机械工程材料课后习题答案样本
机械工程材料第二版课后习题答案样本
第二章作业2-1常见的金属晶体结构有哪几种? 它们的原子排列和晶格常数有什么特点? -Fe、-Fe、Al、 Cu、 Ni、 Cr、 V、 Mg、 Zn各属何种结构?答: 常见晶体结构有3种:⑴体心立方: -Fe、 Cr、 V⑵面心立方: -Fe、 Al、 Cu、 Ni⑶密排六方: Mg、 Zn2---7为何单晶体具有各向异性, 而多晶体在一般情况下不显示出各向异性?答: 因为单晶体内各个方向上原子排列密度不同, 造成原子间结合力不同, 因而表现出各向异性;而多晶体是由很多个单晶体所组成, 它在各个方向上的力相互抵消平衡, 因而表现各向同性。
第三章作业3-2 如果其它条件相同, 试比较在下列铸造条件下, 所得铸件晶粒的大小; ⑴金属模浇注与砂模浇注; ⑵高温浇注与低温浇注; ⑶铸成薄壁件与铸成厚壁件; ⑷浇注时采用振动与不采用振动; ⑸厚大铸件的表面部分与中心部分。
答: 晶粒大小: ⑴金属模浇注的晶粒小⑵低温浇注的晶粒小⑶铸成薄壁件的晶粒小⑷采用振动的晶粒小⑸厚大铸件表面部分的晶粒小第四章作业4-4 在常温下为什么细晶粒金属强度高, 且塑性、韧性也好? 试用多晶体塑性变形的特点予以解释。
答: 晶粒细小而均匀, 不但常温下强度较高, 而且塑性和韧性也较好, 即强韧性好。
原因是:( 1) 强度高: Hall-Petch公式。
晶界越多, 越难滑移。
( 2) 塑性好: 晶粒越多, 变形均匀而分散, 减少应力集中。
( 3) 韧性好: 晶粒越细, 晶界越曲折, 裂纹越不易传播。
4-6 生产中加工长的精密细杠( 或轴) 时, 常在半精加工后, 将将丝杠吊挂起来并用木锤沿全长轻击几遍在吊挂7~15天, 然后再精加工。
试解释这样做的目的及其原因?答: 这叫时效处理一般是在工件热处理之后进行原因用木锤轻击是为了尽快消除工件内部应力减少成品形变应力吊起来, 是细长工件的一种存放形式吊个7天, 让工件释放应力的时间, 轴越粗放的时间越长。
机械工程材料习题答案
机械工程材料习题答案第二章作业2-1常见的金属晶体结构有哪几种?它们的原子排列和晶格常数有什么特点?-Fe、-Fe、Al、Cu、Ni、Cr、V、Mg、Zn各属何种结构? 答:常见晶体结构有3种:⑴体心立方:-Fe、Cr、V⑵面心立方:-Fe、Al、Cu、Ni⑶密排六方:Mg、Zn2———7为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性?答:因为单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性。
第三章作业3-2 如果其它条件相同,试比较在下列铸造条件下,所得铸件晶粒的大小;⑴金属模浇注与砂模浇注;⑵高温浇注与低温浇注;⑶铸成薄壁件与铸成厚壁件;⑷浇注时采用振动与不采用振动;⑸厚大铸件的表面部分与中心部分.答:晶粒大小:⑴金属模浇注的晶粒小⑵低温浇注的晶粒小⑶铸成薄壁件的晶粒小⑷采用振动的晶粒小⑸厚大铸件表面部分的晶粒小第四章作业4-4 在常温下为什么细晶粒金属强度高,且塑性、韧性也好?试用多晶体塑性变形的特点予以解释.答:晶粒细小而均匀,不仅常温下强度较高,而且塑性和韧性也较好,即强韧性好。
原因是:(1)强度高:Hall-Petch公式。
晶界越多,越难滑移。
(2)塑性好:晶粒越多,变形均匀而分散,减少应力集中。
(3)韧性好:晶粒越细,晶界越曲折,裂纹越不易传播。
4-6 生产中加工长的精密细杠(或轴)时,常在半精加工后,将将丝杠吊挂起来并用木锤沿全长轻击几遍在吊挂7~15天,然后再精加工.试解释这样做的目的及其原因?答:这叫时效处理一般是在工件热处理之后进行原因用木锤轻击是为了尽快消除工件内部应力减少成品形变应力吊起来,是细长工件的一种存放形式吊个7天,让工件释放应力的时间,轴越粗放的时间越长。
4-8 钨在1000℃变形加工,锡在室温下变形加工,请说明它们是热加工还是冷加工(钨熔点是3410℃,锡熔点是232℃)?答:W、Sn的最低再结晶温度分别为:TR(W) =(0.4~0。
机械工程材料课后习题答案
机械工程课后答案第一章1、什么是黑色金属什么是有色金属答:铁及铁合金称为黑色金属,即钢铁材料;黑色金属以外的所有金属及其合金称为有的金属。
2、碳钢,合金钢是怎样分类的答:按化学成分分类;碳钢是指含碳量在%——%之间,并含有少量的硅、锰、硫、磷等杂质的铁碳合金。
3、铸铁材料是怎样分类的应用是怎样选择答:铸铁根据石墨的形态进行分类,铸铁中石墨的形态有片状、团絮状、球状、蠕虫状四种,对应为灰铸铁、可锻铸铁、球墨铸铁和蠕墨铸铁。
4、陶瓷材料是怎样分类的答:陶瓷材料分为传统陶瓷、特种陶瓷和金属陶瓷三种。
5、常见的金属晶体结构有哪几种它们的原子排列和晶格常数各有什么特点α-Fe,γ-Fe,Al,Cu,Ni,Pb,Cr,V,Mg,Zn各属何种金属结构答:体心晶格立方,晶格常数a=b=c,α-Fe,Cr,V。
面心晶格立方,晶格常数a=b=c,γ-Fe,Ni,Al,Cu,Pb。
密排六方晶格,Mg,Zn。
6、实际金属晶体中存在哪些缺陷它们对性能有什么影响答:点缺陷、破坏了原子的平衡状态,使晶格发生扭曲,从而引起性能变化,是金属的电阻率增加,强度、硬度升高,塑性、韧性下降。
