太湖底泥的空间分布和富营养化特征
流速对太湖河道底泥泥沙、营养盐释放规律影响实验研究-概述说明以及解释
![流速对太湖河道底泥泥沙、营养盐释放规律影响实验研究-概述说明以及解释](https://img.taocdn.com/s3/m/f67970840408763231126edb6f1aff00bfd57049.png)
流速对太湖河道底泥泥沙、营养盐释放规律影响实验研究-概述说明以及解释1.引言概述部分的内容旨在介绍本文的研究背景、目的以及主要内容。
以下是《流速对太湖河道底泥泥沙、营养盐释放规律影响实验研究》概述部分的内容:1.1 概述太湖作为中国最大淡水湖泊之一,是中国经济发展和生态环境保护的重要区域。
然而,由于近年来在太湖周边进行的农业、工业和城市化的快速发展,太湖的水质和生态环境遭受了严重破坏。
底泥是太湖重要的污染源之一,其中含有大量的泥沙和营养盐,对太湖水质和生态系统健康产生了巨大影响。
因此,本研究旨在探究流速对太湖河道底泥泥沙、营养盐释放规律的影响。
通过开展一系列实验研究,我们将从实测数据出发,分析不同流速条件下太湖河道底泥的泥沙释放规律及其影响因素,并进一步探讨流速对底泥营养盐释放规律的影响。
本研究分为三个主要部分:第一部分是对流速对太湖河道底泥泥沙释放规律的影响进行实验研究;第二部分是对流速对太湖河道底泥营养盐释放规律的影响进行实验研究;第三部分是对流速对太湖河道底泥泥沙、营养盐释放规律的综合分析。
通过以上研究内容的探索,我们将尝试揭示流速对太湖底泥释放行为的规律,为太湖水污染治理和生态修复提供科学依据。
通过本研究的开展,我们期待能够深入了解太湖底泥的释放规律,为太湖生态环境的改善和管理提供重要的理论和实践指导。
同时,本研究的结果也可为其他湖泊或水体地区的底泥污染治理提供参考。
文章结构部分的内容如下所示:1.2 文章结构本篇文章主要包括引言、正文和结论三个部分。
引言部分主要对研究背景和意义进行介绍,概述了本实验的目的和重要性。
另外,还简述了文章的研究方法和分析思路。
正文部分分为三个主要章节,分别是流速对太湖河道底泥泥沙释放规律影响实验研究、流速对太湖河道底泥营养盐释放规律影响实验研究以及流速对太湖河道底泥泥沙、营养盐释放规律的综合分析。
每个章节都包括实验设计、实验过程和结果与分析三个小节,详细介绍了实验的设计和操作过程,并对实验结果进行分析和解释。
太湖的富营养化发生的原因与治理对策
![太湖的富营养化发生的原因与治理对策](https://img.taocdn.com/s3/m/fff721c449649b6648d74783.png)
太湖的富营养化发生的原因与治理对策摘要:太湖流域是我国经济最发达的地区之一。
又是我国著名的旅游胜地。
随着社会和经济的发展。
太湖流域的GDP总值在全国占有重要的地位,但是,由于众多人为因素的影响,已导致太湖生态环境急剧恶化,特别是水体污染与富营养化情况日趋严重。
本文简述了太湖富营养化的成因、发展与现状,并简单介绍了一些治理太湖富营养化的治理对策。
前言太湖是我国第三大淡水湖泊,位于经济发达的长江三角洲,流域包括苏州、无锡、湖州等38个市县,是当地经济发展和人民生活的重要淡水资源,太湖水是沿湖居民的生命之水,其中苏州和无锡的生活、生产用水中80.0%取自于太湖。
太湖是典型的大型浅水湖泊,湖泊面积约 2338km²,平均水深只有 1.9m ,湖水滞留期约 300 天,各湖区水动力差异显著。
20世纪60年代,太湖略呈贫营养状态,1981年时仍属于中营养湖泊,但从20世纪80年代后期,由于周边工农业的迅速发展,太湖北部的梅梁湾开始频繁暴发蓝藻、水华。
而后,太湖污染日趋严重,造成了湖泊富营养化,水质恶化,蓝藻水华频繁暴发。
曾经让人流连忘返的太湖现在已变得腥臭远扬。
一、太湖富营养化的成因(一)太湖富营养化的主要因素1.农业污染农药和肥料的流失成为农业污染很重要的一个因素。
据有关研究成果表明,单位耕地面积的化肥施用量(折纯)由20世纪80年代不足200 kg·hm-²提高到目前600 kg.hm-²左右.单位耕地面积的农药用量达25 kg.hm-²至30kg·hm-²。
但是农药和化肥的利用率却没有随着用量的增加而增加,反而降低了。
人们用的化肥和农药逐渐增多,水体的氮磷含量明显升高。
雨水冲刷不当和灌水不当,带有超含量氮、磷的水体就流入河道。
既造成营养和有效成分流失、又污染水环境。
农药和化肥施用的广泛、分散、不合理等特点,使之成为水体富营养化的重要污染。
太湖水环境富营养化现状分析及治理建议
![太湖水环境富营养化现状分析及治理建议](https://img.taocdn.com/s3/m/69ccc6ee04a1b0717fd5dd34.png)
太湖水环境富营养化现状分析及治理建议【摘要】根据2003年至2006年太湖水域的水质监测结果,分析了太湖的水质现状、空间分布特征及变化趋势,其中总氮、总磷和Chl.a整体呈逐年增多的趋势,COD Mn 在2005年出现一个峰值后,开始出现下降的趋势。
在年内变化方面,总氮浓度峰值在春季3月份,此后便稳步下降,到8-9月达到年最低值;Chl.a年内峰值主要出现在温度较高的5-9月份;CODMn和总磷年内变化不明显。
太湖目前整体呈中度富营养状态,且富营养化程度呈逐年增高趋势,部分湖区已接近重度富营养状态。
【关键词】富营养化太湖现状分析治理太湖地区位于东经119°21′-122°00′,北纬30°19′-32°00′,由上海市、江苏苏南地区与浙江杭嘉湖地区组成。
太湖水是沿湖居民的生命之水,其中苏州和无锡的生活、生产用水中80.0%取自于太湖。
但自改革开放以来,在重经济轻环境的发展过程中,太湖污染日益严重。
2007年无锡太湖蓝藻大爆发,再一次将人们的眼光聚焦在了太湖。
为了更好地了解近些年来无锡太湖的水环境特征及其变化情况,我们对无锡太湖21个监测点近4年来的监测数据进行了研究分析,初步探讨了无锡太湖水环境演变特征。
1 数据来源和水环境参数本文数据主要来自2003~2006年太湖21个监测点的监测数据。
本文主要研究分析的水环境参数有:水温(t)、透明度(SD)、总氮(TN)、总磷(TP)、叶绿素(Chl.a)、化学耗氧量(CODMn)。
2 结果与分析2.1太湖水环境指标的变化特征太湖月水温最高出现在8月份,平均为32.2℃,最低水温出现在1月,平均为4.3℃。
水体透明度成逐年降低的趋势,2003年水体透明度平均值为0.35,到2006年则降为0.25(如图1b所示)。
由此可推知,无锡太湖水体中的悬浮物呈逐年增多的趋势。
总氮的变化趋势如图1a所示,整体呈逐年增多的趋势。
太湖重污染湖区底泥沉积物特性
![太湖重污染湖区底泥沉积物特性](https://img.taocdn.com/s3/m/9f3be13deefdc8d376ee3223.png)
Ke r s h s a a e etbn fT iu L k ;sdme t otm ld e urp iain y wo d :Z u h L k ;w s a ko ah e e i n ;b t n a o s g ;e t hc t u o o
1 研究背景
竺 山湖 为太 湖 西 北部 的半 封 闭 型湖 湾 , 起 百 北 渎港 , 南至 马 山 咀 至 师 渎 港 一 线 , 积 7 . k 2涉 面 22 m , 及无 锡滨 湖 区 、 锡 惠 山 区 、 兴市 和常 州 武 进 区 。 无 宜 太 湖西 岸 湖 区 , 北起 社渎 港 , 至大 港 河 , 区面 积 南 湖
T e s r c d v r c i r u i s o otm e i n o tmi a ti e weto e Z u h a e ot en w s h u f e a et a d s b t n fb t a n il t i o o s d me tc n a n f t s ft h s a t k ,n r r e t n lh h n h b n f h a u L e n d s uh 1 e t a k o eT i u L k e ic se a ko eT i t h .a o te3 w s b n f h ah a e w r d s u s d.T e rs l h w ta e c n e t o 3 t e h e u t s o t o tn s f s h t h og n c m t r r r a i a t ,r e N,T n t e s d me t o e Z u h n L k r r a a e s d me t o ewe t a k ae P i e i ns f h h s a a e ae moe t n t ti t e i ns f h s b n ra h t h h n h t
