函数的基本概念与定义域

合集下载

函数的定义域和值域

函数的定义域和值域

函数的定义域、值域一、知识回顾第一部分:函数的定义域1.函数的概念:设集合A 是一个非空的数集,对于A 中的任意一个数x ,按照确定的法则f ,都有唯一的确定的数y 与它对应,则这种关系叫做集合A 上的一个函数,记作()x f y =,(A x ∈)其中x 叫做自变量,自变量的取值范围(数集A )叫做这个函数的定义域.如果自变量取值a ,则由法则f 确定的值y 称为函数在a 处的函数值,记作)(a f y =或ax y=,所有的函数值所构成的集合{}A x x f y y ∈=),(叫做这个函数的值域.2.定义域的理解:使得函数有意义的自变量取值范围,实际问题还需要结合实际意义在确定自变量的范围,注意:定义域是个集合,所以在解答时要 用集合来表示. 3.区间表示法:设a ,R b ∈,且b a <.满足b x a ≤≤的全体实数x 的集合,叫做闭区间,记作[]b a ,. 满足b x a <<的全体实数x 的集合,叫做开区间,记作()b a ,.满足b x a ≤<或b x a <≤的全体实数x 的集合,都叫做半开半闭区间,记作(][)b a b a ,,或.b a 与叫做区间的端点,在数轴上表示时,包括端点时,用实心的点,不包括时用空心点表示.4.基本思想:使函数解析式有意义的x 的所有条件化为不等式,或不等式组的解集.5.定义域的确定方法:保证函数有意义,或者符合规定,或满足实际意义. (1)分式的分母不为零. (2)偶次方根式的大于等于零. (3)对数数函数的真数大于零.(4)指数函数与对数函数的底大于零且不等于1. (5)正切函数的角的终边不能在y 轴上. (6)零次幂的底数不能为零.(7)分段函数:①分段函数是一个函数.②分段函数的定义域是各段定义域的并集,值域是各段值域的并集.(8)复合函数定义域的求法:①已知)(x f y =的定义域是A ,求()[]x f y ϕ=的定义域的方法为解不等式:A x ∈)(ϕ,求出x 的取值范围.②已知()[]x f y ϕ=的定义域为A ,求)(x f y =的定义域的方法:A x ∈,求)(x ϕ的取值范围即可.第二部分:函数的值域函数值域的确定方法:(1)直接观察法对于一些比较简单的函数,其值域可通过观察得到. (2)分离常数法:分子、分母是一次函数得有理函数,形如,dcx bax y ++=,,,,,(d c b a 为常数,)0≠c 可用分离常数法,此类问题一般也可以利用反函数法.(3)换元法:运用代数代换,将所给函数化成值域容易确定的另一函数,从而求得原函数的值域,如d cx b ax y +±+=(d c b a ,,,均为常数且0≠a )的函数常用此法求解. (4)配方法:适用于二次函数值域的求值域. (5)判别式法:适用于二次函数型值域判定.(6)单调性法:利用单调性,端点的函数值确定值域的边界.(7)函数的有界性:在直接求函数值域困难的时候,可以利用已学过函数的有界性,反过来确定函数的值域.(8)不等式法:利用不等式的性质确定上下边界.(9)数形结合法:函数解析式具有明显的某种几何意义,如两点间的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目.二、 精选例题第一部分:函数的定义域例1.函数x x y +-=1的定义域为( )A .{}1x x ≤B .{}0x x ≥ C.{}10x x x ≥≤或 D.{}01x x ≤≤【解析】由题意⎩⎨⎧≥≤⇒⎩⎨⎧≥≥-01001x x x x 即∈x {}10≤≤x x ,故选D. 例2.函数()()xx x x f -+=01的定义域是( )A .()0,+∞B .(),0-∞ C.()(),11,0-∞-- D.()()(),11,00,-∞--+∞【解析】由⎩⎨⎧≠-≠+001x x x 得,01⎩⎨⎧<-≠x x 故选C.例3.若函数()1+=x f y 的定义域是[],3,2-则()12-=x f y 的定义域是( )5.0,2A ⎡⎤⎢⎥⎣⎦[]4,1.-B []5,5.-C []7,3.-D 【解析】 ()1+=x f y 的定义域是[],3,2-,32≤≤-∴x[]4,11-∈+∴x ,即()x f 的定义域是[]4,1-.又由4121≤-≤-x 解得250≤≤x即()12-=x f y 的定义域是⎥⎦⎤⎢⎣⎡25,0故选.A例4.设函数()x f y =的定义域是()1,0,则()2x f y =的定义域是什么? 【解析】 函数()x f y =的定义域是()1,0.102<<∴x 即11<<-x故()2x f y =的定义域是()1,1-∈x 且0≠x .例5.已知函数(),11+=x x f 则函数()[]x f f 的定义域是( ) {}1.-≠x x A {}2.-≠x x B {}21.-≠-≠x x x C 且{}21.-≠-≠x x x D 或【解析】:()11+=x x f 的定义域是101-≠⇒≠+x x 则()[]x f f 的定义域是111-≠+x 即21012-≠-≠⇒≠++x x x x 且故选.C 例6.已知()x f21-求函数⎪⎭⎫⎝⎛-xx f 213的定义域是?【解析】由()x f21-可知021≥-x 即0213≥-x x ()2100312≤≤⇒≤-⇒x x x故函数⎪⎭⎫⎝⎛-x x f 213的定义域是⎥⎦⎤⎢⎣⎡∈21,0x例7.若函数y =的定义域是R ,求实数k 的取值范围.【解析】当0=k 时,86+-=x y ,当34>x 时,无意义,∴0≠k ; 当0<k 时,()268y kx x k =-++为开口向下的二次函数,图像向下延伸, 函数值总会出现小于零的情况,进而,0<k 不成立,当0>k 时,同时要求0≤∆,即解得1≥k .例8.已知函数x x x f -+=11lg )(,求函数)2(12)1()(xf x x f x F +++=的定义域. 【解析】由题意011>-+xx,即0)1)(1(<+-x x ,解得11<<-x 故函数xxx f -+=11lg )(的定义域为)1,1(-所以⎩⎨⎧≠+<+<-012111x x 解得02<<-x 且21-≠x .即12)1()(++=x x f x m 的定义域为)0,21()21,2(---又121<<-x,解得22<<-x ,即)2(x f 的定义域为)2,2(-)2(12)1()(xf x x f x F +++=的定义域即为)(x m 和)2(x f 的定义域的交集,即)0,21()21,2(--- )2,2(- =)0,21()21,2(---故函数)2(12)1()(xf x x f x F +++=的定义域为)0,21()21,2(--- .例9.已知函数()23x x f x a b =⋅+⋅,其中常数,a b 满足0ab ≠. (1)若0ab >,判断函数()f x 的单调性; (2)若0ab <,求(1)()f x f x +>时x 的取值范围. 【解析】(1)当0,0a b >>时,任意1212,,x x R x x ∈<,则121212()()(22)(33)x x x xf x f x a b -=-+-∵121222,0(22)0x x x x a a <>⇒-<,121233,0(33)0x x x xb b <>⇒-<,∴12()()0f x f x -<,函数()f x 在R 上是增函数. 当0,0a b <<时,同理,函数()f x 在R 上是减函数. (2)(1)()2230x x f x f x a b +-=⋅+⋅>当0,0a b <>时,3()22x a b >-,则 1.5log ()2ax b >-;当0,0a b ><时,3()22x a b <-,则 1.5log ()2ax b<-.第二部分:函数的值域1.观察法:例1.求函数x y 1=的值域. 【解析】0≠x 01≠∴x0≠∴y ,即值域为:()()+∞∞-,00,2.分离常数法:分子、分母是一次函数得有理函数,形如)0,,,(,≠++=c d c b a dcx bax y 为常数,,可用分离常数法,此类问题一般也可以利用反函数法.通式解析:)(,)(cad b d cx c ad b c a d cx b c ad d cx c a d cx b ax y ≠+-+=++-+=++=故值域为⎭⎬⎫⎩⎨⎧≠c a y y 例2.求函数125xy x -=+的值域. 【解析】因为177(25)112222525225x x y x x x -++-===-++++, 所以72025x ≠+,所以12y ≠-,所以函数125x y x -=+的值域为1{|}2y y ≠-.3.换元法:运用代数代换,将所给函数化成值域容易确定的另一函数,从而求得原函数的值域,如d cx b ax y +±+=(d c b a ,,,均为常数且0≠a )的函数常用此法求解.例3.(A 类)求函数2y x =.【解析】令x t 21-=(0t ≥),则212t x -=,所以22151()24y t t t =-++=--+因为当12t =,即38x =时,max 54y =,无最小值所以函数2y x =5(,]4-∞.4.三角换元:例4.求函数2)1(12+-++=x x y 的值域.【解析】0)1(12≥+-x 1)1(2≤+∴x ,令[]πββ,0,cos 1∈=+x1)4sin(21cos sin cos 11cos 2++=++=-++=∴πβββββy ,,0πβ≤≤ 4544ππβπ≤+≤,1)4sin(22≤+≤-πβ, 121)4sin(20+≤++≤πβ故值域为:[]12,0+ 5.配方法:例5.求函数242y x x =-++([1,1]x ∈-)的值域.【解析】2242(2)6y x x x =-++=--+, 因为[1,1]x ∈-,所以2[3,1]x -∈--,所以21(2)9x ≤-≤,所以23(2)65x -≤--+≤,即35y -≤≤, 所以函数242y x x =-++在([1,1]x ∈-)的值域为[3,5]-.6.判别式法:例6.求函数2211xx x y +++=的值域. 【解析】原函数化为关于x 的一元二次方程,0)1()1(2=-+--y x x y (1)当1≠y 时,R x ∈,0)1(4)1(22≥---=∆y .解得2321≤≤y , 当1=y 时,0=x ,而⎥⎦⎤⎢⎣⎡∈23,211,故函数的值域为⎥⎦⎤⎢⎣⎡23,21.7.单调性法:例7.求函数x x x f 4221)(-+-=的值域. 【解析】由042≥-x ,解得21≤x , 令x x g 21)(-=,x x m 42)(-=,在21≤x 上)(),(x m x g 均为单调递减函数, 所以x x x m x g 4221)()(-+-=+在21≤x 上也是单调递减函数.故0)21()(min ==f x f ,值域为),0[+∞.8.有界性例8.求函数11+-=x x e e y 的值域.【解析】函数变形为11-+=y y e x,0>x e 011>-+∴y y ,解得11<<-y , 所以函数的值域为()1,1-.9.不等式法: 例9.求函数xx y 4+=的值域; 【解析】当0>x 时,4424=⋅≥+=xx x x y (当x =2时取等号); 所以当0>x 时,函数值域为),4[+∞. 当0<x 时,442)4(-=⋅-≤+-=xx x x y (当2-=x 时取等号); 所以当0<x 时,函数值域为]4,(--∞. 综上,函数的值域为),4[]4,(+∞--∞10.数形结合法函数解析式具有明显的某种几何意义,如两点间的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目. 例10. (1)求函数82++-=x x y 的值域.(2)求函数5413622++++-=x x x x y 的值域. (3)求函数5413622++-+-=x x x x y 的值域.【解析】(1)函数可以看成数轴上点P (x )到定点A (2),)8(-B 间的距离之和.由上图可知,当点P 在线段AB 上时,10min ==AB y 当点P 在线段AB 的延长线或反向延长线上时,10>=AB y 故所求函数的值域为:),10[+∞ 此题也可以画函数图象来解.(2)原函数可变形为:2222)10()2x ()20()3x (y ++++-+-=可看成x 轴上的点)0,(x P 到两定点)1,2(),2,3(--的距离之和, 由图可知当点P 为线段与x 轴的交点时,如图34)12()23(22min =+++==AB y ,故所求函数的值域为),34[+∞.(3)将函数变形为:2222)10()2()20()3(-++--+-=x x y可看成定点A ()3,2到点P )0,(x 的距离与定点B ()2,1-到点P )0,(x 的距离之差. 如图BP AP y -=由图可知:①当点P 在x 轴上且与A ,B 两点不供线时,如点'P ,则构成'ABP ∆,()23()1,2--ABPxy••BPA根据三角形两边之差小于第三边,有26)12()23(22=-++=<'-'AB P B P A所以2626<'-'<-P B P A即2626<<-y②当点P 恰好为直线AB 与x 轴的交点时,有26=='-'AB P B P A .综上所述,函数的值域为:]26,26(-.三、 课堂训练第一部分:函数定义域1.函数()x x x y +-=1的定义域为( ){}0.≥x x A{}1.≥x x B{}{}01. ≥x x C{}10.≤≤x x D解析:由题意得()⎩⎨⎧≥≥-001x x x ⎩⎨⎧≥≤≥⇒001x x x 或即[){}0,1 +∞∈x ,故选.C 2.()xx f 11211++=的定义域为 .【解析】由分式函数分母不为0得:⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≠≠+≠++001101121x x x解得⎪⎪⎪⎩⎪⎪⎪⎨⎧≠-≠≠-≠-≠010311x x x x x 或或()1,-∞-∈⇒x ⎪⎭⎫ ⎝⎛-31,1 ⎪⎭⎫ ⎝⎛0,31 ()+∞,03.已知函数()x f 的定义域为[].2,2- ①求函数()x f 2的定义域;②求函数⎪⎭⎫⎝⎛-141x f 的定义域. 【解析】① 函数()x f 的定义域为[]2,2-222≤≤-∴x 即11≤≤-x故函数()x f 2的定义域为[]1,1-∈x . ② 函数()x f 的定义域为[]2,2-21412≤-≤-∴x 即124≤≤-x 故函数⎪⎭⎫⎝⎛-141x f 的定义域为[]12,4-. 4.已知函数()42-x f的定义域[]5,3∈x ,则函数()x f 的定义域是?【解析】 函数()42-x f 的定义域[]5,3∈x 21452≤-≤∴x即函数()x f 的定义域是[]21,5∈x5.如果函数()()()x x x f -+=11的图像在x 轴上方,则()x f 的定义域为( ).{}1.<x x A {}1.>x x B {}11.-≠<x x x C 且 {}11.≠->x x x D 且【解析】对于()(),011>-+x x 当0≥x 时,有()()011<-+x x 11<<-⇒x 得;10<≤x当0<x 时,有()012>+x 1-≠⇒x 得.10-≠<x x 且 综上,,11-≠<x x 且故选.C6.(1)已知1,,,,≠∈+a R z y x a ,设,,log 11log 11zya a ay ax --==用x a ,表示z .(2)设ABC ∆的三边分别为c b a ,,,且方程01lg 2)lg(2222=+--+-a b c x x 有等根,判断ABC ∆的形状. 【解析】(1),,log 11log 11zya a ay ax --==则,log 11log log ,log log log 11log 11zay ax a za a ya a a a -===--y ax a ya a a log 11log log log 11-==-zza a log 11log 1111-=--=所以xz a a log 11log -=,故xa a z log 11-=.(2)原方程可以转化为0)(10lg22222=-+-a b c x x 又因为方程有等根,则0)(10lg 4)2(2222=---=∆ab c , 必然有1)(10lg 222=-a b c ,所以10)(10222=-ab c ,即222a b c +=. 故ABC ∆为直角三角形.第二部分:函数的值域例1.求函数111++=x y 的值域.【解析】.111,01≥++∴≥+x x ∴11110≤++<x ,∴函数的值域为(]1,0.例2.求函数[]2,1,522-∈+-=x x x y 的值域.【解析】将函数配方得:()412+-=x y []2,1-∈x由二次函数的性质可知:当1=x 时,,4min =y 当1-=x 时,8max =y故函数的值域是[]8,4例3.求函数1-+=x x y 的值域.