线缺陷(位错)、少量位错时,金属的屈服强度很高,当含有一定量位错时,强度降低。
当进行形变加工时,位错密度增加,屈服强度增高。
面缺陷(晶界、亚晶界)、晶界越多,晶粒越细,金属的塑性变形能力越大,塑性越好。
7、固溶体有哪些类型什么是固溶强化答:间隙固溶体、置换固溶体。
由于溶质元素原子的溶入,使晶格发生畸变,使之塑性变形抗力增大,因而较纯金属具有更高的强度、硬度,即固溶强化作用。
第二章1、在什么条件下,布氏硬度实验比洛氏硬度实验好答:布氏硬度实验主要用于硬度较低的退火钢、正火钢、调试刚、铸铁、有色金属及轴承合金等的原料和半成品的测量,不适合测定薄件以及成品。
洛氏硬度实验可用于成品及薄件的实验。
2、σ的意义是什么能在拉伸图上画出来吗答:表示对于没有明显屈服极限的塑性材料,可以将产生%塑性应变时的应变作为屈服指标,即为条件屈服极限。
机械工程材料课后习题答案34910
机械工程材料思考题参考答案第一章金属的晶体结构与结晶1.解释下列名词点缺陷,线缺陷,面缺陷,亚晶粒,亚晶界,刃型位错,单晶体,多晶体,过冷度,自发形核,非自发形核,变质处理,变质剂。
答:点缺陷:原子排列不规则的区域在空间三个方向尺寸都很小,主要指空位间隙原子、置换原子等。
线缺陷:原子排列的不规则区域在空间一个方向上的尺寸很大,而在其余两个方向上的尺寸很小。
如位错。
面缺陷:原子排列不规则的区域在空间两个方向上的尺寸很大,而另一方向上的尺寸很小。
如晶界和亚晶界。
亚晶粒:在多晶体的每一个晶粒内,晶格位向也并非完全一致,而是存在着许多尺寸很小、位向差很小的小晶块,它们相互镶嵌而成晶粒,称亚晶粒。
亚晶界:两相邻亚晶粒间的边界称为亚晶界。
刃型位错:位错可认为是晶格中一部分晶体相对于另一部分晶体的局部滑移而造成。
滑移部分与未滑移部分的交界线即为位错线。
如果相对滑移的结果上半部分多出一半原子面,多余半原子面的边缘好像插入晶体中的一把刀的刃口,故称“刃型位错”。
单晶体:如果一块晶体,其内部的晶格位向完全一致,则称这块晶体为单晶体。
多晶体:由多种晶粒组成的晶体结构称为“多晶体”。
过冷度:实际结晶温度与理论结晶温度之差称为过冷度。
自发形核:在一定条件下,从液态金属中直接产生,原子呈规则排列的结晶核心。
非自发形核:是液态金属依附在一些未溶颗粒表面所形成的晶核。
变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提高了形核率,细化晶粒,这种处理方法即为变质处理。
变质剂:在浇注前所加入的难熔杂质称为变质剂。
2.常见的金属晶体结构有哪几种?α-Fe 、γ- Fe 、Al 、Cu 、Ni 、Pb 、Cr 、V 、Mg、Zn 各属何种晶体结构?答:常见金属晶体结构:体心立方晶格、面心立方晶格、密排六方晶格;α-Fe、Cr、V属于体心立方晶格;γ-Fe 、Al、Cu、Ni、Pb属于面心立方晶格;Mg、Zn属于密排六方晶格;3.配位数和致密度可以用来说明哪些问题?答:用来说明晶体中原子排列的紧密程度。
机械工程材料(第二版)课后习题答案
2-1常见的金属晶体结构有哪几种?它们的原子排列和晶格常数有什么特点?-Fe、-Fe、Al、Cu、Ni、Cr、V、Mg、Zn各属何种结构?答:常见晶体结构有3种:⑴体心立方:-Fe、Cr、V⑵面心立方:-Fe、Al、Cu、Ni⑶密排六方:Mg、Zn2---7为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性?答:因为单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性。
第三章作业3-2 如果其它条件相同,试比较在下列铸造条件下,所得铸件晶粒的大小;⑴金属模浇注与砂模浇注;⑵高温浇注与低温浇注;⑶铸成薄壁件与铸成厚壁件;⑷浇注时采用振动与不采用振动;⑸厚大铸件的表面部分与中心部分。
答:晶粒大小:⑴金属模浇注的晶粒小⑵低温浇注的晶粒小⑶铸成薄壁件的晶粒小⑷采用振动的晶粒小⑸厚大铸件表面部分的晶粒小第四章作业4-4 在常温下为什么细晶粒金属强度高,且塑性、韧性也好?试用多晶体塑性变形的特点予以解释。
答:晶粒细小而均匀,不仅常温下强度较高,而且塑性和韧性也较好,即强韧性好。
原因是:(1)强度高:Hall-Petch公式。
晶界越多,越难滑移。
(2)塑性好:晶粒越多,变形均匀而分散,减少应力集中。
(3)韧性好:晶粒越细,晶界越曲折,裂纹越不易传播。
4-6 生产中加工长的精密细杠(或轴)时,常在半精加工后,将将丝杠吊挂起来并用木锤沿全长轻击几遍在吊挂7~15天,然后再精加工。
试解释这样做的目的及其原因?答:这叫时效处理一般是在工件热处理之后进行原因用木锤轻击是为了尽快消除工件内部应力减少成品形变应力吊起来,是细长工件的一种存放形式吊个7天,让工件释放应力的时间,轴越粗放的时间越长。
4-8 钨在1000℃变形加工,锡在室温下变形加工,请说明它们是热加工还是冷加工(钨熔点是3410℃,锡熔点是232℃)?答:W、Sn的最低再结晶温度分别为:TR(W) =(0.4~0.5)×(3410+273)-273 =(1200~1568)(℃)>1000℃TR(Sn) =(0.4~0.5)×(232+273)-273 =(-71~-20)(℃) <25℃所以W在1000℃时为冷加工,Sn在室温下为热加工4-9 用下列三种方法制造齿轮,哪一种比较理想?为什么?(1)用厚钢板切出圆饼,再加工成齿轮;(2)由粗钢棒切下圆饼,再加工成齿轮;(3)由圆棒锻成圆饼,再加工成齿轮。