太湖流域环境问题与措施
![太湖流域环境问题与措施](https://img.taocdn.com/s3/m/57e94c64ec630b1c59eef8c75fbfc77da269971d.png)
“湖泛”现象
❖ “湖泛”(亦称黑水团或污水团)是指湖泊富营养化 水体在藻类大量暴发、积聚和死亡后,在适宜的气 象、水文条件下,与底泥中的有机物在缺氧和厌氧 条件下产生生化反应,释放硫化物、甲烷和二甲基 三硫等硫醚类物质,形成褐黑色伴有恶臭的“黑水 团”,从而导致水体水质迅速恶化、生态系统受到 严重破坏的现象。目前,国内外关于‘‘湖泛”的 研究很少或刚开始,像太湖这样浅水型大水面的湖 泊发生“湖泛”还仅仅是处于及时发现、跟踪监测、 积累资料和初步研究机理的阶段。
加剧苏南湖泊环境问题 产生的因素分析
❖ 自然因素
湖区地势平坦,地表径流缓慢 季风气候,雨热同期 ,季节分配不均 湖泊淤积 地面沉降
加剧苏南湖泊环境问题 产生的因素分析
❖ 人为因素
湖滩围垦 人为污水排入湖泊 大量使用农药化肥
结论
由于自然和人为等多方面因素,太湖水环境问题日趋严 重。这种状况说明我们对于太湖生态环境演化的机理了解非 常不够。 正是由于基础研究的严重不足, 难以对湖泊污染 和富营养化治理实践提供有力的理论支撑, 使得我国的湖泊 治理走了不少弯路。再加上国际上对大型浅水湖泊研究的整 体滞后,治理太湖成为了非常复杂而又艰巨的任务。
100%
80%
水 质 状 况 与
河
道
60% 40% 20%
污 污染河道长度 染
0% 1983ຫໍສະໝຸດ 19921996富营养化状况
繁引泊氮活水 殖起、、动体 而藻水磷的富 引类库等影营 起及、营响养 的其海养下化 水他湾物,指 质浮等质生的 恶游缓大物是 化生流量所: 现物水进需在 象迅体入要人 。速,湖的类
3
2008年5月“湖泛”期溶解 区
氧略高,高锰酸盐指数含量 南泉 0
水体富营养化介绍
![水体富营养化介绍](https://img.taocdn.com/s3/m/9e1254576f1aff00bed51e89.png)
2、减少内源性营养物质负荷
输入到湖泊等水体的营养物质在时空分布上是 非常复杂的。氮、磷元素在水体中可能被水生生物 吸收利用,或者以溶解性盐类形式溶于水中,或者 经过复杂的物理化学反应和生物作用而沉降,并在 底泥中不断积累,或者从底泥中释放进入水中。减 少内源性营养物负荷,有效地控制湖泊内部磷富集, 应视不同情况,采用不同的方法。
三、危害
太湖位于长江三角洲的南缘,古称震泽、具
区,又名五湖、笠泽,是中国五大淡水湖之一,横 跨江、浙两省,北临无锡,南濒湖州,西依宜兴, 东近苏州。
太湖湖泊面积2427.8平方公里,水域面积为 2338.1平方公里,湖岸线全长393.2公里。其西和 西南侧为丘陵山地,东侧以平原及水网为主。
太湖地处亚热带,气候温和湿润,属季风气候。 太湖河港纵横,河口众多,有主要进出河流50余条。 太湖水系呈由西向东泄泻之势,平均年出湖径流量 为75亿立方米,蓄水量为44亿立方米。太湖岛屿众 多,有50多个,其中18个岛屿有人居住。
太湖是我国五大淡水湖 之一。自上世纪九十年代以 来,太湖富营养化问题越来 越严重,已受到全社会的广 泛关注。太湖水污染治理是 国家确定的“三河三湖”治 理的重要任务之一。2001年9 月,国务院在苏州召开太湖 水污染防治第三次工作会议, 温家宝总理亲临会议并作了 重要讲话,提出了太湖水资 源保护“以动治静,以清释 污,以丰补枯,改善水质” 的十字方针。2015年两会期 间,水体富营养化的治理也 被提上记事日程,引起社会 的重视。
(2)造成生态链失衡,破坏水与生态环境。水 葫芦繁殖很快,易在生长区内形成优势物种,导致 其他水生植物减少,甚至死亡。水葫芦大面积覆盖 水面,一方面降低了光线穿透水体的能力,影响水 底植物生长;另一方面,水体中含氧量降低,鱼类 因缺氧大量死亡,严重影响渔业生产。
太湖湖滨带底泥氮、磷、有机质分布与污染评价
![太湖湖滨带底泥氮、磷、有机质分布与污染评价](https://img.taocdn.com/s3/m/ad9b2052c950ad02de80d4d8d15abe23482f0303.png)
太湖湖滨带底泥氮、磷、有机质分布与污染评价王佩;卢少勇;王殿武;许梦爽;甘树;金相灿【摘要】采集了环太湖湖滨带表层(0~10cm)底泥,研究分析了湖滨带底泥中有机质(OM)、总氮(TN)、总磷(TP)的空间分布特征,并对太湖湖滨带底泥进行营养评价.结果表明,湖滨带底泥中OM含量在1.42%~9.96%之间,空间分布趋势为:东太湖>竺山湾>贡湖>梅梁湾>南部沿岸>东部沿岸>西部沿岸;TN含量在458~5211 mg/kg之间,空间变化趋势为东太湖>竺山湾>东部沿岸>贡湖>南部沿岸>梅梁湾>西部沿岸;TP含量在128.56~1392.16mg/kg之间,空间变化趋势为竺山湾>梅梁湾>东太湖>南部沿岸>贡湖>东部沿岸>西部沿岸,OM与TN分布趋势相似,TN与OM之间极显著正相关(r=0.903,P<0.01),TP与OM之间弱相关(r=0.073,P<0.332).结合综合污染指数和有机指数评价法可知,太湖湖滨带底泥环境质量整体较好,氮、磷污染除东太湖和竺山湾属重度污染外其他各区属轻中度污染;有机污染除东太湖外大部分区域属较清洁区.%Top layer (0~10 cm) samples in the lakeside zones of Taihu Lake were collected. The content of organic matter (OM), total nitrogen (TN), and total phosphorus (TP) were measured, and finally pollution assessment for top layer sediments was made. The results showed that the OM levels in top layer sediments in lakeside zones of Taihu Lake ranged from 1.42% to 9.96%. The spatial change trend of OM content of the top layer sediment in the decrease order as follows: Eastern Taihu Lake, Zhushan Bay, Gonghu Bay, Meiliang Bay, South shore, East shore, and West shore. TN content of the top layer sediment had a similar spatial distribution regularity with OM, ranged from 458mg/kgto 5211mg/kg. The spatial change trend of TN in the decreaseorder as follows: Eastern Taihu Lake, Zhushan Bay, East shore, Gonghu Bay , South shore, Meiliang Bay and West shore. TP content of the top layer sediment ranged from 128.56mg/kgto 1392.16 mg/kg. The spatial change trend of TP in the decrease order as follows: Zhushan Bay, Meiliang Bay, Eastern Taihu Lake, South shore, Gonghu Bay, East shore and West shore. OM content and TN content had very significant positivecorrelation(r=0.903, P<0.01), but no obvious correlation with TP content (r=0.073, P<0.332) in the top layer sediments. Based on comprehensive pollution index and organic index, the environmental qualities of sediments in the whole lakeside zones still belonged to clean category. Except for Eastern Taihu Lake and Zhushan Bay seriously polluted by N, P and the other areas were mild-to-moderate pollution. The organic pollution of most areas was under lower pollution level except East shore.