九年级数学相似三角形5
初三数学相似知识点
初三数学相似知识点
1. 相似三角形:相似三角形是指具有相同形状但大小不同的三角形。
相似三角形的对
应边长成比例,对应角度相等。
2. 相似比例:相似三角形的边长比值称为相似比例。
如果两个三角形的对应边长分别
为a:b:c和ka:kb:kc,那么它们的相似比例为a:b:c。
3. 相似三角形定理:包括AAA相似定理、AA相似定理和对应角边比相等定理。
其中,AAA相似定理指出如果两个三角形的对应角度相等,那么它们相似;AA相似定理指出如果两个三角形的两个对应角度相等,那么它们相似;对应角边比相等定理指出如果
两个三角形的两个对应角度相等,并且对应边长之比相等,那么它们相似。
4. 相似三角形的性质:相似三角形的相似比例等于对应边长之比;相似三角形的相似
比例等于对应角度的正弦值、余弦值或正切值;相似三角形的高线、中线等与对应边
长成等比例;相似三角形的面积与边长平方成比例。
5. 相似三角形的应用:相似三角形的定理在解决实际问题中有很多应用,如利用相似
三角形进行测量、解决影子问题、求解高度、求解距离等。
6. 图形的相似:除了三角形,其他图形(如矩形、圆、椭圆等)也有相似的概念和相
似关系,可以利用相似关系解决相关问题。
这些内容是初三数学中关于相似的主要知识点,希望对你有帮助!如有其他问题,请
随时提问。
湘教版九年级数学上册《相似三角形判定 》知识全解
《相似三角形判定》知识全解
课标要求
理解相似三角形几种判定,并能简单地应用.
知识结构
内容解析
(1)相似三角形判定预备定理:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.
(2)相似三角形判定1:如果两个三角形的三组对应边的比相等,那么这两个三角形相似.
(3)相似三角形判定2:如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.
(4)相似三角形判定3:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.
重点难点
本节的重点是:三角形相似的判定方法及其应用.
难点:探究两个三角形相似判定方法的过程.
教法导引
(1)注重将新知识与旧知识进行联系与类比.
培养学生的观察﹑发现﹑比较﹑归纳能力,感受两个三角形相似的判定方法与全等三角形判定方法的区别与联系,体验事物间特殊与一般的关系.
复习全等三角形判定方法SSS与SAS,类比全等三角形判定方法SSS与SAS,提出两个三角形相似的两个判定.
(2)让学生经历从实验探究到归纳证明的过程,发展学生的合情推理能力.
教学活动的本质是一种合作,一种交流.学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者,本节课主要采用自主学习,合作探究,引领提升的方式展开教学.依据学生的年龄特点和已有的知识基础,本节课注重加强知识间的纵向联系,加强与全等三角形相关内容的联系,使学生的学习形成正迁移.
学法建议
新的教学理念要求在课堂中注重探究学习,在本课中,其实有许多内容可以进行这方面的尝试.如何进行判定三角形相似呢?可以让学生进行探究和归纳.若能在探究的基础上归纳出方法,学习的效果会提高很多,学习的能力也会不断提高.。
九年级数学第二十九章 相似三角形;三角形相似的条件冀教版知识精讲
初三数学第二十九章 相似三角形;三角形相似的条件冀教版【本讲教育信息】一. 教学内容:相似三角形和三角形相似的条件1. 了解相似三角形、相似比的含义.2. 掌握两个三角形相似的判断条件,并能够运用三角形相似的判断方法解决一些简单的问题.二. 知识要点: 1. 相似三角形(1)相似三角形:对应角相等、对应边成比例的两个三角形叫做相似三角形. (2)相似比:相似三角形对应边的比叫做相似比. (3)表示方法:用符号“∽”来表示相似,读作“相似于”.如图所示,△ABC 和△A ’B ’C ’相似,记作“△ABC ∽△A ’B ’C ’”,读作“△ABC 相似于△A ’B ’C ’”.A B CA'C'B'说明:(1)这个定义告诉我们:①如果两个三角形的角对应相等、边对应成比例,那么这两个三角形相似;②如果两个三角形相似,那么它们的对应角相等、对应边成比例.(2)相似比是有顺序的.例如:若△ABC ∽△A ’B ’C ’,相似比为k ,则△A ’B ’C ’∽△ABC ,那么相似比为1k .2. 三角形相似的条件(1)如果两个三角形的两角对应相等,那么这两个三角形相似.例如:如图所示,若∠A =∠A ’,∠B =∠B ’,则△ABC ∽△A ’B ’C ’; 若∠A =∠A ’,∠C =∠C ’,则△ABC ∽△A ’B ’C ’; 若∠C =∠C ’,∠B =∠B ’,则△ABC ∽△A ’B ’C ’. 说明:只要有两对角对应相等,这两个三角形就相似.“对应”不一定非得是“A 对A ’,B 对B ’,C 对C ’”.A B A'B'(2)两边对应成比例,且夹角相等的两个三角形相似.例如:如上图所示,若AB A ’B ’=BCB ’C ’,∠B =∠B ’,则△ABC ∽△A ’B ’C ’;若BC B ’C ’=CA C ’A ’,∠C =∠C ’,则△ABC ∽△A ’B ’C ’; 若AB A ’B ’=AC A ’C ’,∠A =∠A ’,则△ABC ∽△A ’B ’C ’.(3)三边对应成比例的两个三角形相似.例如:如上图所示,若AB A ’B ’=BC B ’C ’=CAC ’A ’,则△ABC ∽△A ’B ’C ’.三. 重点难点:本讲重点是相似三角形的定义和三角形相似的条件,难点是应用三角形相似的三个条件解决一些问题.【典型例题】例1. 如图所示,D 是△ABC 的边AB 上的一点,当∠1=__________,∠2=__________时,或ACAB=__________=__________时,△ADC ∽△ACB . ABCD12分析:要使△ADC ∽△ACB ,根据相似三角形的定义,三组对应角分别相等,三组对应边成比例,由图可知,∠A 为公共角,∠1的顶点与∠ACB 的顶点重合.∴点A 与点A 对应,点C 与点B 对应,点D 与点C 对应,∴∠1=∠B ,∠2=∠ACB ,AC AB =AD AC =DCCB.解:∠B ,∠ACB ,AD AC ,DCCB评析:在找对应边、对应角时,应先观察图形,找出图形中的条件,如公共角、公共边等,再找出对应顶点、对应边和对应角.在写相似表达式时,应尽量把对应顶点的字母写在对应的位置上.例2. (1)若△AED ∽△ABC ,AD =6cm ,AC =12cm ,则△AED 与△ABC 的相似比为__________. (2)有一个三角形的三边长为2、3、4,若另一个和它相似的三角形的最短边长为8,则第二个三角形的周长为__________.分析:(1)相似三角形的相似比就是其对应边的比.∵△AED ∽△ABC ,∴边AD 与AC对应.∴相似比为AD AC =612=12.(2)由题意知,要求周长,应知道三边长,两个三角形相似,则对应边成比例,这里的对应指大边对大边,小边对小边,题目中给出的第二个三角形的最短边长是8,因此应找出第一个三角形的最短边与之对应,这条对应边长应为2,所以相似比为28=14,设另两边长分别为x 、y ,则3x =4y =14,解得x =12,y =16,∴第二个三角形的周长为8+12+16=36.解:(1)12(2)36评析:(1)①求相似比时要注意顺序,哪个三角形在前,它的对应边就作为比的前项.②相似比实际上反映的是一个图形的放大或缩小,相似比大于1,说明图形被放大;相似比小于1,说明图形被缩小;相似比等于1,说明两个图形全等.③若△ABC 与△A'B'C'的相似比为k ,则△A'B'C'与△ABC 的相似比为1k .(2)找两个相似三角形的对应边、对应角的方法有两种:①如果给出相似表达式,就先找对应顶点,再找对应边、对应角.②如果已知对应角,那么对应角所对的边就是对应边;如果已知对应边,那么对应边所对的角就是对应角.找两个相似三角形的对应边还有一个原则:大边对大边,小边对小边.例3. 如图所示,平行四边形ABCD 中,G 是BC 延长线上一点,AG 与BD 交于点E ,与DC 交于点F ,则图中相似的三角形共有( ) A .3对 B .4对 C .5对 D .6对ABCDGEF分析:由AD ∥BG ,可得∠DAE =∠G ,∠ADB =∠DBG ,可推出△AED ∽△GEB ,同理可推出△AFD ∽△GFC ;由AB ∥DC 可得到△AEB ∽△FED 和△ABG ∽△FCG ,由相似图形的传递性,知△GAB ∽△AFD ,又△ABD ∽△CDB ,∴图中共有6对相似三角形,故正确答案为D .解:D评析:充分利用题目中的条件,如平行、垂直等推出相等的角,如公共角,对顶角等.例4. 如图所示,BC 平分∠ABD ,AB =4,BD =5,当BC =__________时,△ABC ∽△CBD .AB CD分析:因为BC 平分∠ABD ,所以得到∠ABC =∠CBD ,又题目中给出的条件是边,所以要使△ABC ∽△CBD ,只要两边对应成比例且夹角相等即可,所以只需AB BC =BC BD ,即BC 2=AB ·BD .又AB =4,BD =5,所以BC 2=4×5=20,所以BC =25.解:2 5例5. 如图所示,在△ABC 中,AB =AC ,∠A =36°,BD 是∠ABC 的平分线. (1)△ABC 和△BCD 相似吗?(2)试说明AD 2=DC ·AC ;(3)若AC =5+1,求BC 的长.AB CD分析:有一个角为36°的等腰三角形,它的底角是72°,而BD 是底角的平分线,故∠CBD =36°,则可推出△ABC ∽△BCD ,进而由相似三角形对应边成比例推出线段之间的比例关系.解:(1)因为∠A =36°,AB =AC ,所以∠ABC =∠C =72°. 又因为BD 平分∠ABC ,所以∠ABD =∠CBD =36°. 所以AD =BD =BC ,所以△ABC ∽△BCD .(2)因为△ABC ∽△BCD ,所以BC AB =CDBC,所以BC 2=AB ·CD ,即AD 2=AC ·CD .(3)由AD 2=AC ·CD ,得D 为线段AC 的黄金分割点,所以AD =5-12·AC =5-12·(5+1)=2,而BC =AD ,故BC =2.评析:识别三角形相似的思路:①有一对等角,找⎩⎪⎨⎪⎧另一对等角等角的两边对应成比例 ;②有两边对应成比例,找⎩⎪⎨⎪⎧夹角相等第三边成比例 ;③直角三角形,找一对锐角相等;④等腰三角形,找⎩⎪⎨⎪⎧顶角相等一对底角相等底和腰成比例.例6. 为了测量校园内一棵不可攀登的树的高度,学校数学兴趣小组做了如下的探索: 如图所示,把镜子放在离树(AB )的点E 处,然后沿着BE 后退到点D ,这时恰好在镜子里看到树梢顶点A ,再用皮尺量得DE =,观察者目高CD =,请你计算出树的高度.(精确到)ABC D解:因为∠D =∠B =90°,∠CED =∠AEB ,所以△CDE ∽△ABE ,所以CD AB =DE BE .因为CD =1.6,DE =2.7,BE =8.7, 所以AB=,所以AB ≈5.2.答:树的高度约是.评析:光线的入射角和反射角是相等的,故可得∠CED =∠AEB ,然后可利用相似三角形的性质解决问题.【方法总结】1. 三角形相似的条件有三个:①两角对应相等的两个三角形相似;②两边对应成比例且夹角相等的两个三角形相似;③三边对应成比例的两个三角形相似.2. 相似三角形判定方法的作用:①可以用来判定两三角形相似;②间接说明角相等,线段成比例;③间接为计算线段长度及角的大小创造条件.3. 有关三角形相似的基本图形:①如图1所示,若DE ∥BC ,则△ADE ∽△ABC ;②如图2所示,若∠ADE =∠B ,则△ADE ∽△ABC ;③如图3所示,若DE ∥BC ,则△ADE ∽△ABC .A BC D E ABC D E ABCDE图1图2图3【预习导学案】(相似三角形和相似多边形的性质)一. 预习前知1. 