§1.2 聚合物的热力学性能

合集下载

聚合物的力学性能

聚合物的力学性能

第八章 聚合物的力学性能
(3)内力、应力 材料在外力作用下发生形变的同时,在其内部还会产生对抗 外力的附加内力,以使材料保持原状,当外力消除后,内力 就会使材料回复原状并自行逐步消除。当外力与内力达到平 衡时,内力与外力大小相等,方向相反。单位面积上的内力 定义为应力。
2
第八章 聚合物的力学性能
(4)形变 化。 材料在外力作用下,其几何形状和尺寸所发生的变
(5)应变 在应力作用下,单位长度(面积、体积)所发生 的形变来表征。 (6) 弹性模量 是引起单位应变所需要的应力。是材料刚硬度的 一种表征。模量的倒数称为柔量,是材料容易形变程度的一种 表征,以J表示。 (7)强度 在一定条件下,材料断裂前所能忍受的最大应力, 称为强度,常用单位Pa。
强迫高弹形变产生的原因


8
聚合物的力学性能
强迫高弹形变的定义 处于玻璃态的非晶聚合物在拉伸过程中屈服点后产生的
较大应变,移去外力后形变不能回复。若将试样温度升
到其Tg附近,该形变则可完全回复,因此它在本质上仍 属高弹形变,并非粘流形变,是由高分子的链段运动所 引起的。 这种形变称为强迫高弹形变
9
3
聚合物的力学性能
8.2 聚合物的应力应变特性
材料的大形变—破坏过程 实验条件:一定拉伸速率和温度 在实验和应用中:
宽 度
厚度d
b
P
图1 Instron 5569电子万能材料试验机 (electronic material testing system)
必须标明温度和施力 速率(或形变速率), 切勿将正常形变速率下 测得数据用于持久力作 用或冲击力作用下的场 合下;切勿将正常温度 下得到的数据用于低温 或高温下。
15

第1章 高分子聚合物的特性

第1章 高分子聚合物的特性

讨论:
§1.3 聚合物的流变学性质 a a K n1
n=1时, a K 这意味着非牛顿流体变为牛顿 流体,所以,n值可以用来反映非牛顿也体偏离牛顿流体 性质的程度。 n≠1时 ,绝对值∣1-n∣越大,流体的非牛顿性越强, 剪切速率对表观粘度的影响越强。 其中n<1时,称为假塑性液体。(在注射成型中,除 了热固性聚合物和少数热塑性聚合物外,大多数聚合物熔 体均有近似假塑性液体流变学的性质) n>1时,称为膨胀性液体。(属于膨胀性液体的主要 是一些固体含量较高的聚合物悬乳液)
§1.3 聚合物的流变学性质
流体在管道内流 动时的流动状态:层 流和湍流。
层流(黏性流动或流 线流动)特征:流体的质 点沿着平行于流道轴线的 方向相对运动,与边壁等 距离的液层以同一速度向 前移动,不存在任何宏观 的层间质点运动,所有质 点的流线均相互平行。
湍流(紊流)特征:流体 的质点除向前运动外,还在主 流动的横向上作不规则的任意 运动,质点的流线呈紊乱状态。
玻璃态
变 形 程 度
高弹态
粘流态
E
1 2
m
(熔点)
温度
b
g
f
d
(脆化温度) (玻璃化温度) (粘流温度) (热分解温度)
1—线型无定形聚合物;2—线型结晶聚合物
§1.2 聚合物的热力学性能
玻璃态:
塑料处于温度 g 以下的状态,为坚硬的固体, g 是大多数塑件的使用状态。 称为玻璃化温度,是 多数塑料使用温度的上限。
要综合考虑生产的经济性、设备和模具的可靠性 及制件的质量等因素,确保成型工艺能有最佳的 注射压力和注射温度。
(4)助剂对粘度影响
为了保证使用性能或加工需要,多数聚合物都 要添加一些助剂才能使用。聚合物中添加助剂后, 大分子间的相互作用力、熔体黏度都将发生改变。 如,增塑剂降低粘度,提高流动性。

塑料的工艺性能

塑料的工艺性能

塑料的工艺性能1.1 聚合物的热力学性能与加工工艺1 .聚合物的热力学性能聚合物的物理、力学性能与温度密切相关,当温度变化时,聚合物的受力行为发生变化,呈现出不同的力学状态,表现出分阶段的力学性能特点。