【解析】令()01≥=-t t x ,则12+=t x 故.4321122+⎪⎭⎫ ⎝⎛+=++=t t t y又,0≥t 由二次函数性质知,当0=t 时,;1min =y 当t 不断增大时,y 值趋于∞+, 故函数的值域为[)+∞,1.例4.求函数2332+-+-=x x x y 的值域.【解析】定义域满足⎩⎨⎧≥+-≥-023032x x x 3≥⇒x . 令,31-=x y 任取,321≥>x x 由,03333212121>-+--=---x x x x x x1y ∴在[)+∞,3上单调递增.令,2322+-=x x y由,232+-=x x u 对称轴,23=x 开口向上,知2y 在[)+∞,3上也单调递增. 从而知()=x f 2332+-+-x x x 在定义域[)+∞,3上是单调递增.()∴=≥∴.23f y 值域为[)+∞,2.例5.求函数21+-=x x y 的值域 【解析】由1231232≠+-=+-+=x x x y ,可得值域{}1≠y y例6.求13+--=x x y 的值域【解析】可化为 ⎪⎩⎪⎨⎧>-≤≤---<=3,431,221,4x x x x y 如图:观察得值域{}44≤≤-y y .例7.求函数x y -=3的值域.【解析】0≥x 33,0≤-≤-∴x x 故函数的值域是:[]3,∞- 例8.求函数51042+++=x x y 的值域.【解析】配方,得().5622+++=x y ().65,6622+≥∴≥++y x∴函数的值域为).,65(+∞+例9.求函数1122+++-=x x x x y 的值域.【解析】 1122+++-=x x x x y ,R x ∈,去分母整理得()()01112=-+++-y x y x y.当1=y 时,,0=x 故y 可取1; ①当1≠y 时,方程①在R 内有解,则()()(),011412≥---+=∆y y y,031032≤+-∴y y 解得.331≤≤y ∴函数的值域为.3,31⎥⎦⎤⎢⎣⎡例10.求函数11--+=x x y 的值域.【解析】原函数可化为:112-++=x x y令,1,121-=+=x y x y 显然21,y y 在[)+∞,1上为无上界的增函数所以21,y y y =在[)+∞,1上也为无上界的增函数所以当1=x 时,21y y y +=有最小值2,原函数有最大值222= 显然,0>y 故原函数的值域为(]2,0.例11.求函数133+=x xy 的值域【解析】设t x=+13 ,则()111131113113>-=+-=+-+=t ty xx x 101101<<∴<<∴>y tt ,()01原函数的值域为∴.例12.求函数53-++=x x y 的值域.【解析】53-++=x x y ⎪⎩⎪⎨⎧≥-<<--≤+-=)5(22)53(8)3(22x x x x x由图像可知函数53-++=x x y 的值域为[)+∞,8.四、 课后作业【训练题A 类】1.函数()f x = ).A . 1[,)2+∞B . 1(,)2+∞ C. 1(,]2-∞ D. 1(,)2-∞2.函数265x x y ---=的值域是( )525.≤≤y A5.≤y B 50.≤≤y C 5.≥y D 3.函数31---=x x y 在其定义域内有( ).A 最大值2,最小值2- .B 最大值3,最小值1- .C 最大值4,最小值0 .D 最大值1,最小值3-4.已知函数31++-=x x y 的最大值为M ,最小值为m ,则Mm的值为( ) 41.A 21.B 22.C 23.D 5.函数()=x f 962+-x 的值域是 ( )A 、(-∞,6)B 、]3,(-∞C 、 (0,6)D 、 (0,3) 6.()421-=x x f 的定义域为_____ 7.函数x x y 21-+=的值域是 . 8.求()4313512-++-=x x x x f 的定义域9.求2045222+-++-=x x x x y 的值域.10.求函数12-+=x x y 的值域.11.已知()x f 的值域为,94,83⎥⎦⎤⎢⎣⎡试求()()x f x f y 21-+=的值域.【参考答案】1.【答案】C【解析】由根式知21021≤⇒≥-x x 故选.C 2.【答案】A【解析】425425216022≤+⎪⎭⎫ ⎝⎛+-=--≤x x x , 25602≤--≤∴x x ,即525≤≤y3.【答案】A【解析】由题意得()()()⎪⎩⎪⎨⎧>≤<-≤-=3,231,421,2x x x x y []2,2-∈⇒y ,故选A4.【答案】C【解析】两边平方,即()()312312+-+++-=x x x x y ()41242++-+=x844max 2=+=y ,4min 2=y ,2284max min ==y y 故选C . 5.【答案】B【解析】∴≥+392x 3962≤+-x 故选.B6.【答案】()+∞,8 【解析】80421≥⇒≥-x x ,即()+∞,8 7.【答案】(],1-∞【解析】令x t 21-=则()0212≥-=t t x 即()()021212≥++-=t t t t f ()11212+--=t故1=t 时,取得最大值.即().1≤x f8.【解析】1212210431012>⇒⎪⎩⎪⎨⎧>≥⇒⎪⎩⎪⎨⎧>-≥-x x x x x ,即()+∞,129.【解析】()()1624122+-++-=x x y ()()()()2222402201-+-+++-=x x即可看成三点:()()()4,2,2,1,0,B A x P -,PB PA y +=在PAB ∆中AB PB PA >+知点()2,1-A 点()4,2B 在数轴异侧时AB 最大.PB PA y +==AB 故()()37422122=--+-=≥AB y10.【解析】显然,函数的定义域为21≥x . 当21≥x 时,函数12,21-==x y x y 都是递增的 所以在21=x 时,取得最小值.即⎪⎭⎫⎢⎣⎡+∞∈,21y .11.【解析】()(),412191,9483≤-≤∴≤≤x f x f即有(),212131≤-≤x f令(),21,31,21⎥⎦⎤⎢⎣⎡∈-=t x f t ()(),1212t t x f +-=()()t t t g y +-==∴2121()11212+--=t⎥⎦⎤⎢⎣⎡∉21,311 ,∴函数()t g y =在区间⎥⎦⎤⎢⎣⎡21,31上单调递增,,9731min =⎪⎭⎫ ⎝⎛=∴g y ∴=⎪⎭⎫ ⎝⎛=.8721max g y 函数的值域为⎥⎦⎤⎢⎣⎡87,97.【训练题B 类】1.求()52+=x x f 的值域2.求函数xy --=111的值域3.求函数12--=x x y 的值域.4.已知()x f 43-的定义域为[],2,1-∈x 则函数()x f 的定义域是?5.求下列函数的值域:(1);1342++=x x y (2)5438222+-+-=x x x x y6.对于每个函数x ,设()x f 是2,14+=+=x y x y 和42+-=x y 三个函数中的最小者,则()x f 的最大值是什么?7.已知⎪⎭⎫⎝⎛-x f 213的定义域为[]5,1∈x ,则函数()32+x f 的定义域是?8.求下列函数的值域: (1)[);5,1,642∈+-=x x x y(1)245x x y -+=.9.求函数13+--=x x y 的值域.10.函数232+-=kx x y 的值域为⎪⎭⎫⎝⎛+∞-⎪⎭⎫ ⎝⎛-∞-,3232, ,求k 的值.11.(1)已知函数⎩⎨⎧≥<=0,0,)(2x x x x x f ,求))((x f f .(2)求函数12)(2--+=x x x f 的最小值.12.若函数432--=x x y 的定义域为[],,0m 值域为,4,425⎥⎦⎤⎢⎣⎡--求m 的取值范围.【参考答案】1.【解析】25052-≥⇒≥+x x ,即⎪⎭⎫⎝⎛+∞-,25 2.【解析】原式化为,11=--x y y ,011≥-=-∴yy x 即01<≥y y 或. 故()[)+∞∞-∈,10, y .3.【解析】函数的定义域是{}.,1R x x x ∈≥令()0,1≥=-t t x 则 ,12+=t x8154122222+⎪⎭⎫ ⎝⎛-=+-=∴t t t y ,又o t ≥,∴结合二次函数的图像知()815≥t y .故原函数的值域为⎭⎬⎫⎩⎨⎧≥815y y . 4.【解析】 ()x f 43-的定义域为[]2,1-∈x 7435≤-≤-∴x()x f ∴的定义域为[]7,5-∈x .5.【解析】(1)由1342++=x x y 可得,0342=-+-y x yx 当0=y 时,;43-=x 当0≠y 时,,R x ∈故()(),03442≥---=∆y y解得,41≤≤-y 且0≠y .当2-=x 时,;1-=y 当21=x 时,.4=y∴所求函数的值域为[].4,1-(2)由5438222+-+-=x x x x y 可得()()0352422=-+---y x y x y ,当02≠-y 时,由,R x ∈得()()()035242162≥----=∆y y y ,25≤≤-∴y .25<≤-∴y .经检验2=x 时,5-=y ,而2≠y .∴原函数的值域为[]2,5-.6.【解析】在同一直角坐标系中作出三个函数的图像,由图像可知,()x f 的最大值是2+=x y 和42+-=x y 交点的纵坐标,易得()38max =x f . 7.【解析】 ⎪⎭⎫⎝⎛-x f 213的定义域为[]5,1∈x 2521321≤-≤∴x 即253221≤+≤x4145-≤≤-∴x 故函数()32+x f 的定义域是⎥⎦⎤⎢⎣⎡--∈41,45x 8.【解析】(1)配方,得().222+-=x y [),5,1∈x ∴函数的值域为{}.112<≤y y(2)对根号里配方得:()30922≤≤⇒+--=y x y 即[]3,0∈∴y .9.【解析】原式可变为()[)[)⎪⎩⎪⎨⎧+∞∈--∈+--∞-∈=,3,43,1,221,,4x x x x y 44≤≤-⇒y 即[]4,4-∈y10.【解析】232+-=kx x y 的反函数为kx x y -+=232,其定义域为⎪⎭⎫ ⎝⎛+∞⎪⎭⎫ ⎝⎛∞-,22,k k ,故.3322-=⇒-=k k 11.【解析】(1)当0≥x 时,0)(2≥=x x f ,则42)())((x x f x f f ==;当0<x 时,,0)(<=x x f 则x x f x f f ==)())(( 所以⎩⎨⎧≥<=0,0,))((2x x x x x f f(2)⎪⎩⎪⎨⎧<++-≥-+=2,12,3)(22x x x x x x x f由)(x f 在),2[+∞上的最小值为3)2(=f , 在)2,(-∞上的最小值为43)21(=f 故函数)(x f 在R 上的最小值为43. 12.【解析】,425232-⎪⎭⎫ ⎝⎛-=x y 因为,4,425⎥⎦⎤⎢⎣⎡--∈y 又,4)0(-=f ,42523-=⎪⎭⎫ ⎝⎛f ()43-=f ,故⎥⎦⎤⎢⎣⎡∈⇒≤≤3,23323m m . 【训练题C 类】1.函数()()R x x x f ∈+=211的值域是( ) []1,0.A [)1,0.B (]1,0.C ()1,0.D2.函数()155+=x xx f 的值域是( ) ()()+∞-∞-,51,. A ()5,1.B()()+∞∞-,11,. C ⎪⎭⎫⎝⎛+∞-⎪⎭⎫ ⎝⎛-∞-,5151,. D3.下列函数中,值域是()+∞,0的是( )12.2+-=x x y A ()()+∞∈++=,012.x x x y B ()Nx x x y C ∈++=121.211.+=x y D 4.求函数x x y 431-+-=的值域.5.求x x y ++-=12的值域.6.函数()112->++=x x x y 的值域是.7.已知函数()x f 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有()()()x f x x xf +=+11,则⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛25f f 的值是多少?8.求函数)2(x x x y -+=的值域.9.已知函数⎪⎩⎪⎨⎧+∞∈+-∞∈-=),0[,1)0,(,11)(2x x x x x f ,求)1(+x f .10.已知函数()x f 的定义域为()b a ,且,2>-a b 则()()()1313+--=x f x f x F 的定义域为()13,13.-+b a A ⎪⎭⎫ ⎝⎛-+31,31.b a B ⎪⎭⎫ ⎝⎛--31,31.b a C ⎪⎭⎫⎝⎛++31,31.b a D11.若函数()x f y =的定义域为[],1,1-求函数⎪⎭⎫⎝⎛-•⎪⎭⎫ ⎝⎛+=4141x f x f y 的定义域.【参考答案】1.【答案】C【解析】.1110,11,0,222≤+<∴≥+∴≥∴∈x x x R x∴函数()()R x xx f ∈+=211的值域为(].1,0 2.【答案】C 【解析】15115155+-+=+=x x x x y 1511+-=x 11511015≠+-∴≠+x x 即1≠y 知()()+∞∞-∈,11, y 故选.C3.【答案】D 【解析】A 中()012≥-x [)+∞∈∴,0yB 中11112++=++x x x ()+∞∈,0x 21<<∴y 即()2,1∈y C 中()2211121+=++=x x x y N x ∈ ()1,0∈∴y D 中由题意知01>+x ()+∞∈+∴,011x 故选D 4.【解析】令()01≥=-t t x 则()012≥+=t t x则142-+-=t t y ()o t t ≥⎪⎭⎫⎝⎛--=2214则0≤y .5.【解析】两边平方:6649212322≤⇒≤+⎪⎭⎫ ⎝⎛--+=y x y6.【解析】()12111211111112->=+⋅+≥+++=+++=++=x x x x x x x x x y当且仅当111+=+x x 即0=x 时成立,故2≥y 7.【解析】由()()()x f x x xf +=+11可得:23=x 时,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛23252523f f , 21=x 时,⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛21232321f f , 21-=x 时,⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-21212121f f .又.025,023021=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛f f f又()()()(),111111--=+--f f ()().0100=-=-∴f f()().0025,00==⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∴=∴f f f f8.【解析】由0)2(≥-x x 解得定义域为20≤≤x两边平方整理得:0)1(2222=++-y x y x (1)因为0)1(2222=++-y x y x 一定有根,所以08)1(42≥-+=∆y y解得:2121+≤≤-y由0≥∆仅保证关于x 的方程:0)1(2222=++-y x y x 在实数集R 有实根, 而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根, 也就是说0≥∆求出的范围可能比y 的实际范围大, 故需要进一步确定此函数的值域. 采取如下方法进一步确定函数的值域. ∵20≤≤x 0)2(≥-+=∴x x x y ,把0min =y ,21+=y 带入方程(1)解得:]2,0[2222241∈-+=x即当时,2222241-+=x 时原函数的值域为:]21,0[+9.【解析】由复合函数的定义域知)1(+x f 的定义为),1[)1`,(+∞-⋃--∞当)1`,(--∞∈x 时 11)2(+=-x x f ,当),1[+∞-∈x 时22)1(2++=+x x x f 所以⎪⎩⎪⎨⎧+∞-∈++--∞∈+=+),1[,22)1,(,11)1(2x x x x x x f10.【答案】B【解析】由题意得⎩⎨⎧<+<<-<b x a b x a 1313,即⎪⎪⎩⎪⎪⎨⎧-<<-+<<+31313131b x a b x a 显然,3131->+b b ,3131->+a a 又,2>-a b 从而.3131+>-a b()x F ∴的定义域为⎪⎭⎫⎝⎛-+31,31b a ,故选.B11.【解析】 函数()x f y =的定义域为[]1,1-∴有⎪⎪⎩⎪⎪⎨⎧≤-≤-≤+≤-14111411x x 即⎪⎪⎩⎪⎪⎨⎧≤≤-≤≤-45434345x x 得4343≤≤-x 故函数⎪⎭⎫ ⎝⎛-•⎪⎭⎫ ⎝⎛+=4141x f x f y 的定义域是⎥⎦⎤⎢⎣⎡-∈43,43x .。