相似三角形的对应边__________,对应角__________.2. 已知△ABC ∽△A ’B ’C ’,AB =3,BC =4,A ’B ’=5,∠A =80°,∠B =30°,求B ’C ’的长与∠C ’的度数.3. 如图所示,在△ABC 中,∠B =90°,AB =BC ,点D 是AC 的中点.找出图中的相似三角形(不包括全等三角形),并求出其相似比.A BCD二. 预习导学1. 已知△ABC ∽△A ’B ’C ’,C △ABC =12,ABA'B'=2,求C △A ’B ’C ’. 2. 已知△ABC ∽△A ’B ’C ’,S △ABC =12,ABA'B'=2,求S △A ’B ’C ’.3. 如图所示的两个四边形相似,找出图中的对应角、对应边、并用比例式表示.ABEF4. 两个相似多边形的相似比为2∶3,则它们周长的比为__________,面积的比为__________. 反思:(1)相似三角形有什么性质?(2)相似多边形有什么性质?【模拟试题】(答题时间:50分钟)一. 选择题1. 已知△ABC ∽△A'B'C',如果∠A =75°,∠B =25°,则∠C'的度数为( ) A .80° B .70° C .60° D .50°2. 下列说法中正确的个数是( ) ①所有的直角三角形都相似;②所有的等腰三角形都相似;③所有的等腰直角三角形都相似;④所有的等边三角形都相似.A .1个B .2个C .3个D .4个3. △ABC ∽△A'B'C',且相似比为23,△A'B'C'∽△A''B''C'',且相似比为54,则△ABC与△A''B''C''的相似比为( )A .56B .65C .56或65D .8154. 具备下列各组条件的△ABC 和△A'B'C',不能判定它们相似的是( ) A .∠A =∠A',∠B =∠B' B .∠A =∠A',∠B =∠C' C .∠A =∠B',∠B =∠C' D .∠A =∠A',∠B =∠A'5. 如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC 相似的是( )ABCABCD*6. 已知,如图所示,D 、E 是△ABC 的边AB 、AC 上的点,且△AED ∽△ABC ,∠A =35°,∠C =85°,则下列结论错误的是( )A .AD ·AB =AE ·AC B .∠AED =60° C .DE BC =AD AC D .DE BC =AD ABA BCDE7. 下列4个三角形中,与右边三角形相似的是( )ABC55555575°30°D5540°**8. 如图,AB ∥CD ,AE ∥FD ,AE 、FD 分别交BC 于点G 、H ,则图中共有相似三角形( ) A .4对 B .5对 C .6对 D .7对A BCD EF G H二. 填空题1. 若两个三角形的相似比是1,则这两个三角形__________.2. 已知△ABC ∽△DEF ,则∠A =__________,∠B =__________,∠C =__________,ABDE =__________=__________.3. △ABC 的各边之比为2∶5∶6,与其相似的另一个△A'B'C'的最大边长为18cm ,那么△A'B'C'的最小边长为__________.4. 如图,在△ABC 中,DE ∥BC ,若AD =1、DE =2、BD =3,则BC =__________.A D EC B5. 如图所示,△ABC ∽△DBE ,且AD =12AB ,则△ABC 与△DBE 的相似比为__________.ABCDE6. 如图所示,(1)若AEAB =__________,则△AEF ∽△ABC ,理由是__________;(2)若__________∥__________,则△AEF ∽△ABC .AB CEF*7. 如图所示,AC 、BD 相交于O ,若给出__________=__________,则可以使△AOB ∽△DOC ,若给出DC 2=DO ·DB ,则可以使__________∽__________.A BC DO**8. 如图所示,△ABC 中,点D 、E 分别在AC 、AB 边上,要使△ABD ∽△ACE ,已具备的条件是__________,还需要添加的条件是__________或__________或__________.A BCDE三. 解答题1. 依据下列各组条件判定△ABC 与△A ’B ’C ’是否相似,并说明理由.(1)∠A =45°,AB =12cm ,AC =15cm ,∠A ’=45°,A ’B ’=16cm ,A ’C ’=20cm ; (2)∠B =80°,AB =,BC =2cm ,∠B ’=80°,A ’B ’=,B ’C ’=.2. 如图所示,若∠A =∠C ,那么△OAB 与△OCD 相似吗?OA ·OD =OB ·OC 吗?为什么.ABCDO3. 如图所示,已知△ADE ∽△ABC ,△DBF ∽△ABC ,AD =4cm ,BD =8cm ,DE =5cm ,求BF 的长.A BCDEF*4. 请你制作两个三角形框架,其中一个三角形框架的三边长分别为4、5、6,另一个三角形框架的一边长为2,如何选料可使这两个三角形相似?**5. 四边形ABCD 的对角线AC 、BD 相交于点O ,∠1=∠2,∠3=∠4,指出图中有哪些相似三角形,并说明理由.如图所示.ABCDEO1234试题答案一. 选择题1. A2. B3. A4. D5. A6. D7. C8. C二. 填空题1. 全等2. ∠D ,∠E ,∠F ,AC DF ,BC EF3. 6cm4. 85. 2∶16.(1)AFAC ;两边对应成比例,且它们的夹角是对顶角(相等)(2)EF ,BC 7. ∠ABO (或∠BAO ),∠BDC (或∠ACD ),△BDC ,△CDO 8. ∠A =∠A ,∠ABD =∠ACE ,∠ADB =∠AEC ,AD AE =ABAC三. 解答题1. (1)相似,因为AB A ’B ’=1216=34,∠A =∠A ’=45°,AC A ’C ’=1520=34.(2)相似,因为AB B ’C ’==57,BC A ’B ’=2=57,且它们的夹角∠B =∠B ’=80°,所以△ABC ∽△C ’B ’A ’.(点A 的对应顶点是C ’,点B 的对应顶点是B ’,点C 的对应顶点是A ’)2. ∵∠A =∠C ,∠AOB =∠COD ,∴△AOB ∽△COD ,∴OA OC =OBOD ,∴OA ·OD =OB ·OC3. ∵△ADE ∽△ABC ,AD =4cm ,BD =8cm ,DE =5cm ,∴AD AB =DE BC ,∴44+8=5BC,∴BC =15cm 。
九年级数学上册 第四章 图形的相似 5相似三角形判定定理的证明习题课件 (新版)北师大版
1.相似三角形的判定方法一: (1)_两__角分别_相__等__的两个三角形相似. (2)应用格式:∵∠A_=_∠D,∠B_=_∠E, ∴△ABC_∽__△DEF.
2.相似三角形的判定方法二:
(1)_两__边__成比例且夹角_相__等__的两个三角形相似. (2)应用格式:_AD__BE___AD_CF___,∠A_=_∠D, ∴△ABC_∽__△DEF.
由(1)知△ABD∽△CAE,∴∠E=∠D=90°,
在Rt△AEC中,EC2=AC2-AE2=a( 12-a)2 8 a2 ,
39
在Rt△BEC中, B C E C 2 B E 28 a2 (3 a 1 a )2 23 a .
9
3
【想一想】 在示范题2(2)的条件下,连接CD,此时四边形ABDC是什么特殊的 四边形? 提示:平行四边形. ∵AC∥BD,AC=BD, ∴四边形ABDC是平行四边形.
【备选例题】已知四边形ABCD、四边形DCFE、四边形EFHG都是 边长为1的正方形,则∠1+∠2+∠3是多少度?
【解析】由题意知AC= 2 ,CF=1,CH=2, 所以 CF AC ,
AC CH
又∠ACF=∠HCA,所以△ACF∽△HCA,
所以∠2=∠CAH,又因为∠1=∠3+∠CAH,
所以∠1+∠2+∠3=∠1+∠CAH+∠1-∠CAH=2∠1=90°.
•
13、生气是拿别人做错的事来惩罚自 己。2022/3/12022/3/12022/3/12022/3/13/1/2022
•
14、抱最大的希望,作最大的努力。2022年3月1日 星期二2022/3/12022/3/12022/3/1
九年级数学相似三角形经典题(含答案)
相似三角形经典习题教师版例1 从下面这些三角形中,选出相似的三角形.例2 已知:如图,ABCD 中,2:1:=EB AE ,求AEF ∆与CDF ∆的周长的比,如果2cm 6=∆AEF S ,求CDF S ∆.例3 如图,已知ABD ∆∽ACE ∆,求证:ABC ∆∽ADE ∆.例4 下列命题中哪些是正确的,哪些是错误的?(1)所有的直角三角形都相似. (2)所有的等腰三角形都相似. (3)所有的等腰直角三角形都相似. (4)所有的等边三角形都相似.例5 如图,D 点是ABC ∆的边AC 上的一点,过D 点画线段DE ,使点E 在ABC ∆的边上,并且点D 、点E 和ABC ∆的一个顶点组成的小三角形与ABC ∆相似.尽可能多地画出满足条件的图形,并说明线段DE 的画法.例6 如图,一人拿着一支刻有厘米分画的小尺,站在距电线杆约30米的地方,把手臂向前伸直,小尺竖直,看到尺上约12个分画恰好遮住电线杆,已知手臂长约60厘米,求电线杆的高.例7 如图,小明为了测量一高楼MN 的高,在离N 点20m 的A 处放了一个平面镜,小明沿NA 后退到C 点,正好从镜中看到楼顶M 点,若5.1=AC m ,小明的眼睛离地面的高度为1.6m ,请你帮助小明计算一下楼房的高度(精确到0.1m ).例8 格点图中的两个三角形是否是相似三角形,说明理由.例9 根据下列各组条件,判定ABC ∆和C B A '''∆是否相似,并说明理由:(1),cm 4,cm 5.2,cm 5.3===CA BC AB cm 28,cm 5.17,cm 5.24=''=''=''A C C B B A . (2)︒='∠︒='∠︒=∠︒=∠35,44,104,35A C B A .(3)︒='∠=''=''︒=∠==48,3.1,5.1,48,6.2,3B C B B A B BC AB .例10 如图,下列每个图形中,存不存在相似的三角形,如果存在,把它们用字母表示出来,并简要说明识别的根据.例11 已知:如图,在ABC ∆中,BD A AC AB ,36,︒=∠=是角平分线,试利用三角形相似的关系说明AC DC AD ⋅=2.例12 已知ABC ∆的三边长分别为5、12、13,与其相似的C B A '''∆的最大边长为26,求C B A '''∆的面积S .例13 在一次数学活动课上,老师让同学们到操场上测量旗杆的高度,然后回来交流各自的测量方法.小芳的测量方法是:拿一根高3.5米的竹竿直立在离旗杆27米的C 处(如图),然后沿BC 方向走到D 处,这时目测旗杆顶部A 与竹竿顶部E 恰好在同一直线上,又测得C 、D 两点的距离为3米,小芳的目高为1.5米,这样便可知道旗杆的高.你认为这种测量方法是否可行?请说明理由.例14.如图,为了估算河的宽度,我们可以在河对岸选定一个目标作为点A ,再在河的这一边选点B 和C ,使BC AB ⊥,然后再选点E ,使BC EC ⊥,确定BC 与AE 的交点为D ,测得120=BD 米,60=DC 米,50=EC 米,你能求出两岸之间AB 的大致距离吗?例15.如图,为了求出海岛上的山峰AB 的高度,在D 和F 处树立标杆DC 和FE ,标杆的高都是3丈,相隔1000步(1步等于5尺),并且AB 、CD 和EF 在同一平面内,从标杆DC 退后123步的G 处,可看到山峰A 和标杆顶端C 在一直线上,从标杆FE 退后127步的H 处,可看到山峰A 和标杆顶端E 在一直线上.求山峰的高度AB 及它和标杆CD 的水平距离BD 各是多少?(古代问题)例16 如图,已知△ABC 的边AB =32,AC =2,BC 边上的高AD =3.