【期刊名称】《中国环境科学》【年(卷),期】2012(032)004【总页数】7页(P703-709)【关键词】太湖;湖滨带;总氮;总磷;有机质;评价【作者】王佩;卢少勇;王殿武;许梦爽;甘树;金相灿【作者单位】河北农业大学资源与环境科学学院,河北保定071002;中国环境科学研究院湖泊工程技术中心,国家环境保护湖泊污染控制重点实验室,北京100012;中国环境科学研究院湖泊工程技术中心,国家环境保护湖泊污染控制重点实验室,北京100012;河北农业大学资源与环境科学学院,河北保定071002;中国环境科学研究院湖泊工程技术中心,国家环境保护湖泊污染控制重点实验室,北京100012;中国环境科学研究院湖泊工程技术中心,国家环境保护湖泊污染控制重点实验室,北京100012;中国环境科学研究院湖泊工程技术中心,国家环境保护湖泊污染控制重点实验室,北京100012【正文语种】中文【中图分类】X142底泥是生态系统的重要组成部分,底泥不仅可间接反映水体的污染情况、水动力状态,且在外界水动力因素制约下向上覆水体释放营养成分,影响湖泊水质和富营养化过程[1].太湖位于长江三角洲南缘,介于N30°55′42″~31°33′50″,E119°53′45″~120°36′15″ 之间,是我国第三大淡水湖[2].内湖滨带是湖泊流域中水域与陆地相邻生态系统间的过渡地带,是湖泊生态系统受人类活动影响最敏感的部分.内湖滨带在促淤造地、维持生物多样性和生态平衡及提升生态旅游品质等方面[3-4]均十分重要.近年来,由于滨湖地区社会经济迅速发展,入湖污染负荷增加,太湖水体和底泥中的污染物不断积累,湖泊富营养化有加重趋势[5].目前,针对太湖水体及底泥已有大量研究,如邓建才等[6]研究了太湖水体氮磷的空间分布;金相灿等[7]研究了太湖东北部底泥可溶性氮、磷的季节性变化;赵兴青等[8]采集了不同季节太湖梅梁湾和贡湖底泥柱样,研究了底泥营养盐含量的垂直变化;雷泽湘等[9]研究了水生植物氮磷与湖水和底泥氮磷含量的关系;张明礼等[10]研究了太湖竺山湾底泥中有害物质含量.但对太湖湖滨带底泥的研究鲜有报道.本文通过对太湖湖滨带不同分区底泥的分析,揭示太湖湖滨带底泥有机质(OM)、总氮(TN)、总磷(TP)的污染现状、分布特征并对其进行营养评价,旨在系统全面的揭示太湖湖滨带底泥污染现状,为太湖富营养化控制提供理论指导和技术支撑.1 材料与方法1.1 样点的布设与采集本次全湖湖滨带大规模调查,旨在全面了解环太湖湖滨带底泥的污染现状.调查范围为环太湖防洪大堤内,水向辐射带 50~100m内的区域,平均水深1.4m.采样时间为2010年08月.用彼德森采泥器,采集表层底泥,泥厚 10cm.环太湖湖滨带共布50个点,湖滨带分区及点位布置见图1.图1 太湖湖滨带分区及底泥采样点位Fig.1 The regional classification and sampling sits in the lakeside zones of Taihu Lake由太湖水专项湖滨带课题组绘制样品采后冷藏带回实验室,待底泥冷冻干燥后,去除样品中贝壳、杂草、沙粒等杂物,经研磨、过筛(100目)后,保存于密封袋中,置于冰箱待用.1.2 底泥测定项目与方法底泥主要测定项目包括 OM(重铬酸钾容量法)、TP(SMT法)、TN(全自动凯式定氮法) [11].1.3 数据处理数据处理及其相关分析用 Excel2007与 SPSS16.0软件.2 结果与讨论2.1 OM分布特征OM 是底泥中重要的自然胶体之一,也是反映有机营养程度的重要标志[12].由图2可知,湖滨带各分区底泥中OM含量在1.42%~9.96%间,各分区平均值由高到低依次为:东太湖>竺山湾>贡湖>梅梁湾>南部沿岸>东部沿岸>西部沿岸.东太湖OM最大值、最小值、平均值分别为:9.95%、2.85%和5.66%,均为各分区中最高,其它各区差异不大.图2 太湖湖滨带底泥有机质分布Fig.2 Distribution of organic matter in sediments of lakeside zones of Taihu Lake研究表明,富营养化水体中底泥所含OM,一般来自城市生活污水和水生生物死亡残骸长期积累[13-14].东太湖周围多为出湖河流[15],因此受生活污水影响较小.东太湖湖滨底泥OM较高,可能与围网养殖及水生植物大量生长有关.2009年初虽完成了围网大规模缩减,2010年东太湖围网养殖面积约2600hm2[16],但杨再福等[17]认为,东太湖的围网养殖面积至少应控制在1000hm2以内,才能保证东太湖生态可持续发展,因此由围网养殖导致鱼蟹饵料及排泄物沉积;围网引起的湖面狭窄,吹程减小,风浪减弱等问题仍存在,再加上沼泽化加剧,1959~ 1997年东太湖沼泽化综合指数由1.47增至2.41[16],由此导致挺水植物及浮叶植物的大量生长,2009年水生植物覆盖率达97%,为全湖水生植物发育最好的区域[18],大量水生植物残体沉积可能是导致东太湖比其他各区OM高的主要原因.2.2 TN、TP分布特征及分析由图3(a)可知:太湖湖滨带底泥TN空间分布差异显著,TN含量在 458~5211mg/kg间.各分区TN含量平均值变化趋势:东太湖>竺山湾>东部沿岸>贡湖>南部沿岸>梅梁湾>西部沿岸.根据 EPA制定的底泥分类标准,各区 TN平均值:梅梁湾和西部沿岸 TN<1000mg/kg,属轻度污染区;东太湖在2000mg/kg以上,属重度污染区;其他各区均在1000~2000mg/kg间,属中度污染区.从图4(a)可见,TN与OM之间极显著正相关(r=0.903, P<0.01),说明OM在底泥中的富集是TN的主要来源,TN和OM的沉积具很高的协同性,它们主要通过水生植物残体的沉积过程进入底泥[19-20].因此东太湖底泥中 TN 也比其他各区高.图4 太湖湖滨带底泥TN、TP与OM回归分析Fig.4 Regressions of TN, TP to OM in sediments of lakeside zones of Taihu Lake由图 3(b)可见太湖湖滨带底泥中 TP含量在128.56~1392.16mg/kg间,各分区TP平均值变化趋势:竺山湾>梅梁湾>东太湖>南部沿岸>贡湖>东部沿岸>西部沿岸.根据EPA制定的底泥分类标准,各分区TP平均值:梅梁湾在420~650mg/kg 间,属中度污染区;竺山湾大于 650mg/kg,属重度污染区;其他各区均小于420mg/kg,属轻度污染区.由图 4(b)可知,TP与 OM 之间弱相关(r=0.073,P<0.332),表明 TP主要并非由底泥中OM 的富集造成.根据对湖滨带底泥进行的磷形态分析及文献[20]可知,无机磷是太湖湖滨带底泥中磷的主要存在形式,外源输入是无机磷的重要来源.竺山湾和梅梁湾磷污染显著高于其它各区可能因为:两区位于太湖北部重工业污染区,湖滨区有多条入湖河流河口,形成较长的河口型湖滨带.根据课题组同期河流调查监测数据:竺山湾附近有太滆运河、漕桥、殷村等入湖河流,各河流水体中TP平均超过0.17mg/L,超出地表水环境质量Ⅳ类标准,河流底泥中 TP含量平均约800mg/kg,超过 EPA制定的底泥重度污染标准(650mg/kg),梅梁湾附近入湖河流武进、直湖等水体中TP平均浓度和底泥中TP平均含量分别为0.18mg/L和 412.06mg/kg;因此竺山湾受入湖河流污染较重;再加上竺山湾独特的地理环境,又处于下风向,为蓝藻堆积严重区,藻类死亡堆积,就全湖看,易形成厌氧环境,利于反硝化作用,故 N含量会降低,而P含量高,藻类沉积带来的N、P及OM多.3 太湖湖滨带底泥营养评价目前对浅水湖泊底泥的污染状况尚无统一的评价方法和标准,多用有机指数和有机氮评价法[21],只考虑了OM和有机氮,而忽略了P;有的参用加拿大安大略省环境和能源部(1992)制定的环境质量评价标准[22-27],该标准根据底泥中污染物对底栖生物的生态毒性效应进行分级,虽然后者考虑到磷,但此标准源于对海洋底泥的生态毒性分析.因此本文针对太湖湖滨带各区底泥 N、P、OM的分布特点,用综合污染指数评价法和有机指数评价法来评价太湖湖滨表层带底泥污染现状.以1960年太湖底泥中TN、TP实测值的平均值作为背景值(即评价标准),由单项污染指数计算公式[28]:式中: Si 为单项评价指数或标准指数, Si大于 1表示含量超过评价标准值; Ci为评价因子i的实测值; Cs为评价因子 i的评价标准值 CSTN= 0.067%,CSTP=0.044%[29]. F为n项污染物污染指数平均值, Fmax为最大单项污染指数. 