经B到达终点C,用了14秒.(1)求矩形ABCD周长;(2)如图b,当P到达B时,求点P坐标;(3)当点P在运动时,过点P作x轴、y轴的垂线,垂足分别为E、F,①如图c,当P在BC上运动时,矩形PEOF的边能否与矩形ABCD的边对应成比例?若能,求出时间t的值,若不能,说明理由;②如图d,当P在AB上运动时,矩形PEOF的面积能否等于256?若能,求出时间t的值,若不能,说明理由;25.如图,等腰Rt△ABC中,∠ACB=90°,在直角坐标系中如图摆放,点A的坐标为(0,2),点B的坐标为(6,0).(1)直接写出线段AB的中点P的坐标为;(2)求直线OC的解析式;(3)动点M、N分别从O点出发,点M沿射线OC以每秒个单位长度的速度运动,点N沿线段OB以每秒1个长度的速度向终点B运动,当N点运动到B点时,M、N同时停止运动,设△PMN的面积为S(S≠0)运动时间为t秒,求S与t的函数关系式,并直接写出自变量t的取值范围.26.如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A (﹣15,0),AB=25,AC=15,点C在第二象限,点P是y轴上的一个动点,连接AP,并把△AOP绕着点A逆时钟方向旋转.使边AO与AC 重合.得到△ACD.(1)求直线AC的解析式;(2)当点P运动到点(0,5)时,求此时点D的坐标及DP的长;(3)是否存在点P,使△OPD的面积等于5?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.27.如图在Rt△AOB中,∠BAO=90°,O为坐标原点,B在x轴正半轴上,A在第一象限.OA和AB的长是方程两根,且OA<AB.(1)求直线AB的解析式;(2)将△AOB沿垂直于x轴的线段CD折叠(点C在x轴上,且不与点B重合,点D在线段AB上),使点B 落在x轴上,对应点为E,设点C的坐标为(x,0).①是否存在这样的点C,使得△AED为直角三角形?若存在,求出点C的坐标;若不存在,请说明理由;②设△CDE与△AOB重叠部分的面积为S,直接写出S与点C的横坐标x之间的函数关系式(包括自变量x 的取值范围).28.如图所示,四边形OABC是矩形,点A、C的坐标分别为(3,0),(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线y=﹣x+b交折线OAB于点E.(1)记△ODE的面积为S,求S与b的函数关系式;(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,试探究O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出该重叠部分的面积;若改变,请说明理由.29.如图1,在Rt△A′OB′中,∠B′A′0=90°,A′,B′两点的坐标分别为(2,﹣1)和(0,﹣5),将A′0B′绕点O逆时针方向旋转90°,使OB’落在x轴正半轴上,得△AOB,点A′的对应点是A,点B’的对应点是B.(1)写出A,B两点的坐标,并求直线AB的解析式;(2)如图2,将△AOB沿垂直于x轴的线段CD折叠,(点C在x轴上,且不与点B重合,点D在线段AB上),使点B落在x轴上,对应点为点E,设点C的坐标为(x,0).①当x为何值时,线段DE平分△AOB的面积;②是否存在这样的点使得△AED为直角三角形?若存在,求出点C的坐标;若不存在,请说明理由.③设△CDE与△AOB重叠部分的面积为S,直接写出S与点C的横坐标x之间的函数关系式(包括自变量x 的取值范围).30.如图,已知直线l1:y=x+与直线l2:y=﹣2x+16相交于点C,l1、l2分别交x轴于A、B两点.