小学数学重点如何理解与运用函数的概念

小学数学重点如何理解与运用函数的概念

小学数学重点如何理解与运用函数的概念函数是数学中的重要概念,它在小学数学中也占据着重要的位置。

理解和运用函数的概念对于学生在数学学习中起着至关重要的作用。

本文将从函数的基本概念、函数的性质以及函数的应用等方面进行讨论,帮助学生更好地理解和运用函数。

一、函数的基本概念函数是一种特殊的关系,它将一个集合中的每个元素与另一个集合中的唯一元素进行对应。

这里,第一个集合称为定义域,记作D;第二个集合称为值域或者叫做像域,记作R。

一个函数可以用一个公式、图表或者一段描述性语言来表示。

在小学数学中,函数的概念通常通过实际问题的解决引导学生进行理解。

例如,假设小明去水果摊买苹果,他根据所购买的苹果的重量选择了相应的价格。

这里,苹果的重量就是定义域,价格就是值域。

通过这个例子,学生可以初步理解函数的概念。

二、函数的性质函数具有一些重要的性质,学生在理解和运用函数的概念时,需要了解这些性质。

1. 定义域和值域:定义域是函数中所有可能输入的集合,而值域是函数中所有可能输出的集合。

学生在确定函数的定义域和值域时,需要仔细观察函数的表达式或者问题的要求。

2. 自变量和因变量:函数中的自变量是定义域中的元素,因变量是值域中的元素。

自变量和因变量之间的关系是一种映射关系,自变量的取值决定了函数的返回值。

3. 单调性:函数可以是递增的、递减的或者不变的。

递增函数表示随着自变量的增大,因变量也随之增大;递减函数表示随着自变量的增大,因变量减小;不变函数表示无论自变量如何变化,因变量始终保持不变。

4. 奇偶性:函数可以是奇函数、偶函数或者既不是奇函数也不是偶函数。

奇函数的特点是关于原点对称,即对于任意x,有f(-x)=-f(x);偶函数的特点是关于y轴对称,即对于任意x,有f(-x)=f(x)。

三、函数的应用函数的概念在实际生活和数学解题中都有广泛的应用。

1. 函数的图像:将函数的自变量和因变量分别绘制在坐标系的x轴和y轴上,可以得到函数的图像。

函数的概念与定义域

函数的概念与定义域

函数的概念与定义域一、函数的概念一、映射1.映射:设A 、B 是两个非空集合,如果按照某种对应关系,对于集合A 中的任意元素,在集合B 中都有惟一元素和它对应,这样的对应叫做集合A 到集合B 的映射,记作:;2.象与原象:如果是一个A 到B 的映射,那么和A 中的元素对应的元素叫做象, 叫做原象;3.映射的性质:①方向性:集合A 到集合B 的映射与集合B 到集合A 的映射是不同的;②任意性:集合A 中的任意一个元素在集合B 中都要有象,但不要求B 中的每一个元素在A 中都要有原象;③惟一性:集合A 中元素的象是惟一的,即“一对一”、“多对一”是允许的,但“一对多”是不允许的.二、函数1.定义:设A 、B 是两个非空数集,是从A 到B 的一个映射,则映射就叫做A 到B 的函数,记作:;2.函数的三要素为:定义域、值域、对应法则,两个f B A f →:B A f →:a a B A f →:B A f →:()x f y =函数当且仅当定义域和对应法则分别相同时,二者才能称为同一函数;3.函数的表示法有:解析式、列表法、图像法.例1、(1)给出下列四个对应,是映射的是( )① ② ③ ④A.②④B.①②C. ②③D.①④(2)设在下图中,能表示从集合{}{}|02,|12,A xx B y y =≤≤=≤≤A.A .B .D .C(3)已知集合,,下列不表示从到的映射是: ∶ ∶ ∶例2、(1)已知在映射作用下的象是.①求在作用下的象② 若在作用下的象是,求它的原象(2)给定映射,点的原象是{}04P x x =≤≤{}02Q x x =≤≤P Q .A f x y x 21=→.B f xy x 31=→.C f x y x 32=→.D f xy x =→(),x y f (),x y xy +()2,3-f f ()2,3:(,)(2,)f x y x y xy →+()2,4(3)设集合和都是实数集,映射把集合中的元素映射到集合中的元素,则在映射下,象的原象组成的集合是( ) 二、区间的概念设是两个实数,而且,规定:(1)满足不等式的实数的集合叫做闭区间,表示为;(2)满足不等式的实数的集合叫做开区间,表示为;(3)满足不等式或的实数的集合叫做半开半闭区间,表示为,.这里的实数与都叫做相应区间的端点。

函数的概念及定义域、值域基本知识点总结.doc

函数的概念及定义域、值域基本知识点总结.doc

函数的概念及定义域.值域基本知识点总结函数概念1.映射的概念设A、B是两个集合,如果按照某种对应法则/ ,对于集合4小的任意元素,在集合B 中都冇唯一确宦的元索与Z对应,那么这样的单值对应叫做从A到B的映射,通常记为f :A^ B , f 表示对应法则注意:(1)A中元素必须都有彖J1唯一;(2)B中元素不一定都有原彖,但原彖不一定唯一。

2.函数的概念(1)函数的定义:设A、B是两个非空的数集,如果按照某种对应法则/,对于集合4屮的每个数兀, 在集合B中都冇唯一确怎的数和它对应,那么这样的对应叫做从A到B的一个函数,通常⑵函数的定义域、值域在函数y = f(x\xeA中,x叫做自变量,x的取值范围A叫做y = f(x)的定义域;与x的值相对应的y值叫做两数值,函数值的集合{/⑴卜e △}称为函数y = /(%)的值域。

(3)函数的三要素:定义域、值域和对丿应法则3.函数的三种表示法:图象法、列表法、解析法(1).图象法:就是用函数图象表示两个变量之间的关系;(2).列表法:就是列出表格来表示两个变量的函数关系;(3).解析法:就是把两个变量的函数关系,用等式來表示。