(1)求BC 的长;(2)如果有一个正方形的边在AB 上,另外两个顶点分别在AC ,BC 上,求这个正方形的面积.相似三角形经典习题答案例1. 解 ①、⑤、⑥相似,②、⑦相似,③、④、⑧相似例2. 解 ABCD 是平行四边形,∴CD AB CD AB =,//,∴AEF ∆∽CDF ∆,又2:1:=EB AE ,∴3:1:=CD AE ,∴AEF ∆与CDF ∆的周长的比是1:3. 又)cm (6,)31(22==∆∆∆AEF CDF AEF S S S ,∴)cm (542=∆CD F S . 例3 分析 由于ABD ∆∽ACE ∆,则CAE BAD ∠=∠,因此DAE BAC ∠=∠,如果再进一步证明AECAAD BA =,则问题得证.证明 ∵ABD ∆∽ACE ∆,∴CAE BAD ∠=∠.又DAC BAD BAC ∠+∠=∠ ,∴CAE DAC DAE ∠+∠=∠, ∴DAE BAC ∠=∠.∵ABD ∆∽ACE ∆,∴AEACAD AB =. 在ABC ∆和ADE ∆中,∵AEACAD AB ADE BAC =∠=∠,,∴ABC ∆∽ADE ∆ 例4.分析 (1)不正确,因为在直角三角形中,两个锐角的大小不确定,因此直角三角形的形状不同.(2)也不正确,等腰三角形的顶角大小不确定,因此等腰三角形的形状也不同. (3)正确.设有等腰直角三角形ABC 和C B A ''',其中︒='∠=∠90C C ,则︒='∠=∠︒='∠=∠45,45B B A A ,设ABC ∆的三边为a 、b 、c ,C B A '''∆的边为c b a '''、、, 则a c b a a c b a '=''='==2,,2,,∴a ac c b b a a '=''=',,∴ABC ∆∽C B A '''∆. (4)也正确,如ABC ∆与C B A '''∆都是等边三角形,对应角相等,对应边都成比例,因此ABC ∆∽C B A '''∆.答:(1)、(2)不正确.(3)、(4)正确. 例5.解:画法略.例6.分析 本题所叙述的内容可以画出如下图那样的几何图形,即60=DF 厘米6.0=米,12=GF 厘米12.0=米,30=CE 米,求BC .由于ADF ∆∽ACAF EC DF AEC =∆,,又ACF ∆∽ABC ∆,∴BC GFEC DF =,从而可以求出BC 的长.解 EC DF EC AE //,⊥ ,∴EAC DAF AEC ADF ∠=∠∠=∠,,∴ADF ∆∽AEC ∆.∴ACAFEC DF =. 又EC BC EC GF ⊥⊥,,∴ABC AGF ACB AFG BC GF ∠=∠∠=∠,,//, ∴AGF ∆∽ABC ∆,∴BC GF AC AF =,∴BCGFEC DF =.又60=DF 厘米6.0=米,12=GF 厘米12.0=米,30=EC 米,∴6=BC 米.即电线杆的高为6米. 例7.分析 根据物理学定律:光线的入射角等于反射角,这样,BCA ∆与MNA ∆的相似关系就明确了.解 因为MAN BAC AN MN CA BC ∠=∠⊥⊥,,,所以BCA ∆∽MNA ∆.所以AC AN BC MN ::=,即5.1:206.1:=MN .所以3.215.1206.1≈÷⨯=MN (m ). 说明 这是一个实际应用问题,方法看似简单,其实很巧妙,省却了使用仪器测量的麻烦.例8.分析 这两个图如果不是画在格点中,那是无法判断的.实际上格点无形中给图形增添了条件——长度和角度.解 在格点中BC AB EF DE ⊥⊥,,所以︒=∠=∠90B E , 又4,2,2,1====AB BC DE EF .所以21==BC EF AB DE .所以DEF ∆∽ABC ∆. 说明 遇到格点的题目一定要充分发现其中的各种条件,勿使遗漏.例9.解 (1)因为7128cm 4cm ,7117.5cm 2.5cm ,7124.5cm 3.5cm ==''==''==''A C CA C B BC B A AB ,所以ABC ∆∽C B A '''∆; (2)因为︒=∠-∠-︒=∠41180B A C ,两个三角形中只有A A '∠=∠,另外两个角都不相等,所以ABC ∆与C B A '''∆不相似;(3)因为12,=''='''∠=∠C B BC B A AB B B ,所以ABC ∆相似于C B A '''∆. 例10.解 (1)ADE ∆∽ABC ∆ 两角相等; (2)ADE ∆∽ACB ∆ 两角相等;(3)CDE ∆∽CAB ∆ 两角相等; (4)EAB ∆∽ECD ∆ 两边成比例夹角相等; (5)ABD ∆∽ACB ∆ 两边成比例夹角相等; (6)ABD ∆∽ACB ∆ 两边成比例夹角相等.例11.分析 有一个角是65°的等腰三角形,它的底角是72°,而BD 是底角的平分线,∴︒=∠36CBD ,则可推出ABC ∆∽BCD ∆,进而由相似三角形对应边成比例推出线段之间的比例关系.证明 AC AB A =︒=∠,36 ,∴︒=∠=∠72C ABC . 又BD 平分ABC ∠,∴︒=∠=∠36CBD ABD .∴BC BD AD ==,且ABC ∆∽BCD ∆,∴BC CD AB BC ::=,∴CD AB BC ⋅=2,∴CD AC AD ⋅=2.说明 (1)有两个角对应相等,那么这两个三角形相似,这是判断两个三角形相似最常用的方法,并且根据相等的角的位置,可以确定哪些边是对应边.(2)要说明线段的乘积式cd ab =,或平方式bc a =2,一般都是证明比例式,b dc a =,或caa b =,再根据比例的基本性质推出乘积式或平方式.例12分析 由ABC ∆的三边长可以判断出ABC ∆为直角三角形,又因为ABC ∆∽C B A '''∆,所以C B A '''∆也是直角三角形,那么由C B A '''∆的最大边长为26,可以求出相似比,从而求出C B A '''∆的两条直角边长,再求得C B A '''∆的面积.解 设ABC ∆的三边依次为,13,12,5===AB AC BC ,则222AC BC AB += ,∴︒=∠90C .又∵ABC ∆∽C B A '''∆,∴︒=∠='∠90C C .212613==''=''=''B A AB C A AC C B BC , 又12,5==AC BC ,∴24,10=''=''C A C B . ∴12010242121=⨯⨯=''⨯''=C B C A S .例13.分析 判断方法是否可行,应考虑利用这种方法加之我们现有的知识能否求出旗杆的高.按这种测量方法,过F作AB FG ⊥于G ,交CE 于H ,可知AGF ∆∽EHF ∆,且GF 、HF 、EH 可求,这样可求得AG ,故旗杆AB 可求.解 这种测量方法可行.理由如下:设旗杆高x AB =.过F 作AB FG ⊥于G ,交CE 于H (如图).所以AGF ∆∽EHF ∆.因为3,30327,5.1==+==HF GF FD ,所以5.1,25.15.3-==-=x AG EH .由AGF ∆∽EHF ∆,得HF GF EH AG =,即33025.1=-x ,所以205.1=-x ,解得5.21=x (米) 所以旗杆的高为21.5米.说明 在具体测量时,方法要现实、切实可行. 例14. 解:︒=∠=∠∠=∠90,ECD ABC EDC ADB ,∴ABD ∆∽ECD ∆,1006050120,=⨯=⨯==CD EC BD AB CD BD EC AB (米),答:两岸间AB 大致相距100米. 例15. 答案:1506=AB 米,30750=BD 步,(注意:AK FEFHKE AK CD DG KC ⋅=⋅=,.) 例16. 分析:要求BC 的长,需画图来解,因AB 、AC 都大于高AD ,那么有两种情况存在,即点D 在BC 上或点D 在BC 的延长线上,所以求BC 的长时要分两种情况讨论.求正方形的面积,关键是求正方形的边长. 解:(1)如上图,由AD ⊥BC ,由勾股定理得BD =3,DC =1,所以BC =BD +DC =3+1=4. 如下图,同理可求BD =3,DC =1,所以BC =BD -CD =3-1=2.(2)如下图,由题目中的图知BC =4,且162)32(2222=+=+AC AB ,162=BC ,∴222BC AC AB =+.所以△ABC 是直角三角形.由AE G F 是正方形,设G F =x ,则FC =2-x , ∵G F ∥AB ,∴AC FC AB GF =,即2232xx -=. ∴33-=x ,∴3612)33(2-=-=AEG F S 正方形. 如下图,当BC =2,AC =2,△ABC 是等腰三角形,作CP ⊥AB 于P ,∴AP =321=AB ,在Rt △APC 中,由勾股定理得CP =1, ∵GH ∥AB ,∴△C GH ∽△CBA ,∵x x x -=132,32132+=x ∴121348156)32132(2-=+=GFEH S 正方形 因此,正方形的面积为3612-或121348156-.相似三角形 一,比例线段 1, 成比例线段对于四条线段a ,b ,c ,d ,如果其中两条线段的长度的比等于另外两条线段的比,如b a =dc(或a :b=c :d ),那么,这四条线段叫做成比例线段,简称比例线段。
湘教版数学九年级上册3.4《相似三角形的判定与性质》说课稿5
湘教版数学九年级上册3.4《相似三角形的判定与性质》说课稿5一. 教材分析湘教版数学九年级上册 3.4《相似三角形的判定与性质》是本节课的主要内容。
在教材中,相似三角形被定义为具有相同形状但不同大小的三角形。
这部分内容是在学生已经掌握了三角形的基本概念、三角形的分类以及三角形的性质等知识的基础上进行学习的。
通过学习相似三角形,学生可以更好地理解三角形的性质,并为后续学习几何图形的变换、解三角形等知识打下基础。
二. 学情分析在进入九年级上册之前,学生已经对三角形有了初步的认识和了解,能够熟练地识别各种类型的三角形,并掌握了一些基本的三角形的性质。
然而,对于相似三角形的判定与性质,学生可能还存在一些困惑和疑问。
因此,在教学过程中,我需要关注学生的学习情况,针对学生的困惑和疑问进行讲解和解答,帮助学生更好地理解和掌握相似三角形的知识。
三. 说教学目标本节课的教学目标是使学生能够理解相似三角形的定义,掌握相似三角形的判定与性质,并能够运用相似三角形的性质解决一些实际问题。
具体来说,学生需要能够:1.准确地描述相似三角形的定义;2.判断两个三角形是否相似;3.应用相似三角形的性质解决一些实际问题。
四. 说教学重难点本节课的重难点是相似三角形的判定与性质。
对于学生来说,判断两个三角形是否相似以及如何运用相似三角形的性质解决实际问题可能存在一定的困难。
因此,在教学过程中,我需要重点讲解和示范相似三角形的判定方法,并通过举例和练习帮助学生理解和掌握。
五. 说教学方法与手段为了有效地进行教学,我将会采用以下教学方法与手段:1.引导法:通过提出问题、引导学生思考,激发学生的学习兴趣和主动性;2.讲解法:通过讲解相似三角形的定义、判定与性质,帮助学生理解和掌握知识;3.示范法:通过举例和练习,示范如何运用相似三角形的性质解决实际问题;4.练习法:通过布置课后作业和课堂练习,让学生巩固和运用所学知识。
六. 说教学过程教学过程分为以下几个步骤:1.导入:通过提出问题,引导学生回顾三角形的基本概念和性质,为新课的学习做好铺垫;2.讲解:讲解相似三角形的定义、判定与性质,结合实例进行讲解,让学生理解和掌握;3.示范:通过举例和练习,示范如何运用相似三角形的性质解决实际问题;4.练习:布置课后作业和课堂练习,让学生巩固和运用所学知识;5.总结:对本节课的内容进行总结,强调相似三角形的判定与性质的重要性和应用价值。
人教版九年级数学下册《相似三角形》
相似三角形
1
回顾与反思
判定两个三角形相似的方法:
1.定义:三角对应相等,三边对应成比例的两个三 角形相似。 2.平行三角形一边的直线和其他两边相交(或两边的延 长线),所构成的三角形与原三角形相似. 3.三边对应成比例的两个三角形相似。 4.两边对应成比例且夹角相等的两个三角形相似。 5. 两角对应相等的两个三角形相似。
(2) BC是圆O的切线,切点为C.
(3) 移动点A,使AC成为⊙O的直径,你还能 得到哪些结论?