矩形DEFG的顶点D、E分别在直线l1、l2上,顶点F、G都在x轴上,且点G与点B重合.(1)求△ABC的面积;(2)求矩形DEFG的边DE与EF的长;(3)若矩形DEFG从原地出发,沿x轴的反方向以每秒1个单位长度的速度平移,设移动时间为t(0≤t ≤12)秒,矩形DEFG与△ABC重叠部分的面积为S,求S关于t的函数关系式,并写出相应的t的取值范围.31.如图,直线l的解析式为y=﹣x+4,它与x轴、y轴分别相交于A、B两点,平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴、y轴分别相交于M、N两点,运动时间为t秒(0<t≤4)(1)求A、B两点的坐标;(2)用含t的代数式表示△MON的面积S1;(3)以MN为对角线作矩形OMPN,记△MPN和△OAB重合部分的面积为S2;①当2<t≤4时,试探究S2与之间的函数关系;②在直线m的运动过程中,当t为何值时,S2为△OAB的面积的?32.如图,在平面直角坐标系中,两个函数的图象交于点A.动点P从点O开始沿OA 方向以每秒1个单位的速度运动,运动时间是t.作PQ∥X轴交直线BC于点Q,以PQ为一边向下作正方形PQMN,设它与△OAB重叠部分的面积为S,如图1.(1)求点A的坐标.(2)当t 为何值时,正方形PQMN的边MN恰好落在x轴上?如图2.(3)当点P在线段OA上运动时,①求出S与运动时间t(秒)的关系式.②S是否有最大值?若有,求出t为何值时,S有最大值,并求出最大值;若没有,请说明理由.33.如图,直线l1的解析表达式为:y=﹣3x+3,且l1与x轴交于点D,直线l2经过点A,B,直线l1,l2交于点C.(1)求点D的坐标;(2)求直线l2的解析表达式;(3)求△ADC的面积;(4)在直线l2上存在异于点C的另一点P,使得△ADP与△ADC的面积相等,请直接写出点P的坐标.34.如图,直角梯形ABCD中,AB∥CD,∠A=90°,AB=6,AD=4,DC=3,动点P从点A出发,沿A→D →C→B方向移动,动点Q从点A出发,在AB边上移动.设点P移动的路程为x,点Q移动的路程为y,线段PQ平分梯形ABCD的周长.(1)求y与x的函数关系式,并求出x,y的取值范围;(2)当PQ∥AC时,求x,y的值;(3)当P不在BC边上时,线段PQ能否平分梯形ABCD的面积?若能,求出此时x的值;若不能,说明理由.1.【解答】解:(1)解方程组:得:∴A点坐标是(2,3);(2)设P点坐标是(0,y),∵△OAP是以OA为底边的等腰三角形,∴OP=PA,∴22+(3﹣y)2=y2,解得y=,∴P点坐标是(0,),故答案为(0,);(3)存在;由直线y=﹣2x+7可知B(0,7),C(,0),∵S△AOC=××3=<6,S△AOB=×7×2=7>6,∴Q点有两个位置:Q在线段AB上和AC的延长线上,设点Q的坐标是(x,y),当Q点在线段AB上:作QD⊥y轴于点D,如图①,则QD=x,∴S△OBQ=S△OAB﹣S△OAQ=7﹣6=1,∴OB•QD=1,即×7x=1,∴x=,把x=代入y=﹣2x+7,得y=,∴Q的坐标是(,),当Q点在AC的延长线上时,作QD⊥x轴于点D,如图②则QD=﹣y,∴S△OCQ=S△OAQ﹣S△OAC=6﹣=,∴OC•QD=,即××(﹣y)=,∴y=﹣,把y=﹣代入y=﹣2x+7,解得x=,∴Q的坐标是(,﹣),综上所述:点Q是坐标是(,)或(,﹣).2.【解答】解:(1)如图1,∵直线y=﹣2x+4与x轴、y轴分别相交于A、B两点,∴A(2,0),B(0,4),∴OA=2,OB=4.∴S AOB=OA•OB=×2×4=4,即△AOB的面积是4;(2)∵△DOC≌△AOB,∴OD=OA=2,∴D(0,2).