太湖湖滨带各分区底泥氮磷污染评价及污染程度分级结果见表1和表2.表1 太湖湖滨带各分区底泥综合污染评价Table 1 Comprehensive pollution assessment for the sediments in lakeside zones of Taihu Lake注:评价标准参照国内外有关资料[30],结合太湖湖滨带底泥实际情况而定湖滨带分区 STN 等级STP 等级 FF 等级梅梁湾 1.28 2 0.92 1 1.19 2竺山湾 2.76 4 2.09 4 2.60 4西部沿岸 1.06 2 0.38 1 0.90 1南部沿岸 1.77 3 0.86 2 1.56 3东太湖 3.83 4 0.69 2 3.14 4东部沿岸 0.78 1 0.24 1 0.66 1贡湖 1.00 2 0.67 2 0.92 1表2 太湖湖滨带底泥综合污染程度分级Table 2 Standard and level of comprehensive pollution in sediments of lakeside zones of Taihu Lake等级划分 STN STP FF 等级1 STN<1.0 STP<0.5 FF<1.0 清洁2 1.0≤STN≤1.5 0.5≤STP≤1.0 1.0≤FF≤1.5 轻度污染3 1.5≤STN≤2.0 1.0<STP≤1.5 1.5<FF≤2.0 中度污染4 STN>2.0 STP>1.5 FF>2.0 重度污染根据表1中综合污染指数,可得湖滨带其各分区底泥污染分布(图5).依据表 2,太湖湖滨带各分区底泥污染平均水平依次是东太湖>竺山湾>南部沿岸>梅梁湾>贡湖>西部沿岸>东部沿岸.东太湖和竺山湾属重度污染区,南部沿岸属中度污染区,梅梁湾属轻度污染区,贡湖、西部沿岸、东部沿岸属清洁区.综合污染指数评价法将选用的评价参数TN、TP综合成一个概括的指数值来表征底泥污染程度,其相对于单一指数法而言具优越性,是综合信息输出[31].综合污染指数法忽略了OM指标,所以本文用有机污染指数法[25]对太湖湖滨带底泥污染现状进一步评价,使评价结果更完善.式中: OC为有机碳,%;ON为有机氮,%.太湖湖滨带各分区底泥有机污染评价结果见表3,太湖底泥有机指数评价标准见表4. 表3 太湖湖滨带各分区底泥有机污染评价Table 3 Organic pollution assessment for the sediments in lakeside zones of Taihu Lake湖滨带分区OC(%) ON(%) OI 等级梅梁湾1.48 0.08 0.12 Ⅱ竺山湾1.84 0.18 0.32 Ⅲ西部沿岸1.09 0.07 0.07 Ⅱ南部沿岸1.60 0.11 0.18 Ⅱ东太湖2.63 0.24 0.64 Ⅳ东部沿岸0.86 0.07 0.06 Ⅱ贡湖1.52 0.06 0.09 Ⅱ表4 太湖底泥有机指数评价标准[32]Table 4 Assess standards of organic index in sediments of lakeside zones of Taihu Lake项目 OI<0.050.05≤OI<0.20 0.20≤OI<0.5 OI≥0.5类型清洁较清洁尚清洁有机污染等级Ⅰ Ⅱ Ⅲ Ⅳ由表 4各分区平均有机污染指数绘出有机污染分布图(图6).从图6可见各分区有机污染分布情况:东太湖>竺山湾>南部沿岸>梅梁湾>贡湖>西部沿岸>东部沿岸.根据表4的评价标准,东太湖属有机污染区,其它湖区除竺山湾属尚清洁湖区外,都属较清洁湖区.有机指数评价结果与综合污染指数评价结果一致,均显示东太湖湖滨带底泥氮磷污染及有机污染属重污染区,但在实际调查过程中发现,东太湖湖滨区是各区中水质环境最好的区域,如2.1所述,东太湖水生植物越来越多,水生植物及藻类残体沉降是东太湖营养盐负荷的的主要来源.其次是竺山湾.其污染严重的原因主要是外源输入,生活污水、工业废水及农业面源排放随入湖河流注入太湖,且受太湖东南风影响,污染物不易扩散,从而使藻类大量生长积聚,导致该区污染严重,蓝藻频生,因此,控制外源贡献仍是竺山湾污染控制的重要对象.4 结论4.1 太湖湖滨带底泥中 OM 为 1.42%~9.96%,空间变化趋势为东太湖>竺山湾>梅梁湾>东部沿岸>南部沿岸>贡湖>西部沿岸;TN 含量在458~ 5211mg/kg 间,空间变化趋势为东太湖>竺山湾>东部沿岸>贡湖>南部沿岸>梅梁湾>西部沿岸;TP含量变化在 128.6~1392.16mg/kg间,空间变化趋势为竺山湾>梅梁湾>东太湖>南部沿岸>贡湖>东部沿岸>西部沿岸,其空间分布与OM、TN不同,最大值出现在竺山湾,其原因可能竺山湾处于下风向,易于藻类堆积、形成底泥还原环境,从而使该区成为重污染区.4.2 太湖湖滨带底泥中TN含量与OM含量极显著正相关(r=0.903, P<0.01),TP 含量与OM之间弱相关(r=0.073, P<0.332).用污染指数法与有机指数评价法对太湖湖滨带表层底泥的分析表明,太湖湖滨带底泥环境质量整体较好,N、P污染除东太湖和竺山湾属重度污染外其他各区属轻中度污染;有机污染除东太湖外大部分区域属较清洁区.参考文献:[1] 朱元容,张润宇,吴丰昌.滇池沉积物中氮的地球化学特征及其对水环境的影响 [J]. 中国环境科学, 2011,31(6):978-983.[2] 张雷,郑丙辉,田自强.西太湖典型河口区湖滨带表层沉积物营养评价 [J]. 环境科学与技术, 2006,29(5):4-7.[3] David Pearson. From wasteland to wetland [J]. Eco. Design,2000,8(2):12-14.[4] 郭来喜.中国生态旅游-可持续旅游的基石 [J]. 地理科学进展, 1997,16(4):1-10.[5] 2008年太湖健康状况报告.[EB/ OL]. http://news.h2o-china.com/html/2010/04/.[6] 邓建才,陈桥,翟水晶,等.太湖水体中氮磷空间分布特征及环境效应 [J].环境科学, 2008,29(12):3382-3386.[7] 金相灿,姜霞,徐玉慧,等.太湖东北部沉积物可溶性氮、磷的季节性变化 [J]. 中国环境科学, 2006,26(4):409-413.[8] 赵兴青,杨柳燕,于振洋,等.太湖沉积物理化性质及营养盐的时空变化 [J]. 湖泊科学, 2007,19(6):698-704.[9] 雷泽湘,徐德兰,谢贻发,等.太湖水生植物氮磷与湖水和沉积物氮磷含量的关系 [J]. 植物生态学报, 2008,32(2):402-407.[10] 张明礼,杨浩,林振山,等.太湖竺山湾底泥中有害物质含量与环境污染评价 [J]. 中国环境科学, 2011,31(5):852-857.[11] 中国土壤学会.土壤农业化学分析方法 [M]. 北京:中国农业科技出版社, 1999:22-26.[12] 余辉,张文斌,卢少勇,等.洪泽湖表层底质营养盐的形态分布特征与评价 [J]. 环境科学, 2010,31(4):961-968.[13] 谭镇.广东城市湖泊沉积物营养盐垂直变化特征研究 [D].广州:暨南大学, 2005.[14] 李文朝.东太湖沉积物中氮的积累与水生植物沉积 [J]. 中国环境科学,1997,17(5):418-421.[15] 陈雷,远野,卢少勇,等.环太湖主要河流入出湖口表层沉积物污染特征研究 [J]. 中国农学通报, 2011,27(01):294-299.[16] 秦惠平,焦锋.东太湖缩减围网后的水质分布特征探讨 [J].环境科学与管理, 2011,36(5):51-55.[17] 杨再福,施炜刚,陈立侨,等.东太湖生态环境的演变与对策 [J].中国环境科学, 2003,23(1):64-68.[18] 徐德兰,雷泽湘,韩宝平.大型水生植物对东太湖河湖交汇区矿质元素分布特征的影响 [J]. 中国生态环境学报, 2009, 18(5):1644-1648.[19] 倪兆奎,李跃进,王圣瑞,等.太湖沉积物有机碳与氮的来源 [J].生态学报, 2011,31(16):4661-4670.[20] 袁旭音,陈骏,季峻峰,等.太湖沉积物和湖岸土壤的污染元素特征及环境变化效应 [J]. 沉积学报, 2002,20(3):427-434.[21] 陈如海,詹良通,陈云敏,等.西溪湿地底泥氮磷和有机质含量竖向分布规律 [J]. 中国环境科学, 2010,30(4):493-490.