8
BF=4
结论:1、⊿ACF∽ ⊿ABC∽ ⊿CBF 2、CD²=AD×BD BC²=BD×AB AC²=AD×AB
9
用一用
(1)请在x轴上找一点D,使得⊿BDA与⊿BAC相似 (不包含全等),并求出点D的坐标;
C
DE∥BC
C
(5)
BD ∠BAD=∠C
C
A
DB
∠ACB=90°,
AB2=BD·BC
CD⊥AB
B
C
E
(6)
D
A
C B ∠D=∠C
12
问题:
如图,在正方形ABCD中,E为BC上任意一点 (与B、C不重合)∠AEF=90°.观察图形:
((12))若△EA为BEBC与的△中E点CF,是连否结相AF似,图?中并有证哪明些你相的似结论。
即:
m 5
3 13 m 4
3 13
4
解得: m
25 9
有公共角∠B, “A”型相似
(2)当PQ⊥BD时,⊿BPQ∽ ⊿BDA
则 BP BQ
BD 即:
3
BA
m 13 m
3
13
4 5
23.3.3 相似三角形的性质(5) 华东师大版数学九年级上册教案
23.3.3相似三角形的性质一、学情分析本班学生已经建立了学习小组,经历了很多合作学习的过程,所以学生参与有关性质探究活动的热情应该比较高,但是基于本班学生平常学习的状况,部分学生的逻辑推理能力和灵活运用所学知识解决实际问题的能力还有待提高,期待在小组学习中,通过互助学习解决这部分同学的困惑。
二、教案1、教材分析本节教学内容是本章的重要内容之一。
本节内容是在完成对相似三角形的判定条件进行研究的基础上,进一步探索研究相似三角形的性质,从而达到对相似三角形的定义、判定和性质的全面研究。
从知识的前后联系来看,相似三角形可看作是全等三角形的拓展,相似三角形的性质研究也可看成是对全等三角形性质的进一步拓展研究。
另外相似三角形的性质还是研究相似多边形性质的基础,也是研究圆中线段关系的有效工具。
2、教学目标1.经历“直观感觉――尝试猜想――合情推理――知识应用”的活动过程,探索相似三角形的性质,并会用相似三角形的性质解决相应的数学问题。
2.通过运用相似三角形的性质解决简单问题,进一步发展合情推理能力和初步的逻辑推理能力。
3.在探究中,开发、培养学生的逻辑推理能力,进一步发展学生的探究意识。
3、重点难点重点:探索并掌握相似三角形的性质,并进行简单运用难点:探索相似三角形性质的过程。
4、授课类型:新授课5、学法指导运用观察猜想、合作探究、总结归纳等方法来解决问题6、教学课时:1课时7、教学过程(详案)个人智慧展示一、知识引入相似三角形有何性质?想一想:在三角形中,除了边,角,还有哪些量?思考: 如果两个三角形相似,那么以上这些量之间有什么关系呢?设计意图:本环节采用开门见山,以旧知识引入本节课的当分猜想:当两三角形相似时,相应高、中线、角平分线的比与相似比有什么关系?设计意图:引导学生对全等三角形的对应边和对应线段的比的分析,通过分析发现规律,并由此猜想相似三角形的相应,相似比满足吗?相似三角形面积的比等于相似比的平方设计意图:对相似三角形面积之比的证明既需要运用三角形面积公式,又需要运用相似三角形对应高之比与对应边之比等于相似比的结论,使新旧知识有机地结合在一起,增强了学,分别等于多少?设计意图:提升运用的给出,作为课后思考,鼓励学生整合所学习的知识,也体现了分层教学,照顾学有余力的同学。
九年级数学相似三角形
是 .【分析】分PM >PN 和PM <PN 两种情况,根据黄金比值计算. 【解答】解:当PM >PN 时,PM =√5−12MN =√5−12,当PM <PN 时,PM =MN −√5−12MN =3−√52, 故答案为:√5−12或3−√52.【点评】本题考查的是黄金分割,掌握黄金比值是√5−12是解题的关键. 【变式2-1】(2020秋•静安区期中)如果点C 是线段AB 的黄金分割点,那么下列线段比的值不可能是√5−12的为( ) A .ACBCB .BCACC .BCABD .ABBC【分析】根据把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值(√5−12)叫做黄金比作出判断. 【解答】解:∵点C 是线段AB 的黄金分割点,∴AC 2=AB •BC (AC >BC ),则AC AB=BC AC=√5−12; 或BC 2=AB •AC (AC <BC ),则ACBC=BC AB=√5−12.故只有AB BC 的值不可能是√5−12.故选:D . 【点评】此题主要考查了黄金分割比的概念,找出黄金分割中成比例的对应线段是解决问题的关键.【变式2-2】(2020春•相城区期末)如图,已知点E 是正方形ABCD 的边AB 边上的黄金分割点,且AE >EB ,若S 1表示AE 为边长的正方形面积,S 2表示以BC 为长,BE 为宽的矩形面积,S 3表示正方形ABCD 除去S 1和S 2剩余的面积,则S 3:S 2的值为( ) A .√5−12B .√5+12C .3−√52D .3+√52【分析】根据黄金分割的定义:把线段AB 分成两条线段AC 和BC (AC >BC ),且使AC 是AB 和BC 的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点.其中AC =√5−12AB ,进行计算即可.【解答】解:如图,设AB =1,∵点E 是正方形ABCD 的边AB 边上的黄金分割点,且AE >EB , ∴AE =GF =√5−12,∴BE =FH =AB ﹣AE =3−√52, ∴S 3:S 2=(GF •FH ):(BC •BE )=(√5−12×3−√52):(1×3−√52) =√5−12.故选:A .【点评】本题考查了黄金分割、矩形的性质、正方形的性质,解决本题的关键是掌握黄金分割定义.【变式2-3】(2020•泸州)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G 将一线段MN 分为两线段MG ,GN ,使得其中较长的一段MG 是全长MN 与较短的一段GN 的比例中项,即满足MG MN =GNMG =√5−12,后人把√5−12这个数称为“黄金分割”数,把点G 称为线段MN 的“黄金分割”点.如图,在△ABC 中,已知AB =AC =3,BC =4,若D ,E 是边BC 的两个“黄金分割”点,则△ADE 的面积为( ) A .10﹣4√5B .3√5−5C .5−2√52D .20﹣8√5【分析】作AH ⊥BC 于H ,如图,根据等腰三角形的性质得到BH =CH =12BC =2,则根据勾股定理可计算出AH =√5,接着根据线段的“黄金分割”点的定义得到BE =√5−12BC =2√5−2,则计算出HE =2√5−4,然后根据三角形面积公式计算.【解答】解:作AH ⊥BC 于H ,如图,∵AB =AC ,∴BH =CH =12BC =2, 在Rt △ABH 中,AH =√32−22=√5,∵D ,E 是边BC 的两个“黄金分割”点, ∴BE =√5−12BC =2(√5−1)=2√5−2,∴HE =BE ﹣BH =2√5−2﹣2=2√5−4,∴DE =2HE =4√5−8∴S △ADE =12×(4√5−8)×√5=10﹣4√5.故选:A .【点评】本题考查了黄金分割:把线段AB 分成两条线段AC 和BC (AC >BC ),且使AC 是AB 和BC 的比例中项(即AB :AC =AC :BC ),叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点.其中AC =√5−12AB ≈0.618AB ,并且线段AB 的黄金分割点有两个.也考查了等腰三角形的性质.三、成比例线段、比例的基本性质(1)①a :b=c :d ad=bc ②a :b=b :c .(a,b,c,d,都不为0);(2)合比性质:d dc b b ad c b a ±=±⇔=; (3)等比性质:ban d b m c a n d b n m d c b a =++++++⇔≠+++=== )0(例3.已知非零实数a,b,c,满足,34,13125=+==b a cb a 且求c 的值。
九年级数学第6讲:相似三角形的性质-教师版
相似三角形的性质是九年级数学上学期第一章第三节的内容,本讲主要讲解相似三角形的3个性质定理.重点是灵活应用相似三角形的性质,难点是相似三角形的性质与判定的互相结合.1、相似三角形性质定理1相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比.相似三角形的性质内容分析知识结构模块一:相似三角形性质定理1知识精讲【例1】 已知ABC ∆∽111A B C ∆,顶点A 、B 、C 分别与A 1、B 1、C 1对应,1132AB A B =,BE 、 B 1E 1分别是它们的对应中线,且6BE =.求B 1E 1的长. 【难度】★ 【答案】4.【解析】解:111ABC A B C ∆∆Q ∽,BE 、11B E 分别是对应中线,1111AB BE A B E B ∴=即11362E B =,114E B ∴= 【总结】本题考查相似三角形对应中线的比等于相似比.【例2】 已知ABC ∆∽111A B C ∆,顶点A 、B 、C 分别与A 1、B 1、C 1对应,12AC =,119AC =,1A ∠的平分线A 1D 1的长为6,求A ∠的平分线的长. 【难度】★ 【答案】8.【解析】解:111ABC A B C ∆∆Q ∽,AD 、11A D 分别是A ∠、1A ∠的平分线,1111AC AD AC A D ∴=即1296AD=,8AD ∴=即A ∠的平分线的长为8. 【总结】本题考查相似三角形对应角平分线的比等于相似比.【例3】 求证:相似三角形对应高的比等于相似比. 【难度】★★ 【答案】略【解析】已知:如图,111ABC A B C ∆∆∽,且相似比为k ,AD 、11A D 分别是BC 、11B C 的高.求证:11ADk A D =. 证明:111ABC A B C ∆∆Q ∽,1B B ∴∠=∠,11ABk A B =; 又Q AD 、11A D 分别是BC 、11B C 的高, 11190BDA B D A ∴∠=∠=o ,111ABD A B D ∴∆∆∽,1111AB ADk A B A D ∴==. 【总结】本题考查相似三角形的判定和性质.例题解析【例4】 求证:相似三角形对应中线的比等于相似比. 【难度】★★ 【答案】略【解析】已知:如图,111ABC A B C ∆∆∽,且相似比为k ,AD 、11A D 分别是边BC 、11B C 的中线. 求证:11ADk A D =. 证明:111ABC A B C ∆∆Q ∽, 1B B ∴∠=∠,1111AB CBk A B C B ==; 又Q AD 、11A D 分别是边BC 、11B C 的中线,12BD BC ∴=,111112B D BC =,∴11DB k D B =,1111AB BD A B B D ∴=,111ABD A B D ∴∆∆∽,1111AB AD k A B A D ∴==. 【总结】本题考查相似三角形的判定和性质的运用.【例5】 求证:相似三角形对应角平分线的比等于相似比. 【难度】★★ 【答案】略【解析】已知:如图,111ABC A B C ∆∆∽,且相似比为k ,AD 、11A D 分别是BAC ∠、111B AC ∠的角平分线.求证:11ADk A D =.证明:111ABC A B C ∆∆Q ∽, 1B B ∴∠=∠,111BAC B AC ∠=∠,11ABk A B =; 又Q AD 、11A D 分别是BAC ∠、111B AC ∠的角平分线,11111111,22BAD BAC B A D B AC ∴∠=∠∠=∠,111BAD BA D ∴∠=∠,111ABD A B D ∴∆∆∽,1111AB ADk A B A D ∴==.【总结】本题考查相似三角形的判定和性质.ABEA 1E 1D 1 C 1B 1 ABCDEF 【例6】 如图,ABC ∆和111A B C ∆中,AD 和BE 是ABC ∆的高,11A D 和11B E 是111A B C ∆的高,且1C C ∠=∠,1111AD ABA D AB =. 求证:1111AD BEA DB E =【难度】★★ 【答案】略 【解析】 证明:1111AB ADA B A D =Q ,又Q 111ADB A D B ∠=∠,111ABD A B D ∴∆∆∽, 111ABD A B D ∴∠=∠,又Q 1C C ∠=∠,111ABC A B C ∴∆∆∽,又Q BE 、11B E 分别是ABC ∆、111A B C ∆的高,1111BE AB E B A B ∴=,1111BE ADE B A D ∴=. 【总结】本题考查相似三角形的判定和性质的综合运用.【例7】 如图,D 是ABC ∆的边BC 上的点,BAD C ∠=∠,BE 是ABC ∆的角平分线,交AD 于点F ,1BD =,3CD =,求BF :BE . 