图2 一2 所示为线型无定形聚合物在恒应力作用下变形量与温度的关系曲线,也称为热力学曲线。

此曲线明显分为三个阶段,即线型无定形聚合物常存在的三种物理状态:玻璃态、高弹态和猫流态。

在温度较低时(温度低于T : ) ,曲线基本上是水平的,变形量小,而且是可逆的;但弹性模量较高,聚合物处于此状态时表现为玻璃态。

此时,物体受力的变形符合胡克定律,应变与应力成正比,并在瞬时达到平衡。

当温度上升时(温度在T 。

至T ,间),曲线开始急剧变化,但很快趋于水平。

聚合物的体积膨胀,表现为柔软而富有弹性的高弹态(或橡胶态)。

此时,变形量很大,而弹性模量显著降低,外力去除后变形量可以回复,弹性是可逆的。

如果温度继续上升(温度高于Tf ) ,变形迅速发展,弹性模量再次很快下降,聚合物即产生私性流动,成为勃流态。

此时变形是不可逆的,物质成为液体。

这里,T :为玻璃态与高弹态间的转变温度,称为玻璃化温度;T .为高弹态与猫流态的转变温度,称为猫流沮度。

在常温下,玻璃态的典型材料是有机玻璃,高弹态的典型材料是橡胶,勃流态的典型材料是熔融树脂(如猫合剂)。

聚合物处于玻璃态时硬而不脆,可作为结构件使用。

但塑料的使用温度不能太低,当温度低于T 卜时,物理性能发生变化,在很小的外力作用下就会发生断裂,使塑料失去使用价值。

通常称T ‘为脆化温度,它是塑料使用的下限温度。

当温度高于T .时,塑料不能保持其尺寸的稳定性和使用性能,因此,几是塑料使用的上限温度.显然,从使用的角度看,TL 与T 。

间的范围越宽越好。

当聚合物的温度升到如图2 一2 所示中的Td 温度时,便开始分解,所以称Td 为分解温度。

聚合物在T 「一Td 温度范围内是猫流态,塑料的成型加工就是在这个范围内进行的。

聚合物的力学性能与分子结构

聚合物的力学性能与分子结构

聚合物的力学性能与分子结构在我们的日常生活和众多工业领域中,聚合物材料扮演着举足轻重的角色。

从塑料制品到橡胶制品,从纤维材料到涂料胶粘剂,聚合物无处不在。

而决定这些聚合物材料性能优劣的关键因素之一,便是其力学性能与分子结构。

首先,让我们来了解一下什么是聚合物的力学性能。

简单来说,力学性能就是聚合物在受到外力作用时所表现出的特性。

这包括强度、刚度、韧性、延展性、耐磨性等等。

比如,塑料椅子需要有足够的强度来承受人的体重,汽车轮胎则需要具备良好的韧性和耐磨性。

那么,聚合物的分子结构又是如何影响这些力学性能的呢?分子结构就像是聚合物的“基因密码”,决定了它的性质。

分子链的长度是一个重要因素。

一般来说,分子链越长,聚合物的强度和粘度往往越高。

想象一下,一条长长的分子链就像一根长长的绳子,众多这样的长链交织在一起,形成了一个强大的网络,使得材料更能抵抗外力的破坏。

分子链的柔性也对力学性能有着显著影响。

柔性好的分子链能够更容易地弯曲和变形,从而使聚合物具有较好的延展性和韧性。

比如,橡胶的分子链就具有很高的柔性,所以它能够被拉伸很大的程度而不断裂。

分子链的规整度同样不容忽视。

规整度高的分子链能够更紧密地排列,分子间的相互作用力更强,从而提高聚合物的强度和刚度。

而规整度低的分子链排列较为混乱,材料的性能相对就会较差。

除了分子链本身的特性,分子间的相互作用也在很大程度上决定了聚合物的力学性能。

分子间如果存在较强的氢键、范德华力等相互作用,会使得聚合物具有更高的强度和耐热性。

此外,聚合物的交联结构也会对力学性能产生重大影响。

交联就像是在分子链之间搭建了“桥梁”,使得整个结构更加稳固。

高度交联的聚合物通常具有优异的强度和耐热性,但延展性会较差;而交联程度较低的聚合物则具有较好的延展性,但强度相对较低。

为了更直观地理解这些概念,我们以聚乙烯(PE)为例。

高密度聚乙烯(HDPE)具有较高的结晶度和规整度,分子链排列紧密,因此具有较高的强度和硬度;而低密度聚乙烯(LDPE)的结晶度和规整度较低,分子链排列较为疏松,所以它的强度和硬度相对较低,但延展性更好。

第二章 塑料成型基础

第二章  塑料成型基础

(二)高分子与低分子
无论是天然树脂还是合成树脂,它们都属于高分子聚合物,简称高聚 物。 塑料的许多优异性能都与聚合物的分子结构密切相关。 一个聚合物分子中含有成千上万、甚至几十万个原子。例如,尼龙分 子中大约含有4千个原子,天然橡胶分子中大约含有5万到6万个原子,纤 维素(木材中含有此成分)分子中大约含有10万到20万个原子。低分子 化合物,其相对分子质量只有几十或几百;而高分子化合物(简称高分 子)的相对分子质量比低分子化合物的高得多,一般从几万至上千万。 再从分子长度来看,低分子乙烯的长度约为0.0005μm,而高分子聚乙烯 的长度为6.8μm,后者是前者的13600倍。 高分子是含有原子数很多、相对分子质量很高、分子很长的巨型分 子。正是由于高分子与低分子存在着如此悬殊的差异,才使聚合物具有 许多与低分子化合物很不相同的特性。
二、聚合物的热力学性能与加工工艺性
(一)聚合物的热力学性能 (二)聚合物的加工工艺性
(-)树脂与塑料
塑料的主要成分是树脂。 天然树脂,其特点是无明显的熔点,受热后 逐渐软化,可溶解于有机溶剂,而不溶解于水 等。 人们根据天然树脂的分子结构和特性,应用 人工方法制造出了合成树脂。 合成树脂具有优良的成型工艺性,有些合 成树脂也可以直接作塑料用(如聚乙烯、聚苯 乙烯、尼龙等),但有些合成树脂必须在其中 加入一些添加剂,才能作为塑料使用(如酚醛 树脂、氨基树脂、聚氯乙烯等)。


聚合物处于玻璃态时硬而不脆,可作结构件使用。但使 用温度不能太低,当温度低于θb时,物理性能将发生变化, 在很小的外力作用下就会发生断裂,使塑料失去使用价值。 通常称θb为脆化温度,它是塑料使用的下限温度。当温度 高于θg时,塑料不能保持其尺寸的稳定性和使用性能,因 此,θg是塑料使用的上限温度。显然,从使用的角度看, θb和θg间的范围越宽越好。当聚合物的温度升高到图2-3 中的θd温度时,便开始分解,所以称θd为热分解温度。聚 合物在θf~θd温度范围内是粘流态,塑料的成型加工就是 在这个范围内进行的。这个范围越宽,塑料成型加工就越 容易进行。 以上所述是线型无定形聚合物的热力学性能,而高度交 联的体型聚合物(热固性树脂)由于分子运动阻力很大, 一般随温度发生的力学状态变化较小,所以通常不存在粘 流态甚至高弹态,即遇热不熔,高温时则分解。