[22] Calmano W Ahlf, Forstner U. Sediment quality assessment: chemical and biological approaches[C]. Calmano W Ahlf, Forstner U,eds. Sediment and Toxic Substances: Environmental Effects and Ecotoxity . Berlin: Springer, 1995:1-36.[23] 吴明,邵学新,蒋科毅.西溪国家湿地公园水体和底泥 N-P营养盐分布特征及评价 [J]. 林业科学研究, 2008,21(4):587-591.[24] Leivuori M, Niemisto L. Sedimentation of trace metals in the Gulf of Bothnia [J]. Chemosphere, 31(8):3839-3856.[25] 李任伟,李禾,李原,等.黄河三角洲沉积物重金属氮和磷污染研究 [J]. 沉积学报, 2001,19(4):622-629.[26] 魏琳瑛,卜献卫.六横大岙附近海域环境质量现状评价 [J]. 东海海洋,1991,17(1):66-71.[27] 方宇翘,裘祖楠,马梅芳,等.河流底泥污染类型标准的制定 [J].环境科学, 1989,10(1):27-30.[28] 岳维忠,黄小平,孙翠慈.珠江口表层沉积物中氮、磷的形态分布特征及污染评价[J]. 海洋与湖沼, 2007,38(2):111-117.[29] 王苏民,窦鸿身.中国湖泊志 [M]. 北京:科学出版社, 1998.[30] 范志杰.浅谈海洋沉积物标准的几个问题 [J]. 交通环保, 1999,20(1):21-25.[31] 丁静.太湖氮磷分布特征及其吸附-解吸特征研究 [D]. 南京理工大学,南京.2010.[32] 隋桂荣.太湖表层沉积物中 OM-TN-TP的现状与评价 [J]. 湖泊科学, 1996,8(4):319-324.。
太湖富营养化原因与治理工程
![太湖富营养化原因与治理工程](https://img.taocdn.com/s3/m/3e6795d2b9f3f90f76c61b6b.png)
太湖富营养化原因与治理工程——秦伯强中国科学院南京地理与湖泊研究所(南京21008)郑正(主持)——前南京大学环境学院院长,近期加盟复旦:复旦环科的大气化学方向的前沿地位是不可争议的,但在水体污染治理方面加强才能使环境排名符合复旦的地位。
(以湖泊命名的研究所仅此一所)一、太湖饮水危机供水时太湖的主要功能。
梅梁湾---贡湖水厂取水口:2007年5月爆发蓝藻水华危机。
6月1日太湖站科研人员取样,有严重的腥臭味(蓝藻的氮磷含量高达40%),6月3日已经大大好转,但仍大大劣于湾中心地带。
——太湖蓝藻年年爆发,但近期威胁到了水厂的水质。
>> 具体表现:1.中心磷、叶绿素浓度持续增高2.持续时间长3.范围扩大4.水生植物大量死亡,于是生态系统状况的恶化【多年治理依然严重显示了其困难和复杂程度】>>蓝藻爆发的原因:1.气温和水温——全球变暖2.水位——单位水体光强大3.风向——三月初至五月末,西北风,有利于藻类在取水口堆积,为水质时间创造条件。
4.湖流——湾内向湖中心,利于取水口堆积。
容易把堆积在取水口沿岸腐烂的取水口沿岸正在腐烂的蓝藻水华冲向取水口。
二、太湖富营养化的原因分析>>蓝藻水华爆发是水体富营养化的而最主要生态学体现。
>>中国的湖泊主要分布在青藏高原和长江中下游地区。
其中淡水湖(60%)和浅水湖泊主要集中在长江中下游。
目前中营养和富营养的湖泊已经达到70%——严峻。
【2008年5月27日,在太湖宜兴湖岸出现黑水团】>>湖泊富营养化导致生物多样性下降:鱼类,底栖动物……——湖泊中搞生态系统的食物链: 小鱼动物上升,浮游动物减少,导致了藻类水华的上升原因:1.人类活动:A工业化B工业化城市扩展与城市化(早期只考虑了防洪,以建造排水系统>> 滇池污水大多来自昆明)C农业生产方式强度——高度养料D渔业发展,湖岸围垦——滩地浅水区域,原本是缓冲地带E闸、坝、环湖大堤东城,降低了河湖水量减缓熟虑改变湿地,减小自净能力。
太湖底泥生态疏浚规划综述
![太湖底泥生态疏浚规划综述](https://img.taocdn.com/s3/m/a2d1e4795acfa1c7aa00cca3.png)
太湖底泥生态疏浚规划综述1.1项目背景太湖面积2338km2,是我国第三大淡水湖泊,平均水深1.95m,属典型的平原浅水湖泊,具有防洪、供水、养殖、旅游和生态等综合功能,是流域洪水调蓄和水资源配置的主要水体,也是流域经济生活发展的重要自然资源。
上世纪80年代以来,由于流域经济高速发展与水环境保护工作相对滞后的矛盾,太湖水质污染与湖泊富营养化问题日益突出,受入湖河流污染和湖泊底泥影响,导致水质恶化,水体富营养化,蓝藻爆发,生态环境退化等一系列问题,直接威胁沿湖及流域供水安全和生态系统安全,制约流域经济社会可持续发展,严重影响全面小康社会建设和流域经济社会的现代化。
自1996年起,国家将太湖列入“三河三湖”重点水污染治理项目,全面开展太湖水污染治理。
过去数年中,在国务院有关部门的支持下,江苏、浙江、上海三省(市)开展了大量艰苦的工作,太湖水质恶化趋势初步得到遏制,但总体水质尚未得到根本好转。
至2005年,太湖总磷、总氮、高锰酸盐指数仍没有达到水污染防治计划的治理目标,局部湖湾水质仍在继续恶化。
2001年,温家宝总理在太湖水污染防治第三次工作会议上指出:要加大清淤力度,减少底泥污染。
国务院批复的《太湖水污染防治“十五”计划》中明确指出,水利部要“统一管理、合理配置太湖流域水资源;严格取水许可管理。
采取节水、调水、清淤、水土保持等综合措施,加大流域水资源保护的力度;对引江济太和湖底清淤组织进一步论证,提出计划并组织实施”。
为此,2002年水利部将太湖底泥疏浚规划研究列入前期工作计划。
湖泊底泥是湖泊水生态系统的重要组成部分,是入湖物质如有机质、营养盐、污染物等的积蓄库,也是水土界面物质(物理的、化学的、生物的)积极交替带。
湖泊水体和底泥间是一个动态的可逆的物质交换过程。
一方面,进入水体的各类物质,经一系列物理、化学及生化作用,沉积于湖底,形成较低密度、高含水率、富含有机质和各类营养物质的淤积物,即湖泊底泥;另一方面,底泥在入湖河流、风浪、湖流、温度等外部因子作用下向上覆水体释放营养成分,对湖泊水质和富营养化过程产生影响和制约,这种影响在太湖这类大型浅水湖泊中尤为强烈。
太湖底泥与污染情况调查
![太湖底泥与污染情况调查](https://img.taocdn.com/s3/m/92669ad3ad51f01dc281f10e.png)
《太湖高级论坛交流文集》2004年太湖底泥与污染情况调查成新江溢蒋英姿太湖流域水资源保护局,上海,200434摘要:根据2002年10月至12月的野外测量及随后5个多月的实验室化验与室内整理分析,得出了太湖底泥深、蓄积量及污染情况的空间分布状况,为太湖治理与污染底泥疏浚决策提供了基础依据。
关键词:太湖底泥污染调查太湖是我国第三大淡水湖,是流域内最大的水体,水域面积2338km2,南北长68.5km,东西平均宽34km,湖岸线总长405km。
太湖自西向东在无锡、苏州地区依次分布有竺山湖、梅梁湖、贡湖、漫山湖、胥湖及东太湖等湖湾。
太湖是一座天然的平原调蓄水库,正常水位下容积为44.3亿m3,平均水深1.89m,最大水深约2.6m,多年平均年吞吐量52亿m3,水量年交换系数1.2,换水周期约300天,具有蓄洪、供水、灌溉、航远、旅游等多方面功能。
太湖又是流域内最重要供水水源地,不仅担负着无锡、苏州和湖州等大中城市的城乡供水,还有向上海等下游地区供水并改善水质的作用。
一、调查目的意义20世纪80年代前,太湖水质良好,以II类、中营养-中富营养为主,符合饮用水源地的水质要求。
据1981年调查,太湖水域69%的面积为II类水,30%的面积为III类水,只有1%的面积为IV类水;83%的面积为中营养,只有16.9%为中富营养。
到90年代,太湖水质下降,特别是西北部五里湖、梅梁湖、竺山湖等湖湾,水质基本劣于V类;全湖富营养化水平也上升到以富营养为主。
目前太湖富营养化及其所导致的蓝藻爆发已经成为太湖主要水环境问题。
“九五”以来,在国务院的统一领导下,通过两省一市及中央各部(委)的共同努力,太湖水质恶化趋势得到初步遏制,总磷、氨氮、高锰酸盐指数等主要指标均有所好转,但北部湖湾水质仍为V类-劣于V类,大部分水域仍处于富营养化状态。
太湖水污染问题引起了党和政府的高度重视。
2001年国务院批准了《太湖水污染防治“十五”计划》,提出了“积极推进产业结构调整,大力推行清洁生产,有效控制入湖污染物总量,实施截污、减排、清淤、引水、节流等有效措施。
太湖的底泥会影响湖水的质量吗?