4.分段函数在H变量的不同变化范围屮,对应法则用不同式子來表示的函数称为分段函数。

(-)考点分析考点1:映射的概念例1. (1) A = R , B = {yly〉O}, f :x —> y =1 xI ;(2) A = {x\ x>2,x e N^}, B = {y\ y>O,y e N], / : x y = x2 - 2x + 2 ;(3) A = {xI x > 0}, = {>' I y e R}, / : x —> y = ±\[x .上述三个对应是A到B的映射.例2.若A = {1,2,3,4}, B = {aM,a,b,cwR,则A到B的映射有个,B到A的映射有个,A到B 的函数有个例3.设集合M ={-1,0,1}, 7V = {-2,-1,0,1,2},如果从M到N的映射/满足条件:对(4)8 个(3)12 个(C)16 个(0)18 个M中的每个元素兀与它在N中的象/(兀)的和都为奇数,则映射/的个数是()考点2:判断两函数是否为同一个函数例1.试判断以下各组函数是否表示同一函数?(1) /(X )= , g(x) = V?":⑶ /(x) = 2n ^X^ , g(X )= (2“V7)2"T (/7GN 4);(4) /(x) = Vx Jx + 1 , g(x) = Jx ,十 x ;(5) /(x) = x 2 -2x -1, g(t) = t 2 -2r -1 考点3:求函数解析式方法总结:(1)若已知函数的类型(如一次函数、二次函数),则用待定系数法;(2) 若已知复合函数f[g(x)]的解析式,则可用换元法或配凑法;(3) 若已知抽象函数的表达式,则常用解方程组消参的方法求出/(%)题型1:由复合函数的解析式求原来函数的解析式例1.已知二次函数/(X )满足/(2X + 1) = 4X 2-6X + 5,求/U)(三种方法)| + V* | _ Y 2例2. (09湖北改编)已知/(-—)=—v ,则/(X )的解析式可取为 l-x 1 + JC题型2:求抽象函数解析式例1.已知函数/⑴满足/U) + 2/(-) = 3x,求/⑴函数的定义域题型1:求有解析式的函数的定义域(1) 方法总结:如没有标明定义域,则认为定义域为使得函数解析式有意义的X 的取值范 围,实际操作时要注意:酚母不能为0;②对数的真数必须为正;酬次根式中被开方数应 为非负数;歿指数幕中,底数不等于0;矽分数指数幕中,底数应人于0;魁解析式由 儿个部分组成,则定义域为各个部分相应集合的交集;⑦n 果涉及实际问题,还应使得实际 问题有意义,而11注意:研究函数的有关问题一定要注意定义域优先原则,实际问题的定义 域不耍漏写。

函数的基本概念与性质知识点总结

函数的基本概念与性质知识点总结

函数的基本概念与性质知识点总结函数是数学中的一种重要概念,广泛应用于各个领域。

了解函数的基本概念和性质对于理解和应用数学具有重要意义。

本文将对函数的基本概念和性质进行总结。

一、函数的基本概念函数是一种映射关系,将一个集合的元素映射到另一个集合的元素。

在函数中,称第一个集合为定义域,第二个集合为值域。

用符号表示函数为:f:X→Y,其中 f 表示函数名,X 表示定义域,Y 表示值域。

1.1 定义域和值域函数的定义域是指函数输入的变量所能取到的值的集合。

值域是函数输出的变量所能取到的值的集合。

1.2 自变量和因变量在函数中,自变量是函数的输入变量,而因变量则是函数的输出变量。

1.3 函数图像函数的图像是函数在坐标平面上的表示,自变量作为 x 轴的取值,因变量作为y 轴的取值,函数图像表示了自变量和因变量之间的关系。

二、函数的性质函数具有许多重要性质,下面将对其中几个重要的性质进行介绍。

2.1 单调性函数的单调性描述了函数的增减特性。

当自变量增大时,如果函数值也增大,则函数是递增的;当自变量增大时,函数值减小,则函数是递减的。

2.2 奇偶性函数的奇偶性是指函数关于原点的对称性。

如果函数满足 f(-x) =f(x),则函数是偶函数;如果函数满足 f(-x) = -f(x),则函数是奇函数。

2.3 周期性函数的周期性意味着函数在某个特定的区间内具有重复的模式。

如果存在正数 T,使得对于任意 x,有 f(x + T) = f(x),则函数具有周期性。

2.4 极限函数的极限是指当自变量趋近于某个特定值时,函数趋于的稳定值。

极限有左极限和右极限之分。

2.5 连续性函数的连续性描述了函数图像的连贯性。

如果函数在某个区间内的每个点都存在极限,且极限与函数值相等,则函数是连续的。

三、小结函数是数学中的重要概念,理解函数的基本概念和性质对于学习和应用数学具有重要意义。

本文对函数的基本概念和性质进行了总结,包括函数的定义域和值域、自变量和因变量、函数图像等。

函数的基本概念

函数的基本概念

函数的基本概念函数是数学中的一个重要概念,也是数学分析的基础。

它在数学和其他领域中有着广泛的应用。

本文将介绍函数的基本概念以及一些常见的函数类型。

1. 函数的定义函数是数学中一种对应关系,它将一个集合中的每个元素都映射到另一个集合中的唯一元素。

通常用f(x)表示函数,其中x为自变量,f(x)为因变量。

函数可以用图像、表格或公式的形式表示。

2. 函数的表示方法函数可以通过不同的方式进行表示。

常见的表示方法包括:- 变量表达式:如y = 2x + 1,其中y表示因变量,x表示自变量。

- 函数图像:通过绘制自变量和因变量之间的关系,可以得到函数的图像。

图像可以帮助我们更直观地理解函数的性质。

- 函数表格:通过将自变量和因变量的对应关系列成表格形式,可以清晰地展示函数的取值情况。

3. 函数的定义域和值域函数的定义域是指自变量的取值范围,即函数能够接受的输入。

函数的值域是指函数的所有可能输出值,即函数的取值范围。

定义域和值域是函数的重要性质,可以帮助我们了解函数的范围和性质。

4. 常见的函数类型4.1 线性函数线性函数是最简单的一种函数类型,其表达式为f(x) = ax + b,其中a和b为常数,a不等于零。

线性函数的图像为一条直线,具有常等差的特点。

4.2 幂函数幂函数是指形如f(x) = x^n的函数,其中n为整数。

幂函数的图像根据n的不同而变化,n为偶数时图像可以是开口向上或向下的抛物线,n为奇数时图像则可以是一条直线。

4.3 指数函数指数函数是指形如f(x) = a^x的函数,其中a为正实数且不等于1。

指数函数的图像通常呈现出逐渐增长或逐渐减小的曲线,具有指数增长或指数衰减的特点。

4.4 对数函数对数函数是指形如f(x) = log_a(x)的函数,其中a为正实数且不等于1。

对数函数的图像通常呈现出逐渐增长但增长速度逐渐减缓的曲线,具有反指数增长的特点。

4.5 三角函数三角函数包括正弦函数、余弦函数和正切函数等。

高一数学教案复习函数的基本概念与性质

高一数学教案复习函数的基本概念与性质

高一数学教案复习函数的基本概念与性质函数是数学中一种重要的概念,它在数理科学的研究和实际应用中都有着广泛的应用。

高一学生正处于数学基础知识的学习和掌握阶段,因此对于函数的基本概念与性质的复习显得尤为重要。

本篇教案将细致地介绍函数的基本概念和常见的性质,以帮助学生加深对该知识点的理解和运用。

一、函数的基本概念函数是指两个集合之间的一种特殊关系,其中每个元素(自变量)在定义域内只对应一个元素(因变量)。

为了确定一个函数,我们需要明确以下几个要素:1.1 定义域和值域函数的定义域是指自变量可能取值的集合,而值域则是函数的所有可能输出值的集合。

需要注意的是,函数的定义域可以是实数集、整数集或自然数集等不同数集。

1.2 关系式或图表函数可以通过关系式或图表的形式来表示。

关系式是指将自变量和因变量之间的关系用式子表示出来,如y = 2x + 3;图表则是将自变量和因变量的对应关系用表格或图像呈现出来。

1.3 函数的特性函数可以通过一些特性来描述和判断,比如奇偶性、单调性、周期性等。

这些特性可以帮助我们更好地理解函数的性质和行为。

二、函数的性质与图像除了基本概念之外,函数还具有一些常见的性质。

下面我们将介绍一些关于函数性质的重要内容,并通过图像来进一步说明。

2.1 奇偶性一个函数可以是奇函数、偶函数或者既不是奇函数也不是偶函数。

奇函数的图像关于原点对称,即f(-x) = -f(x);偶函数的图像关于y轴对称,即f(-x) = f(x)。

2.2 单调性单调函数是指在定义域上具有单调性的函数。

如果函数在某一区间上递增,那么它是递增函数;如果函数在某一区间上递减,那么它是递减函数。

2.3 周期性周期函数是指在一定区间内,函数的值按照一定规律重复出现。

常见的周期函数有正弦函数和余弦函数等。

周期可以通过函数的图像来观察和确定。

三、函数的应用函数的概念和性质在数学和实际应用中都有广泛的应用。

在数学上,函数可以用于解决各种数学问题,如方程的求解、不等式的证明等。

函数的基本概念和性质

函数的基本概念和性质

函数的基本概念和性质函数是数学中的一种基本概念,广泛应用于各个领域。

它可以描述两个集合之间的某种对应关系,将一个集合中的元素映射到另一个集合中的元素。

本文将介绍函数的基本概念、性质以及一些常见的函数类型。

一、函数的基本概念函数是一种数学上的关系,其定义如下:定义1:设A、B是两个非空集合,若存在一个规则F,使得对于A中的任意元素x,都有唯一的元素y在B中与之对应,即F(x)=y,那么规则F就是从A到B的一个函数。