机械工程材料课后习题答案
机械工程材料思考题参考答案第一章金属的晶体结构与结晶1.解释下列名词点缺陷,线缺陷,面缺陷,亚晶粒,亚晶界,刃型位错,单晶体,多晶体,过冷度,自发形核,非自发形核,变质处理,变质剂。
答:点缺陷:原子排列不规则的区域在空间三个方向尺寸都很小,主要指空位间隙原子、置换原子等。
线缺陷:原子排列的不规则区域在空间一个方向上的尺寸很大,而在其余两个方向上的尺寸很小。
如位错。
面缺陷:原子排列不规则的区域在空间两个方向上的尺寸很大,而另一方向上的尺寸很小。
如晶界和亚晶界。
亚晶粒:在多晶体的每一个晶粒内,晶格位向也并非完全一致,而是存在着许多尺寸很小、位向差很小的小晶块,它们相互镶嵌而成晶粒,称亚晶粒。
亚晶界:两相邻亚晶粒间的边界称为亚晶界。
刃型位错:位错可认为是晶格中一部分晶体相对于另一部分晶体的局部滑移而造成。
滑移部分与未滑移部分的交界线即为位错线。
如果相对滑移的结果上半部分多出一半原子面,多余半原子面的边缘好像插入晶体中的一把刀的刃口,故称“刃型位错”。
单晶体:如果一块晶体,其内部的晶格位向完全一致,则称这块晶体为单晶体。
多晶体:由多种晶粒组成的晶体结构称为“多晶体”。
过冷度:实际结晶温度与理论结晶温度之差称为过冷度。
自发形核:在一定条件下,从液态金属中直接产生,原子呈规则排列的结晶核心。
非自发形核:是液态金属依附在一些未溶颗粒表面所形成的晶核。
变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提高了形核率,细化晶粒,这种处理方法即为变质处理。
变质剂:在浇注前所加入的难熔杂质称为变质剂。
2.常见的金属晶体结构有哪几种?α-Fe 、γ- Fe 、Al 、Cu 、Ni 、Pb 、Cr 、V 、Mg、Zn 各属何种晶体结构?答:常见金属晶体结构:体心立方晶格、面心立方晶格、密排六方晶格;α-Fe、Cr、V属于体心立方晶格;γ-Fe 、Al、Cu、Ni、Pb属于面心立方晶格;Mg、Zn属于密排六方晶格;3.配位数和致密度可以用来说明哪些问题?答:用来说明晶体中原子排列的紧密程度。
(完整版)机械工程材料习题集答案
第 1 章材料的性能 、选择题1. 表示金属材料屈服强度的符号是( B ) A.σ B.σs C.σb D.σ-12. 表示金属材料弹性极限的符号是(A ) A.σeB.σsC.σbD.σ-13. 在测量薄片工件的硬度时,常用的硬度测试方法的表示符号是(B ) A.HB B.HRC C.HV D.HS4. 金属材料在载荷作用下抵抗变形和破坏的能力叫( A ) A. 强度 B. 硬度 C. 塑性 D. 弹性二、填空1. 金属材料的机械性能是指在载荷作用下其抵抗(变形 )或(破坏 )的能力。
2. 金属塑性的指标主要有(伸长率)和(断面收缩率)两种。
3. 低碳钢拉伸试验的过程可以分为弹性变形、 (塑性变形)和(断裂)三个阶段。
4. 常用测定硬度的方法有(布氏硬度测试法) 、(洛氏硬度测试法)和维氏硬度测试法。
5. 疲劳强度是表示材料经(无数次应力循环)作用而(不发生断裂时)的最大应力值。
三、是非题1. 用布氏硬度测量硬度时,压头为钢球,用符号 HBS 表示。
2. 用布氏硬度测量硬度时,压头为硬质合金球,用符号HBW 表示。
3. 金属材料的机械性能可以理解为金属材料的失效抗力。
四、改正题1. 疲劳强度是表示在冲击载荷作用下而不致引起断裂的最大应力。
2. 渗碳件经淬火处理后用 HB 硬度计测量表层硬度 。
3. 受冲击载荷作用的工件,考虑机械性能的指标主要是疲劳强度。
4. 衡量材料的塑性的指标主要有伸长率和冲击韧性。
5. 冲击韧性是指金属材料在载荷作用下抵抗破坏的能力。
五、简答题6. 在立方晶系中 , 指数相同的晶面和晶向 (B ) A.相互平行 B. 相互垂直 C. 相互重叠 D. 毫无关联7. 在面心立方晶格中 , 原子密度最大的晶面是 (C ) A.(100) B.(110) C.(111) D.(122)将冲击载荷改成交变载荷 将 HB 改成 HR 将疲劳强度改成冲击韧性 将冲击韧性改成断面收缩率 将载荷改成冲击载荷1. 说明下列机械性能指标符合所表示的意思:σ σs:屈服强度 HRC :洛氏硬度(压头为金刚石圆锥)σb : 抗拉强度HBS:布氏硬度(压头为钢球) 第 2 章材料的结构一、选择题1. 每个体心立方晶胞中包含有( B )个原子2. 每个面心立方晶胞中包含有( C )个原子3. 属于面心立方晶格的金属有( C )4. 属于体心立方晶格的金属有( B )5. 在晶体缺陷中,属于点缺陷的有( A )s 、σ 0.2 、 HRC 、σ -1 、σ b 、δ 5、 HBS 。
机械工程材料(第二版)课后习题答案
2-1常见的金属晶体结构有哪几种?它们的原子排列和晶格常数有什么特点?-Fe、-Fe、Al、Cu、Ni、Cr、V、Mg、Zn各属何种结构?答:常见晶体结构有3种:⑴体心立方:-Fe、Cr、V⑵面心立方:-Fe、Al、Cu、Ni⑶密排六方:Mg、Zn2---7为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性?答:因为单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性。