![太湖的底泥会影响湖水的质量吗?](https://img.taocdn.com/s3/m/16bd22633a3567ec102de2bd960590c69fc3d866.png)
太湖的底泥会影响湖水的质量吗?一、底泥问题对太湖湖水质量的影响太湖作为中国南部最大的淡水湖泊之一,其湖水质量一直备受关注。
然而,太湖的底泥问题一直存在,并且对湖水质量产生一定的影响。
1. 含有有害物质太湖底泥中富含大量有害物质,如重金属、有机污染物等。
这些有害物质在湖水中溶解或悬浮,会对水质产生一定的污染作用,威胁到太湖湖水生态系统的健康运行。
2. 导致富营养化太湖底泥中富含大量的营养物质,如氮和磷等。
这些营养物质进入湖水后,会促进藻类的生长,导致太湖出现富营养化现象。
富营养化不仅使湖水变得浑浊,还会引发蓝藻和赤潮等问题,对太湖生态环境造成破坏。
3. 影响水体透明度底泥中的悬浮物质会使湖水变得浑浊,降低湖水的透明度。
湖水透明度的下降使得光线无法透过湖水深层,影响水下植物的光合作用,从而进一步影响湖水中生态环境的平衡。
二、应对太湖底泥问题的方法为了减轻太湖底泥对湖水质量的影响,需要采取一系列的应对措施。
1. 加强底泥治理应加强对太湖底泥的治理,降低底泥中有害物质和营养物质的含量。
通过生物修复、化学处理等手段,减少底泥对湖水质量的污染作用。
2. 控制污染源加大对太湖流域内的污染源的治理力度,减少污染物的输入量。
建立严格的污染防治体系,加强环境监管,防止底泥污染问题进一步加剧。
3. 开展生态修复通过开展湿地建设、生态修复等措施,增加湖泊的自净能力。
建立湖泊生态保护区,保护湖泊生态系统的完整性和稳定性,减少底泥对湖水质量的影响。
三、太湖底泥问题的研究进展针对太湖底泥问题,近年来国内外学者进行了大量的研究,取得了一定的进展。
1. 底泥成因研究通过对太湖底泥的成因进行研究,可以更好地了解底泥的来源和特点。
相关研究成果为今后的底泥治理提供了科学依据。
2. 底泥污染物迁移与转化机制研究通过研究底泥污染物的迁移与转化机制,可以揭示底泥对湖水质量的影响过程。
深入了解底泥中污染物的行为规律,对制定底泥治理方案具有重要意义。
太湖水-沉积物界面磷、pH及碱性磷酸酶的时空特征及相关性
![太湖水-沉积物界面磷、pH及碱性磷酸酶的时空特征及相关性](https://img.taocdn.com/s3/m/e379aa8f8762caaedd33d4fe.png)
体水质指标短期仍有所波动 。2 0 年 1 0 9 月一2 1 00 年 8 ,综 合 营养 状态 指数 范 围为5~ 2 月 3 6 ,仍 处 于 富营养状态 ;短期 内营养物质难 以低于蓝藻生长 阀值 ,湖体水质仍适宜蓝藻生长 。据分析 ,蓝 藻水 华 适宜磷 质 量浓 度范 围为 0108 ・ 【 .- .mgL l , 本 研究 中5 6 、 月份 1# 覆水 总磷 质量 浓度 分别 达 6上 到04 7 . 9mgL 所 以该 区很容 易成 为蓝 藻 .9 和0 8 ・~, 4 水华的适宜生长场所 ,7 、1和2# 、8 8 1 的总磷质量 浓 度均 处 于0108mgL 范 围内 ,适 宜 蓝藻水 华 .- . ・ 的生长。总体看来 ,P T 高于w.P W-A W-P T 、P S P 高于 W-AP S ,这 种 差异 表 明 了沉 积物 中磷 有 通过 间 隙水 向上覆水 进 一步 释放 的趋 势 。 32 p 碱 性磷 酸酶 、 浊度 与磷 循环 的相关 性 . H、 水 p 影响着水体磷形态的转换 ,正磷酸盐在水 H 溶 液 中存 在多种 形态 , P 4 H P 4、 如 O 、 2O 。和HP 4 , O 在不 同 的p 条 件下 ,正磷 酸盐 以不 同 的形态 和溶 H 解度存在 ,且随着p H的升高 ,H O 2 P 4 的相对 比例 " 逐渐升高 , H 待p 值升高至9 磷酸盐基本上全部以 , H O 2 式存 在 , 这种形 式 的磷 与C 、 酸 盐 P 4- 形 而 a 碳 体系发生共沉淀结合形成更难溶的磷形态【 。本 2 们 研究结果显示 ,太湖上覆水 与沉积物间隙水之间 存在p 梯度差 ( H 最高达0 5 . 个单位 ) 形成 了磷酸 3 , 根形态的转化和迁移的动力。相关性分析结果表 明太湖W-P T 与W-H p 呈极显著相关性(≮ .1, 尸0 ) 间 0 隙水P T 与P p  ̄极显著相关性 (< .1, W-P W- _ H- P0 ) 0 P S P W- 也存在一定的相关性 , W-A 与P p H 充分说 明 了p H在水 . 积物 界面磷 循 环 中的重 要作 用 。 沉 碱性磷酸酶能催化有机磷被分解并释放正磷 酸盐 ,使水体 中可溶性有效磷含量增加 。相关性 分 析 表 明 W-A S P与 P A P呈 显 著 相 关 性 W- L (< . ) . 00 。本研 究结 果表 明太 湖W- P W- L P 5 AL 、P A P 和沉 积物 中A P L 活性 均 表 现 出空 间性 和 季 节性 变 化, 路娜等[] 2研究表明太湖水体 中碱性磷酸酶活 1 性呈现出非均一性分布特征 ,这与本研究 的结论 致 ,并认为这可能与太湖各湖区水体中细菌 、 浮游动植物等数量有关 。章婷 曦等【的研究表明 6 ] 太湖沉积物 中碱性磷酸酶活力在不 同点位其大小 不同,且分布具有一定 的规律性 ,表现出与沉积 物的污染程度和沉积环境有关 。污染程度高 ,水 动力条件差 ,水体交换能力弱 的位点碱性磷酸酶
论水体富营养化
![论水体富营养化](https://img.taocdn.com/s3/m/3c3b791df18583d04964591d.png)
论水体富营养化从21世纪50年代至今,随着工业的不断发展,和生活节奏的加快,环境问题日益突出。
尤其在水污染方面,当我国太湖、巢湖、滇池大面积爆发“水华”的时候,“水体富营养化”这一概念才引人注目。
一、水体富营养化富营养化是一种氮、磷等植物营养物质含量过多所引起的水质污染现象。
在自然条件下,随着河流夹带冲击物和水生生物残骸在湖底的不断沉降淤积,湖泊会从平营养湖过渡为富营养湖,进而演变为沼泽和陆地,这是一种极为缓慢的过程。
但由于人类的活动,将大量工业废水和生活污水以及农田径流中的植物营养物质排入湖泊、水库、河口、海湾等缓流水体后,水生生物特别是藻类将大量繁殖,使生物量的种群种类数量发生改变,破坏了水体的生态平衡。
大量死亡的水生生物沉积到湖底,被微生物分解,消耗大量的溶解氧,使水体溶解氧含量急剧降低,水质恶化,以致影响到鱼类的生存,大大加速了水体的富营养化过程。
水体出现富营养化现象时,由于浮游生物大量繁殖,往往使水体呈现蓝色、红色、棕色、乳白色等,这种现象在江河湖泊中叫水华(水花),在海中叫赤潮。
在发生赤潮的水域里,一些浮游生物暴发性繁殖,使水变成红色,因此叫“赤潮”。
这些藻类有恶臭、有毒,鱼不能食用。
藻类遮蔽阳光,使水底生植物因光合作用受到阻碍而死去,腐败后放出氮、磷等植物的营养物质,再供藻类利用。
这样年深月久,造成恶性循环,藻类大量繁殖,水质恶化而又腥臭,水中缺氧,造成鱼类窒息死亡。
农田化肥为促进植物生长,提高农产品的产量,人们常施用较多的氮肥和磷肥,它们极易在降雨或灌溉时发生流失。
研究表明,磷能以溶解或吸附于土壤上的颗粒态形式通过土壤微孔结构运动下渗至亚表面流中,然后进入江、河、湖泊或海湾,而氮(硝酸盐氮)的渗透能力较强,能够下渗到地下水中污染地下。
牲畜粪便圈养家禽、家畜尤其是猪会产生大量富含营养物和细菌的排泄物,极易随地表径流、亚表面流流入江河、湖泊而污染水体。
此外,农田中过量施用家畜粪便,也会引起粪便中的营养物随地表径流、亚表面流流失,从而污染水体。
以太湖为例湖泊污染底泥治理修复实践
![以太湖为例湖泊污染底泥治理修复实践](https://img.taocdn.com/s3/m/3e13768831b765ce050814f6.png)
以太湖为例湖泊污染底泥治理修复实践在深入研究太湖底泥污染特性和水生生物适生性低下等突出的环境和退化问题基础上,探索污染底泥环保疏浚、底质适生性构建等关键技术难题,为有效控制富营养化湖泊内源污染、修复底质生境、提高湖泊水体质量提供新方法。
太湖是无锡、苏州和上海市的主要或备用饮用水源,在地区的生产和生活中具有举足轻重的地位。
近三四十年来,以水体氮、磷含量高企而形成的富营养化问题,成为太湖水污染最主要的特征。
在春夏季,太湖一些滨岸还常出现一种被称为“湖泛(black bloom)”的极端水污染现象,其本质是藻类泛滥成灾。
这些污染问题不仅会制约周边流域的社会和国民经济可持续发展,更严重的是对太湖水源地的供水安全构成威胁。
太湖底泥污染及底质退化状况湖泊的污染不外乎外源和内源两大来源。
就太湖而言,外源污染主要来自工业点源、农业面源、生活废水、大气沉降、养殖投饵及旅游航运等污染排放;内源则主要来自湖泊底部的底泥。
底泥又称底质或沉积物,在太湖底泥中蓄积着湖体约90%以上的污染物,其中含量偏高的是氮、磷等营养性污染物,主要来自入湖的外源污染,以及湖体内藻类和水生植物等生物死亡残体等。
水体中悬浮态颗粒物对水体中污染物的包夹、物理化学吸附及絮凝等,通过沉降等作用,在湖底按时间顺序形成具有不同环境(或污染)性质的底泥层。
当外源采取控制措施,特别是底泥环境(如pH、氧化还原电位、温度、微生物等)发生变化时,沉积的污染底泥将成为潜在污染源,表层底泥中的溶解态污染物(如氮、磷和有机碳)又会重新释放出来,从而污染湖泊水体[1]。
据研究,太湖全年因底泥释放形成的氮、磷内源负荷约占外源氮、磷入湖量的1/4,湖泛的易发湖区都与污染底泥的分布有关[2,3],这些都表明底泥是太湖必须治理的内源污染源。
太湖滨岸底泥污染及恶化退化问题环境影响示意图太湖湖滨带岸线总长405千米,其中以竺山湖、梅梁湾、贡湖和西部沿岸大堤型和山坡型沿岸带最为多见。
太湖的湖底有哪些地理特点?