故设直线CD的解析式为y=kx+2(k≠0).∵C(﹣4,0)则0=﹣4k+2,解得,k=,∴直线CD的解析式为y=x+2.又∵点P是直线CD与直线AB的交点,∴,解得,∴点P的坐标是(,).(3)如图2,设P(x,y),又∵点C的坐标为(﹣4,0),∴OC=4,∵S△COP=S△AOB,∴OC×|y|=4,即|y|=2,解得,y=±2,∵P是直线AB上一点,∴点P的坐标为:(1,2)或(3,﹣2).3.【解答】解:(1)直线y=kx+3和y轴的交点为C,则点C(0,3),则BC=6,OB=3,则点B(3,0),将点B的坐标代入y=kx+3得:0=3k+3,解得:k=﹣;(2)OA=,OC=3,则AC=2,则∠AOC=30°,∠ACB=∠ACO+∠BCO=∠CBO+∠BCO=90°,∴AC⊥BC;(3)①直线BC的表达式为:y=﹣x+3,则点M(x,﹣x+3),S=×AB×|y M|=4×|﹣x+3|=6±2x,②S=6,解得:x=0,故点M(0,3).4.【解答】解:(1)令x=0,则y=2,令y=0,则x=﹣2,则点A、B的坐标分别为:(0,2)、(﹣1,0),过点C作CH⊥x轴于点H,∵∠HCB+∠CBH=90°,∠CBH+∠ABO=90°,∴∠ABO=∠BCH,∠CHB=∠BOA=90°,BC=BA,∴△CHB≌△BOA(AAS),∴BH=OA=2,CH=OB,则点C(﹣3,1),将点A、C的坐标代入一次函数表达式:y=mx+b得:,解得:,故直线AC的表达式为:y=x+2;(2)同理可得直线CD的表达式为:y=﹣x﹣…①,则点E(0,﹣),直线AD的表达式为:y=﹣3x+2…②,联立①②并解得:x=1,即点D(1,﹣1),点B、E、D的坐标分别为(﹣1,0)、(0,﹣)、(1,﹣1),故点E是BD的中点,即BE=DE;(3)将点BC的坐标代入一次函数表达式并解得:直线BC的表达式为:y=﹣x﹣,将点P坐标代入直线BC的表达式得:k=,直线AC的表达式为:y=x+2,则点M(﹣6,0),S△BMC=MB×y C=×5×1=,S△BPN=S△BCM==NB×k=NB,解得:NB=,故点N(﹣,0)或(,0).5.【解答】解:(1)OB=6,即2﹣2m=±6,解得:m=﹣2或4;(2)y=mx+2﹣2m=m(x﹣2)+2,当x=2时,y=2,故定点坐标为(2,2);(3)存在,理由:OA=||,OB=|2﹣2m|,S△OAB=×OA×OB=||×|2﹣2m|=8,解得:m=﹣1或3+2或3﹣2.6.【解答】解:(1)y=﹣x+8,令x=0,则y=8,令y=0,则x=6,故答案为:(6,0)、(0,8);(2)由题意得:点P(2t,8﹣4t),则x=2t,y=8﹣4t,故点P所在的直线表达式为:y=8﹣2x;(3)①当点Q在AB下方时,将y=3x与y=8﹣2x联立并解得:x=,y=,即点P(,),△ABP的面积等于△BAQ面积时,点Q在过点P且平行于AB的直线上,设过点P且平行于AB的直线表达式为:y=﹣x+b,将点P的坐标代入上式得:=﹣×+b,解得:b=,故函数的表达式为:y=﹣x+,当x=0时,y=,当y=0时,x=,即点Q(0,)或(,0).当点Q在AB上方时,同理可得:点Q的坐标为:(,0)或(0,);综上点Q的坐标为:(0,)或(,0)或(,0)或(0,).7.【解答】解:(1)不变,理由:一次函数y=x+3的函数图象与x轴,y轴分别交于点A,B,则点A、B的坐标分别为(﹣3,0)、(0,3),S△OPB=OB×x P=×3×2=3;(2)S四边形APOB=S△ABO+S△AOP=×AO×BO+AO×(﹣m)=3(3﹣m)=﹣m+,S△ABP=S四边形APOB﹣S△BOP=﹣m+﹣3=6,解得:m=﹣3.8.