其中,A称为函数的定义域,B 称为函数的值域。

例如,考虑定义在实数集上的一个函数f(x)=x^2,其中定义域为实数集,值域为非负实数集。

对于定义域中的任意实数x,都有唯一的非负实数y与之对应,即对于任意的x∈R,都有f(x)=x^2≥0。

二、函数的性质函数具有一些重要的性质,如下所述:1. 定义域和值域:函数的定义域指的是该函数的自变量可取值的范围,值域则是函数的因变量的所有可能取值。

函数的定义域和值域通常由函数表达式的性质决定。

2. 单射:如果对于函数的值域中的每一个元素y,都存在唯一的定义域中的元素x与之对应,那么该函数被称为单射函数。

换句话说,如果函数的两个不同的自变量不能映射到同一个因变量,那么该函数就是单射函数。

3. 满射:如果对于函数的值域中的每一个元素y,都存在定义域中的元素x与之对应,那么该函数被称为满射函数。

换句话说,如果函数的所有因变量都能找到至少一个自变量与之对应,那么该函数就是满射函数。

4. 双射:如果一个函数既是单射又是满射,那么该函数被称为双射函数。

换句话说,对于函数的值域中的每一个元素y,都存在唯一的定义域中的元素x与之对应,并且函数的定义域和值域有相同的基数。

三、常见的函数类型函数的类型根据定义域和值域的不同可以分为多种形式,常见的函数类型包括:1. 实函数:定义域和值域都是实数集的函数称为实函数。

例如,f(x)=sin(x)就是一个实函数,其定义域和值域都是实数集。

函数的概念与基本性质

函数的概念与基本性质

函数的概念与基本性质函数是数学中的一个重要概念,它在数学和其他领域中都有广泛的应用。

本文将介绍函数的概念以及其基本性质,包括定义域、值域、对应关系、单调性等。

一、函数的概念函数是两个集合之间的一种特殊关系,一般表示为 f(x),其中 x 是自变量,f(x) 是因变量。

函数的定义域是指所有可能的自变量的集合,而值域则是函数在定义域内可以取得的所有因变量的值的集合。

函数在定义域内的每个自变量都对应一个唯一的因变量。

二、函数的基本性质1. 定义域和值域:函数的定义域和值域是函数的两个基本性质。

定义域决定了函数的有效输入范围,而值域则表示函数可能的输出范围。

在函数中,定义域和值域可以是有限的集合,也可以是无限的区间。

2. 对应关系:函数的一个重要性质是具有确定的对应关系。

即在定义域内的每个自变量都对应唯一的因变量。

这种一一对应的关系使得函数具有明确的输入和输出。

3. 单调性:函数的单调性描述了函数随自变量变化时的趋势。

如果函数在定义域内的任意两个自变量 x1 和 x2 满足 x1 < x2,则有 f(x1) <f(x2),则称该函数是单调递增的。

反之,如果 f(x1) > f(x2),则称该函数是单调递减的。

4. 奇偶性:函数的奇偶性是指函数关于原点对称的性质。

如果对于定义域内的任意自变量 x,有 f(-x) = -f(x),则称函数是奇函数。

而如果有 f(-x) = f(x),则称函数是偶函数。

5. 周期性:函数的周期性表示在一定范围内,函数的图像会随着自变量的周期性变化而重复出现。

如果存在一个正数 T,使得对于定义域内的任意自变量 x,有 f(x+T) = f(x),则称函数具有周期 T。

三、函数的应用函数的概念和性质在数学和其他领域中都有广泛的应用。

在数学中,函数被用于解决各种数学问题,包括方程求解、函数图像绘制和曲线分析等。

在物理、经济学和工程学等应用领域,函数被用于建立模型和描述现象,帮助我们理解和解释自然界中的规律。

高中函数定义

高中函数定义

高中函数定义函数是数学中的基本概念,也是高中数学中的重要内容之一。

在高中数学中,函数被广泛应用于各个领域,如代数、几何、概率等。

高中函数定义是指高中数学课程中教授的函数的概念及其相关性质和应用的内容。

一、函数的基本概念函数是一种特殊的关系,它把一个集合的元素映射到另一个集合的元素上。

函数通常用字母表示,比如f(x)。

其中,x称为自变量,f(x)称为因变量。

函数的定义域是自变量的取值范围,值域是函数的所有可能取值。

函数可以用多种形式表示,如函数表达式、图像、数据集等。

二、函数的性质1. 定义域和值域:函数的定义域和值域是函数的基本性质。

定义域的确定需要考虑函数的合理性和可行性,值域的确定要依据函数的定义和性质。

2. 单调性:函数的单调性是指函数在定义域内的增减关系。

可以分为单调递增和单调递减两种情况。

3. 奇偶性:函数的奇偶性是指函数在定义域内的对称性。

奇函数满足f(-x)=-f(x),偶函数满足f(-x)=f(x)。

4. 周期性:周期函数是指函数在一定范围内具有重复的性质。

周期函数可以通过周期和函数值的关系来确定。

5. 对称轴:对称轴是指函数图像的对称轴线。

对称轴可以通过函数表达式的形式来确定。

三、函数的应用函数在高中数学中有广泛的应用。

以下是一些常见的应用情况:1. 函数的图像:通过函数的图像可以对函数的性质进行分析和判断。

函数的图像可以通过手绘、数学软件或图形计算器等工具得到。

2. 函数的最值:函数的最值是函数在定义域内的最大值和最小值。

最值可以通过函数的图像或数学方法进行求解。

3. 函数的方程:函数的方程是指由函数的定义和性质推导出的方程。

函数的方程可以用于解决实际问题,如求解方程组、求解最值等。

4. 函数的导数:函数的导数是函数变化率的一种表示。

导数可以用于求解函数的极值、判断函数的单调性等问题。

5. 函数的积分:函数的积分是函数的反导数。

积分可以用于计算函数的面积、求解曲线长度等问题。

函数概念定义域

函数概念定义域

函数定义及定义域一:1.函数的概念:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作: y=f(x),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域. 2.函数的三要素:定义域,对应关系,值域。

3.定义域:能使函数式有意义的实数x 的集合称为函数的定义域。

求函数的定义域时列不等式组的主要依据是: (1)分式的分母不等于零;(2)偶次方根的被开方数不小于零; (3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x 的值组成的集合.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.4.相同函数的判断方法:①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)二.值域 :函数值的取值构成的集合( 先考虑其定义域)。

(1)观察法 (2)配方法 (3)代换法三. 函数图象知识归纳1.定义:在平面直角坐标系中,以函数 y=f(x) , (x ∈A)中的x 为横坐标,函数值y 为纵坐标的点P (x ,y)的集合C ,叫做函数 y=f(x),(x ∈A)的图象.C 上每一点的坐标(x ,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x 、y 为坐标的点(x ,y),均在C 上 .2. 画法: A.描点法: B.图象变换法3.常用变换方法有三种 (1)平移变换 (2)伸缩变换 (3)对称变换 4.区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间 (2)无穷区间(3)区间的数轴表示. 5.分段函数(1)在定义域的不同部分上有不同的解析表达式的函数。

第1讲 函数的定义域及值域(教师版)

第1讲 函数的定义域及值域(教师版)

第1讲 函数的定义域及值域【知识梳理】一.函数的基本概念 (1)函数的定义设A ,B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数,记作y =f (x ),x ∈A . (2)函数的定义域、值域在函数y =f (x ),x ∈A 中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x )|x ∈A }叫做函数的值域.显然,值域是集合B 的子集.(3)函数的三要素:定义域、对应关系和值域. (4)函数的表示法表示函数的常用方法有解析法、图象法和列表法. 二.映射的概念设A ,B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B 中都有唯一确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的一个映射. 三.函数解析式的求法求函数解析式常用方法有待定系数法、换元法、配凑法、消去法. 四.常见函数定义域的求法 (1)分式函数中分母不等于零. (2)偶次根式函数被开方式大于或等于0. (3)一次函数、二次函数的定义域为R .(4)y =a x (a >0且a ≠1),y =sin x ,y =cos x ,定义域均为R .(5)y =tan x 的定义域为⎩⎨⎧⎭⎬⎫x |x ∈R 且x ≠k π+π2,k ∈Z .(6)函数f (x )=x α的定义域为{x |x ∈R 且x ≠0}.【题型归纳全解】题型一 函数的概念例1. 有以下判断:①f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1 (x ≥0)-1 (x <0)表示同一函数;②函数y =f (x )的图象与直线x =1的交点最多有1个; ③f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数;④若f (x )=|x -1|-|x |,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=0. 其中正确判断的序号是________. 答案 ②③解析 对于①,由于函数f (x )=|x |x 的定义域为{x |x ∈R 且x ≠0},而函数g (x )=⎩⎪⎨⎪⎧1 (x ≥0)-1 (x <0)的定义域是R ,所以二者不是同一函数;对于②,若x =1不是y =f (x )定义域内的值,则直线x =1与y =f (x )的图象没有交点,如果x =1是y =f (x )定义域内的值,由函数定义可知,直线x =1与y =f (x )的图象只有一个交点,即y =f (x )的图象与直线x =1最多有一个交点;对于③,f (x )与g (t )的定义域、值域和对应关系均相同,所以f (x )和g (t )表示同一函数;对于④,由于f ⎝⎛⎭⎫12=⎪⎪⎪⎪12-1-⎪⎪⎪⎪12=0,所以f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=f (0)=1. 综上可知,正确的判断是②③.题型二 求函数的解析式例2. (1)如果f (1x )=x1-x,则当x ≠0且x ≠1时,f (x )等于( )A.1xB.1x -1C.11-xD.1x -1 (2)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,则f (x )=________.(3)已知函数f (x )的定义域为(0,+∞),且f (x )=2f (1x)·x -1,则f (x )=________.答案 (1)B (2)2x +7 (3)23x +13解析 (1)令t =1x ,得x =1t ,∴f (t )=1t 1-1t =1t -1,∴f (x )=1x -1.(2)设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b ,即ax +5a +b =2x +17不论x 为何值都成立, ∴⎩⎪⎨⎪⎧ a =2,b +5a =17,解得⎩⎪⎨⎪⎧a =2,b =7,∴f (x )=2x +7.(3)在f (x )=2f (1x )x -1中,用1x代替x ,得f (1x )=2f (x )1x -1,将f (1x )=2f (x )x-1代入f (x )=2f (1x )x -1中,可求得f (x )=23x +13.题型三 求函数的定义域 例3. (1)函数f (x )=ln (2+x -x 2)|x |-x 的定义域为( )A .(-1,2)B .(-1,0)∪(0,2)C .(-1,0)D .(0,2)(2)已知函数f (x )的定义域为[1,2],则函数g (x )=f (2x )(x -1)0的定义域为________.答案 (1)C (2)[12,1)解析 (1)f (x )有意义,则⎩⎪⎨⎪⎧2+x -x 2>0,|x |-x ≠0,解之得⎩⎪⎨⎪⎧-1<x <2,x <0,∴-1<x <0,∴f (x )的定义域为(-1,0).(2)要使函数g (x )=f (2x )(x -1)0有意义,则必须有⎩⎪⎨⎪⎧1≤2x ≤2x -1≠0,∴12≤x <1,故函数g (x )的定义域为[12,1). 题型四 分段函数例4. (1)已知函数f (x )=⎩⎪⎨⎪⎧2x,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于( )A .-3B .-1C .1D .3(2)设函数y =f (x )在R 上有定义.对于给定的正数M ,定义函数f M (x ) =⎩⎪⎨⎪⎧f (x ),f (x )≤M ,M ,f (x )>M ,则称函数f M (x )为f (x )的“孪生函数”.若给定函数f (x )=2-x 2,M =1,则f M (0)的值为 ( )A .2B .1 C. 2 D .- 2 答案 (1)A (2)B解析 (1)由题意知f (1)=21=2.∵f (a )+f (1)=0, ∴f (a )+2=0.①当a >0时,f (a )=2a,2a +2=0无解;②当a ≤0时,f (a )=a +1,∴a +1+2=0,∴a =-3. (2)由题设f (x )=2-x 2≤1,得 当x ≤-1或x ≥1时, f M (x )=2-x 2;当-1<x <1时,f M (x )=1.∴f M (0)=1.【课堂训练】1. 函数f (x )=1ln (x +1)+4-x 2的定义域为( )A .[-2,0)∪(0,2]B .(-1,0)∪(0,2]C .[-2,2]D .(-1,2]答案 B解析 由⎩⎪⎨⎪⎧x +1>0ln (x +1)≠04-x 2≥0,得-1<x ≤2,且x ≠0.2. (2012·江西)设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x ,x >1,则f (f (3))等于( )A.15 B .3 C.23 D.139 答案 D解析 由题意知f (3)=23,f ⎝⎛⎭⎫23=⎝⎛⎭⎫232+1=139,∴f (f (3))=f ⎝⎛⎭⎫23=139.3. 若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( )答案 B解析 可以根据函数的概念进行排除,使用筛选法得到答案.4. 已知函数f (x )满足f (2x +|x |)=log 2x |x |,则f (x )的解析式是( )A .f (x )=log 2xB .f (x )=-log 2xC .f (x )=2-xD .f (x )=x -2答案 B解析 根据题意知x >0,所以f (1x )=log 2x ,则f (x )=log 21x=-log 2x .5. 某学校要召开学生代表大会,规定各班每10人推选一名代表,当各班人数除以10的余数大于6时再增选一名代表.那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y =[x ]([x ]表示不大于x 的最大整数)可以表示为( )A .y =[x10]B .y =[x +310]C .y =[x +410]D .y =[x +510]答案 B解析 方法一 取特殊值法,若x =56,则y =5,排除C ,D ; 若x =57,则y =6,排除A ,选B.方法二 设x =10m +α(0≤α≤9,m ,α∈N ),当0≤α≤6时,[x +310]=[m +α+310]=m =[x10],当6<α≤9时,[x +310]=[m +α+310]=m +1=[x10]+1,所以选B.6. 下表表示y答案 {2,3,4,5}解析 函数值只有四个数2、3、4、5,故值域为{2,3,4,5}. 7. 已知f (x -1x )=x 2+1x 2,则f (3)=________.答案 11解析 ∵f (x -1x )=x 2+1x 2=(x -1x )2+2,∴f (x )=x 2+2(x ≠0),∴f (3)=32+2=11.8. 若函数f (x )=2x 2+2ax -a -1的定义域为R ,则a 的取值范围为________. 答案 [-1,0]解析 由题意知2x 2+2ax -a -1≥0恒成立. ∴x 2+2ax -a ≥0恒成立, ∴Δ=4a 2+4a ≤0,∴-1≤a ≤0.9. 已知f (x )是二次函数,若f (0)=0,且f (x +1)=f (x )+x +1.求函数f (x )的解析式. 解 设f (x )=ax 2+bx +c (a ≠0),又f (0)=0, ∴c =0,即f (x )=ax 2+bx .又∵f (x +1)=f (x )+x +1.∴a (x +1)2+b (x +1)=ax 2+bx +x +1. ∴(2a +b )x +a +b =(b +1)x +1,∴⎩⎪⎨⎪⎧2a +b =b +1a +b =1,解得⎩⎨⎧a =12b =12.∴f (x )=12x 2+12x .10. 某人开汽车沿一条直线以60 km /h 的速度从A 地到150 km 远处的B 地.在B 地停留1 h后,再以50 km/h 的速度返回A 地,把汽车与A 地的距离x (km)表示为时间t (h)(从A 地出发开始)的函数,并画出函数的图象. 解x =⎩⎪⎨⎪⎧60t 0≤t ≤52150 52<t ≤72150-50(t -72) 72<t ≤132.图象如右图所示.【课下作业】1. 已知a ,b 为两个不相等的实数,集合M ={a 2-4a ,-1},N ={b 2-4b +1,-2},f :x →x表示把M 中的元素x 映射到集合N 中仍为x ,则a +b 等于( )A .1B .2C .3D .4答案 D解析 由已知可得M =N ,故⎩⎪⎨⎪⎧ a 2-4a =-2,b 2-4b +1=-1⇒⎩⎪⎨⎪⎧a 2-4a +2=0,b 2-4b +2=0,所以a ,b 是方程x 2-4x +2=0的两根,故a +b =4.2. 设函数f (x )=⎩⎪⎨⎪⎧x 2+4x +6,x ≤0-x +6,x >0,则不等式f (x )<f (-1)的解集是( )A .(-3,-1)∪(3,+∞)B .(-3,-1)∪(2,+∞)C .(-3,+∞)D .(-∞,-3)∪(-1,3) 答案 A解析 f (-1)=3,f (x )<3,当x ≤0时,x 2+4x +6<3, 解得x ∈(-3,-1);当x >0时,-x +6<3,解得x ∈(3,+∞),故不等式的解集为(-3,-1)∪(3,+∞),故选A.3. 已知函数f (x )=⎩⎪⎨⎪⎧e x ,x ≥0,-2x ,x <0,则关于x 的方程f (f (x ))+k =0,给出下列四个命题:①存在实数k ,使得方程恰有1个实根; ②存在实数k ,使得方程恰有2个不相等的实根; ③存在实数k ,使得方程恰有3个不相等的实根; ④存在实数k ,使得方程恰有4个不相等的实根.其中正确命题的序号是________.(把所有满足要求的命题序号都填上) 答案 ①②解析依题意,知函数f (x )>0, 又f (f (x ))=⎩⎪⎨⎪⎧ee x ,x ≥0,e -2x ,x <0,依据y =f (f (x ))的大致图象(如右图所示),知存在实数k ,使得方程f (f (x ))+k =0恰有1个实根或恰有2个不相等的实根;不存在实数k ,使得方程恰有3个不相等的实根或恰有4个不相等的实根.4. 行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫 作刹车距离.在某种路面上,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时)满足下列关系:y =x 2200+mx +n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (米)与汽车的车速x (千米/时)的关系图.(1)求出y 关于x 的函数表达式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度. 解 (1)由题意及函数图象,得⎩⎨⎧402200+40m +n =8.4602200+60m +n =18.6,解得m =1100,n =0,所以y =x 2200+x100(x ≥0).(2)令x 2200+x100≤25.2,得-72≤x ≤70. ∵x ≥0,∴0≤x ≤70.故行驶的最大速度是70千米/时.5. 运货卡车以每小时x 千米的速度匀速行驶130千米(50≤x ≤100)(单位:千米/小时).假设汽油的价格是每升2元,而汽车每小时耗油(2+x 2360)升,司机的工资是每小时14元.(1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值.解 (1)行车所用时间为t =130x(h),y =130x ×2×(2+x2360)+14×130x ,x ∈[50,100].所以,这次行车总费用y 关于x 的表达式是 y =2 340x +1318x ,x ∈[50,100].(2)y =2 340x +1318x ≥2610,当且仅当2 340x =1318x ,即x =1810时,上述不等式中等号成立.故当x =1810时,这次行车的总费用最低,最低费用为2610元.。