【难度】★★【答案】12.【解析】 解:Q BE 是ABC ∆的角平分线,∴ABF EBC ∠=∠,又Q BAD C ∠=∠,ABF CBE ∴∆∆∽,AB BFCB BE∴=,又Q BAD C ∠=∠,ABD ABC ∠=∠ BAD BCA ∴∆∆∽,AB BD BC BA ∴=,14AB AB ∴=,2AB ∴=,12AB BC ∴=,1:2BF BE ∴=. 【总结】本题考查相似三角形的判定和性质的综合运用.AB CDEF GHKAB CE FGDH P【例8】 如图,在ABC ∆中,矩形DEFG 的一边DE 在BC 边上,顶点G 、F 分别在AB 、AC 边上,AH 是BC 边上的高,AH 与GF 交于点K .若32AH cm =,48BC cm =,矩 形DEFG 的周长为76cm ,求矩形DEFG 的面积. 【难度】★★ 【答案】2360cm .【解析】解:设DG xcm =,()38FG x cm =-Q 矩形DEFG ,//90GF BC GDB ∴∠=o ,, GF AGBC AB∴=,又Q AH 是高,90AHB ∴∠=o , GDB AHB ∴∠=∠//DG AH ∴, DG BG AH AB ∴=,1DG GFAH BC∴+=,3813248x x -∴+=,20x ∴=,∴20DG cm =,18FG cm =,2360DEFG S cm ∴=矩形. 【总结】本题考查三角形一边的平行线定理,矩形的周长面积等知识.【例9】 如图,矩形DEFG 的边EF 在ABC ∆的边BC 上,顶点D 、G 分别在边AB 、AC 上,AH 为BC 边上的高,AH 交DG 于点P ,已知3AH =,5BC =,设DG 的长为x ,矩形DEFG 的面积为y ,求y 关于x 的函数解析式及其定义域. 【难度】★★★【答案】()233055y x x x =-+<<.【解析】解:Q 矩形DEFG ,//,90GD BC DEC ∴∠=o ,GD ADBC AB∴=,又Q AH 是高,90AHC ∴∠=o , DEC AHC ∴∠=∠,//DE AH ∴, DE BD AH AB ∴=,1DG DEBC AH∴+=,153x DE ∴+=,又Q DEFG S y x DE ==•矩形,20x ∴=,∴y DE x =,153x y x ∴+=,∴()233055y x x x =-+<<. 【总结】本题考查三角形一边的平行线定理,矩形的面积等知识.【例10】 一块直角三角形木板的一条直角边AB 长为1.5m ,面积为1.5m 2,现需把它加工成一个面积最大的正方形桌面,请甲、乙两位同学设计加工方案,甲设计方案如图(1),乙设计方案如图(2).你认为哪位同学设计的方案较好?请说明理由(加工损耗忽略不计,计算结果中可保留分数).【难度】★★★【答案】甲同学方案好,理由略.【解析】解:211.52ABC S AB BC m ∆=•=,又Q 1.5AB m =,2CB m ∴= ∴在Rt ABC ∆中, 2.5AC m =.① 按甲的设计:设DE x =,Q 正方形DEFB ,//,//ED BF EF CB ∴, DE CE AB CA ∴=,EF AE CB AC =,1DE EF BA CB ∴+=,11.52x x∴+=,67x m ∴=,23649DEFB S m ∴=正;②按乙的设计:过点B 作BH AC ⊥交AC 于点H ,得//DG BH ,DG ADBH AB∴=, 设DE x =,则DG x =,Q 正方形DGFE ,//ED AC DE DG ∴=,,DE BD AC BA ∴=,1DE DGCA HB∴+=,Q 1122ABC S AB BC AC BH ∆=•=•,65BH m ∴=,162.55x x ∴+=, 3037x m ∴=,29001369DGFE S m ∴=正; 综上,甲设计方案好.【总结】本题考查了三角形一边的平行线,正方形的面积等知识,本题考查了最优化问题.BCDEF1、相似三角形性质定理2相似三角形周长的比等于相似比.【例11】若ABC ∆∽DEF ∆,ABC ∆与DEF ∆的相似比为1:2,则ABC ∆与DEF ∆的周长比为( ) (A )1:4(B )1:2(C )2:1(D )1:2【难度】★ 【答案】B 【解析】略【总结】相似三角形的周长比等于相似比.【例12】 ABC ∆∽111A B C ∆,它们的对应的中线比为2:3,则它们的周长比是.【难度】★ 【答案】2:3 【解析】略【总结】相似三角形对应中线的比等于相似比,周长比等于相似比.模块二:相似三角形性质定理2知识精讲例题解析AD EF【例13】已知ABC ∆∽111A B C ∆,顶点A 、B 、C 分别与A 1、B 1、C 1对应,它们的周长分别为48和60,且12AB =,1125B C =,求BC 和A 1B 1的长.【难度】★【答案】112015BC A B ==,. 【解析】解:111ABC A B C ∆∆Q ∽,1111111ABC A B C C AB CBC A B C B ∆∆∴==; 又Q111484605ABC A B C C C ∆∆==,∴1120,15BC A B ==. 【总结】本题考查相似三角形的性质.【例14】如果两个相似三角形的最长边分别为35厘米和14厘米,它们的周长相差60厘米,那么大三角形的周长是.【难度】★★ 【答案】100cm .【解析】两三角形的相似比为5:2,则周长比为5:2,设大三角形周长为5acm ,小三角形周长为2acm ,则5260a a -=,所以20a =,所以大三角形的周长为100cm . 【总结】相似三角形的周长比等于相似比.【例15】如图,在ABC ∆中,12AB =,10AC =,9BC =,AD 是BC 边上的高.将ABC∆沿EF 折叠,使点A 与点D 重合,则DEF ∆的周长为. 【难度】★★ 【答案】312.【解析】由折叠得EF 垂直平分AD ,Q AD 是BC 上的高,//EF BC ∴,AEF ABC ∴∆∆∽,12AEF ABC C C ∆∆∴=,9101231ABC C ∆=++=Q ,312AEF C ∆∴=. 【总结】本题考查相似三角形的性质和判定.A BCD PACP Q 【例16】 如图,梯形ABCD 的周长为16厘米,上底3CD =厘米,下底7AB =厘米,分别延长AD 和BC 交于点P ,求PCD ∆的周长.【难度】★★【答案】152cm .【解析】解:Q 梯形ABCD ,//CD AB ∴,AEF ABC ∴∆∆∽,37PDC PAB C CD C AB ∆∆∴==,即327PDC PDC ABCD C C C CD ∆∆=+-梯形,31667PDC PDC C C ∆∆∴=+-,152PDC C cm ∆∴=.【总结】本题考查相似三角形的性质和判定.【例17】如图,在ABC ∆中,=90C ∠︒,5AB =,3BC =,点P 在AC 上(与点A 、C不重合),点Q 在BC 上,PQ //AB .当PQC ∆的周长与四边形P ABQ 的周长相等时,求CP 的长. 【难度】★★ 【答案】247.【解析】解:Q CPQ PABQ C C ∆=四边形,CP CQ PQ BQ PQ AP AB ∴++=+++, CP CQ BC CQ AC CP AB ∴+=-+-+,5AB =Q ,3BC =,90C ∠=o ,4AC ∴=,345CP CQ CQ CP ∴+=-+-+,6CP CQ ∴+=,//PQ AB Q ,CP CQCA CB∴=, ∴643CP CP -=,247CP =. 【总结】本题考查了三角形一边的平行线性质,主要考查了学生的推理能力.ACDEF【例18】 如图,等边三角形ABC 边长是7厘米,点D 、E 分别在AB 和AC 上,且43AD AE =,将ADE ∆沿DE 翻折,使点A 落在BC 上的点F 上. (1)求证:BDF ∆∽CFE ∆; (2)求BF 的长. 【难度】★★★【答案】(1)略;(2)5.【解析】(1)证明:ADE ∆翻折成FDE ∆.ADE FDE ∴∆≅∆,A EFD ∴∠=∠,Q ABC ∆是等边三角形,60A B C ∴∠=∠=∠=o ,60EFD B C ∴∠=∠=∠=o ,DFC DFE EFC ∠=∠+∠Q ,DFC B BDF ∠=∠+∠, EFC BDF ∴∠=∠, BDF CFE ∴∆∆∽.(2)由(1)知BDF CFE ∆∆∽,BDF CFE C DFC EF∆∆∴=,又ADE FDE ∆≅∆Q , AD DF AE EF ∴==,,43BDF CFE C AD C AE ∆∆∴==,43BF BD DF BF AB CE FC EF CF AC +++∴==+++, 74773BF BF +∴=-+,5BF ∴=.【总结】本题考查相似三角形的性质及判定,轴对称的性质,应用相似三角形周长比等 于相似比是解决本题的关键.模块三:相似三角形性质定理3知识精讲1、相似三角形性质定理3:相似三角形的面积的比等于相似比的平方.例题解析【例19】(1)如果把一个三角形的三边的长扩大为原来的100倍,那么这个三角形的面积扩大为原来的倍;(2)如果一个三角形保持形状不变但面积扩大为原来的100倍,那么这个三角形的边长扩大为原来的倍.【难度】★【答案】(1)10000;(2)10.【解析】略【总结】相似三角形的面积比等于相似比的平方.【例20】两个相似三角形的面积分别为5cm2和16cm2,则它们的对应角的平分线的比为()(A)25:256(B)5:16(C)5:4(D)以上都不对.【难度】★【答案】C【解析】相似三角形对应角平分线的比等于相似比,对应面积的比等于相似比的平方.【总结】本题考查相似三角形的性质.AB CD EAB CD EAB CD【例21】 如图,点D 、E 分别在ABC ∆的边AB 和AC 上,DE //BC ,6DE =,9BC =,16ADE S ∆=.求ABC S ∆的值.【难度】★ 【答案】36.【解析】解://DE BC Q ,ADE ABC ∴∆∆∽,226499ADE ABC S DE S BC ∆∆⎛⎫⎛⎫∴=== ⎪ ⎪⎝⎭⎝⎭,36ADE S ∆∴=. 【总结】本题考查相似三角形的判定及性质.【例22】如图,在ABC ∆中,D 是AB 上一点,若B ACD ∠=∠,4AD cm =,6AC cm =,28ACD S cm ∆=,求ABC ∆的面积.【难度】★ 【答案】218cm .【解析】解:B ACD ∠=∠Q ,A A ∠=∠,ACD ABC ∴∆∆∽,222439ACD ABC S AD S AC ∆∆⎛⎫⎛⎫∴=== ⎪ ⎪⎝⎭⎝⎭, 又28ACD S cm ∆=Q ,218ABC S cm ∆∴=. 【总结】本题考查相似三角形的判定及性质. 【例23】如图,在ABC ∆中,点D 、E 在AB 、AC 上,DE //BC ,ADE ∆和四边形BCED的面积相等,求AD :BD 的值. 【难度】★★1.【解析】解://DE BC Q ,ADE ABC ∴∆∆∽,2ADE ABC S AD S AB ∆∆⎛⎫∴= ⎪⎝⎭,ADE BCED S S ∆=Q 四边形, 12ADE ABC S S ∆∆∴=,AD AB ∴=1AD DB ∴=. 【总结】本题考查相似三角形的判定及性质.A BCEF【例24】 如图,在正三角形ABC 中,D 、E 、F 分别是BC 、AC 、AB 上的点,DE AC ⊥,EF AB ⊥,FD BC ⊥,则DEF ∆的面积与ABC ∆的面积之比等于() (A )1:3 (B )2:3 (C2 (D【难度】★★ 【答案】A【解析】解:Q ABC ∆是等边三角形,60A B C ∴∠=∠=∠=o ,又DE AC ⊥Q ,EF AB ⊥,FD BC ⊥, 90AFE FDB DEC ∴∠=∠=∠=o , 30AEF BFD EDC ∴∠=∠=∠=o , 60EFD FDE FED ∴∠=∠=∠=o,12BD BD BF DF ==, ∴FDE ∆是等边三角形,AFE BDF ∴∆≅∆, AF BD ∴=, FDE ABC ∴∆∆∽,2DEF ABC S DF S AB ∆∆⎛⎫∴= ⎪⎝⎭, 设AF x =,则BD x =,2BF x =,DF =,DF AB ∴=13DEF ABC S S ∆∆∴=.【总结】本题考查相似三角形的性质及判定,直角三角形的性质,等边三角形的性质等知识.AB CDF【例25】 如图,在ABC ∆中,AD BC ⊥,BE AC ⊥,D 、E 分别为垂足.若60C ∠=︒,1CDE S ∆=,求四边形DEAB 的面积.【难度】★★ 【答案】3.【解析】解:AD BC BE AC ⊥⊥Q ,,90CDA BEC ∴∠=∠=o . 90CDA BEC ∴∠=∠=o ,CBE CAD ∴∆∆∽,CD CACE CB∴=.90CDA BEC ∴∠=∠=o ,CBE CAD ∴∆∆∽,CD CACE CB∴=,DCE ACB ∴∆∆∽,2DCE ACB S CD S CA ∆∆⎛⎫∴= ⎪⎝⎭,又60C ∠=oQ ,30CBE CAD ∴∠=∠=o ,12CD CA =,14DCE ACB S S ∆∆∴=,13DCE BDEA S S ∆∴=四边形,1CDE S ∆=Q ,3DEAB S ∴=四边形.