【解答】解:(1)将点A、B坐标代入一次函数表达式:y=kx+b得:,解得:,故直线AB的表达式为:y=2x﹣4,直线CD的表达式为:y=﹣x+5…①,则点C、D的表达式分别为:(5,0)、(0,5),联立直线AB表达式与直线CD表达式:y=﹣x+5并解得:x=3,故点E(3,2);(2)如图,设点M(m,2m﹣4),过点M作MN⊥CD交于点N,则MN=3,∵MN⊥CD,∴直线MN表达式中的k值为﹣1,设直线MN的表达式为:y=﹣x+b′,将点M坐标代入上式并解得:直线MN的表达式为:y=x+(m﹣4)…②,联立①②并解得:x=,则点N(,),MN2=(m﹣)2+(﹣2m+4)2=(3)2,解得:m=1或5(舍去),故点M(1,﹣2);(3)①如图2(左侧图),当2≤t≤3时,图象到达O′Q′P′A′的位置,OA=2,OB=4,∵GA′∥OB,则=2,则GA′=2AA′则S=AA′×A′G=AA′×AA′tanα=(t﹣2)2;②3<t≤4时,如图3,设A′P′交直线CD于点H,S=S梯形AA′P′Q′﹣S△EHP′=(t+t+2﹣3)×2﹣(t+2﹣3)=t+;③如图4,4<t≤5时,图象到达O′′Q′′P′′A′′的位置,直线BE交O″Q″于点H′,直线CD交A″P″于点G′,则AA″=t,AO″=t﹣2,A″C=3﹣t,H′O″=2AO″=2(t﹣2),G′A″=A″C=3﹣t,S△AO″H′=×AO″×O″H′=(t﹣2)2,同理:S△A″CG′=(3﹣t)2,S=S△ACE﹣S△AO″H′﹣S△A″CG′=3﹣(t﹣2)2﹣(3﹣t)2=﹣t2+7t﹣,故:S=.9.【解答】解:(1)将y1=x和y2=﹣2x+6联立并解得:x=2,故点C(2,2),则OC=2,当x>2时,y2<y1;(2)y1=x,则∠COB=45°,①当CO=CP时,则点C的横坐标对应在x轴上的点为OP的中点,故点P(4,0);②当OC=OP时,PO=OC=2,故点P(2,0);③当OP=CP时,如下图,则OD=CO,OP====2,故点P(2,0);(3)CP将△COB分成的两部分面积之比为1:2,则OP=OB或OB,故点P(1,0)或(2,0).10.【解答】解:(1)由题意得:P(4﹣2t,0),Q(2﹣t,0),∴PQ=2﹣t,∵△OAB∽△QPM,∴=2,∴PM=2PQ=4﹣2t,∴M(4﹣2t,4﹣2t);(2)设l2与AB的交点为C,l1与AB的交点为D,易得直线AB对应的解析式为y=﹣x+1,∴4﹣2t=﹣(4﹣2t)+1,解得:t=;(i)当0<t≤1时,如图1所示,在Rt△OAB中,AB=,由△OAB∽△CQB,得到,∴S=S△CQB=××1×2=;(ii)当1<t<时,如图2所示,PD=2t﹣2,由△OAB∽△PDB,得到PB=t﹣1,∴S=S四边形CQPD=S△CQB﹣S△PDB==•(2t﹣2)•(t﹣1)═﹣+2t﹣1;(iii)当≤t<2时,S=S△PQM=PQ•PM=•(2﹣t)•(4﹣2t)=t2﹣4t+4.11.【解答】解:(1)如图1:(2)如图2:,由折叠的性质,得∠C=∠A=∠COA=45°,AF=BE=CF=t,S△CFG=CF•FG=t2=,解得t=,t=﹣(不符合题意,舍);(3)分两种情况讨论:①当0<t≤3时,如图2:四边形DCFE落在第一象限内的图形是△DFG,∴S=t2,∵S=t2,在t>0时,S随t增大而增大,∴t=3时,S最大=;②当3<t<6时,如图3:,四边形DCFE落在第一象限内的图形是四边形CHOF,∴S四边形CHOF=S△CGF﹣S△HGO,∴S=t2﹣2(2t﹣6)2=﹣t2+12t﹣18=﹣(t﹣4)2+6,∵a=﹣<0,∴S有最大值,∴当t=4时,S最大=6,综上所述,当t=4时,S最大值为6.12.