聚合物材料的力学性能研究

聚合物材料的力学性能研究

聚合物材料的力学性能研究一、引言聚合物材料因其优异的物理性质和低成本的生产工艺在工业中被广泛使用,然而聚合物材料的力学性能成为了影响其应用范围的一个关键因素。

在工程应用中,聚合物材料必须具备一定的力学性能,例如强度、韧性、刚度等。

因此,研究聚合物材料的力学性能具有极其重要的意义。

本文将分别从强度、韧性和刚度三个方面探讨聚合物材料的力学性能研究。

二、聚合物材料的强度研究强度是指受力材料最大承受力的能力。

在聚合物材料中,强度受到化学结构、晶化程度和制备工艺等因素的影响。

其中,聚合物的化学结构对其强度性能的影响最大,因为它决定了聚合物的分子量、分子量分布和化学键的类型和数量。

此外,影响聚合物材料的强度还包括晶化程度和制备工艺等因素。

研究表明,化学结构和分子量是影响聚合物材料强度的最主要因素。

其中,分子量的大小和分子量分布的宽窄对聚合物材料的强度影响极大。

较高的分子量和较窄的分子量分布可以提高聚合物材料的强度。

而分子量过高或分子量分布过窄会导致聚合物材料的加工难度增加,从而影响其生产工艺。

此外,化学结构的差异也会对聚合物材料的强度产生不同的影响。

例如在聚乙烯和聚丙烯等同属于烯烃类聚合物材料中,不饱和度的增加会降低其强度,而在芳香族聚合物材料中,饱和度的增加反而会降低其强度。

三、聚合物材料的韧性研究韧性是指材料在受冲击载荷时形变和吸收能量的能力。

聚合物材料的韧性受到其结晶度、分子量和分子量分布等因素的影响。

研究表明,增加聚合物材料的结晶度可以提高其韧性。

这是由于高结晶度会使聚合物分子之间的相互作用变强,从而增加聚合物材料的强度和韧性。

分子量和分子量分布的影响也与强度类似,即分子量和分子量分布的增加可以提高聚合物材料的韧性,但过高的分子量和过窄的分子量分布会影响材料的加工和生产。

此外,制备工艺也对聚合物材料的韧性产生影响。

例如,在高速注塑成型中,熔融聚合物材料受到剪切力的作用,从而影响其晶化程度和结晶形态,进而影响聚合物材料的韧性。

高分子聚合物的结构特点与性能

高分子聚合物的结构特点与性能
第一章 高分子聚合物的结构特点与性能
1.1 高分子聚合物的结构特点 (研究高分子结构-性能关 系)
1.2 聚合物的热力学性能(研究形变-温度的关系) 1.3 聚合物的流变学性质(研究变形-流动的关系)研究 高分子聚合物的结构的意义 1.4 聚合物熔体在成型过程中的流动状态高分子材料定义 (研究流动方程) 1.5 聚合物成型过程中的物理化学变化高分子材料的结构
链节:大分子链中的重复结构单元叫链节, CH2一CHCl 聚合度:大分子链中链节的重复次数称为聚合度。n即为聚合度。 大分子链长:聚合度越高,分子链越长, 链节数越多。聚合度反映了大分子链的长短
第一章 高分子聚合物的结构特点与性能
1.1高分子聚合物的结构特点(研究高分子结构-性能关系 )
⑴高分子链结构特点与性能:
第一章 高分子聚合物的结构特点与性能
1.2.2聚合物的热力学性能
1.非晶态高聚物的热力学性能
(2)三种力学状态 ①玻璃态:当θb<θ<θg时,高 聚物呈玻璃态符合虎克定律;是塑料和 纤维使用状态。 ②高弹态:θg<θ<θf时 从玻璃态转入了能自由运动的高弹 态,是橡胶的使用状态 ③粘流态:θf<θ<θd时 从而使高聚物成为流动的粘液,进 行成型加工
第一章 高分子聚合物的结构特点与性能
⑵高聚物的聚集态结构特点
⒉)高聚物的聚集态结构 ②链状结构与聚集态结构关系: 线型高聚物:按结晶度可分为晶态和部分晶态两类, 体型高聚物:只能为非晶态(玻璃态) ③结晶度:用来表示聚合物中结晶区域所占的比例,聚合物结晶度 变化的范围很宽,一般从30%~80% ; 影响聚合物结晶的因素:内部结构的规整性(主链上带有的侧基体 积小,对称性高);外部的浓度、溶剂、温度等。结构越规整,越容易 结晶,反之则越不容易,成为无定型聚合物。

高分子聚合物结构特点与性能

高分子聚合物结构特点与性能
• 1)高聚物固体及其溶液的力学性质是固体弹性和液体 粘性的综合(粘弹性),而且,在一定条件下,又能 表现出相当大的可逆力学形变(高弹性);
•ቤተ መጻሕፍቲ ባይዱ2)恒温下,能抽丝获制成薄膜,也就是说,高分子 材料会出现高度的各向异性;
• 3)高聚物在溶剂中能表现出溶胀特性,并形成居于 固体和液体之间的一系列中间体系;
26
吹塑成型受力:拉伸力
27
压缩成型受力:剪切力-静压力
28
(1)成型中熔体受力分析:
• 液体在平直圆管内受切应力而发生 流动的形式:
• 1)层流:液体的流动是按许多彼此 平行的流层进行的,同一层之间的 各点的速度彼此相同。如果增大流 动速度,使其超过一定的临界值, 则流动即转为紊流(湍流)。
19
体型聚合物的物理状态
• 高度交联的体型聚合物(热固性树脂)由于分子运动阻 力很大,一般随温度发生的力学状态变化较小,所以 通常不存在粘流态甚至高弹态,即遇热不熔,高温时 则分解。
20
1.3 聚合物的流变学性质
• 1.3.1 牛顿流动定律 • 1.3.2 指数流动定律 • 1.3.3 假塑性液体的流变学性质 • 1.3.4 影响聚合物流变性质的因素 • 1.3.5 热塑性和热固性聚合物流变行为
• 1)分子量的大小:聚合物的高分子含有很多原子数、相对分子质 量很高,分子是很长的巨型分子,使得聚合物在热力学的性能、 流变学的性质、成型过程的流动行为和物理化学变化等方面有着 它自身的特性。聚合物相对分子质量一般都大于104,但相对分子 质量的大小还不足以表达分子的结构特性。
• 2)高分子化合物具有多分散性: • 概 念:因同一聚合物体系内各个大分子的相对分子质量会因聚合
即:
用切应变γ代替dx/dr,式(2.2)可改写为:

第1章 高分子聚合物结构特点与性能

第1章  高分子聚合物结构特点与性能

牛顿流体的流变方程式为 非牛顿流体。

不服从牛顿流动规律的流动称为非牛顿型流动,具有这种流动行为的液体称为
K n 1 a a K n 1
1.3 聚合物的流变学性质
1.3.2 假塑性液体的流变学性质及其影响因素 1.假塑性液体的流变学性质
当n<1时,这种黏性液体称为假塑性液体。
对于假塑性流体而言,当流体处于中等剪切速率区域时,流体变形和流动所 需的切应力随剪切速率而变化,并呈指数规律增大;流体的表观黏度也随剪切 速率而变化,呈指数规律减小。这种现象称为假塑性液体的“剪切稀化”。
1.3 聚合物的流变学性质
1.3.2 假塑性液体的流变学性质及其影响因素 2.影响假塑性液体流变性的主要因素 (1) 聚合物本身的影响 支链程度越大,黏度就越高,则熔体的流动性就越低。 聚合物的相对分子质量较大时,宏观上表现为熔体的表观黏度加大。 聚合物中的相对分子质量分布越宽,聚合物的熔体黏度就越小,熔体流动性就 越好,但成型的塑件性能并不理想。 尽量使用相对分子质量分布较窄的材料。
1.4 聚合物成型过程中的物理化学变化
1.4.1 聚合物在成型过程中的物理变化 1.聚合物的结晶
聚合物一旦发生结晶,则其性能也将随之产生相应变化:
• • • • • • • • 聚合物密度增加; 使聚合物的拉伸强度增大; 冲击强度降低; 弹性模量变小; 聚合物的软化温度和热变形温度提高; 使成型的塑件脆性加大; 表面粗糙度值增大; 塑件的透明度降低甚至丧失。
1.1.2 高聚物的结构特点
图1.1 高聚物的结构示意图
1.1 高分子聚合物分子的结构特点
1.1.2 高聚物的结构特点 1.高分子链结构特点 2.高聚物的聚集态结构特点 (1)聚集态结构的复杂性 (2)具有交联网络结构

高分子聚合物结构特点与性能-全文可读

高分子聚合物结构特点与性能-全文可读

1.2.2聚合物的热力学性能
脆化温度 (θb) 高聚物呈脆性的
最高温度称脆化温度,
1. 非晶态高聚物的热力学性能
(1)典型理化性质温度
玻璃化温度 (θg ) 高聚物呈玻璃
态的最高温度为玻璃化温度; 是塑
件的最高使用温度。
粘流温度 (θf) 产生粘流态的最
低温度称为粘流温度 。是塑料的最 低成型温度。
1.3. 1 牛顿流动规律
⑵牛顿型溶体流动规律分析 流体层流模型研究: 流体流动看作许多层彼此相邻的薄液层 ,沿外力作用的
方向进行相对滑移。 剪切力F -为外部作用于整个流体的恒定剪切力; 液层面积;A -为向两端延伸的液层面积;
磨擦阻力F1 -为流体流动对所产生的 磨擦阻力 。在达到稳态流动后 ,F =-F1
⑴流体在管内的流动状态( 层流与湍流) 。 层流的特征: 流体质点的流动方向与流道轴线平行 ,其流动速度也相同 ,所有流体质 点的流动轨迹均相互平行 。Re<2300
湍流的特点: 质点的流动轨迹成紊乱状态,如图15b所示。R 。≥2300 流体的流动状态转变(由层流变为湍流)条件为
第一章 高分子聚合物的结构特点与性能
化学分解温度 (θd) 高聚物在高
温下开始发生化学分解的温度; 是 塑料的最高成型温度。
第一章 高分子聚合物的结构特点与性能
1.2.2聚合物的热力学性能 1. 非晶态高聚物的热力学性能
(2)三种力学状态
脆化温度 (θb) 玻璃化温度 (θg) 粘流温度 (θf)
①玻璃态: 当θb<θ<θg时 , 高
1 . 3 .4影响假塑性液体流变性的主要因素 ⑴聚合物结构对粘度的影响 ①链结构 :主链结构主要是由单键组成的呈现的非牛顿性较强 支链程度越大粘度就越高 ,则熔体的流动性就越低。 ②聚合物的相对分子质量及其分布 相对分子质量较大时 ,宏观上表现为熔体的表观粘度加大。 分子质量分布越宽,聚合物的熔体粘度就越小 ,熔体流动性就越好 ⑵聚合物中添加剂的影响 增塑剂的加人会使熔体粘度降低从而提高熔体的流动性 ⑶温度及压力对聚合物熔体粘度的影响 温度升高 , 降低粘度提高流动性(主要适用于:对切速率不是很敏感或其熔体