函数的基本定义

函数的基本定义

§2.1函数及其表示1.函数的基本概念(1)函数的定义给定两个非空数集A和B,如果按照某个对应关系f,对于集合A中任何一个数x,在集合B 中都存在唯一确定的数f(x)与之对应,那么就把对应关系f叫作定义在集合A上的函数,记作f:A→B,或y=f(x),x∈A.(2)函数的定义域、值域在函数y=f(x),x∈A中,x叫作自变量,集合A叫作函数的定义域;集合{f(x)|x∈A}叫作函数的值域.(3)函数的三要素:定义域、对应关系和值域.(4)函数的表示法表示函数的常用方法有列表法、图像法和解析法.2.映射的概念两个非空集合A与B间存在着对应关系f,而且对于A中的每一个元素x,B中总有唯一的一个元素y与它对应,就称这种对应为从A到B的映射.3.函数解析式的求法求函数解析式常用方法有待定系数法、换元法、配凑法、消去法.4.分段函数若函数在其定义域的不同子集上,因对应关系不同而分别用几个不同的式子来表示,这种函数称为分段函数.分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数. 5.函数定义域的求法【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”) (1)f (x )=x 2x与g (x )=x 是同一个函数.( × )(2)若两个函数的定义域与值域相同,则这两个函数相等.( × )(3)若函数f (x )的定义域为{x |1≤x <3},则函数f (2x -1)的定义域为{x |1≤x <5}.( × )(4)f (x )=⎩⎨⎧1-x 2, -1≤x ≤1,x +1,x >1或x <-1,则f (-x )=⎩⎨⎧1-x 2, -1≤x ≤1,-x +1,x >1或x <-1.( √ )(5)函数是特殊的映射.( √ )(6)函数f (x )=x 2+3+1的值域是{y |y ≥1}.( × )1.(2014·江西)函数f (x )=ln(x 2-x )的定义域为( ) A .(0,1)B .[0,1]C .(-∞,0)∪(1,+∞)D .(-∞,0]∪[1,+∞)答案 C解析 要使f (x )=ln(x 2-x )有意义,只需x 2-x >0,解得x >1或x <0.所以函数f (x )=ln(x 2-x )的定义域为 (-∞,0)∪(1,+∞).2.下列函数中,不满足...f (2x )=2f (x )的是( ) A .f (x )=|x |B .f (x )=x -|x |C .f (x )=x +1D .f (x )=-x答案 C解析 将f (2x )表示出来,看与2f (x )是否相等. 对于A ,f (2x )=|2x |=2|x |=2f (x ); 对于B ,f (2x )=2x -|2x |=2(x -|x |)=2f (x ); 对于C ,f (2x )=2x +1≠2f (x ); 对于D ,f (2x )=-2x =2f (x ),故只有C 不满足f (2x )=2f (x ),所以选C.3.已知函数f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,(13)x ,x ≤0,则满足方程f (a )=1的所有a 的值组成的集合为________.答案 {3,0}解析 当a >0时,由log 3a =1,解得a =3>0,符合题意,当a ≤0时,由(13)a =1,解得a =0,符合题意,综上所述,a =0或a =3. 4.给出下列四个命题:①函数是其定义域到值域的映射;②f (x )=x -2+2-x 是函数;③函数y =2x (x ∈N )的图像是一条直线;④函数的定义域和值域一定是无限集合. 其中真命题的序号有________. 答案 ①②解析 对于①函数是映射,但映射不一定是函数; 对于②f (x )是定义域为{2},值域为{0}的函数; 对于③函数y =2x (x ∈N )的图像不是一条直线; 对于④函数的定义域和值域不一定是无限集合.题型一 函数的概念 例1 有以下判断:①f (x )=|x |x 与g (x )=⎩⎪⎨⎪⎧1, x ≥0-1,x <0表示同一函数;②函数y =f (x )的图像与直线x =1的交点最多有1个; ③f (x )=x 2-2x +1与g (t )=t 2-2t +1是同一函数;④若f (x )=|x -1|-|x |,则f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=0. 其中正确判断的序号是________. 答案 ②③解析 对于①,由于函数f (x )=|x |x 的定义域为{x |x ∈R 且x ≠0},而函数g (x )=⎩⎪⎨⎪⎧1, x ≥0-1,x <0的定义域是R ,所以二者不是同一函数;对于②,若x =1不是y =f (x )定义域内的值,则直线x =1与y =f (x )的图像没有交点,如果x =1是y =f (x )定义域内的值,由函数定义可知,直线x =1与y =f (x )的图像只有一个交点,即y =f (x )的图像与直线x =1最多有一个交点;对于③,f (x )与g (t )的定义域、值域和对应关系均相同,所以f (x )和g (t )表示同一函数;对于④,由于f ⎝⎛⎭⎫12=⎪⎪⎪⎪12-1-⎪⎪⎪⎪12=0,所以f ⎝⎛⎭⎫f ⎝⎛⎭⎫12=f (0)=1. 综上可知,正确的判断是②③.思维升华 函数的值域可由定义域和对应关系唯一确定;当且仅当定义域和对应关系都相同的函数才是同一函数.值得注意的是,函数的对应关系是就结果而言的(判断两个函数的对应关系是否相同,只要看对于函数定义域中的任意一个相同的自变量的值,按照这两个对应关系算出的函数值是否相同).(1)下列各组函数中,表示同一函数的是( )A .f (x )=|x |,g (x )=x 2B .f (x )=x 2,g (x )=(x )2C .f (x )=x 2-1x -1,g (x )=x +1D .f (x )=x +1·x -1,g (x )=x 2-1 (2)下列四个图像中,是函数图像的是( )A .①B .①③④C .①②③D .③④答案 (1)A (2)B解析 (1)A 中,g (x )=|x |,∴f (x )=g (x ). B 中,f (x )=|x |(x ∈R ),g (x )=x (x ≥0), ∴两函数的定义域不同.C 中,f (x )=x +1 (x ≠1),g (x )=x +1(x ∈R ), ∴两函数的定义域不同.D 中,f (x )=x +1·x -1(x +1≥0且x -1≥0), f (x )的定义域为{x |x ≥1}; g (x )=x 2-1(x 2-1≥0),g (x )的定义域为{x |x ≥1或x ≤-1}. ∴两函数的定义域不同.故选A.(2)由每一个自变量x 对应唯一一个f (x )可知②不是函数图像,①③④是函数图像. 题型二 求函数的解析式例2 (1)已知f (2x+1)=lg x ,则f (x )=________.(2)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,则f (x )=________. (3)已知函数f (x )的定义域为(0,+∞),且f (x )=2f (1x )·x -1,则f (x )=________.答案 (1)lg2x -1(x >1) (2)2x +7 (3)23x +13解析 (1)(换元法)令t =2x +1(t >1),则x =2t -1,∴f (t )=lg2t -1,即f (x )=lg 2x -1(x >1). (2)(待定系数法) 设f (x )=ax +b (a ≠0),则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +5a +b , 即ax +5a +b =2x +17不论x 为何值都成立,∴⎩⎪⎨⎪⎧ a =2,b +5a =17,解得⎩⎪⎨⎪⎧a =2,b =7,∴f (x )=2x +7. (3)(消去法)在f (x )=2f (1x )x -1中,用1x 代替x ,得f (1x )=2f (x )1x-1,将f (1x )=2f (x )x -1代入f (x )=2f (1x )x -1中,可求得f (x )=23x +13.思维升华 函数解析式的求法(1)待定系数法:若已知函数的类型(如一次函数、二次函数),可用待定系数法; (2)换元法:已知复合函数f (g (x ))的解析式,可用换元法,此时要注意新元的取值范围; (3)配凑法:由已知条件f (g (x ))=F (x ),可将F (x )改写成关于g (x )的表达式,然后以x 替代g (x ),便得f (x )的解析式;(4)消去法:已知f (x )与f ⎝⎛⎭⎫1x 或f (-x )之间的关系式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f (x ).(1)已知f (x +1)=x +2x ,则f (x )=________.(2)(2013·安徽)定义在R 上的函数f (x )满足f (x +1)=2f (x ).若当0≤x ≤1时,f (x )=x (1-x ),则当-1≤x ≤0时,f (x )=________.(3)已知f (x )满足2f (x )+f (1x )=3x ,则f (x )=________.答案 (1)x 2-1(x ≥1) (2)-x (x +1)2 (3)2x -1x(x ≠0) 解析 (1)设x +1=t (t ≥1),则x =t -1. 代入f (x +1)=x +2x , 得f (t )=t 2-1(t ≥1), ∴f (x )=x 2-1(x ≥1).(2)当-1≤x ≤0时,0≤x +1≤1, 由已知f (x )=12f (x +1)=-12x (x +1).(3)把题目中的x 换成1x ,得2f (1x )+f (x )=3x,联立方程⎩⎨⎧2f (x )+f (1x)=3x , ①2f (1x )+f (x )=3x,②①×2-②得3f (x )=6x -3x (x ≠0).即f (x )=2x -1x (x ≠0).题型三 求函数的定义域例3 (1)函数f (x )=ln xx -1+x 12的定义域为( )A .(0,+∞)B .(1,+∞)C .(0,1)D .(0,1)∪(1,+∞)(2)(2013·大纲全国)已知函数f (x )的定义域为(-1,0),则函数f (2x +1)的定义域为( ) A .(-1,1) B .(-1,-12)C .(-1,0)D .(12,1)答案 (1)B (2)B解析 (1)由⎩⎪⎨⎪⎧x x -1>0,x ≥0,解得x >1,故函数f (x )=ln xx -1+x 12的定义域为(1,+∞).(2)由-1<2x +1<0,解得-1<x <-12,故函数f (2x +1)的定义域为(-1,-12).思维升华 简单函数定义域的类型及求法(1)已知函数的解析式,则构造使解析式有意义的不等式(组)求解. (2)抽象函数:①若已知函数f (x )的定义域为[a ,b ],则函数f [g (x )]的定义域由不等式a ≤g (x )≤b 求出; ②若已知函数f [g (x )]的定义域为[a ,b ],则f (x )的定义域为g (x )在x ∈[a ,b ]时的值域.(1)已知函数f (x )的定义域是[0,2],则函数g (x )=f (x +12)+f (x -12)的定义域是________. (2)函数y =ln (x +1)-x 2-3x +4的定义域为________________________________________________________________________. 答案 (1)[12,32] (2)(-1,1)解析 (1)因为函数f (x )的定义域是[0,2],所以函数g (x )=f (x +12)+f (x -12)中的自变量x 需要满足⎩⎨⎧0≤x +12≤2,0≤x -12≤2,解得:12≤x ≤32,所以函数g (x )的定义域是[12,32].