【解答】解:(1)∵点B坐标为(0,8),∴OB=8.∵AD=OB,EF垂直平分AD,∴AE=4.∴BE=t+4.∴点E的坐标为(t+4,8);(2)如图所示;过点D作DH⊥OF,垂足为H.∵AC⊥OA,∴∠OAC=90°.∴∠BAO+∠EAC=90°.又∵∠BOA+∠BAO=90°,∴∠EAC=∠BOA.又∵∠OBA=∠AEC,∴△OBA∽△AEC.∴,即.∴EC=.∴点C的坐标为(t+4,8﹣)∵∠OCD=180°,∴点C在OD上.∵CF∥DH,∴,即解得:,(舍去).所以当t=4﹣4时,∠OCD=180°.(3)当0<t<16时,三角形OCF的面积=×OF•FC=(t+4)(8t)=,当t>16时,三角形OCF的面积=×OF•FC=(t+4)(t﹣8)=,∴s与t的函数关系式为s=.13.【解答】解:(1)令x=0,得y=12,令y=0,得x=9∴与y轴交点B的坐标为(0,12),与x轴交点A的坐标为(9,0);(2)点P在OA上运动的时间为9÷3=3秒,点E在OB上移动的距离为3×=4,点P和点E重合的时间为:3+4÷(4﹣)=秒,当t=秒,点P与点E重合;(3)点P在OA、OB上运动的时间和为9÷3+12÷4=6秒,点E在OB上移动的距离为6×=8,AB==15∵EF∥OA∴△BEF∽△BOA∴=即=解得BF=5,则点F运动的速度为(15﹣5)÷6=个单位/秒,∴点P与点F重合的时间为5÷(5+)+6=秒;(4)∵EF∥OA∴△BEF∽△BOA=即=EF=9﹣t①当点P在OA上运动,即0<t≤3;S=×(9﹣t)×t=﹣t2+6t;②当点P在OB上运动,即3<t<,S=×(9﹣t)×[t﹣4(t﹣3)]=﹣t2﹣18t+54.③当<t<6时,S=×(9﹣t)×[4(t﹣3)﹣t]=t2+18t﹣54.14.【解答】解:(1)在y=﹣2x+8中,令x=0,解得y=8,则A的坐标是(0,8);令y=0,解得x=4,则B的坐标是(4,0);(2)在y=﹣2x+8中令x=m,则y=﹣2m+8则S1=m(﹣2m+8),即S1=﹣2m2+8m,当m=﹣=2时,S1有最大值是﹣2×22+8×2=8,此时P的坐标是(2,4);(3)∵P的坐标是(2,4),∴S矩形PEOF=8,E的坐标是(2,0),F的坐标是(0,4),过F且平行于AB的直线解析式是:y=﹣2x+b,把(0,4)代入得:b=4,则解析式是y=﹣2x+b,在y=﹣2x+4中,令y=0,解得:x=2,则一定经过点E.则当0<a≤4时,直线l扫过矩形PEOF的部分是直角三角形,设向下平移a个单位长度,则直线的解析式是:y=﹣2x+8﹣a,设与PF交于点M,在y=﹣2x+8﹣a中令y=4,解得:x=2﹣a,则M的坐标是(2﹣a,4),则PM=a;设与PE交于点N,在y=﹣2x+8﹣a中令x=2,解得:y=4﹣a,则N的坐标是(2,4﹣a),则PN=a,则S1=PM•PN=×a•a=a2;当4<a≤8时,设直线与y轴交点是G,则OG=8﹣a,设与x轴的交点是H,则OH=(8﹣a)=4﹣a,S△OGH=OG•OH=(8﹣a)•(4﹣a)=(8﹣a)2.则S1=8﹣(8﹣a)2.即S1=﹣a2+4a﹣8.15.【解答】解:(1)∵将△AOD沿AD翻折,使O点落在AB边上的E点处,∴∠OAD=∠EAD=45°,DE=OD,∴OA=OD,∵OA=2,∴OD=2,∴D点坐标是(2,0),DE=OD=2,∴E点坐标是(2,2),故答案为:(2,0),(2,2);(2)存在点M使△CMN为等腰三角形,理由如下:由翻折可知四边形AODE为正方形,过M作MH⊥BC于H,∵∠PDM=∠PMD=45°,则∠NMH=∠MNH=45°,。