第三章作业3-2 如果其它条件相同,试比较在下列铸造条件下,所得铸件晶粒的大小;⑴金属模浇注与砂模浇注;⑵高温浇注与低温浇注;⑶铸成薄壁件与铸成厚壁件;⑷浇注时采用振动与不采用振动;⑸厚大铸件的表面部分与中心部分。
答:晶粒大小:⑴金属模浇注的晶粒小⑵低温浇注的晶粒小⑶铸成薄壁件的晶粒小⑷采用振动的晶粒小⑸厚大铸件表面部分的晶粒小第四章作业4-4 在常温下为什么细晶粒金属强度高,且塑性、韧性也好?试用多晶体塑性变形的特点予以解释。
答:晶粒细小而均匀,不仅常温下强度较高,而且塑性和韧性也较好,即强韧性好。
原因是:(1)强度高:Hall-Petch公式。
晶界越多,越难滑移。
(2)塑性好:晶粒越多,变形均匀而分散,减少应力集中。
(3)韧性好:晶粒越细,晶界越曲折,裂纹越不易传播。
4-6 生产中加工长的精密细杠(或轴)时,常在半精加工后,将将丝杠吊挂起来并用木锤沿全长轻击几遍在吊挂7~15天,然后再精加工。
试解释这样做的目的及其原因?答:这叫时效处理一般是在工件热处理之后进行原因用木锤轻击是为了尽快消除工件内部应力减少成品形变应力吊起来,是细长工件的一种存放形式吊个7天,让工件释放应力的时间,轴越粗放的时间越长。
4-8 钨在1000℃变形加工,锡在室温下变形加工,请说明它们是热加工还是冷加工(钨熔点是3410℃,锡熔点是232℃)?答:W、Sn的最低再结晶温度分别为:TR(W) =(0.4~0.5)×(3410+273)-273 =(1200~1568)(℃)>1000℃TR(Sn) =(0.4~0.5)×(232+273)-273 =(-71~-20)(℃) <25℃所以W在1000℃时为冷加工,Sn在室温下为热加工4-9 用下列三种方法制造齿轮,哪一种比较理想?为什么?(1)用厚钢板切出圆饼,再加工成齿轮;(2)由粗钢棒切下圆饼,再加工成齿轮;(3)由圆棒锻成圆饼,再加工成齿轮。
机械工程材料(第二版)课后习题答案
2-1常见的金属晶体结构有哪几种?它们的原子排列和晶格常数有什么特点?-Fe、-Fe、Al、Cu、Ni、Cr、V、Mg、Zn各属何种结构?答:常见晶体结构有3种:⑴体心立方:-Fe、Cr、V⑵面心立方:-Fe、Al、Cu、Ni⑶密排六方:Mg、Zn2---7为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性?答:因为单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性。
第三章作业3-2 如果其它条件相同,试比较在下列铸造条件下,所得铸件晶粒的大小;⑴金属模浇注与砂模浇注;⑵高温浇注与低温浇注;⑶铸成薄壁件与铸成厚壁件;⑷浇注时采用振动与不采用振动;⑸厚大铸件的表面部分与中心部分。
答:晶粒大小:⑴金属模浇注的晶粒小⑵低温浇注的晶粒小⑶铸成薄壁件的晶粒小⑷采用振动的晶粒小⑸厚大铸件表面部分的晶粒小第四章作业4-4 在常温下为什么细晶粒金属强度高,且塑性、韧性也好?试用多晶体塑性变形的特点予以解释。
答:晶粒细小而均匀,不仅常温下强度较高,而且塑性和韧性也较好,即强韧性好。
原因是:(1)强度高:Hall-Petch公式。
晶界越多,越难滑移。
(2)塑性好:晶粒越多,变形均匀而分散,减少应力集中。
(3)韧性好:晶粒越细,晶界越曲折,裂纹越不易传播。
4-6 生产中加工长的精密细杠(或轴)时,常在半精加工后,将将丝杠吊挂起来并用木锤沿全长轻击几遍在吊挂7~15天,然后再精加工。
试解释这样做的目的及其原因?答:这叫时效处理一般是在工件热处理之后进行原因用木锤轻击是为了尽快消除工件内部应力减少成品形变应力吊起来,是细长工件的一种存放形式吊个7天,让工件释放应力的时间,轴越粗放的时间越长。
4-8 钨在1000℃变形加工,锡在室温下变形加工,请说明它们是热加工还是冷加工(钨熔点是3410℃,锡熔点是232℃)?答:W、Sn的最低再结晶温度分别为:TR(W) =(0.4~0.5)×(3410+273)-273 =(1200~1568)(℃)>1000℃TR(Sn) =(0.4~0.5)×(232+273)-273 =(-71~-20)(℃) <25℃所以W在1000℃时为冷加工,Sn在室温下为热加工4-9 用下列三种方法制造齿轮,哪一种比较理想?为什么?(1)用厚钢板切出圆饼,再加工成齿轮;(2)由粗钢棒切下圆饼,再加工成齿轮;(3)由圆棒锻成圆饼,再加工成齿轮。
机械工程材料课后答案
工程材料习题<习题一>1、抗拉强度:是材料在破断前所能承受的最大应力。
屈服强度:是材料开始产生明显塑性变形时的最低应力。
塑性:是指材料在载荷作用下,产生永久变形而不破坏的能力。
韧性:材料变形时吸收变形力的能力。
硬度:硬度是衡量材料软硬程度的指标,材料表面抵抗更硬物体压入的能力。
刚度:材料抵抗弹性变形的能力。
疲劳强度:经无限次循环而不发生疲劳破坏的最大应力。
冲击韧性:材料在冲击载荷作用下抵抗破坏的能力。
断裂韧性:材料抵抗裂纹扩展的能力。
2 、材料的弹性模量与塑性无关。
3 、四种不同材料的应力应变曲线,试比较抗拉强度,屈服强度,刚度和塑性。
由大到小的顺序,抗拉强度: 2 、 1 、 3 、 4 。