§1.2 聚合物的热力学性能

§1.2  聚合物的热力学性能

聚合物的热力学性能
θf是塑料成型加工的最低温度,
通过加入增塑剂可降低聚合物
粘流温度。 粘流温度有关因素: 与聚合物结构有关; 与其相对分子质量有关; 一般相对分子质量越高,粘流温度也越高。
§1.2
聚合物的热力学性能
塑料成型加工中,其加工温度的选择: 首先要进行塑料熔融指数及粘度的测定,粘度 值小、熔融指数大的塑料,其加工温度相对要低 一些,但这种材料制成的产品强度不高。 ——高度交联的体型聚合物(热固性树脂),由 于其分子运动阻力大,一般温度对其力学状态的 改变较小,因此通常不存在粘流态甚至高弹态。
温度较低,分子运动能量很低,链段处于被冻 结的状态,只有较小的单元:侧基、支链和小链 节能运动,所以,不能实现构象的转变。
§1.2
聚合物的热力学性能
高聚物玻璃态的力学性质: 受到外力时,只能使主链的 键长和键角有微小的改变。 宏观表现为高聚物受力后形变小,且可逆的; 弹性模量较高,聚合物处于刚性状态; ——物体受力的变形符合虎克定律,即应力与 应变成正比,并在瞬时达到平衡。 聚合物处于玻璃态时硬而不脆,可做结构件使 用,但使用温度不低于脆化温度θb,否则会发生 断裂,使塑料失去使用价值。
§1运动 对聚合物的韧性有很大影响。 4.晶态聚合物的晶区内分子运动。
§1.2
聚合物的热力学性能
二、聚合物的热力学性能 1.非晶态高聚物的热力学性能 固体聚合物分类: 晶态聚合物 非晶态聚合物。 热力学曲线: 描述高聚物在恒定应力作用下形变随温度改变 而变化的关系曲线。
§1.2
聚合物的热力学性能
当结晶度达到40%时,微晶体 彼此衔接,形成贯穿整个材料的 连续结晶相。 此时,结晶相承受的应力比非 结晶相大得多,使材料变得坚硬,宏观上将觉察 不到它有明显的玻璃化转变。

聚合物参数

聚合物参数

聚合物参数聚合物是由单体分子通过化学反应形成的高分子化合物。

在聚合物的研究和应用过程中,许多参数被提出来描述和表征聚合物的特性和性能。

本文将从分子结构、物理性质、力学性能和热性能等方面介绍一些常见的聚合物参数。

一、分子结构参数1. 聚合度:聚合度是指聚合物链上平均重复单元的个数,它可以影响聚合物的物理性质和加工工艺。

聚合度越高,聚合物的分子量越大,物理性质和力学性能也会相应提高。

2. 分子量分布:分子量分布描述了聚合物链的长度分布情况。

窄分子量分布的聚合物具有均一的分子大小,物性稳定性好;而宽分子量分布的聚合物则具有不同分子大小的链段,物性变化范围大。

3. 共聚比例:共聚比例表示在共聚反应中两种或多种单体的摩尔比例。

共聚比例的不同会导致聚合物的结构、性质和应用领域的变化。

二、物理性质参数1. 熔点和玻璃化转变温度:熔点是指聚合物在加热过程中从固态转变为液态的温度,它与聚合物的结晶性和熔融性有关。

玻璃化转变温度是指聚合物在冷却过程中从高温状态转变为玻璃态的温度,它与聚合物的分子结构和运动性有关。

2. 密度:密度是指聚合物在单位体积内所含质量的大小,它可以反映聚合物的紧密程度和物质的质量。

不同密度的聚合物具有不同的物理性质和应用领域。

3. 透明度:透明度是指聚合物对光线的透过程度,它与聚合物的结晶性、分子排列和杂质含量有关。

透明度高的聚合物适用于光学和包装领域。

三、力学性能参数1. 强度:强度是指聚合物在拉伸、压缩或弯曲等力学加载下抵抗破坏的能力。

强度可以分为抗拉强度、抗压强度和抗弯强度等不同类型。

2. 弹性模量:弹性模量是指聚合物在弹性变形范围内,单位应力下产生的应变。

弹性模量高的聚合物具有较好的刚性和弹性恢复能力。

3. 韧性:韧性是指聚合物在断裂前能吸收的能量。

韧性高的聚合物具有较好的抗冲击性和延展性。

四、热性能参数1. 热稳定性:热稳定性是指聚合物在高温条件下的稳定性能。

热稳定性好的聚合物具有较高的热分解温度和较低的热失重率。

聚合物的热性能详解

聚合物的热性能详解

NORTH UNIVERSITY OF CHINA
马丁耐热温度
在马丁耐热仪上对垂直夹持 的规定尺寸试样施以4.9Mpa 应力,在耐热仪的炉中以 (50±3)℃/h的均匀升温速 率加热,测得距试样轴线水 平距离240mm处的试验仪横 杆上标度下移(6±0.01) mm时的温度,即为材料的马 丁耐热温度,以℃表示 。
热导率的物理意义: 单位温度梯度下,单位时间内通过单位垂直截面的热量, 单位为J/(m·K·s)
热传导机制: ➢ 自由电子的运动——金属 ➢ 晶格振动——具有离子键和共价键的晶体 ➢ 分子的传导——有机物
常用聚合物的热导率
NORTH UNIVERSITY OF CHINA
聚合物
热导率/W·(m·K)-
NORTH UNIVERSITY OF CHINA
弯曲负载热变形温度
在试验仪上将规定尺寸试样以简支梁方式水平支承,置 于热浴装置中,以(50±3)℃/6min的速率均匀升温, 并施以应力为1.81MPa或0.45MPa的垂直弯曲载荷,当 试样挠度达到0.21mm时的温度,即为材料的热变形温 度,以℃表示。
NORTH UNIVERSITY OF CHINA
耐热性
定义:在受负荷下,材料失去其物理机械强度 而发生形变的温度。
表征聚合物耐热性的特征温度: 玻璃化转变温度:无定形聚合物有玻璃态向高弹态的转变温度,或
半结晶型聚合物的无定形相由玻璃态向高弹态的转变温度。 熔融温度:结晶型聚合物由晶态转变为熔融态的温度。 流动温度:无定形塑料转变为熔融状态的温度。 短时耐热性(马丁耐热温度、弯曲负载热变形温度、维卡软化点) 最高连续使用温度
热膨胀
定义: 由温度变化而引起材料尺寸的变化。 包括线膨 胀,面膨胀和体膨胀。 材料的热膨胀取决于原子(或分子)相互作用 之间的化学键合作用和物理键合作用。 分子晶体:线膨胀系数10-4 K-1; 共价键键合材料:线膨胀系数10-6 K-1;