一次函数面积问题专题(含答案)

一次函数面积问题专题(含答案)

5 B o 面积相等 ABO 的面积为2 0 )、O A 0 0, 一次函數面積問題 1、如图,一次函数的图像与x 轴交于点B (-6 , 0),交正比例函数的图像于 点A ,点A 的横坐标为-4,△ ABC 的面积为15,求直线OA 的解析式。

2、直线y=x+3的图像与x 轴、y 轴分别交于A B 两点,直线a 经过原点与线段 AB 交于。

,把厶ABO 勺面积分为2: 1的两部分,求直线a 的函数解析式。

3、直线PA 是一次函数y=x+n 的图像,直线PB 是一次函数y=-2x+m (m>n>0的 图像, B 4 (1)用m n 表示A 、B 、P 的坐标 (1)求点P 的坐标 7、如图二已知两直线y=0•夕x+2.5和y=-x+1分别与x 轴交于A 、B 两点,这两直 S 、 &直线y=- 3 x+1与x 轴y 轴分别交点 ,点 P (a ,) 作等腰直角△ ABC ZBAC=90 段AB 为直角边在第一象限内 在第二象限,△ ABP 的面积与厶ABC 4、 A A OB 的顶点 O(0, 0)、A (2, 1)、B (10, 1),直线CDL x 轴且△ AOB 0积二等分,若 D (m 0),求m 的值 ♦ y P 5、 点B 在直线y 壬x+1上,且点 B 在第四象限, 点A 线的交点为P 求点B 的坐标 (2)四边形PQOB 勺面积是6, AB=2求点P 的 坐标 (2)求厶PAB 的面积 8、已知直线y=ax+b (b>0)与y 轴交于点N,与x 轴交于点A 且与直线y=kx 交 于点M(2、3[,如图它们与y 轴围成的厶MON 勺面积为5,求(1) 这两条直线的函数关系式(2) 它们与x 轴围成的三角形面积9、 已知两条直线y=2x-3和y=5-x(1) 求出它们的交点 A 的坐标(2) 求出这两条直线与x 轴围成的三角形的面积10、 已知直线y=x+3的图像与x 轴、y 轴交于A B 两点,直线I 经过原点,与 线段AB 交于点。

一次函数面积问题专题(含答案)

一次函数面积问题专题(含答案)

一次函數面積問題1、如图,一次函数的图像与x轴交于点B(-6,0),交正比例函数的图像于点A,点A的横坐标为-4,△ABC的面积为15,求直线OA的解析式。

2、直线y=x+3的图像与x轴、y轴分别交于A、B两点,直线a经过原点与线段AB交于C,把△ABO的面积分为2:1的两部分,求直线a的函数解析式。

3、直线PA是一次函数y=x+n的图像,直线PB是一次函数y=-2x+m(m>n>0)的图像,(1)用m、n表示A、B、P的坐标(2)四边形PQOB的面积是,AB=2,求点P的坐标4、△AOB的顶点O(0,0)、A(2,1)、B(10,1),直线CD⊥x轴且△AOB面积二等分,若D(m,0),求m的值5、点B在直线y=-x+1上,且点B在第四象限,点A(2,0)、O(0,0),△ABO 的面积为2,求点B的坐标。