屈服强度: 1 、 3 、 2 、 4 。
刚度:1 、3 、2 、4 。
塑性:3 、2 、4 、 1 。
4、常用的硬度测试方法有几种?这些方法测出的硬度值能否进行比较?布氏、洛氏、维氏和显微硬度。
由于各种硬度测试方法的原理不同,所以测出的硬度值不能直接进行比较。
5、以下工件应该采用何种硬度试验法测定其硬度?(1)锉刀:洛氏或维氏硬度(2)黄铜轴套:布氏硬度(3)供应状态的各种碳钢钢材:布氏硬度(4)硬质合金刀片:洛氏或维氏硬度(5)耐磨工件的表面硬化层:显微硬度6、反映材料承受冲击载荷的性能指标是什么?不同条件下测得的这些指标能否进行比较?怎样应用这些性能指标?冲击功或冲击韧性。
由于冲击功或冲击韧性代表了在指定温度下,材料在缺口和冲击载荷共同作用下脆化的趋势及其程度,所以不同条件下测得的这种指标不能进行比较。
冲击韧性是一个对成分、组织、结构极敏感的参数,在冲击试验中很容易揭示出材料中的某些物理现象,如晶粒粗化、冷脆、热脆和回火脆性等,故目前常用冲击试验来检验冶炼、热处理以及各种加工工艺的质量。
此外,不同温度下的冲击试验可以测定材料的冷脆转变温度。
同时,冲击韧性对某些零件(如装甲板等)抵抗少数几次大能量冲击的设计有一定的参考意义。
机械工程材料课后习题参考答案
机械工程材料思考题参考答案第一章金属的晶体结构与结晶1.解释下列名词点缺陷,线缺陷,面缺陷,亚晶粒,亚晶界,刃型位错,单晶体,多晶体,过冷度,自发形核,非自发形核,变质处理,变质剂。
答:点缺陷:原子排列不规则的区域在空间三个方向尺寸都很小,主要指空位间隙原子、置换原子等。
线缺陷:原子排列的不规则区域在空间一个方向上的尺寸很大,而在其余两个方向上的尺寸很小。
如位错。
面缺陷:原子排列不规则的区域在空间两个方向上的尺寸很大,而另一方向上的尺寸很小。
如晶界和亚晶界。
亚晶粒:在多晶体的每一个晶粒内,晶格位向也并非完全一致,而是存在着许多尺寸很小、位向差很小的小晶块,它们相互镶嵌而成晶粒,称亚晶粒。
亚晶界:两相邻亚晶粒间的边界称为亚晶界。
刃型位错:位错可认为是晶格中一部分晶体相对于另一部分晶体的局部滑移而造成。
滑移部分与未滑移部分的交界线即为位错线。
如果相对滑移的结果上半部分多出一半原子面,多余半原子面的边缘好像插入晶体中的一把刀的刃口,故称“刃型位错”。
单晶体:如果一块晶体,其内部的晶格位向完全一致,则称这块晶体为单晶体。
多晶体:由多种晶粒组成的晶体结构称为“多晶体”。
过冷度:实际结晶温度与理论结晶温度之差称为过冷度。
自发形核:在一定条件下,从液态金属中直接产生,原子呈规则排列的结晶核心。
非自发形核:是液态金属依附在一些未溶颗粒表面所形成的晶核。
变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提高了形核率,细化晶粒,这种处理方法即为变质处理。
变质剂:在浇注前所加入的难熔杂质称为变质剂。
2.常见的金属晶体结构有哪几种?α-Fe 、γ- Fe 、Al 、Cu 、Ni 、Pb 、Cr 、V 、Mg、Zn 各属何种晶体结构?答:常见金属晶体结构:体心立方晶格、面心立方晶格、密排六方晶格;α-Fe、Cr、V属于体心立方晶格;γ-Fe 、Al、Cu、Ni、Pb属于面心立方晶格;Mg、Zn属于密排六方晶格;3.配位数和致密度可以用来说明哪些问题?答:用来说明晶体中原子排列的紧密程度。
机械工程材料课后习题答案
1 .可否通过增加零件的尺寸来提高其弹性模量:不能,弹性模量主要取决与材料的本性,除随温度上升而渐渐降低外,其他强化手段如热处理,冷加工,合金化等对弹性模量的影响很小。
2 .工程上的延长率与选取的样品长度有关,为什么:延长率=(LI-L2)/10,当式样dθ不变时,LO增加,则延长率下降,只有当LO/dO 为常熟市,延长率才有可比性。
3 .如何用材料的应力-应变曲线推断材料的韧性:所谓的材料韧性是指材料从变形到断裂整个过程所汲取的能量,即拉伸曲线与横坐标所包围的面积。
4 .从原子结构上说明晶体与非晶体的区分:院子在三维空间呈现规章排列的固体成为晶体,而原子在空间里无序排列的固体成为非晶体。
晶体长程有序,非晶体短程无序。
5 .立方晶系重指数相同的晶面与晶向有什么关系:相互垂直。
6 .合金肯定单相的吗,固溶体肯定是单相的吗:合金不肯定是单相的,也可以由多相组成,固溶体肯定是单相的。
7 .固态非晶合金的晶化过程是否属于同素异构转变,为什么:不属于,同素异构是物质在固态下的晶格类型随温度变化而发生变化。
8 .依据匀晶转变相图分析产生枝晶偏析的缘由:由匀晶转变相图可以知道,固溶体合金的结晶只有在充分缓慢冷却的条件下才可能得到成分匀称的固溶体组织。
然而在实际生产中,由于冷速较快,合金在结晶过程中固相和液相中的原子来不及集中,使得线结晶出的枝晶轴含有较多的高熔点元素,而后结晶的枝晶间含较多的低熔点元素,在一个枝晶范围内或一个晶粒范围内成分消失不匀称的现象,成为枝晶偏析。