【总结】本题考查相似三角形的性质及判定,直角三角形的性质等知识.【例26】 如图,BE 、CD 是ABC ∆的边AC 、AB 上的中线,且相交于点F ,联结DE .求ADE BFC SS ∆∆的值.【难度】★★ 【答案】43. 【解析】分别过点A 、F 作AH BC ⊥、FG BC ⊥,交BC 分别于点H 、G ,得//FG AH ,FG KFAH AK=. 联结AF 并延长交BC 于点K .CD Q 、BE 是ABC ∆的中线,//DE BC ∴,12DE BC =, F Q 是重心,13KF AK ∴=,13GF AH ∴=. 11113322444ADES DE AH DE AH DE FG DE FG ∆====Q g g g g , 11222BFC S BC FG DE FG DE FG ∆===g g g ,34ADE BFC S S ∆∆∴=.【总结】本题考查三角形一边的平行线,重心的意义,三角形中位线及三角形的面积等.A BCDEF OA BCDEFG【例27】 如图,在矩形ABCD 中,AB = 2cm ,BC = 4cm ,对角线AC 与BD 交于点O ,点E 在BC 边上,DE 于AC 交于点F ,EDC ADB ∠=∠.求:(1)BE 的长; (2)CEF ∆的面积.【难度】★★【答案】(1)3cm ;(2)215cm .【解析】解:(1)Θ矩形ABCD ,2AB DC cm ∴==,且//AD BC ,ADB DBC ∴∠=∠,EDC ADB ∠=∠Q ,EDC DBC ∴∠=∠,CDE CBD ∴∆∆∽,CD CECB CD∴=,242CE∴=,1CE cm ∴=,3BE cm ∴=; (2)//AD BC Q ,∴4AD DFEC EF ==,5DCE CFES DE S EF ∆∆∴==,又11212CDE S ∆=⨯⨯=Q ,215CFE S cm ∆∴=. 【总结】本题考查相似三角形的判定及性质,矩形的性质,同高三角形的面积比等于底边的比等知识.【例28】 如图,Rt ABC ∆中,点D 是BC 延长线上一点,直线EF //BD 交AB 于点E ,交AC 于点G ,交AD 于点F ,若13AEG EBCG S S ∆=四边形,求CF AD 的值.【难度】★★ 【答案】21. 【解析】解://EF BD Q ,AEG AEC ∴∆∆∽,AE AFAB AD∴=,2AEG ABC S AE S AB ∆∆⎛⎫∴= ⎪⎝⎭,13AEGEBCG S S ∆=Q 四边形,14AEG ABC S S ∆∆∴=,12AE AF AB AD ∴==,Rt ABC ∆Q ,90ACD ACB ∴∠=∠=o ,CF ∴是中线,12CF AD ∴=,12CF AD ∴=. 【总结】本题考查相似三角形的性质,直角三角形的性质,三角形一边的平行线等知识.ABCDEOABC DEF 【例29】 如图,在ABC ∆中,BD AC ⊥于点D ,CE AB ⊥于点E ,EC 和BD 相交于点O ,联结DE .若16EOD S ∆=,36BOC S ∆=,求AEAC 的值.【难度】★★★ 【答案】23. 【解析】解:BD AC CE AB ⊥⊥Q ,, 90BEO CDO ∴∠=∠=o ,A A ∠=∠Q ,AEC ADB ∴∆∆∽,AE ADAC AB∴=, ADE ABC ∴∆∆∽,AE DEAC BC∴=.EOB DOC ∠=∠Q ,EOB DOC ∴∆∆∽,EO BOOD OC∴=,EOD BOC ∠=∠Q ,EOD BOC ∴∆∆∽,2164369EOD BOC S ED S CB ∆∆⎛⎫∴=== ⎪⎝⎭,23ED BC ∴=,23AE AC ∴=. 【总结】本题考查相似三角形的性质及判定知识. 【例30】 如图,90ACB ∠=︒,DF AB ⊥于点F ,45EF BE =,14DCE BFE S S ∆∆=,且CE = 5,求:(1)BC 的长;(2)CEF S ∆.【难度】★★★【答案】(1)352;(2)15.【解析】解:(1)FD AB ⊥Q ,90EFB ∴∠=o , 90ACB ∠=o Q ,90BCD ∴∠=o ,EFB BCD ∴∠=∠,FEB CED ∠=∠Q ,BFE DCE ∴∆∆∽,2BFE DCE S EF S CE ∆∆⎛⎫∴= ⎪⎝⎭,又14DCE BFE S S ∆∆=Q ,2FE CE ∴=,45FE BE =Q ,25CE BE ∴=.5CE =Q ,252BE ∴=,352BC ∴=; (2)45FE BE =Q,10EF ∴=,152BF =,17522BEF S BF EF ∆∴==g , 又52BFE FEC S EB S CE ∆∆==Q ,15FEC S ∆∴=.【总结】本题考查相似三角形的性质及判定,直角三角形的性质等知识.【习题1】 已知ABC ∆∽'''A B C ∆,AD 、''A D 分别是ABC ∆和'''A B C ∆的角平分线,且3''2AD A D =,9AB =,则''A B =. 【难度】★ 【答案】6.【解析】解:'''ABC A B C ∆∆Q ∽,AD 、''A D 分别是对应角平分线,''''32AB AD A B A D ∴==,9AB =Q ,''6A B ∴=.【总结】本题考查相似三角形对应角平分线的比等于相似比.【习题2】 若一个三角形三边之比为3:5:7,与它相似的三角形的最长边的长为21厘米,则其余两边长的和为.【难度】★ 【答案】24.【解析】解:设三角形的三边长为3a ,5a ,7a ,由题知,721a =,3a ∴=, 35824a a a ∴+==.【总结】本题考查相似三角形的性质.【习题3】 两个相似三角形的周长分别为5cm 和16cm ,则它们的对应角的平分线的比为()(A )25:256(B )5:16(C )5:4(D )以上都不对【难度】★ 【答案】B 【解析】略【总结】本题考查相似三角形对应周长的比、对应角平分线的比都等于相似比.随堂检测【习题4】 已知:D 、E 、F 分别是ABC ∆的边BC 、CA 、AB 的中点.求证:=4ABC DEF S S ∆∆. 【难度】★★ 【答案】略.【解析】解:D Q 、E 、F 分别是ABC ∆的边BC 、CA 、AB 的中点,12DF EF DE AC BC AB ∴===,DEF ABC ∴∆∆∽,214DEF ABC S DF S AC ∆∆⎛⎫∴== ⎪⎝⎭,4ABC DEF S S ∆∆∴=.【总结】本题考查三角形中位线,相似三角形的性质及判定知识.【习题5】 如图,DE 是ABC ∆的中位线,N 是DE 的中点,CN 的延长线交AB 于点M ,若ABC S ∆= 24,求AMNE S 四边形.【难度】★★ 【答案】略.【解析】解:联结AN .DE Q 是ABC ∆的中位线, //DE BC ∴,12DE BC =,ADE ABC ∴∆∆∽, 164ADE ABC S S ∆∆∴== ,N Q 是DE 的中点, 132ADN ADE S S ∆∆∴==,//DE BC Q ,14DN BC =,14DM BM ∴=,1133DM BD AD ∴==,113DMN ADN S S ∆∆∴==错误!未找到引用源。
浙教版数学九年级上册《4.3相似三角形》说课稿
浙教版数学九年级上册《4.3 相似三角形》说课稿一. 教材分析《相似三角形》是浙教版数学九年级上册第四章第三节的内容。
本节内容是在学生已经掌握了三角形的基本概念、三角形的分类、全等三角形的基础上进行的。
相似三角形是全等三角形的进一步拓展,它不仅巩固了全等三角形的相关知识,也为后续学习相似多边形、函数图象的变换等知识奠定了基础。
本节内容主要包括相似三角形的定义、性质和判定。
相似三角形的定义是指形状相同的三角形,它们的对应边成比例,对应角相等。
相似三角形的性质有:相似三角形的周长比相等,面积比相等,对应高的比相等等。
相似三角形的判定有:AA相似定理、SAS相似定理、SSS相似定理等。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和空间想象能力,对于三角形的基本概念和全等三角形的相关知识有一定的了解。
但是,学生对于相似三角形的理解和运用还需要进一步的引导和培养。
此外,学生对于数学语言的严谨性和逻辑性还需要加强训练。
三. 说教学目标1.知识与技能目标:使学生掌握相似三角形的定义、性质和判定,能运用相似三角形的知识解决一些实际问题。
2.过程与方法目标:通过观察、操作、推理等过程,培养学生的空间想象能力和逻辑思维能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,增强学生对数学的学习信心,培养学生合作学习的精神。
四. 说教学重难点1.教学重点:相似三角形的定义、性质和判定。
2.教学难点:相似三角形的判定定理的理解和运用。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等。
2.教学手段:利用多媒体课件、实物模型、黑板等辅助教学。
六. 说教学过程1.导入新课:通过展示一些形状相似的物体,引导学生思考什么是相似,从而引入相似三角形的概念。
2.探究相似三角形的性质:让学生通过观察、操作、推理等过程,发现相似三角形的性质。
3.学习相似三角形的判定:引导学生通过实例,理解并掌握AA相似定理、SAS相似定理、SSS相似定理等。
冀教版九年级数学 25.5 相似三角形的性质(学习、上课课件)
FBDF=
1 3
,S
△
ABC=16,则
S=
____9____.
课堂小结
相似三角形的性质
相似 三角 形的 性质
边、角 对应边成比例,对应角相等
对应线段 对应高、中线、角平分线的 比等于相似比
周长 周长比等于相似比 面积 面积比等于相似比的平方
∴x-x 8=
3 2
,解得
x=24.
感悟新知
知2-练
2-1. [ 期末·邯郸丛台区 ] △ ABC 的三边长分别 为 2, 3, 4, 存在一个 △ DEF 与它相似,其 最 长 边 长为 12, 则△ DEF 的周长是( C )
A. 54
B. 36
C. 27
D. 21
感悟新知
知2-练
例3 如图 25-5-2,△ ABC ∽△ A′B′C′, BC=6, B′C′=4, AD ⊥ BC,垂足为 D, AD=4,求△ A′B′C′ 的面积 .
第二十五章 图形的相似
25.5 相似三角形的性质
学习目标
1 课时讲解 相似三角形的性质定理(一)
相似三角形的性质定理(二)
2 课时流程
逐点 导讲练
课堂 小结
作业 提升
感悟新知
知识点 1 相似三角形的性质定理(一)
知1-讲
定理 相似三角形对应高的比、对应中线的比、对应角 平分线的比,都等于相似比 . 即:相似三角形对应线段的比 等于相似比 .
A. 0.8 B. 0.96
C. 1
D. 1.08
感悟新知
知识点 2 相似三角形的性质定理(二)
知2-讲
1. 相似三角形周长的比 相似三角形周长的比等于相似比 .感悟新知2.相似三角形面积的比
23.3.5 相似三角形的性质 华师大版数学九年级上册课件
错误.为了避免这些错误,在利用相似三角形的性质解题时,
一定要注意结合图形,搞清面积比与相似比的关系.
知2-讲
【例2】
已知:如图23.3-24, □ ABCD中,E是BC边上
一点,且BE=
1 2
EC,BD,AE相交于F点.
(1)求△BEF的周长与△AFD的周长之比;
(2)若△BEF的面积为6 cm2,求△AFD的面积.
警示:不要误认为面积的比等于相似比.
知2-练
1 如果两个相似三角形对应边的比为2∶3,那么这 两个相似三角形面积的比是( ) A.2∶3 B. 2: 3 C.4∶9 D.8∶27
• 两个相似三角形的相似比为3∶2,面积之差为 25 cm2,求这两个相似三角形的面积.
用相似三角形对应边上的高的比解决三角形内接四边形问 题应掌握两点: 1.常见图形:如右图,即三角形中存在一个矩形. 2.基本方法:利用相似三角形对应边上的高的比等于相似比
知1-讲
思 考: 如图 23. 3. 15, △ABC和△A'B'C'相似,AD、A'D'分
别为对应边上的中线,BE、B'E'分别为对应角的平分线, 那么它们之间是否有与对应边上的高类似的关系?这两个 三角形的周长又有什么关系呢?
(ห้องสมุดไป่ตู้自教材)
知1-讲
1. 相似三角形对应边上的高的比等于相似比.
2. 相似三角形对应边上的中线的比等于相似比.
∴△BEF的周长与△AFD的周长之比为1∶3.
(2)由(1)可知△BEF与△AFD的相似比为
1 3
∴S△BEF∶S△AFD=1∶9.
又∵S△BEF=6 cm2,∴S△AFD=54 cm2.