6、直线y=-x+1与x轴y轴分别交点A、B,以线段AB为直角边在第一象限内作等腰直角△ABC, BAC=90°,点P(a,)在第二象限,△ABP的面积与△A BC 面积相等,求a的值.7、如图,已知两直线y=0.5x+2.5和y=-x+1分别与x轴交于A、B两点,这两直线的交点为P(1)求点P的坐标(2)求△PAB的面积8、已知直线y=ax+b(b>0)与y轴交于点N,与x轴交于点A且与直线y=kx交于点M(2,3),如图它们与y轴围成的△MON的面积为5,求(1)这两条直线的函数关系式(2)它们与x轴围成的三角形面积9、已知两条直线y=2x-3和y=5-x(1)求出它们的交点A的坐标(2)求出这两条直线与x轴围成的三角形的面积10、已知直线y=x+3的图像与x轴、y轴交于A、B两点,直线l经过原点,与线段AB交于点C,把△AOB的面积分为2:1的两部分,求直线l的解析式。

11、已知直线y=2x+3与直线y=-2x-1与y轴分别交于点A、B(1)求两直线交点C的坐标(2)求△ABC的面积(3)在直线BC上能否找到点P,使得△APC的面积為6,求出点P的坐标,若不能请说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数中的面积问题讲义
一、知识点睛
1. 坐标系中处理面积问题,要寻找并利用_____________的线,
通常有以下三种思路:
①__________________(规则图形);
②__________________(分割求和、补形作差); ③__________________(例:同底等高). 2. 坐标系中面积问题的处理方法举例
①割补求面积(铅垂法):
2△APB S ah = 1
2△APB S ah
= ②转化求面积:
l 1
l 2
如图,满足S △ABP =S △ABC 的点P 都在直线l 1,l 2上.
二、精讲精练
1. 如图,在平面直角坐标系中,已知A (-1,3),B (3,-2),则
△AOB 的面积为___________

2. 如图,直线y =-x +4与x 轴、y 轴分别交于点A ,点B ,点P
的坐标为(-
2,2),则S △P AB =___________.
第2题图 第3题图
3. 如图,直线AB :y =x +1与x 轴、y 轴分别交于点A ,点B ,直线
CD :y =kx -2与x 轴、y 轴分别交于点C ,点D ,直线AB 与直线CD 交于点P .若S △APD =4.5,则k =__________.
4. 如图,直线1
12
y x =+经过点A (1,m ),B (4,n )
,点C 的坐标
为(2,5),求△ABC 的面积.
5.如图,在平面直角坐标系中,已知A(2,4),B(6,6),
C(8,2),求四边形OABC的面积.
6.如图,直线
1
1
2
y x
=-+与x轴、y轴分别交于A,B两点,
C(1,2),坐标轴上是否存在点P,使S△ABP=S△ABC?若存在,求出点P的坐标;若不存在,请说明理由.
7.如图,已知直线m的解析式为
1
1
2
y x
=-+,与x轴、y轴分
别交于A,B两点,以线段AB为直角边在第一象限内作等腰Rt△ABC,且∠BAC=90°,点P为直线x=1上的动点,且△ABP的面积与△ABC的面积相等.
(1)求△ABC的面积;
(2)求点P的坐标.
8.如图,直线P A:y=x+2与x轴、y轴分别交于A,Q两点,
直线PB:y=-2x+8与x轴交于点B.
(1)求四边形PQOB的面积.
(2)直线P A上是否存在点M,使得△PBM的面积等于四边形PQOB的面积?若存在,求出点M的坐标;若不存在,请说明理由.
【参考答案】
一、知识点睛
1.横平竖直;①公式法;②割补法;③转化法. 二、精讲精练
1.
72 2.8
3.52
4.92
5.24 6.123
451(0)(50)(0)(10)22P P P P --,或,或,或, 7.(1)5
2
;(2)12(13)(12)P P -,
或, 8.(1)10;(2)12162242
()()3333
M M -,或,。

相关文档
最新文档