9 .结合相图分析含0.45%、1.2%和3.0%的Fe-C合金在缓慢冷却过程中的转变及温室下的组织:0.45%C:L—L+δ-L+δ+γ-L+γ—γ+c-P+γ+α,室温组织:P+α1.2%C:L—L+γ-y一y+二次渗碳体一F+γ+二次渗碳体一二次渗碳体,室温组织:P+二次渗碳体3.0%C:L—L+γ-L+γ+Le―y+Le+二次渗碳体一P+y+二次渗碳体+一次渗碳体一Le'+二次渗碳体+P,室温组织:Le'+二次渗碳体+P10 .为什么室温下金属的晶粒越细,强度、硬度越高,韧性、塑性也越好:由于金属的晶粒越细,晶界总面积额越大,位错障碍越多,需协调的具有不同未向的晶粒越多,金属塑性变形的抗力越高,从而导致金属的强度和硬度越高;合金的晶粒越细,单位体积内晶粒数目越多,同时参与变形的晶粒数目越多,变形越匀称,推迟了裂纹的形成与扩展,使得在断裂前发生了较大的塑性变形,在强度和硬度同时参与的状况下,所以合金晶粒越细,其清醒和韧性也越好。
机械工程材料课后题答案
P24:1、名词解释1)相——材料中具有同一聚集状态、同一化学成分、同一组织结构,并于其它部分有界面分开的均匀组成部分。
•相组分——组成合金的相。
如铁碳合金是由α相Fe3C和组成的。
名词解释.1•组织——直接用肉眼观察到的,或借助于放大镜、显微镜观察到的材料内部的晶粒或相的集合状态(微观形貌图像)。
•组织组分——组成合金显微组织的独立部分,它可以是单相,也可以是复相。
如铁碳合金中的亚共析组织,就是由铁素体和珠光体两相组成。
名词解释.22)单晶体——内部原子具有规则排列的理想单一晶体。
•多晶体——由许多晶格位向不同小晶粒组成的实际晶体。
名词解释.33)晶格——为了更清楚的表明原子在空间排列的规律性,把晶体中原子进一步抽象为几何“点”,用一些假想的空间直线按一定规律把这些“点”连接起来,所构成的三维空间构架。
•晶胞——晶体中反映晶体特征的最基本的几何单元。
名词解释.4•晶格常数——表征晶胞特征的参数,如立方晶胞中的三条棱边的长度a、b、c,及三条棱边之间的夹角α、β、γ。
4)晶界——多晶体中不同晶格位向的小晶粒之间的分界面。
•亚晶界——亚晶粒之间的交界。
名词解释.55)位错——晶体中二维尺度很小,而第三维尺度较大的缺陷。
•位错密度——单位体积中所包含的位错线的总长度或穿过单位截面积的位错线数目。
名词解释.66)组元——组成材料最基本的独立物质。
•固溶体——溶质原子溶入溶剂晶格中所形成的均一的、保持溶剂晶体结构的结晶相。
•金属化合物——由相当程度的金属键结合形成具有金属特性的化合物。
名词解释.77)各向异性——晶体内部不同的晶面和晶向上,原子的密度不同,相互之间的作用力不同,晶体在不同的方向上表现出了不同的性能。
•同素异晶转变——随着外界条件(温度和压力)的变化,物质在固态时所发生的晶体结构的转变。
画出立方晶系的下列晶面与晶向画出下列晶向P24:13、说明晶体缺陷的类型、主要内容,以及对性能的影响 答:1)点缺陷——晶体内在三维方向上尺度都很小的缺陷。
机械工程材料(第二版)课后习题答案
2-1常见的金属晶体结构有哪几种?它们的原子排列和晶格常数有什么特点?-Fe、-Fe、Al、Cu、Ni、Cr、V、Mg、Zn各属何种结构?答:常见晶体结构有3种:⑴体心立方:-Fe、Cr、V⑵面心立方:-Fe、Al、Cu、Ni⑶密排六方:Mg、Zn2---7为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性?答:因为单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性。
第三章作业3-2 如果其它条件相同,试比较在下列铸造条件下,所得铸件晶粒的大小;⑴金属模浇注与砂模浇注;⑵高温浇注与低温浇注;⑶铸成薄壁件与铸成厚壁件;⑷浇注时采用振动与不采用振动;⑸厚大铸件的表面部分与中心部分。
答:晶粒大小:⑴金属模浇注的晶粒小⑵低温浇注的晶粒小⑶铸成薄壁件的晶粒小⑷采用振动的晶粒小⑸厚大铸件表面部分的晶粒小第四章作业4-4 在常温下为什么细晶粒金属强度高,且塑性、韧性也好?试用多晶体塑性变形的特点予以解释。
答:晶粒细小而均匀,不仅常温下强度较高,而且塑性和韧性也较好,即强韧性好。
原因是:(1)强度高:Hall-Petch公式。
晶界越多,越难滑移。
(2)塑性好:晶粒越多,变形均匀而分散,减少应力集中。
(3)韧性好:晶粒越细,晶界越曲折,裂纹越不易传播。
4-6 生产中加工长的精密细杠(或轴)时,常在半精加工后,将将丝杠吊挂起来并用木锤沿全长轻击几遍在吊挂7~15天,然后再精加工。
试解释这样做的目的及其原因?答:这叫时效处理一般是在工件热处理之后进行原因用木锤轻击是为了尽快消除工件内部应力减少成品形变应力吊起来,是细长工件的一种存放形式吊个7天,让工件释放应力的时间,轴越粗放的时间越长。
4-8 钨在1000℃变形加工,锡在室温下变形加工,请说明它们是热加工还是冷加工(钨熔点是3410℃,锡熔点是232℃)?答:W、Sn的最低再结晶温度分别为:TR(W) =(0.4~0.5)×(3410+273)-273 =(1200~1568)(℃)>1000℃TR(Sn) =(0.4~0.5)×(232+273)-273 =(-71~-20)(℃) <25℃所以W在1000℃时为冷加工,Sn在室温下为热加工4-9 用下列三种方法制造齿轮,哪一种比较理想?为什么?(1)用厚钢板切出圆饼,再加工成齿轮;(2)由粗钢棒切下圆饼,再加工成齿轮;(3)由圆棒锻成圆饼,再加工成齿轮。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