![太湖的湖底有哪些地理特点?](https://img.taocdn.com/s3/m/c769ac47eef9aef8941ea76e58fafab069dc44ce.png)
太湖的湖底有哪些地理特点?一、地形地貌太湖位于中国东南沿海地区,是我国第三大淡水湖,其湖底地理特点多样而独特。
1. 地质构造复杂太湖地处长江三角洲沉积平原,湖底地质构造异常复杂。
由于受到构造活动的影响,湖底地裂、断层等地质现象比较发达,形成了多样性的地质构造。
这些地质构造给太湖湖底地形带来了丰富多样的特点。
2. 地形起伏太湖湖底地势起伏不平,形成了各种不同高度的地形。
有的地方湖底地势平坦,呈现出一片开阔的平原景象;有的地方则出现了凹凸不平的丘陵地貌,起伏有致。
这种地形起伏给太湖增添了一丝神秘感。
3. 湖底暗沙太湖湖底分布着大量暗沙,形成了独特的湖底地貌。
暗沙常常隐蔽在水下,鲜为人知。
这些暗沙具有不同的形态和组成,有的呈现出流线型,有的则呈现出板状。
它们与湖底的泥沙形成了对比,美丽而又神秘。
二、地质特点太湖湖底的地质特点丰富多样,展现出不同的地质过程和构造特征。
1. 沉积物的积累太湖湖底的沉积物十分丰富,是湖泊沉积的重要组成部分。
这些沉积物主要由水流和湖泊内源物质的混合沉积所形成。
它们堆积在湖底,形成了厚厚的沉积层,记录了长期以来的地质历史。
2. 矿产资源的分布太湖湖底还蕴藏着丰富的矿产资源,如煤炭、磷矿、铜矿等。
这些矿产资源对于地方的经济发展具有重要意义。
煤炭资源的开采为当地人民提供了丰富的能源,促进了地方经济的繁荣。
三、水下生物和植被1. 水下生物的丰富性太湖湖底是许多水生生物的栖息地,水下生物种类繁多,数量众多。
其中包括各类鱼类、藻类和浮游生物等。
这些水下生物在湖底上形成了复杂的生态系统,丰富了太湖的生物多样性。
2. 水生植被的分布太湖湖底覆盖着大片水生植被,包括浮叶植物、沉水植物和带根植物等。
它们在湖底形成了独特的植物群落,起到了保持水质、调节湖泊生态平衡的重要作用。
同时,岸边的水生植被也为湖底提供了一道美丽的风景线。
综上所述,太湖的湖底地理特点多样而独特。
从地形地貌、地质特点到水下生物和植被,太湖湖底呈现出丰富多样的景象,给人们带来了无尽的想象空间和探索的乐趣。
太湖底泥清淤疏浚问题分析
![太湖底泥清淤疏浚问题分析](https://img.taocdn.com/s3/m/dae2145aa76e58fafab0035b.png)
太湖底泥清淤疏浚问题分析作者:朱伟胡明蔡姝颦来源:《名城绘》2019年第12期摘要:近年来,太湖周边发生了多次水质异常现象,加大对太湖水质的生态修复已经刻不容缓。
底泥是太湖水体污染的內源,是整个太湖水体治理的重要内容。
清淤疏浚作为清除太湖污染底泥的一种有效的手段方法,能够抑制底泥污染物释放,降低內源污染负荷。
清淤疏浚的通常是针对底泥相对较厚且底泥中污染物含量相对较高的水域,如城市污水排放区、污染河流流入口、人工养殖区域等。
受污染的底泥水质呈现黑臭、有害物质含量高、水生生物较少等特征。
为使清淤疏浚工作得到较好的成效,需要重点从污染较为严重、水源地取水地等区域着手,并且要保证外源性污染物能够得到有效的控制和治理,确保清淤疏浚工程与太湖当地的生态重建保持协调一致。
关键词:太湖;清淤疏浚;问题清淤疏浚广泛应用于水污染治理中,该方法主要是通过机械人工等方式以降低水体中污染底泥或者抑制底泥释放污染物等方式,有效地防范和控制水体污染生态风险。
清淤疏浚的目的是为了减少水体污泥中的各种污染物,同时做好清淤疏浚后污泥的安全处理工作,以最大程度上改善水质,提高水体生态修复成效。
一、底泥清淤疏浚的重要意义在污染问题较为突出,水质重度富营养化、生态系统严重退化的水域,即使有效控制外源污染流入,但体量庞大的底泥内源污染物存在二次释放的风险[1],仍然会对水体水质产生较大威胁。
通过清淤疏浚,利用专业化的技术设备手段去除底泥污染层,能够直接去除泥层中所蓄积的有毒有机物、重金属、各种氮磷营养盐等,从而有效地控制底泥内源污染负荷。
在去除污染底泥后,会生成相对清洁且具有较强吸附能力的新生底泥层,该底泥层中的污染物较少,氧化还原电位高,更有利于湖底栖生物的生存和繁殖,能够促进生态多样性,维持整个太湖的生态平衡。
二、清淤疏浚可能存在的问题太湖目前的清淤疏浚工程并未取得理想效果,主要存在以下几个原因:1)由于底泥只是一个载体,是水体营养物质的汇集点而非源头,要想根治水质污染问题,一味的清淤疏浚只是治标不治本,必须要在清淤疏浚的同时做好相关的源头治理工作,才能保证清淤疏浚工程取得较好的治理成效。
案例湖泊污染——太湖的富营养化问题
![案例湖泊污染——太湖的富营养化问题](https://img.taocdn.com/s3/m/7affcd612b160b4e767fcfc8.png)
2000年7月,太湖湖区暴发大面积蓝藻,这是80年代 以来最为严重的一汰。水样透明度为“零”。望虞河河面 上,犹如铺上了一块宽约数十米的绿地毯:岸边的湖水像 浓浓的绿色油漆。
太湖不同湖区夏季浮游生物量 35 30
生物量(mg/L)
25 20 15 10 5 0 五里湖 西太湖 东太湖
1980 1987 1993
二 造成太湖富营养化加剧的主要污染源
根据污染源的空间形状不同
一位监测人员长期观察发现,一 遇大雨,水中的氨氮浓度明显高 于往日,原因就是农田施放化肥, 污染物残留在地表上,很容易被 雨水带进河道。随着农村产业结 构的调整和农民致富奔小康的需 求,化肥农药、生长素带来的污 染急剧增加。面源污染因为污染 物来自整个地区,而不是来自一、 二个集中的污染源,污染物分散, 并且体积庞大,更难以控制。
面源污染
工业废水
28
10
55
16
10
39
从上表分析,城镇生活污水和面源污染污染源应是主要控制
对象,同时其他有机污染(CODcr)中,对工业废水控制也是十 分重要。 20世纪90年代后期,太湖加大了工业企业污染源(点源)的治 理和工业结构调整,取得了一定的成效,使工业污染量大大 下降、农业污染和生活污染便显现出来。生活垃圾的处理, 基本上无章可据,生活污水四溢,江湖成了垃圾的堆放处, 河湖中堆积、漂浮的垃圾和在许多城镇的河道中无所不在的 生活污水,让人感受到太湖水环境形势的严峻。
案例 湖泊污染
——太湖的富营养化问题
太
太湖富营养化现状及治理对策
![太湖富营养化现状及治理对策](https://img.taocdn.com/s3/m/4a332eeff705cc17552709f7.png)
Contents
太湖背景
太湖富营养化现状
太湖富营养化保护对策
中国第二大淡水湖——太湖
地理
位于长江三角洲,地跨苏、浙、皖、沪三省一市
• 主要水源有二︰一为来自浙江省天目山的苕溪,另一来自江 苏宜溧山地北麓的荆溪,分由太浦、百渎等60多条港渎入湖。
气候
亚热带季风气候
• 年最高水温出现时间在7、8月,年最低水温出现时间在12月 下旬~2月上旬,历年最高水温达38℃,最低水温0℃,水温 年变幅介于29.5—38.0℃之间。
• 清淤可以减少内源污染物。 • 采用固化和资源化利用措施进行生 态清淤,能确保不产生二次污染。
• 通过调水和开闸放水加快太湖水体 的流动,可以防止蓝藻大面积爆发。
生物
调控
• 水生植物具有净化富营养化水体的 作用。 • 适当种植水生植物可以减轻水体的 富营养化。
谢谢大家!