(2)由⎩⎪⎨⎪⎧x +1>0,-x 2-3x +4>0,得-1<x <1.题型四 分段函数例4 (1)已知函数f (x )=⎩⎪⎨⎪⎧2x,x >0,x +1,x ≤0,若f (a )+f (1)=0,则实数a 的值等于( )A .-3B .-1C .1D .3(2)设函数y =f (x )在R 上有定义.对于给定的正数M ,定义函数f M (x )=⎩⎪⎨⎪⎧f (x ),f (x )≤M ,M ,f (x )>M ,则称函数f M (x )为f (x )的“孪生函数”.若给定函数f (x )=2-x 2,M =1,则f M (0)的值为( ) A .2B .1C. 2D .- 2答案 (1)A (2)B解析 (1)由题意知f (1)=21=2.∵f (a )+f (1)=0, ∴f (a )+2=0.①当a >0时,f (a )=2a ,2a +2=0无解;②当a ≤0时,f (a )=a +1,∴a +1+2=0,∴a =-3. (2)由题设f (x )=2-x 2≤1,得 当x ≤-1或x ≥1时,f M (x )=2-x 2; 当-1<x <1时,f M (x )=1.∴f M (0)=1.思维升华 (1)分段函数是一个函数,“分段求解”是解决分段函数的基本原则.(2)在求分段函数值时,一定要注意自变量的值所在的区间,再代入相应的解析式;自变量的值不确定时,要分类讨论.(1)已知函数f (x )=⎩⎪⎨⎪⎧log 3x ,x >0,2x ,x ≤0,则f (f (19))=________.(2)设函数f (x )=⎩⎪⎨⎪⎧2x,x ≤0,|log 2x |,x >0,则方程f (x )=12的解集为________.答案 (1)14 (2){-1,22,2}解析 (1)f (f (19))=f (log 319)=f (-2)=2-2=14.(2)当x ≤0时,解2x =12得x =-1;当x >0时,解|log 2x |=12得x =22或x = 2.所以方程f (x )=12的解集为⎩⎨⎧⎭⎬⎫-1,22,2.分段函数意义理解不清致误典例:已知实数a ≠0,函数f (x )=⎩⎪⎨⎪⎧2x +a ,x <1,-x -2a ,x ≥1,若f (1-a )=f (1+a ),则a 的值为________. 易错分析 本题易出现的错误主要有两个方面:(1)误以为1-a <1,1+a >1,没有对a 进行讨论直接代入求解. (2)求解过程中忘记检验所求结果是否符合要求而致误. 解析 当a >0时,1-a <1,1+a >1,由f (1-a )=f (1+a )可得2-2a +a =-1-a -2a , 解得a =-32,不合题意;当a <0时,1-a >1,1+a <1,由f (1-a )=f (1+a )可得-1+a -2a =2+2a +a , 解得a =-34.答案 -34温馨提醒 (1)对于分段函数的求值问题,若自变量的取值范围不确定,应分情况求解. (2)检验所求自变量的值或范围是否符合题意求解过程中,求出的参数的值或范围并不一定符合题意,因此要检验结果是否符合要求.方法与技巧1.在判断两个函数是否为同一函数时,要紧扣两点:一是定义域是否相同;二是对应关系是否相同.2.定义域优先原则:函数定义域是研究函数的基础依据,对函数性质的讨论,必须在定义域上进行.3.函数解析式的几种常用求法:待定系数法、换元法、配凑法、消去法. 4.分段函数问题要分段求解.失误与防范求分段函数应注意的问题:在求分段函数的值f (x 0)时,首先要判断x 0属于定义域的哪个子集,然后再代入相应的关系式;分段函数的值域应是其定义域内不同子集上各关系式的取值范围的并集.A 组 专项基础训练 (时间:30分钟)1.(2014·山东)函数f (x )=1(log 2x )2-1的定义域为( )A.⎝⎛⎭⎫0,12B .(2,+∞) C.⎝⎛⎭⎫0,12∪(2,+∞)D.⎝⎛⎦⎤0,12∪[2,+∞) 答案 C解析 由题意知⎩⎪⎨⎪⎧x >0,(log 2x )2>1, 解得x >2或0<x <12.故选C.2.设函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≤1,2x ,x >1,则f (f (3))等于( )A.15B .3C.23D.139答案 D解析 由题意知f (3)=23,f ⎝⎛⎭⎫23=⎝⎛⎭⎫232+1=139,∴f (f (3))=f ⎝⎛⎭⎫23=139.3.若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图像可能是( )答案 B解析 可以根据函数的概念进行排除,使用筛选法得到答案.4.设g (x )=2x +3,g (x +2)=f (x ),则f (x )等于( )A .-2x +1B .2x -1C .2x -3D .2x +7 答案 D解析 f (x )=g (x +2)=2(x +2)+3=2x +7.5.已知函数f (x )满足f (2x +|x |)=log 2x |x |,则f (x )的解析式是( ) A .f (x )=log 2xB .f (x )=-log 2xC .f (x )=2-xD .f (x )=x -2答案 B解析 根据题意知x >0,所以f (1x )=log 2x ,则f (x )=log 21x=-log 2x . 6.下列对应关系是集合P 上的函数的是________.(填序号)①P =Z ,Q =N +,对应关系f :对集合P 中的元素取绝对值与集合Q 中的元素相对应; ②P ={-1,1,-2,2},Q ={1,4},对应关系f :x →y =x 2,x ∈P ,y ∈Q ;③P ={三角形},Q ={x |x >0},对应关系f :对集合P 中的三角形求面积与集合Q 中的元素对应.答案 ②解析 由于在①中,集合P 中的元素0在集合Q 中没有对应元素,并且③中的集合P 不是数集,从而知只有②正确.7.已知函数f (x )=log 21x +1,f (a )=3,则a =________. 答案 -78解析 由题意可得log 21a +1=3,所以1a +1=23,解得a =-78. 8.已知f (x )=⎩⎪⎨⎪⎧2x ,x ≤2,f (x -2),x >2,则f (log 27)=________. 答案 74解析 f (log 27)=f (log 27-2)=f (log 274)=27log 42=74. 9.已知f (x )是二次函数,若f (0)=0,且f (x +1)=f (x )+x +1,求函数f (x )的解析式.解 设f (x )=ax 2+bx +c (a ≠0),又f (0)=0,∴c =0,即f (x )=ax 2+bx .又∵f (x +1)=f (x )+x +1.∴a (x +1)2+b (x +1)=ax 2+bx +x +1.∴(2a +b )x +a +b =(b +1)x +1,∴⎩⎪⎨⎪⎧ 2a +b =b +1,a +b =1,解得⎩⎨⎧ a =12,b =12.∴f (x )=12x 2+12x . 10.某人开汽车沿一条直线以60km /h 的速度从A 地到150 km 远处的B 地.在B 地停留1 h 后,再以50 km/h 的速度返回A 地,把汽车与A 地的距离x (km)表示为时间t (h)(从A 地出发开始)的函数,并画出函数的图像.解 x =⎩⎪⎨⎪⎧60t , 0≤t ≤52,150, 52<t ≤72,150-50,(t -72) 72<t ≤132. 图像如右图所示. B 组 专项能力提升 (时间:15分钟) 11.已知f (x -1x )=x 2+1x 2,则f (3)=________. A .11B .10C .12D .9 答案 A解析 ∵f (x -1x )=x 2+1x 2=(x -1x)2+2, ∴f (x )=x 2+2(x ≠0),∴f (3)=32+2=11.12.(微课)已知函数f (x )=⎩⎪⎨⎪⎧-(12)x ,a ≤x <0,-x 2+2x ,0≤x ≤4的值域是[-8,1],则实数a的取值范围是( )A .(-∞,-3]B .[-3,0)C .[-3,-1]D .{-3} 答案 B解析 当0≤x ≤4时,f (x )∈[-8,1];当a ≤x <0时,f (x )∈[-(12)a ,-1), 所以[-12a ,-1)⊆[-8,1],-8≤-12a <-1, 即-3≤a <0.13.已知f (x )+2f (-x )=3x -2,则f (x )=______.答案 -3x -23解析 由f (x )+2f (-x )=3x -2,①可得f (-x )+2f (x )=-3x -2,②①-②×2得,-3f (x )=3x -2-2(-3x -2)=9x +2,∴f (x )=-3x -23. 14.设函数f (x )=⎩⎪⎨⎪⎧x 2+4x +6,x ≤0,-x +6,x >0,则不等式f (x )<f (-1)的解集是____________________. 答案 (-3,-1)∪(3,+∞)解析 f (-1)=3,f (x )<3,当x ≤0时,x 2+4x +6<3,解得x ∈(-3,-1);当x >0时,-x +6<3,解得x ∈(3,+∞),故不等式的解集为(-3,-1)∪(3,+∞).15.行驶中的汽车在刹车时由于惯性作用,要继续往前滑行一段距离才能停下,这段距离叫作刹车距离.在某种路面上,某种型号汽车的刹车距离y (米)与汽车的车速x (千米/时)满足下列关系:y =x 2200+mx +n (m ,n 是常数).如图是根据多次实验数据绘制的刹车距离y (米)与汽车的车速x (千米/时)的关系图.(1)求出y 关于x 的函数表达式;(2)如果要求刹车距离不超过25.2米,求行驶的最大速度.解 (1)由题意及函数图像,得⎩⎨⎧ 402200+40m +n =8.4,602200+60m +n =18.6,解得m =1100,n =0, ∴y =x 2200+x 100(x ≥0). (2)令x 2200+x 100≤25.2, 得-72≤x ≤70. ∵x ≥0,∴0≤x ≤70.故行驶的最大速度是70千米/时.。

函数的概念、定义域、解析式

函数的概念、定义域、解析式

函数的概念、定义域、函数相等、解析式求法一、函数概念1.设A 、B 是非空集合,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一的数)(x f 和它对应,那么就称B A f →:为集合A 到集合B 的一个函数,记作A x x f y ∈=),(。

其中x 叫作自变量,自变量的取值范围(数集A )叫作定义域。

与x 对应的y 叫作因变量,}|)({A x x f y ∈=叫作函数的值域。

2.一个函数的构成要素为:定义域、对应关系、值域。

如果两个函数的定义域相同,并且对应关系完全一致,则称这两个函数相等。

3.函数三种表示方法:解析法、图像法、列表法。

具体函数定义域的求法:(1)分母不能为零。

(2)偶次方根的被开方数不小于零。

(3)零次方时底数不能为零。

(4)对数函数真数大于零。

4.抽象函数定义域的求法:(1)定义域指的是x 的取值范围。

(2)括号内的范围相同。

①已知)(x f 的定义域,求复合函数)]([x g f 的定义域。

若)(x f 的定义域为),(b a x ∈,求出)]([x g f 中b x g a <<)(的x 的范围,即为)]([x g f 的定义域。

②已知复合函数)]([x g f 的定义域,求)(x f 的定义域。

若)]([x g f 的定义域为),(b a x ∈,则由b x a <<确定)(x g 的值域,即为)(x f 的定义域。

③已知复合函数)]([x g f 的定义域,求)]([x h f 的定义域。

可由)]([x g f 的定义域(x 所对应的范围)求得)(x g 的值域,再由)(x g 的值域就是)(x h 的值域,从而求得)(x h 中x 所对应的范围,即为)]([x h f 的定义域。