秋九年级数学上册 第4章 相似三角形 专题训练 相似三角形的五种基本模型 (新版)浙教版-(新版)浙
相似三角形的五种基本模型► 模型一 “A ”字型1.如图9-ZT -1,在△ABC 中,点D ,E 分别在边AB ,AC 上,DE ∥BC ,DE =3,BC =9.(1)求AD AB的值;(2)若BD =10,求EDAD的值.图9-ZT -12.如图9-ZT -2,在Rt △ACB 中,∠C =90°,AC =4 cm ,BC =3 cm ,点P 由点B 出发沿BA 方向向点A 匀速运动,速度为1 cm/s ;点Q 由点A 出发沿AC 方向向点C 匀速运动,速度为2 cm/s.连结PQ ,设运动时间为t s(0<t <2),当t 为何值时,以A ,P ,Q 为顶点的三角形与△ABC 相似?图9-ZT -2►模型二“X”字型3.如图9-ZT-3,已知AB,CD,EF都与BD垂直,垂足分别是B,D,F,且AB=1,CD=3,那么EF的长是( )A.13B.23C.34D.459-ZT-39-ZT-44.如图9-ZT-4,在Rt△ABC中,∠A=90°,AB=AC,BC=20,DE是△ABC的中位线,M是边BC上一点,BM=3,N是线段MC上的一个动点,连结DN,ME,DN与ME相交于点O.若△OMN是直角三角形,则DO的长是________.5.2017·株洲如图9-ZT-5所示,正方形ABCD的顶点A在等腰直角三角形DEF的斜边EF上,EF与BC相交于点G,连结CF.求证:(1)△ADE≌△CDF;(2)△ABG∽△CFG.图9-ZT -5► 模型三 旋转型6.如图9-ZT -6,已知AB AD =BC DE =ACAE,求证:△ABD ∽△ACE .图9-ZT -67.如图9-ZT -7,在△ABC 和△AED 中,AB ·AD =AC ·AE ,∠CAE =∠BAD ,S △ADE =4S △ABC.求证:DE =2CB .图9-ZT-7►模型四垂直型图9-ZT-88.如图9-ZT-8,在矩形ABCD中,AB=3,BC=4,点P从点A出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是( )图9-ZT-9►模型五一线三等角型图9-ZT-109.如图9-ZT -10,△AOB 是直角三角形,∠AOB =90°,OB =2OA ,点A 在反比例函数y =1x 的图象上.若点B 在反比例函数y =kx的图象上,则k 的值为( ) A .-4 B .4 C .-2 D .210.(1)尝试:如图9-ZT -11①,已知A ,E ,B 三点在同一条直线上,且∠A =∠B =∠DEC =90°.求证:△ADE ∽△BEC ;(2)一位同学在尝试了上题后还发现:如图9-ZT -11②③,只要A ,E ,B 三点在同一条直线上,且∠A =∠B =∠DEC ,则(1)中结论总成立.你同意吗?请选择其中之一说明理由.图9-ZT -1111.如图9-ZT -12,等边三角形ABC 的边长为6,D 是BC 边上的动点,∠EDF =60°. (1)求证:△BDE ∽△CFD ;(2)当BD =1,FC =3时,求BE 的长.图9-ZT -12详解详析1.解:(1)∵DE ∥BC ,∴△AED ∽△ACB ,∴AD AB =DE BC =13.(2)∵AD AB =13,BD =10,∴AD AD +10=13,∴AD =5,∴ED AD =35.2.解:在Rt △ABC 中,AB =BC 2+AC 2=5(cm),由题意知AP =(5-t )cm ,AQ =2t cm.当PQ ∥BC 时,△AQP ∽△ACB ,∴AQ AC =AP AB ,∴2t 4=5-t 5,解得t =107,107<2,符合题意; 当PQ ⊥AB 时,△APQ ∽△ACB ,∴AQ AB =AP AC ,∴2t 5=5-t 4,解得t =2513,2513<2,符合题意. 综上所述,当t =107 或2513 时,以A ,P ,Q 为顶点的三角形与△ABC 相似.3.C [解析]∵AB ,CD ,EF 都与BD 垂直,∴AB ∥EF ∥CD ,∴△ABE ∽△DCE ,∴BE CE =AB CD=13,同理△BEF ∽△BCD ,∴EF CD =BE BC =BE BE +CE =14.∴EF =14CD =34.故选C. 4.256或5013[解析] 如图,作EF ⊥BC 于点F ,DN ′⊥BC 于点N ′且交EM 于点O ′,此时∠MN ′O ′=90°.∵DE 是△ABC 的中位线, ∴DE ∥BC ,DE =12BC =10.∵DN ′∥EF ,∴四边形DEFN ′是平行四边形.∵∠EFN ′=90°,∴四边形DEFN ′是矩形,∴EF =DN ′,DE =FN ′=10.∵AB =AC ,∠A =90°,∴∠B =∠C =45°, ∴BN ′=DN ′=EF =FC =5,MN ′=5-3=2,而DE MN ′=DO ′O ′N ′,∴102=DO ′5-DO ′,∴DO ′=256; 当∠MON =90°时,则△DOE ∽△EFM ,∴DO EF =DE EM.∵EM =EF 2+MF 2=13,∴DO =5013.故答案为256或5013.5.证明:(1)由正方形ABCD 和等腰直角三角形DEF ,得∠ADC =∠EDF =90°,AD =CD ,DE =DF ,∴∠ADE +∠ADF =∠ADF +∠CDF , ∴∠ADE =∠CDF .在△ADE 和△CDF 中,⎩⎪⎨⎪⎧DE =DF ,∠ADE =∠CDF ,AD =CD ,∴△ADE ≌△CDF .(2)如图,延长BA 到点M ,交DE 于点M , ∵△ADE ≌△CDF , ∴∠EAD =∠FCD ,即∠EAM +∠MAD =∠BCD +∠BCF . ∵∠MAD =∠BCD =90°, ∴∠EAM =∠BCF . ∵∠EAM =∠BAG , ∴∠BAG =∠BCF . 又∵∠AGB =∠CGF , ∴△ABG ∽△CFG .6.证明:∵AB AD =BC DE =AC AE,∴△ABC ∽△ADE , ∴∠BAC =∠DAE ,∴∠BAC -∠DAF =∠DAE -∠DAF ,即∠BAD =∠CAE .∵AB AD =AC AE ,∴AB AC =ADAE,∴△ABD ∽△ACE .7.证明:∵AB ·AD =AC ·AE ,∴AB AE =AC AD.又∵∠CAE =∠BAD ,∴∠CAE +∠DAC =∠BAD +∠DAC , 即∠DAE =∠CAB , ∴△ADE ∽△ACB . 又∵S △ADE =4S △ABC ,∴S △ADES △ABC=4, ∴⎝ ⎛⎭⎪⎫DE CB 2=S △ADE S △ABC=4,∴DE CB =2, ∴DE =2CB .8.D [解析] 整个运动过程分成两段:①当点P 在AB 上运动时,即0≤x ≤3,随着x 的增加y 值不变,y =4;②如图,当点P 在BC 上运动时,3<x ≤5, ∵∠BAP +∠DAP =90°, ∠BAP +∠APB =90°, ∴∠DAP =∠APB .又∵∠AED =∠ABP =90°,∴△ADE ∽△PAB ,∴AD AP =DE AB, 即4x =y 3, ∴y =12x.故选D.9.A [解析] 如图,过点A ,B 分别作AC ⊥x 轴,BD ⊥x 轴,垂足分别为C ,D .设点A 的坐标是(m ,n ),则AC =n ,OC =m . ∵∠AOB =90°, ∴∠AOC +∠BOD =90°. ∵∠DBO +∠BOD =90°, ∴∠DBO =∠AOC .又∵∠BDO =∠ACO =90°, ∴△BDO ∽△OCA ,∴BD OC =OD AC =OBOA.∵OB =2OA ,∴BD =2m ,OD =2n .∵点A 在反比例函数y =1x的图象上, ∴mn =1.∵点B 在反比例函数y =k x的图象上,点B 的坐标是(-2n ,2m ), ∴k =-2n ·2m =-4mn =-4.故选A.10.解:(1)证明:∵∠A =∠B =∠DEC =90°,∴∠DEA +∠CEB =90°. ∵∠DEA +∠D =90°,∴∠D =∠CEB ,∴△ADE ∽△BEC .(2)同意,以题图②为例说明:∵∠A =∠DEC ,∠A +∠D =∠DEC +∠CEB ,∴∠D =∠CEB .又∵∠A =∠B ,∴△ADE ∽△BEC .11.解:(1)证明:∵△ABC 是等边三角形,∴∠B =∠C =60°,∴∠EDB +∠BED =120°.∵∠EDF =60°,∴∠CDF+∠EDB=120°,∴∠BED=∠CDF,∴△BDE∽△CFD.(2)∵△BDE∽△CFD,∴BDCF=BECD,即13=BE5,解得BE=53.。
人教版九年级下册数学 相似三角形的性质与判定
人教版九年级下册数学相似三角形的性质与判定归纳总结:1.平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段的比相等.2.平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段的比相等;平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似.3.相似三角形的判定:①如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似;②如果两个三角形的三组对应边的比相等,那么这两个三角形相似;③如果一个三角形的两个角与另外一个三角形的两个角对应相等,那么这两个三角形相似.4. 相似三角形的性质:(1)相似三角形的面积比等于 .(2)相似三角形对应边,对应角。
(3)相似三角形的对应线段(对应高、对应中线、对应角平分线)之比和周长之比都等于 .5. 相似三角形的概念:对应角、对应边的两个三角形叫做相似三角形,对应边之比叫做 .当相似比为1时,则两个三角形称 .6.四种相似三角形模型:A字、8字、K字、重叠型.1. 如图,点D在△ABC的边AC上,若CD=2,AC=6,且△CDB∽△CBA,则BC的值为.2. 如图,已知△ACD∽△ADB,AC=4,AD=2,则AB的长为.3. 如图,已知△ABC是面积为的等边三角形,△ABC∽△ADE,AB=2AD,∠BAD=45°,AC与DE相交于点F,则点D 到线段AB的距离等于(结果保留根号).4. 如图,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,则AC:BC的值为.5. 如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△DOE:S△COA=1:25,则S△BDE与S△CDE的比是.6. 如图,矩形EFGH内接于△ABC,且边FG落在BC上,若AD⊥BC,BC=3,AD=2,EF=EH,那么EH的长为.7. 如图,在Rt△ABC中,∠BAC=90°,AD⊥BC,若AB=2,BC=4.则DC的长度为.8. 如图,在直角坐标系xOy中,A(﹣4,0),B(0,2),连接AB并延长到C,连结CO,若△COB∽△CAO,则点C 的坐标为.9. 如图,矩形ABCD中,AB=,BC=,点E在对角线BD上,且BE=1.8,连接AE并延长交DC于点F,则= .10.如图,在△ABC中,已知D、E分别是AB、AC边上的点,且AD=3,AB=8,AC=10,若△ADE与△ABC相似,则AE的长为.11. 如图,正方形ABCD中,AB=2,E为BC中点,两个动点M和N分别在边CD和AD上运动且MN=1,若△ABE与以D、M、N为顶点的三角形相似,则DM为.12. 如图,△ABC中,AC=6,AB=4,点D与点A在直线BC的同侧,且∠ACD=∠ABC,CD=2,点E是线段BC延长线上的动点,当△DCE和△ABC相似时,线段CE的长为13. 如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=DC,连接EF并延长交BC的延长线于点G.(1)求证:△ABE∽△DEF;(2)若正方形的边长为4,求BG的长.14. 如图,在△ABC中,∠C=90°,BC=16cm,AC=12cm,点P从B出发沿BC以2cm/s的速度向C移动,点Q从C出发,以1cm/s的速度向A移动,若P、Q分别从B、C同时出发,设运动时间为ts,当为何值时,△CPQ与△CBA相似?15. 如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm.动点M从点B出发,在BA边上以每秒3cm的速度向定点A运动,同时动点N从点C出发,在CB边上以每秒2cm的速度向点B运动,且MG⊥BC,运动时间为t秒(0<t<),连接MN.(1)用含t的式子表示MG;(2)当t为何值时,四边形ACNM的面积最小?并求出最小面积;(3)若△BMN与△ABC相似,求t的值.16. 如图所示,Rt△ABC中,已知∠BAC=90°,AB=AC=2,点D在BC上运动(不能到达点B,C),过点D作∠ADE=45°,DE交AC于点E.(1)求证:△ABD∽△DCE;(2)当△ADE是等腰三角形时,求AE的长.。
九年级数学相似三角形性质
3.如图,梯形ABCD中AB∥CD, AB=a, BD=b, CD=c,若∠DBC=∠A,则a,b,c使方程 aX2-2bX+c=0有( )D C
A.没有实数根 B.有两个相等 实根 C.有两个不等 实根 D.以上都不对
A B
3.如图,梯形ABCD中AB∥CD, AB=a, BD=b, CD=c,若∠DBC=∠A,则a,b,c使方程 aX2-2bX+c=0有( ) D C c
相似三角形
开封市金明区杏花营中学 李晓淑
定义: 对应角相等,对应边成比例的三角形叫相似 三角形. 三角形相似判定: 1.对应角相等,对应边成比例。 2.预备定理:平行于三角形一边的直线和 其他两边(或两边的延长线)相交,所构 成的三角形与原三角形相似。 3.判定定理1:两角对应相等,两三角形相似。 4.判定定理2:两边对应成比例且夹角相等, 两三角形相似。 5.判定定理3:三边对应成比例,两三角形相似。
2.过矩形ABCD的顶点A作对角线AC的垂线 分别与CB,CD的延长线交于E,F.则图中与 C △ABC相似的三角形( )。
A.4个 B. 5个 C. 6个 D. 7个
C D
B A F
E
相似三角形的性质:
1.对应角相等,对应边成比例. 2.相似三角形对应高的比,对应 中线的比,对应角平分线的比, 周长的比都等于相似比. 3.相似三角形面积的比等于相似 比的平方.