机械工程材料思考题参照答案第一章金属晶体构造与结晶1.解释下列名词点缺陷,线缺陷,面缺陷,亚晶粒,亚晶界,刃型位错,单晶体,多晶体,过冷度,自发形核,非自发形核,变质解决,变质剂。
答:点缺陷:原子排列不规则区域在空间三个方向尺寸都很小,重要指空位间隙原子、置换原子等。
线缺陷:原子排列不规则区域在空间一种方向上尺寸很大,而在别的两个方向上尺寸很小。
如位错。
面缺陷:原子排列不规则区域在空间两个方向上尺寸很大,而另一方向上尺寸很小。
如晶界和亚晶界。
亚晶粒:在多晶体每一种晶粒内,晶格位向也并非完全一致,而是存在着许多尺寸很小、位向差很小小晶块,它们互相镶嵌而成晶粒,称亚晶粒。
亚晶界:两相邻亚晶粒间边界称为亚晶界。
刃型位错:位错可以为是晶格中一某些晶体相对于另一某些晶体局部滑移而导致。
滑移某些与未滑移某些交界线即为位错线。
如果相对滑移成果上半某些多余一半原子面,多余半原子面边沿好像插入晶体中一把刀刃口,故称“刃型位错”。
单晶体:如果一块晶体,其内部晶格位向完全一致,则称这块晶体为单晶体。
多晶体:由各种晶粒构成晶体构造称为“多晶体”。
过冷度:实际结晶温度与理论结晶温度之差称为过冷度。
自发形核:在一定条件下,从液态金属中直接产生,原子呈规则排列结晶核心。
非自发形核:是液态金属依附在某些未溶颗粒表面所形成晶核。
变质解决:在液态金属结晶前,特意加入某些难熔固态颗粒,导致大量可以成为非自发晶核固态质点,使结晶时晶核数目大大增长,从而提高了形核率,细化晶粒,这种解决办法即为变质解决。
变质剂:在浇注前所加入难熔杂质称为变质剂。
2.常用金属晶体构造有哪几种?α-Fe 、γ- Fe 、Al 、Cu 、Ni 、Pb 、Cr 、V 、Mg、Zn 各属何种晶体构造?答:常用金属晶体构造:体心立方晶格、面心立方晶格、密排六方晶格;α-Fe、Cr、V属于体心立方晶格;γ-Fe 、Al、Cu、Ni、Pb属于面心立方晶格;Mg、Zn属于密排六方晶格;3.配位数和致密度可以用来阐明哪些问题?答:用来阐明晶体中原子排列紧密限度。
晶体中配位数和致密度越大,则晶体中原子排列越紧密。
4.晶面指数和晶向指数有什么不同?答:晶向是指晶格中各种原子列位向,用晶向指数来表达,形式为[]uvw;晶面是指晶格中不同方位上原子面,用晶面指数来表达,形式为()hkl。
5.实际晶体中点缺陷,线缺陷和面缺陷对金属性能有何影响?答:如果金属中无晶体缺陷时,通过理论计算具备极高强度,随着晶体中缺陷增长,金属强度迅速下降,当缺陷增长到一定值后,金属强度又随晶体缺陷增长而增长。
因而,无论点缺陷,线缺陷和面缺陷都会导致晶格崎变,从而使晶体强度增长。
同步晶体缺陷存在还会增长金属电阻,减少金属抗腐蚀性能。
6.为什么单晶体具备各向异性,而多晶体在普通状况下不显示出各向异性?答:由于单晶体内各个方向上原子排列密度不同,导致原子间结合力不同,因而体现出各向异性;而多晶体是由诸各种单晶体所构成,它在各个方向上力互相抵消平衡,因而体现各向同性。
7.过冷度与冷却速度有何关系?它对金属结晶过程有何影响?对铸件晶粒大小有何影响?答:①冷却速度越大,则过冷度也越大。
②随着冷却速度增大,则晶体内形核率和长大速度都加快,加速结晶过程进行,但当冷速达到一定值后来则结晶过程将减慢,由于这时原子扩散能力削弱。
③过冷度增大,ΔF 大,结晶驱动力大,形核率和长大速度都大,且N增长比G增长得快,提高了N与G比值,晶粒变细,但过冷度过大,对晶粒细化不利,结晶发生困难。
8.金属结晶基本规律是什么?晶核形成率和成长率受到哪些因素影响?答:①金属结晶基本规律是形核和核长大。
②受到过冷度影响,随着过冷度增大,晶核形成率和成长率都增大,但形成率增长比成长率增长快;同步外来难熔杂质以及振动和搅拌办法也会增大形核率。
9.在锻造生产中,采用哪些办法控制晶粒大小?在生产中如何应用变质解决?答:①采用办法:变质解决,钢模锻造以及在砂模中加冷铁以加快冷却速度办法来控制晶粒大小。
②变质解决:在液态金属结晶前,特意加入某些难熔固态颗粒,导致大量可以成为非自发晶核固态质点,使结晶时晶核数目大大增长,从而提高了形核率,细化晶粒。
③机械振动、搅拌。
第二章金属塑性变形与再结晶1.解释下列名词:加工硬化、回答、再结晶、热加工、冷加工。
答:加工硬化:随着塑性变形增长,金属强度、硬度迅速增长;塑性、韧性迅速下降现象。
回答:为了消除金属加工硬化现象,将变形金属加热到某一温度,以使其组织和性能发生变化。
在加热温度较低时,原子活动能力不大,这时金属晶粒大小和形状没有明显变化,只是在晶内发生点缺陷消失以及位错迁移等变化,因而,这时金属强度、硬度和塑性等机械性能变化不大,而只是使内应力及电阻率等性能明显减少。
此阶段为回答阶段。
再结晶:被加热到较高温度时,原子也具备较大活动能力,使晶粒外形开始变化。
从破碎拉长晶粒变成新等轴晶粒。
和变形前晶粒形状相似,晶格类型相似,把这一阶段称为“再结晶”。
热加工:将金属加热到再结晶温度以上一定温度进行压力加工。
冷加工:在再结晶温度如下进行压力加工。
2.产生加工硬化因素是什么?加工硬化在金属加工中有什么利弊?答:①随着变形增长,晶粒逐渐被拉长,直至破碎,这样使各晶粒都破碎成细碎亚晶粒,变形愈大,晶粒破碎限度愈大,这样使位错密度明显增长;同步细碎亚晶粒也随着晶粒拉长而被拉长。