有机化学中的聚合物的性能与性能测试

有机化学中的聚合物的性能与性能测试

有机化学中的聚合物的性能与性能测试聚合物是由许多重复单元组成的高分子化合物,它们在有机化学领域扮演着重要的角色。

聚合物的性能对于其应用领域具有决定性的影响。

因此,准确评估聚合物的性能并进行性能测试对于研究和应用有机化学至关重要。

聚合物的性能包括力学性能、热性能、电学性能等多个方面。

力学性能是指聚合物的强度、硬度和柔韧性等特性。

热性能则关注聚合物在高温和低温下的稳定性和可用温度范围。

电学性能涉及到聚合物的导电性、介电性和电子输运性能等。

下面将分别介绍聚合物在这些性能方面的测试方法。

一、力学性能测试1. 抗拉强度和伸长率测试力学性能中最基本的指标是聚合物的抗拉强度和伸长率。

这些指标可以通过拉伸试验来测量。

拉伸试验使用一个拉伸机,将聚合物样品拉伸,测量拉伸前后的变形,从而计算出抗拉强度和伸长率。

2. 硬度测试硬度是聚合物抵抗局部永久形变的能力。

常用的硬度测试方法包括洛氏硬度测试和巴氏硬度测试。

这些测试方法通过测量在一定加载下产生的印痕大小来评估聚合物的硬度。

3. 冲击强度测试聚合物的冲击强度是评估其耐冲击性能的指标。

冲击强度测试常用的方法有Charpy冲击试验和Izod冲击试验。

这些试验使用标准冲击试验机,将标准形状的试样进行冲击,测量所产生的断裂面积来评估聚合物的冲击强度。

二、热性能测试1. 热分解温度测试热分解温度是指聚合物在高温下开始分解的温度。

热分解温度测试可以使用热重分析仪进行。

该仪器通过加热聚合物样品,并同时测量其质量的变化,从而确定热分解温度。

2. 玻璃化转变温度测试玻璃化转变温度是指聚合物在温度下从玻璃态转变为橡胶态的温度。

玻璃化转变温度测试可以使用差示扫描量热仪进行。

该仪器通过测量样品在加热和冷却过程中的热流量差异,从而确定玻璃化转变温度。

三、电学性能测试1. 电导率测试电导率是衡量聚合物导电性能的指标。

电导率测试可以使用四探针电阻率计进行。

该仪器利用四根探针对聚合物样品施加电流,测量电压差来计算电导率。

聚合物的热性能

聚合物的热性能

图6-4 晶态高聚物的温度-形变曲线
1.分子量较小 2.分子量较大 3.轻度结晶高聚物
3.交联高聚物的力学状态
1.分子链间的交联限制了整链运动,所以 不能流动(除非是降解反应) 2.交联密度较小时,受外力作用时“网链” 可以改变构象,“伸直”熵变小,外力 去除,“蜷曲”熵变大,因此恢复到原 来状态,所以有高弹形变,有高弹态 (有转化点)。
二、高聚物的力学状态和热转变
力学状态:按外力作用下发生形变的性质 而划分的物理状态。 当温度由低到高在ቤተ መጻሕፍቲ ባይዱ定范围内变化时,高 聚物可经历不同的力学状态,各自反映了 不同的分子运动模式。 实验:将一定尺寸的高聚物试样在恒定外 力作用下,以一定的速度升温,测定样品 形变量与温度的关系,记录得到的曲线。 称温度-形变曲线,也称热机械曲线。
几个时间概念
①外力作用时间 有静态与动态之分。 ②实验观察时间 只能是一段。通常升温速度的倒数或频 率的倒数定义为此。 ③松弛时间
3.分子运动的温度依赖性
升高温度对分子运动具有双重作用: ①增加分子热运动的动能。当热运动能达到某 一运动单元实现某种模式运动所需要克服的位 垒时,就能激发该运动单元的这一模式的运动。 ②体积膨胀增加了分子间的自由体积。当自由 体积增加到与某种运动单元所需空间尺寸相配 后,这一运动单元便开始自由运动。 温度升高,分子运动松弛时间缩短。
软化点测定有很强的实用性,但没有 很明确的物理意义。对非晶高聚物, 软化点接近Tg,当晶态高聚物的分子 量足够大时,软化点接近Tm,但有时 软化点与两者相差很大。 软化点测定:马丁耐热温度、 热变形 温度、 维卡软化点。
A.马丁耐热温度
马丁耐热温度的测定是在马丁耐热烘 箱内进行的。 定义:升温速度为50℃/h,标准 试样受弯曲应力50kg/cm2时,试 样条弯曲,指示器中读数下降6mm 时所对应的温度即为马丁耐热温度。

聚合物材料的热性能

聚合物材料的热性能

聚合物材料的热性能聚合物材料是当代工业中广泛使用的一类材料,具有许多优势,如轻质、高强度、耐腐蚀等。

而在这些优势之外,聚合物材料的热性能也是一个非常重要的特性。

首先,聚合物材料的热导率较低。

热导率是衡量材料传递热量能力的指标,而聚合物材料由于其分子结构的特殊性质,使得其热导率较低。

这使得聚合物材料在一些需要绝热性能的领域有着广泛的应用,比如建筑领域中的保温材料。

其次,聚合物材料具有较低的热膨胀系数。

热膨胀系数是描述材料随温度变化而引起的尺寸变化程度的指标。

聚合物材料的热膨胀系数较低,使得其热胀冷缩的程度相对较小,从而在一些需要稳定性的场合具有重要的应用,比如用于电子设备封装的材料,可以减少由于温度变化而引起的微观破坏。