5.函数解析式的求法(1)直接代入法 (2)换元法(配凑法)(3)待定系数法 (4)方程组法题型一 求具体函数的定义域例题1 求下列函数的定义域,并用区间表示。

基本的函数概念

基本的函数概念

基本的函数概念
函数是数学中的一个基本概念,它描述了一个量如何随着另一个量的变化而变化。

在数学中,函数通常用符号f(x)来表示,其中x是自变量,f(x)是因变量。

函数的基本概念包括:
1.定义域:函数的定义域是指所有允许作为自变量的实数集合。

在数学中,通常用字母D表示定义域。

2.值域:函数的值域是指所有可能的函数值的集合。

在数学中,通常用字母R表示值域。

3.函数表达式:函数表达式是指一个函数的数学表达式,它描述了自变量和因变量之间的关系。

函数表达式通常由一个公式或等式组成。

4.函数图像:函数图像是指函数在坐标系中的图像。

函数图像可以用来直观地理解函数的性质和变化规律。

5.函数的奇偶性:如果对于定义域内任意的x,有f(-x)=f(x),则称函数f(x)为偶函数;如果对于定义域内任意的x,有f(-x)=-f(x),则称函数f(x)为奇函数。

6.函数的单调性:如果对于定义域内任意的x1和x2,当x1<x2时,有f(x1)≤f(x2),则称函数f(x)在定义域内单调递增;如果对于定义域内任意的x1和x2,当x1<x2时,有f(x1)≥f(x2),则称函数f(x)在定义域内单调递减。

7.函数的极值:如果对于函数f(x)的定义域内的某个区间,存在一个数c,使得对于该区间内的任意x,都有f(c)≥f(x),则称c是函数f(x)的极大值;如果对于函数f(x)的定义域内的某个区间,存在一个数d,使得对于该区间内的任意x,都有f(d)≤f(x),则称d是函数f(x)的极小值。

函数是数学中非常重要的概念,它不仅在初等数学中有广泛的应用,而且在高等数学、物理学、工程学等领域中也有着重要的应用。

函数的基本概念

函数的基本概念

函数的基本概念函数是数学中一个非常重要的概念,广泛应用于各个领域的数学问题求解和实际生活中的应用。

在数学中,函数是指两个集合之间的一种特殊关系,它把一个集合的每一个元素都唯一地对应到另一个集合的元素上。

1、函数的定义函数可以简单地理解为一种对应关系,形式上可以表示为:f: A→B,其中A和B是两个集合,称为定义域和值域。

对于A中的每一个元素a,函数f把它映射到B中的一个唯一元素上,我们用f(a)表示这个映射后的结果。

例如,我们可以定义一个简单的函数f: ℝ→ℝ,它把实数集合映射到实数集合上,其中f(x) = x^2。

对于任意实数x,函数f会把它映射到x的平方上。

2、函数的特性函数具有一些重要的特性,例如:(1)定义域和值域:函数的定义域是指所有可以输入的元素组成的集合,值域是指函数的输出结果组成的集合。

在定义函数时,需要明确指定定义域和值域。

(2)单射性:单射性是指不同的输入元素对应不同的输出元素。

即对于函数f中的不同元素a和b,如果f(a) = f(b),则a = b。

(3)满射性:满射性是指每一个值域中的元素都有对应的定义域中的元素,即对于任意b∈B,都存在a∈A,使得f(a) = b。

(4)一一对应:一一对应是指函数同时具有单射性和满射性。

即对于函数f中的不同元素a和b,如果f(a) = f(b),则a = b,并且对于任意b∈B,都存在唯一的a∈A,使得f(a) = b。

3、函数的图像函数的图像是函数的可视化表示方式,它可以帮助我们更直观地理解函数。

函数的图像通常是在笛卡尔坐标系中绘制的,横坐标表示定义域的元素,纵坐标表示对应的函数值。

以函数f(x) = x^2为例,我们可以将其图像绘制为一个抛物线。

当x 取负值时,函数值也是正数,所以抛物线在原点的左侧也有对应的点。

4、函数的表示方法除了使用公式的形式表示函数外,函数还可以使用其他方式进行表示。

常见的函数表示方法有:(1)函数表格:函数表格是一种简洁明了的表示方式,可以把函数的输入和输出结果都列在表格中。

函数的概念(定义域,值域,解析式)

函数的概念(定义域,值域,解析式)

讲解新课:一.函数定义及函数三要素1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。

记作:y=f(x),x∈A。

其中,x 叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域。

注意:(1)“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;(2)函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x2.构成函数的三要素:定义域、对应关系和值域(1)解决一切函数问题必须认真确定该函数的定义域,函数的定义域包含三种形式:①自然型:指函数的解析式有意义的自变量x的取值范围(如:分式函数的分母不为零,偶次根式函数的被开方数为非负数,对数函数的真数为正数,等等);②限制型:指命题的条件或人为对自变量x的限制,这是函数学习中重点,往往也是难点,因为有时这种限制比较隐蔽,容易犯错误;③实际型:解决函数的综合问题与应用问题时,应认真考察自变量x的实际意义。

(2)求函数的值域是比较困难的数学问题,中学数学要求能用初等方法求一些简单函数的值域问题①配方法(将函数转化为二次函数);②判别式法(将函数转化为二次方程);③不等式法(运用不等式的各种性质);④函数法(运用基本函数性质,或抓住函数的单调性、函数图象等)。

3.两个函数的相等:函数的定义含有三个要素,即定义域A、值域C和对应法则f。

当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定。

因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数。

4.区间(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示5.映射的概念一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B中都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射。

函数的概念及其定义域

函数的概念及其定义域

2.1函数概念学习目标 1.理解函数的概念.2.了解构成函数的三要素.3.正确使用函数、区间符号.知识点一函数的概念思考初中时用运动变化的观点定义函数,用这种观点能否判断只有一个点(0,1),算不算是函数图像?答案因为只有一个点,用运动变化的观点判断就显得牵强,因此有必要引入用集合和对应关系来定义函数的概念.梳理函数的概念:给定两个非空数集A和B,如果按照某个对应关系f,对于集合A中任何一个数x,在集合B 中都存在唯一确定的数f(x)与之对应,那么就把对应关系f叫作定义在集合A上的函数,记作f:A→B,或y=f(x),x∈A.其中,x叫作自变量,集合A叫作函数的定义域,集合{f(x)|x∈A}叫作函数的值域.习惯上我们称y是x的函数.用函数的上述定义可以轻松判断:A={0},B={1},f:0→1,满足函数定义,其图像(0,1)自然是函数图像.知识点二函数三要素思考函数f(x)=x2,x∈R与g(t)=t2,t∈R是不是同一个函数?答案两个函数都是描述的同一集合R中任一元素,按同一对应关系“平方”对应B中唯一确定的元素,故是同一个函数.梳理一般地,函数有三个要素:定义域、对应关系与值域.其中,定义域和对应关系起决定作用,只要确定了一个函数的定义域和对应关系,这个函数也就确定,值域也随之确定.两点说明:(1)在没有标明函数定义域的情况下,定义域是使函数解析式有意义的x的取值范围.在实际问题中,除了要使函数式有意义,还要符合实际意义.(2)f(a)表示自变量x=a时对应的函数值.知识点三区间1.区间的定义、名称、符号及数轴表示如下表:2.注意:(1)“∞”读作无穷大,是一个符号,不是数,以-∞或+∞作为区间一端时,这一端必须是小括号.(2)区间是数集的另一种表示方法,区间的两个端点必须保证左小、右大. 知识点三 复合函数及其定义域函数的形成过程就是从定义域中拿出一个元素,经过法则搅动一下.这相当于对于原材料,经过一个加工厂加工一下,得到一个产品,即函数值.但有些时候,一个产品需要经过不止一个加工厂,得到一个最终产品.如下:CBA把A C →叫做f 和g 的一个复合.()2f x x =+, 2()g x x =,x 先被f 作用,再被g 作用,记为2[()](2)g f x x =+.这样就可以拿一些简单的函数生成一些复杂的函数.注意[()]g f x 与[()]f g x 不是同一个函数,如上面例题中,2[()]2f g x x =+.再比如你爸爸的妈妈和妈妈的爸爸不可能是同一个人.但有时,[()]f g x 与[()]g f x 是相同的,如()1()2f x x g x x =+=+,. 梳理 复合函数的概念:如果y 是u 的函数,记作()y f u =,u 是x 的函数,记为()u g x =,且()g x 的值域与()f u 的定义域的交集非空,则通过u 确定了y 是x 的函数[()]y f g x =,这时y 叫做x 的复合函数,其中u 叫做中间变量,()y f u =叫做外层函数,叫做内层函数.⑴ 只有当外层函数()f u 的定义域与内层函数()g x 的值域的交集非空时才能构成复合函数[()]f g x .⑵ 理解函数符号()f x ,及[()]f g x 与[()]g f x 的区别.⑶ 复合函数的定义域是由外层函数的定义域、内层函数的值域与定义域共同决定的. 复合函数的定义域,就是复合函数(())y f g x =中x 的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学生: 科目: 第 阶段第 次课 教师:
课 题
函数的基本概念与定义域
教学目标
1.了解函数的的基本概念,并能熟练的应用
2.理解函数的三种表示方法,了解分段函数,并能够简单的应用
3.会求函数的定义域
重点、难点 函数的定义的理解;求简单函数的定义域
考点及考试要求
1.了解函数的概念;
2.理解函数的三种表示方法;
3.了解简单的分段函数
教学内容 知识框架
知识点一、区间的概念 设b a R b a <∈且,, 定义
名称 符号
数轴表示
}|{b x a x ≤≤ 闭区间 ],[b a }|{b x a x << 开区间 ),(b a }|{b x a x <≤ 前闭后开区间 ),[b a }|{b x a x ≤<
前开后闭区间
],(b a
区间是集合的有一种形式.对于区间的理解应注意:
(1)区间的左端点必修小于右端点,有时我们将b -a 成为区间的长度,对于只有一个元素的集合我们仍然用集合来表示,如{}a ;
(2)注意开区间),(b a 与点),(b a 在具体情景中的区别.若表示点),(b a 的集合应为{}),(b a ; (3)用数轴来表示区间时,要特别注意实心点与空心点的区别;
(4)对于一个不等式的解集,我们既可以用集合形式来表示,也可用区间形式来表示; (5)要注意区间表示实数集的几条原则,数集是连续的,左小,右大,开或闭不能混淆. 例1.把下列数集用区间表示:
(1)}1|{-≥x x ;(2)}0|{<x x ;(3)}11|{<<-x x ;(4)}4210|{≤≤<<x x x 或
例5.高为h ,底面半径为R 的圆柱形容器内,以单位时间内体积为a 的速度灌水.试求水面高
y 用时间t 表示的函数式,并求其定义域.
例6.已知函数3
2
3
41
++-=ax ax ax y 的定义域为R ,求实数a 的取值范围.
例7.设}20|{},20|{≤≤=≤≤=y y N x x M ,下图中的四个图形,其中能表示从集合M 到集合N 的函数关系的有( )
知识点四、抽象函数的定义域【拓展】 (1)函数)(x f 的定义域是指x 的取值范围;
(2)函数))((x g f 的定义域是指x 的取值范围,而不是)(x g 的取值范围;
(3)已知))((x g f 的定义域为B ,求)(x f 的定义域,其实质是已知))((x g f 中x 的取值范围为B ,求出)(x g 的范围(值域),此范围就是)(x f 的定义域. 例8.已知函数)(x f 的定义域为]9,0[,求)12(+x f 的定义域.
课下作业
课下作业
1.下列各组函数表示相等函数的是()
A.



<
-
>
=
,,
,
)
(
x
x
x
x
f与|
|
)
(x
x
g=
B.1
2
)
(+
=x
x
f与
x
x
x
x
g
+
=
2
2
)
(
C.|1
|
)
(2-
=x
x
f与2
2)1
(
)(-
=t
t
g
D.2
)
(x
x
f=与x
x
g=
)
(
2.函数
x
x
y
1
+
=的定义域为_______________.
3.函数1
2
)
(2
2-
+
-
=a
ax
x
x
f的定义域为A,若A

2,则a的取值范围是____.
4.已知函数)
(x
f
y=的定义域为]4,1[,求函数)
(2x
f
y=的定义域.
5.已知)
(x
f的定义域为]2,0(,求函数)
(
)1
2(2x
f
x
f+
-的定义域.
的所有实数)、值域(图形正对y轴上的所有实数)是否一致.
例10.设}2
0|
{
},
2
2
|
{≤

=


-
=y
y
N
x
x
M,函数)
(x
f的定义域为M,值域为N,则)
(x
f的图象可以是()
A B C D。

相关文档
最新文档