因而,随着变形量增长,由于晶粒破碎和位错密度增长,金属塑性变形抗力将迅速增大,即强度和硬度明显提高,而塑性和韧性下降产生所谓“加工硬化”现象。
②金属加工硬化现象会给金属进一步加工带来困难,如钢板在冷轧过程中会越轧越硬,以致最后轧不动。
另一方面人们可以运用加工硬化现象,来提高金属强度和硬度,如冷拔高强度钢丝就是运用冷加工变形产生加工硬化来提高钢丝强度。
加工硬化也是某些压力加工工艺可以实现重要因素。
如冷拉钢丝拉过模孔某些,由于发生了加工硬化,不再继续变形而使变形转移到尚未拉过模孔某些,这样钢丝才可以继续通过模孔而成形。
3.划分冷加工和热加工重要条件是什么?答:重要是再结晶温度。
在再结晶温度如下进行压力加工为冷加工,产生加工硬化现象;反之为热加工,产生加工硬化现象被再结晶所消除。
4.与冷加工比较,热加工给金属件带来益处有哪些?答:(1)通过热加工,可使铸态金属中气孔焊合,从而使其致密度得以提高。
(2)通过热加工,可使铸态金属中枝晶和柱状晶破碎,从而使晶粒细化,机械性能提高。
(3)通过热加工,可使铸态金属中枝晶偏析和非金属夹杂分布发生变化,使它们沿着变形方向细碎拉长,形成热压力加工“纤维组织”(流线),使纵向强度、塑性和韧性明显不不大于横向。
如果合理运用热加工流线,尽量使流线与零件工作时承受最大拉应力方向一致,而与外加切应力或冲击力相垂直,可提高零件使用寿命。
5.为什么细晶粒钢强度高,塑性,韧性也好?答:晶界是阻碍位错运动,而各晶粒位向不同,互相约束,也阻碍晶粒变形。
因而,金属晶粒愈细,其晶界总面积愈大,每个晶粒周边不同取向晶粒数便愈多,对塑性变形抗力也愈大。
因而,金属晶粒愈细强度愈高。
同步晶粒愈细,金属单位体积中晶粒数便越多,变形时同样变形量便可分散在更多晶粒中发生,产生较均匀变形,而不致导致局部应力集中,引起裂纹过早产生和发展。
因而,塑性,韧性也越好。
6.金属经冷塑性变形后,组织和性能发生什么变化?答:①晶粒沿变形方向拉长,性能趋于各向异性,如纵向强度和塑性远不不大于横向等;②晶粒破碎,位错密度增长,产生加工硬化,即随着变形量增长,强度和硬度明显提高,而塑性和韧性下降;③织构现象产生,即随着变形发生,不但金属中晶粒会被破碎拉长,并且各晶粒晶格位向也会沿着变形方向同步发生转动,转动成果金属中每个晶粒晶格位向趋于大体一致,产生织构现象;④冷压力加工过程中由于材料各某些变形不均匀或晶粒内各某些和各晶粒间变形不均匀,金属内部会形成残存内应力,这在普通状况下都是不利,会引起零件尺寸不稳定。
7.分析加工硬化对金属材料强化作用?答:随着塑性变形进行,位错密度不断增长,因而位错在运动时互相交割、位错缠结加剧,使位错运动阻力增大,引起变形抗力增长。
这样,金属塑性变形就变得困难,要继续变形就必要增大外力,因而提高了金属强度。
8.已知金属钨、铁、铅、锡熔点分别为3380℃、1538℃、327℃、232℃,试计算这些金属最低再结晶温度,并分析钨和铁在1100℃下加工、铅和锡在室温(20℃)下加工各为什么种加工?答:T再=0.4T熔;钨T再=[0.4*(3380+273)]-273=1188.2℃;铁T再=[0.4*(1538+273)]-273=451.4℃;铅T再=[0.4*(327+273)]-273=-33℃;锡T再=[0.4*(232+273)]-273=-71℃.由于钨T再为1188.2℃>1100℃,因而属于热加工;铁T再为451.4℃<1100℃,因而属于冷加工;铅T再为-33℃<20℃,属于冷加工;锡T再为-71<20℃,属于冷加工。
9.在制造齿轮时,有时采用喷丸法(即将金属丸喷射到零件表面上)使齿面得以强化。
试分析强化因素。
答:高速金属丸喷射到零件表面上,使工件表面层产生塑性变形,形成一定厚度加工硬化层,使齿面强度、硬度升高。
第三章合金构造与二元状态图1.解释下列名词:合金,组元,相,相图;固溶体,金属间化合物,机械混合物;枝晶偏析,比重偏析;固溶强化,弥散强化。
答:合金:通过熔炼,烧结或其他办法,将一种金属元素同一种或几种其他元素结合在一起所形成具备金属特性新物质,称为合金。
组元:构成合金最基本、独立物质称为组元。
相:在金属或合金中,凡成分相似、构造相似并与其他某些有界面分开均匀构成某些,均称之为相。
相图:用来表达合金系中各个合金结晶过程简要图解称为相图。
固溶体:合金组元之间以不同比例混合,混合后形成固相晶格构造与构成合金某一组元相似,这种相称为固溶体。
金属间化合物:合金组元间发生互相作用形成一种具备金属性质新相,称为金属间化合物。
它晶体构造不同于任一组元,用分子式来表达其构成。
机械混合物:合金组织由不同相以不同比例机械混合在一起,称机械混合物。
枝晶偏析:实际生产中,合金冷却速度快,原子扩散不充分,使得先结晶出来固溶体合金含高熔点组元较多,后结晶含低熔点组元较多,这种在晶粒内化学成分不均匀现象称为枝晶偏析。
比重偏析:比重偏析是由构成相与溶液之间密度差别所引起。
如果先共晶相与溶液之间密度差别较大,则在缓慢冷却条件下凝固时,先共晶相便会在液体中上浮或下沉,从而导致结晶后铸件上下某些化学成分不一致,产生比重偏析。
固溶强化:通过溶入某种溶质元素形成固溶体而使金属强度、硬度升高现象称为固溶强化。
弥散强化:合金中以固溶体为主再有适量金属间化合物弥散分布,会提高合金强度、硬度及耐磨性,这种强化方式为弥散强化。