此外,聚合物材料还有着良好的耐热性能。

在高温环境下,聚合物材料可以保持原有的力学性能和化学稳定性,不易发生脆性破裂或化学反应。

这使得聚合物材料在一些高温工艺中的应用更加广泛,比如航空航天领域中的发动机零部件。

然而,聚合物材料的耐热性能也有其限制。

由于聚合物材料的分子结构较为复杂,其中含有大量的碳氢键,这使得其在高温下容易发生热分解反应。

一旦聚合物材料发生热分解,将会导致材料质量的下降以及性能的丧失。

因此,在一些需要承受高温环境的场合,需要对聚合物材料进行改性,以提高其耐热性能。

改性的方法是使聚合物材料中引入耐高温添加剂,如金属粉末、陶瓷颗粒等,以增强其耐高温性能。

这些添加剂可以吸收和分散热量,减少材料的热分解速率,从而提高聚合物材料的耐热性能。

此外,还可以采用交联的方法,使聚合物材料的分子链相互交联,增加材料的熔点和热稳定性。

然而,改性也会对一些其他性能产生一定的影响。

比如引入添加剂或进行交联改性后,聚合物材料的可加工性能和延展性会有所降低,从而对其加工和成型过程产生一定的限制。

因此,在进行改性时需要兼顾材料的各种性能要求,寻找最佳的改性方法。

总而言之,聚合物材料的热性能是其重要的特性之一。

聚合物材料的力学性能

聚合物材料的力学性能

聚合物具备高弹性的条件是在室温下为非晶体, 且其玻璃化转变温度远低于室温。 具备高弹性时,聚合物链结构上应具有下列特征: ①链非常长,并有很多弯; ②室温下链段在不停地运动; ③每二、三百个原子就有一处交联连接。 聚合物的高弹性在工程上常用于要求减振和密 封性的场合。
三、聚合物在粘流态下的变形
t>tf时,聚合物处于粘流状态。 聚合物分子链在外力作用下可进行整体相对滑 动,呈粘性流动,导致不可逆永久变形。 粘流态拉伸应力-应变曲线如曲线d,在应力很 小时,就发生较大的变形。
聚合物不能得到完全的晶体结构,实际上是晶区与非晶区 同时存在。 聚合物的结晶程度用晶体所占总体的质量分数表示,称为结 晶度。聚合物的结晶度通常小于98。电镜观察表明,高分子单 晶为折叠链结构(图9-6)。分子链折叠排列整齐有序,致密度较 高,分子间作用力较大。
图9—6
聚合物结晶态结构示意图
非晶态结构的高分子链多呈无规则线团 形态,为分子链近程有序,其中局部可以存 在高分子链折叠区。
二、高分子链的近程结构——构型
定义:由化学键所固定的几何形状—— 指高分子链的化学组成、键接方式和立体构 型等。
由一种结构单体合成的,故该类聚合物 又称为均聚物。如聚乙烯。 由两种以上结构单体聚合而成的聚合物 称为共聚物。如丁苯橡胶是丁二烯和苯乙烯 的共聚物。
丁苯橡胶主要应用于制作轮胎,还用于机械制 品、制鞋、地板材料、粘结剂等。
聚合物与低分子材料的特点(区别)
材料\特点 高分子材料 低分子材料 <500 不可分割 整个分子或原子 大部分或完全结晶较小 固定 气,液,固三态

相对分子质量 104~106 分子可否分割 可分割成短链 热运动单元 结晶程度 分子间力 熔点 物理状态 链节,链段,整链等多重热运动单元 非结晶态或部分结晶态 加合后可大于主键力 软化温度区间 只有液态和固态(包括高弹态)