直角三角形相似判定的情况 除以上5种方法外,还有:
1.直角三角形被斜边上的高分成的两个直角 三角形相似。 2.如果一个三角形的斜边和一条直角边与另 一个直角三角形的斜边和一条直角边对应成 比例,那么着两个直角三角形相似。
Hale Waihona Puke 1.下列命题正确的是()
九年级(下)数学教案:探索三角形相似的条件(全5课时)
教学过程教学内容个案调整教师主导活动学生主体活动4. 平行线分线段成比例定理的推论:如图,在三角形中,如果DE BC∥,则5.平行的判定定理:如上图,如果有BCDEACAEABAD==,那么三.交流展示:1.看图说比例式2.如图:DE∥BC,AB=15,AC=7,AD=2,求EC。
四.释疑拓展:如图,在△ABC中,DG∥EH∥FI∥BC.(1)请找出图中所有的相似三角形;(2)如果AD=1,DB=3,那么DG∶BC=_____.先让学生独立思考,然后请学生板演并讲评.AB CD EE DCBAABCD3()2() AB DE1() DE BCAB CDEABCDEA BCDEFB CDEA教学过程教学内容个案调整教师主导活动学生主体活动(2)△ABC与△A″B″C″若∠A=∠A″,∠B=∠B″,那么这个三角形有何关系?请说明理由.4.巩固:1.关于三角形相似下列叙述不正确的是( )A 有一个底角对应相等的两个等腰三角形相似B 所有等边三角形都相似C 有一个角对应相等的两个等腰三角形相似D 顶角对应相等的两个等腰三角形相似2. 判断题①所有的等腰三角形都相似 ( )②所有的等腰直角三角形都相似( )③所有的等边三角形都相似 ( )④所有的直角三角形都相似 ( )⑤有一个角是100°的两个等腰三角形相似()⑥有一个角是70°的两个等腰三角形相似()四.释疑拓展:1.如图,在△ABC和△A′B′C′中,已知∠A=50°,∠B=∠B′=60°,∠C′=70°,△ABC与△A′B′C′相似吗?为什么?2.如图,在Rt△ABC中,∠ACB=90°,CD是△ABC的高.找出图中所有的相似三角形.3.过△ABC(∠C>∠B)的边AB上一点D作一条直线与另一边AC相交,截得的小三角形与△ABC相似,这样的直线有几条?请把它们一一作出来.1.先让学生独立思考,然后让学生板演,最后学生点评.2.先让学生独立思考,然后请学生板演并讲评.3.让学生自主探究,自由交流.教学过程教学内容个案调整教师主导活动学生主体活动三.交流展示:1.如图,在△ABC和△DEF中,∠B=∠E,要使△ABC∽△DEF,需要添加什么条件?2.如图,△ABC与△A'B'C'相似吗?有哪些判断方法?四.释疑拓展:1 1. 如图,已知23ECAEBDAD==,试求BCDE的值;2 如图,在△ABC中,AB=4cm,AC=2cm,(1)在AB上取一点D,当AD=________时,△ACD∽△ABC;(2)在AC的延长线上取一点E,当CE=________时,△AEB∽△ABC,此时,BE与DC有怎样的位置关系?为什么?让学生先独立思考,然后小组讨论交流,最后全班展示交流,并让学生自己归纳发现的结论.先让学生独立思考,然后让学生板演,最后学生点评C'B'A'CBAADECB教学过程教学内容个案调整教师主导活动学生主体活动3.归纳三角形相似判定方法三文字语言:几何语言:在△ABC和△A′B′C′中,∵∴4.试一试:(1)在ΔABC与ΔA′B′C′中,若AB=3, BC=4,AC=5;A′B′=6,B′C′=8,A′C′=10,ΔABC与ΔA′B′C′相似吗?(2)在ΔABC与ΔA′B′C′中,若AB=3, BC=3,AC=4;A′B′=6,B′C′=6,A′C′=10,ΔABC与ΔA′B′C′相似吗?三.释疑拓展:1.△ABC和△DEF的顶点都在边长为1的小正方形的顶点上,△ABC与△DEF相似吗?为什么?2.要制作两个形状相同的三角形框架,其中一个三角形框架的三边长分别为4,6,8.另一个三角形框架的一边长为2,它的另外两条边长应当是多少?你有几种答案?学生自己归纳发现的结论.先让学生独立思考,然后让学生板演,最后学生点评.让学生谈谈自己是如何思考的AB CA′B′C′。
数学九年级相似三角形知识点
数学九年级相似三角形知识点
在九年级数学中,相似三角形是一个重要的知识点。
下面是与相似三角形相关的主要知识点:
1. 相似三角形的定义:两个三角形的对应角相等,并且对应边成比例,则这两个三角形相似。
2. 相似三角形的性质:相似三角形的对应边比例相等,即如果ABC和A'B'C'是相似三角形,那么AB/A'B' = AC/A'C' = BC/B'C'。
3. 相似三角形的判定方法:
- AAA判定法:如果两个三角形的对应角分别相等,则这两个三角形相似。
- SSS判定法:如果两个三角形的对应边成比例,则这两个三角形相似。
- SAS判定法:如果两个三角形的一个对应角相等,且对应边成比例,则这两个三角形相似。
4. 相似三角形的应用:
- 求比例:已知两个相似三角形的一个边和它的对应边比例,可以求出其他对应边的比例。
- 求长度和面积:已知一个三角形及其相似三角形的一些边的长度,可以通过比例关系求出其他边的长度和面积。
- 证明定理:可通过相似三角形的性质证明一些重要的几何定理,如角平分线定理、四边形内角和定理等。
以上介绍了一些九年级数学中关于相似三角形的知识点,希望对您有帮助!。
苏科版九年级下册数学教学课件 第6章 图形的相似 第5课时 三角形相似的判定及三角形的重心
AD=6,GE=3,则AG= 4 ,BE= 9 .
【解析】如图,连接DE,由G为重心,可知
DE为中位线,则DE ∥AB,且 DE 1 AB ,
2
易得△DEG∽△ABG,
可得EG 1 BG, DG 1 AG ,
则
AG
2
2 AD
4
2
,BE=3GE=9.
3
B
A
E G
D
C
CONTENTS4Biblioteka 三角形相似 的判定及三 角形的重心
的外接圆于点E.△ABE与△CDE相似吗?为什么?
解:△ABE和△CDE相似.
A
∵AB=AC, ∴AB = AC, ∴∠AEB=∠AEC. 在△ABE和△CDE中,
O
B
D
C
E
∵∠AEB=∠DEC,∠BAE=∠DCE,
∴△ABE∽△CDE (两角分别相等的两个三角形相似) .
三角形相似的判定
判定两个三角形相似基本思路: (1)若已知一对等角,则可找另一对等角,或说明夹已知等角的两 边成比例. (2)若已知两边成比例,则可说明其夹角相等,或说明第三边也成 比例. (3)若出现平行线,则利用“平行于三角形一边 的直线与其他两边 (或两边的延长线)相交,所构成的三角形与原三角形相似”来判定.
三角形的重心与顶点的距离等于它与对边中 点距离的两倍.
同样可得△G'DE∞△G'AB,
G'E' 1 G'B'. 2
于是,点G'与点G重合,
三角形的三条中线相交于一点.
B
F
E
G'
D
C
三角形的重心
定 义:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
认牌绝技
[单选,A1型题]医学心理学研究任务不包括()。A.研究心理因素对人体健康的影响及其机制B.研究个性的形成和发展C.研究自我调节对防病、治病和康复的作用D.研究疾病过程中的心理反应E.研究心理因素在疾病发展过程中的作用 [单选]已婚青年妇女有阴道不规则出血,突发下腹痛,应首先考虑为()A.盆腔炎B.恶性肿瘤C.宫外孕D.卵巢囊肿破裂E.宫外孕流产 [问答题,简答题]甄选销售人员的程序? [问答题,简答题]调整抄表段应依据哪些信息? [单选]IEC61131_3组态语言中FBD意思为()A、功能方块图B、梯形图C、顺序功能图D、指令表 [单选]产程中胎心监护,下列哪项是不恰当的?()A.不能分辨与宫缩的关系B.潜伏期应每1~2小时听胎心1次C.听诊胎心应在宫缩间歇期宫缩刚结束时进行D.活跃期应每15~30分钟听胎心1次E.每次听胎心应听1分钟 [单选]DNS的端口号是()A.21B.23C.53D.80 [单选]跳汰选煤是依据煤和矸石()差别来实现煤和矸石分选的方法。A、粒度B、密度C、形状 [多选]秘书在值班时,经常会遇到并要处理的是()。A.领导临时交办的事情B.企业内部的突发事件C.上级单位的电话指示D.接待未预约的来访客人 [单选]新时期,减轻农民负担工作要坚持以()为中心。A.直接补贴B.工业反哺农业C.维护农民合法权益D.合作经济 [单选]艾滋病病毒抗体阳性,又具有下述哪一项者,可确诊为艾滋病()A.近期内(3~6个月)体重减轻10%以上B.近期内(3~6个月)持续发热38℃1个月以上C.近期内(3~6个月)持续腹泻(每日3~5次)1个月以上D.卡波西肉瘤 [多选]商品混凝土和易性是一项综合性能,它包括下列哪些方面的含义?()A、流动性B、粘聚性C、保水性D、耐久性 [单选,A1型题]下列哪项不属软产道范围()A.子宫体部B.子宫下段C.宫颈D.骨盆底组织E.阴道 [单选]下图所示的100元纸币是票面剩余二分之一至四分之三以下的残缺人民币,金融机构应()向持有人兑换。A、按原面额的一半B、按原面额全额C、按原面额的三分之一D、不予以 [填空题]新《电气化铁路有关人员电气安全规则》自20l3年()月()日起施行。 [单选]含水量为8%的粉煤灰540g,其烘干后质量为()。A.496.8gB.504gC.500gD.无法判定 [单选]利用航线前方导标方位导航,如实测方位小于导航方位,表明船舶()偏离计划航线,应()调整航向。A.向左;向左B.向左;向右C.向右;向右D.向右;向左 [单选]目前是生产中应用最广泛的换热设备,与其他换热器相比,主要优点是单位体积所具有的传热面积大以及传热效果好。此外,结构较简单,制造的材料范围较广,操作弹性较大等。这种换热器是()。A.套管换热器B.蛇管换热器C.列管换热器D.U型管换热器 [单选]马克思主义者认为,教育是一种()A.自然现象B.社会现象C.心理现象D.生理现象 [单选]正常情况下,行驶证中核定载质量标注数最低不低于“总质量”的()。A.二分之一B.三分之一C.四分之一D.五分之一 [单选]根据国际惯例,若分保接受人破产,原保险人()。A、AB、BC、CD、D [单选]有关包扎的叙述,错误的是()A.包扎动作要轻柔,不要触及伤口B.包扎松紧要适宜C.包扎时要保持伤员体位舒适D.包扎方向由近心端向远心端,注意露出肢体末端E.包扎时应在肢体的外侧面打结,不要打在伤口上 [单选]个体户赵某去世后,未留有遗嘱。留下两女、一男。大女儿3岁时由大伯父领养,二女儿结婚,嫁在外省。赵某去世后,大女儿、二女儿都主张继承权;张某自称是赵某的非婚生子女,以我国承认非婚生子女享有同婚生子女同样的继承权为由,也要求继承遗产。而赵某的妻子和儿子认为只 [单选,A1型题]关于干酪性肺炎的叙述正确的是()A.属于继发性肺结核常见的类型B.易发生在免疫力过强或变态反应过低的病人C.病变性质为渗出性炎D.常由浸润型肺结核恶化进展产生E.由慢性纤维空洞型肺结核经血行播散所致 [单选]担保合同因为当事人的过错而导致无效时,有关过错的当事人应承担的民事责任属于?()A.违约责任B.缔约过失责任C.侵权责任D.不用承担任何责任 [单选]以下哪种纤维属于化学纤维()A.羊毛B.棉C.丝D.涤纶 [单选]患者男性,65岁,因脑血栓后遗症,长期卧床,生活不能自理,入院时护士发现其骶尾部皮肤发红,除去压力无法恢复原来的肤色,护士使用50%乙醇按摩局部皮肤的作用是()A.消毒皮肤B.润滑皮肤C.去除污垢D.促进血液循环E.降低局部温度 [单选]下列工程分析的方法中,()最为简便,但所得数据准确性差。A.物理模型法B.物料平衡计算法C.专业判断法D.资料查阅分析法 [单选]英版海图图式“Co”表示()。A.贝壳B.黏土C.珊瑚D.泥 [单选]急性脑血管病(卒中)中,发病最快的是()A.高血压脑病B.脑出血C.脑血栓形成D.脑栓塞E.蛛网膜下腔出血 [问答题,简答题]世界第一大群岛国? [单选]患者女性,16岁,患白血病,长期用抗生素,护士在口腔评估的过程中,应特别注意观察口腔黏膜A.有无溃疡B.有无口臭C.口唇是否干裂D.有无真菌感染E.牙龈是否肿胀出血 [单选]下列()方法可以减小渠道整体受冲刷的程度。A、用混凝土衬砌,取代土渠B、多采用弯道,降低流速C、拆除跌水、采用明渠直连D、拆除衬砌,采用土渠 [单选,A2型题,A1/A2型题]患儿,女,3岁,因发热就诊,医生怀疑泌尿系感染,可以确诊的中段尿培养的菌落计数值是()A.>103/mlB.>104/mlC.>105/mlD.>106/mlE.>107/ml [单选]假定甲公司本年盈余为110万元,某股东持有10000股普通股(占总股数的1%),目前每股市价为22元。股票股利发放率为10%,假设市盈率不变,则下列表述中,不正确的是()。A、发放股票股利之后每股收益为1元B、发放股票股利之后每股价格为20元C、发放股票股利之后该股东持股比例为 [单选]按订单或出库单的要求,从储存场所选出物品,并放置在指定地点的作业是()。A.分货B.拣选C.流通加工D.保管 [单选]某学校英语老师王老师辅导学生经验非常丰富,不少家长托人找王老师辅导孩子。王老师每周有5天晚上在家里辅导学生,而对学校安排的具体的教育教学任务经常借故推托,并且迟到缺课现象相当严重,教学计划不能如期完成,学生及家长的负面反响很大。学校对其进行了多次批评教育 [单选,A2型题,A1/A2型题]对鼻息肉的描述,错误的是()。A.变态反应是鼻息肉形成的主要因素B.鼻息肉为一高度水肿的疏松结缔组织C.其上皮结构为鳞状上皮、柱状上皮以及其他移行上皮D.鼻息肉组织中的血管和腺体无神经支配E.鼻息肉中的IgG合成细胞明显多于中鼻甲和下鼻甲 [多选]总管线较短,投资较省,能量消耗较小,但供水独立性较差,上区受下区限制,水泵分散设置,管理维护不便的给水方式是()。A.分区并联给水方式B.并联直接给水方式C.分区串联给水方式D.分区水箱减压给水方式 [问答题,简答题]地方政府的类型