聚合物热性质

聚合物热性质

、模量等 系数、比热、导热系数
、密度、
折光率、介电常数等
所以原则上可以利用在 Tg 转变过程中发生突变或不连续变化的 物性来测量 Tg
通常,Tg的测定分为四种类型
体积的变化:膨胀计法 、折射系数测定法等 热学性质变化:差热分 析法(DTA)和差示扫描量热法( DSC) 力学性质变化:热机械 法、应力松弛等 电磁效应:介电松弛、 核磁共振等
当第分二子运量 动增 单加 元到-链一段定,值此,时如曲图线中上MT3g<与MT4<f不M再5,重就合出,现出了 现高弹平台,由于链段大小主要决定于分子链的柔顺性 和邻近分子间的影响,与整个分子长度关系不大,所以 Tg不再随分子量增加而改变。
但M增大,分子链长增加,分子间作用力增大,内摩 擦阻力增大,分子相对滑移困难,而需在较高温度下 才能流动,所以Tf随M增大而升高。
高聚物在玻璃化转变时,虽然没有吸热和放热现 象,但比热发生了突变,在DSC曲线上表现为基 线向吸热方向偏移,产生了一个台阶。
(3)温度--形变曲线(热机械法)
测定原理:利用高聚物玻璃化转变时形变量的变化 来测定Tg,试样置于加热炉中等速升温,加于不等 臂杠杆上的砝码使试样承受一定的外力,利用差动
聚合物的热性质
基本要求
理解高分子运动单元的多重性、分子运动的 时间依赖性和温度依赖性。
要求掌握非晶共高聚物、结晶高聚物的温度形变曲线以及分子量对温度-形变曲线的影响; Tg的影响因素、Tg的测定、Tg转变的自由体 积理论;聚合物结晶能力与结构的关系。
重 点
非晶共高聚物、结晶高聚物的温度-形变曲线以及分子 量对温度-形变曲线的影响;理解高分子运动单元的多 重性、分子运动的时间依赖性和温度依赖性的影响因 素。Tg的影响因素、Tg的测定、Tg转变的自由体积理 论;聚合物结晶能力与结构的关系。熔点的概念、以 及影响聚合物Tm的因素。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1.2
聚合物的热力学性能
非晶态高聚物形变-温度曲线: 当温度较低时: 试样成刚性固体状态,在外力 作用下只发生较小变化。 当温度升到某一定范围: 试样的形变明显增加,并在随后的温度区间达 到一种相对稳定的形变。 在这一区域中,试样变成柔软的弹性体,温度 继续升高时形变基本上保持不变; 温度再进一步升高: 形变量又逐渐加大,最后完全变成粘性的流体。
§1.2
聚合物的热力学性能
就链段运动而言,它是固体, 就整个分子链来说,它是液体。 高弹性的弹性模量远远小于 普弹态,而形变量却远大于普弹态。
当温度θ>θf时: 进入粘流态。 高分子链不仅链段的松弛时间缩短了,而且整 个分子链也开始滑动,整个分子链相互滑动的宏 观表现为高聚物在外力作用下发生粘性流动。 这种流动是不可逆变形,除去外力后不再恢复。
温度较低,分子运动能量很低,链段处于被冻 结的状态,只有较小的单元:侧基、支链和小链 节能运动,所以,不能实现构象的转变。
§1.2
聚合物的热力学性能
高聚物玻璃态的力学性质: 受到外力时,只能使主链的 键长和键角有微小的改变。 宏观表现为高聚物受力后形变小,且可逆的; 弹性模量较高,聚合物处于刚性状态; ——物体受力的变形符合虎克定律,即应力与 应变成正比,并在瞬时达到平衡。 聚合物处于玻璃态时硬而不脆,可做结构件使 用,但使用温度不低于脆化温度θb,否则会发生 断裂,使塑料失去使用价值。
§1.2
聚合物的热力学性能
2.晶态高聚物的热力学性能 ——晶态高聚物中通常都存 在非晶区。 结晶高聚物的宏观表现: 轻度结晶的高聚物中,微晶体起着类似交联点 的作用,试样仍然存在明显的玻璃化转变。
当温度升高时,非晶部分从玻璃态转变为高弹 态,试样也会变成柔软的皮革状。
随结晶度的增加,相当于交联度的增加,非晶 部分处在高弹态的结晶高聚物的的热力学性能
达到热分解温度θ> θd时: 聚合物不能保证其尺寸的 稳定性和使用性能。 高聚物在θf~θd是粘流态,塑料的成型加工就 是在此范围内进行的。 ——塑料的使用温度范围为θb~θg之间;
——塑料的成型加工范围为θf~θd间。 使高聚物达到粘流状态主要方法是: 加热。
§1.2
聚合物的热力学性能
θf是塑料成型加工的最低温度,
通过加入增塑剂可降低聚合物
粘流温度。 粘流温度有关因素: 与聚合物结构有关; 与其相对分子质量有关; 一般相对分子质量越高,粘流温度也越高。
§1.2
聚合物的热力学性能
塑料成型加工中,其加工温度的选择: 首先要进行塑料熔融指数及粘度的测定,粘度 值小、熔融指数大的塑料,其加工温度相对要低 一些,但这种材料制成的产品强度不高。 ——高度交联的体型聚合物(热固性树脂),由 于其分子运动阻力大,一般温度对其力学状态的 改变较小,因此通常不存在粘流态甚至高弹态。
§1.2
聚合物的热力学性能
当结晶度达到40%时,微晶体 彼此衔接,形成贯穿整个材料的 连续结晶相。 此时,结晶相承受的应力比非 结晶相大得多,使材料变得坚硬,宏观上将觉察 不到它有明显的玻璃化转变。
温度曲线在θ<θf(熔点)以前不出现明显转 折。
§1.2
进入高弹态。
聚合物的热力学性能
当达到玻璃化温度当θ>θb 时: 温度升高,分子热运动的能量 逐渐增加,整个分子的移动仍不可能,但分子热 运动的能量已足以克服分子内旋转的位垒。 这时,激发了链段运动,链段可以通过主链中 单键的内旋转不断改变构象,甚至可以使部分链 段产生滑移,适应外力的作用。
§1.2
聚合物的热力学性能
高弹态: 由于弹性回缩变化是外力作用促使高聚物主链 发生内旋转的过程,它所需的外力显然比高聚物 在玻璃态时变形(改变化学键的键长和键角)所需 的外力要小得多,而形变量却很大,弹性模量显 著降低,这是非晶态高聚物在此状态下特有的力 学性质,这种状态称为高弹态。
——高弹态时有链段和整个分子链两种不同的 运动单元,因而这种聚集态具有双重性,既表现 出液体的性质,又表现出固体的性质。
§1.2
聚合物的热力学性能
一、聚合物分子运动单元的多重性 高分子运动的类型: 1.分子链的整体运动 这是分子链质量中心的相对移动,它的宏观表 现就是高分子熔体的流动。 2.链段的运动 高分子的特殊运动形式——是指高分子链在质 量重心不变的情况下,一部分链段通过单键内旋 转而相对于另一部分链段的运动。 可导致高分子主链伸展或卷曲,宏观上表现有 橡皮的回弹、拉伸等。
§1.2
聚合物的热力学性能
非晶态高聚物按温度区域划分为 三种力学状态: 玻璃态 高弹态 粘流态。 玻璃化转变: 玻璃态和高弹态之间的转变。 玻璃化温度θg: 玻璃态和高弹态之间的转变温度。
§1.2
聚合物的热力学性能
粘流温度θf: 高弹态与粘流态之间的转变温度。 ——非晶态高聚物随温度变化 的三种力学状态,是高聚物分子内部处于不同运 动状态的宏观表现。 非晶态高聚物在25℃左右时——是玻璃态。
§1.2
聚合物的热力学性能
3.链节、支链和侧基的运动 对聚合物的韧性有很大影响。 4.晶态聚合物的晶区内分子运动。
§1.2
聚合物的热力学性能
二、聚合物的热力学性能 1.非晶态高聚物的热力学性能 固体聚合物分类: 晶态聚合物 非晶态聚合物。 热力学曲线: 描述高聚物在恒定应力作用下形变随温度改变 而变化的关系曲线。
相关文档
最新文档