90年代中后期, 太湖西部、北 部开始频繁暴发蓝藻。 2007年夏天,因太湖蓝藻的暴 发,无锡市发生了饮用水危机。
2008年,太湖水质总体为劣Ⅴ 类。湖体处于中度富营养状态。 主要污染指标为总氮和总磷。
太湖的富营养化
2011年4月,太湖水质评价总体为劣 Ⅴ类,中度富营养。
与2010年同期相比,太湖水质有所 好转;中度富营养所占比例有所下 降。
太湖富营养化成因
1 2 3
• 工业废水污染 • 城市生活废水污染 • 农业、养殖业用水污染
1.控制污染源
治 理 措 施
2.加大蓝藻的打捞力度
3.生态清淤
4.加快湖水流动
5.生物调控
控制污染源
工业
• 减少规模小、 经济效益低、 污染大的企 业 • 加大处罚力 度
太湖底泥及其间隙水中氮磷垂直分布及相互关系分析_范成新
![太湖底泥及其间隙水中氮磷垂直分布及相互关系分析_范成新](https://img.taocdn.com/s3/m/c3c1ed9da0116c175f0e482e.png)
太湖底泥及其间隙水中氮磷垂直分布及相互关系分析范成新 杨龙元 张 路(中国科学院南京地理与湖泊研究所,南京210008)提 要 对太湖主要湖区柱状样底泥的总氮、总磷含量及其间隙水铵态氮(NH +4-N )、磷酸根磷(PO 3-4-P )和二价铁(Fe (Ⅱ))含量进行了分析,并对底泥和间隙水中相应物质含量进行了比较.结果表明:太湖近表层10cm 内底泥T N 、T P 赋存含量较之下层高12%—20%左右,间隙水中PO 3-4-P 和N H +4-N 含量随深度增加而大致呈上升趋势,表层未见高浓度层存在.各湖区底泥间隙水中PO 3-4-P 和NH 4+-N 浓度与底泥中TP 含量未发现有明显的相关关系.但间隙水中Fe (Ⅱ)含量与NH +4-N 含量呈显著的正相关(R =0.9234).关键词 间隙水 氮 磷 垂直分布 太湖分类号 P343.3太湖地处北纬30°56′—31°34′和东经119°53′—120°34′之间,面积2338.1km 2,水深2m 左右.近年来,人们对太湖底泥的空间分布及其表层营养物的分布已有较多的调查和分析[1-4],但对底泥垂直分布、特别是与其相关的底泥间隙水营养物含量分布的分析和研究则很少涉及[5,6].由于底泥中,尤其是间隙水中污染物分布特征已被证实与湖泊内源负荷有直接关系[7,8],因而该文所涉及的内容不仅从理论上阐明太湖内源问题,而且对科学治理太湖富营养化的实践具有重要意义.1 材料与方法1.1 样品采集1998年10月21日,用全球定位系统GPS 导航,用日产柱状采样器(内径Υ62mm ),分别在太湖五里湖的石塘和宝界桥(N31°31′55″,E120°13′48″),梅梁湾的马山(N31°27′29″,E120°08′24″)、小湾里(N31°29′14″,E120°11′46″)和梅梁湾心,以及太湖湖心、大浦口、竺山湖及东太湖等测点,分别采集2—3根平行柱状样,灌满上覆水,两端用橡皮塞塞紧,垂直放置,带回实验室处理.其它测点的经纬度见表1.1.2 底泥和间隙水样品处理和分析室内将样品按2cm 间距分层,同一测点样品,一组样离心(4000rpm ,20min ),得间隙水,即刻进行PO 3-4-P 、NH +4-N 、Fe (Ⅱ)分析;另一组分层样风干后按四分法取样,研磨过200目筛,分析TP 、TN 和粒度.除粒度采用中国科学院南京地理与湖泊研究所生产的筛分仪自动分析第12卷第4期2000年12月 湖 泊 科 学JOURNAL OF LAKE SCIENCES Vol .12,N o .4Dec .,2000中国科学院资源环境“九五”重点项目(KZ952-J1-220)和江苏省自然科学重点基金项目(BK99204-2)资助.收稿日期:2000—01—20;收到修改稿日期:2000—07—22.范成新,男,1954年生,研究员.外,其它均采用《湖泊富营养化调查规范》[9]中规定的方法.粒度组成及岩性见表1所示.表1 太湖底质粒度组成及岩性T ab.1 Size distribution and litholo gy of the sediment in T aihu Lake采样点经度纬度分类极细砂(3—4 )粗细砂(4—6 )细粉砂(6—8 )粘土(>8 )中值粒径(mm)石 塘120°14′09″31°31′14″粉砂0.0241.9343.5714.490.012梅梁湾120°10′03″31°29′00″粉砂0.0239.4149.1811.380.012竺山湖120°03′01″31°26′02″粘壤土0.0125.7047.6426.650.007大浦口119°56′37″31°18′25″粉砂0.1225.5457.3217.020.023东太湖120°28′31″31°03′00″粉砂0.0434.3946.9618.610.027湖 心120°06′00″31°05′56″粉砂0.0132.7453.2813.980.0202 结果与讨论2.1 太湖底泥氮磷含量垂直分布图1为所列太湖5个主要自然湖区0—30cm底泥中TN、TP垂直变化.由图1看出,虽然氮、磷含量的垂直变化各不相同,但除梅梁湾外,多显示出近表层含量变化较大、下层差异较小的特点.自10cm处向表层,氮磷含量多表现出增加趋势.据80年代以来研究表明,1987—1995年间,太湖水体中凯氏氮和TP的含量分别上升了66%和79%[10],1987—1988年湖体污染物出入湖平衡研究表明,TN和TP的湖体残留率(湖体净入湖量∶湖体原有量)分别为1.33和6.80[11].这样,湖体中不断增加的氮磷负荷使得一些溶解或颗粒态的氮磷物质通过絮凝、吸附、沉降等作用而蓄积于湖底,从而逐步增加了表层沉积物中TN和TP含量.本研究除一测点位于东太湖(南部)外,其余均取自西太湖北部湖区.据文献[1],东太湖(南部)1955—1982年间平均沉积速率为1.45mm·a-1;西太湖梅梁湾1931—1988年间为1.8mm·a-1,两湖区沉积速率比较接近.在图1中,可以看出各个柱样TN、TP多呈明显的3段分布(表2):0—10cm和20—30cm平均含量均较高.0—10cm的高值区主要是与建国以来太湖周围的人类活动作用加强有关,是湖泊营养程度逐步提高的结果;20cm以下,则可能与当时的水生生物的大量繁衍,特别是太湖北部历史上曾有大量水生植物生长[12]、以及当时有较好的温度条件有关[13].表2 太湖表层底泥氮磷含量(%)及各层间含量比值T ab.2 T N and T P contents(%)in the superficial sedimentsand their ratio s amo ng the different layers项 目梅梁湾五里湖贡湖湾竺山湖东太湖平 均TN上层(0—10cm)中层(10—20cm)下层(20—30cm)0.0720.0700.0760.1290.0920.1060.0590.0680.0730.1310.1090.1650.0390.0350.0320.0860.0750.090TP上层(0—10cm)中层(10—20cm)下层(20—30cm)0.0630.0610.0720.0820.0690.0690.0500.0430.0540.0510.0420.0630.0330.0340.0390.0560.0500.059太湖水深仅2m左右,风浪作用显著,对表层沉积物的氮磷分布的影响较大.水面面积分360湖 泊 科 学 12卷图1 太湖主要湖区沉积物T N (上)和T P (下)垂直分布a :梅梁湾;b :五里湖;c :贡湖湾;d :竺山湖;e :东太湖Fig .1 V ertical distribution of T N (upper )and T P (lower )in the sediments of the main lake regions别为124km 2和156km 2的梅梁湾和贡湖湾,由于湖区开敞度大,风浪对表层底泥的扰动强烈.因此水动力扰动可能是造成该两湖区表层0—5cm 沉积物磷含量的变化与其他湖区不同的主要原因.2.2 间隙水氮磷含量垂直分布图2为太湖不同湖区底泥间隙水NH +4-N 含量垂直分布.就总体而言,全湖间隙水NH +4-N 随深度增加而浓度逐渐上升,其中梅梁湖的全部,五里湖的宝界桥和东太湖等测点含量几乎表现为均匀上升状态.石塘和大浦口测点在含量变化中有较大波动.比较各湖区间隙水NH +4-N 含量值域(表3),0—5cm 表层含量:五里湖>太湖其它湖区>梅梁湾;中层10—20cm ,包括5—10cm 和20—30cm ,其间隙水NH +4-N 含量为:其它湖区>五里湖>梅梁湾;30—40cm 下层含量为:其它湖区>梅梁湾>五里湖.并且注意到,各湖区间的含量间距有很大差异,越往下层,差值越大,如30—40c m 处下层的五里湖间隙水中的NH +4-N 含量仅为其它湖区的18.3%.环境中NH +4-N 的产生和去向受到多种条件的影响和制约.在沉积物中,NH +4-N 的存在3614期 范成新等:太湖底泥及其间隙水中氮磷垂直分布及相互关系分析图2 五里湖(左)、梅梁湾(中)和其它湖区(右)间隙水N H +4-N 含量垂直变化Fig .2 Vertical changes of ammonium nitrogen in the interstitial w ater of Wuli L ake (left ),M eiliang Bay (middle )and the other lake regions (right )主要与底泥污染水平、生物作用大小、氧化还原状况及水动力影响程度等多种条件有关.在污染水域,底泥中有机质丰富,表层微生物数量众多,相对于非污染湖区,由于生物分解作用显著而使近表层底泥缺氧,容易形成还原环境,生物参与的反硝化作用和氨化作用应较明显,使表层间隙水中接纳更多的NH 3进入[14].另一方面,太湖为浅水型湖泊,表层沉积物极易受到风浪的扰动,相对较封闭的湖区(如五里湖等),湖心开阔区更易受到风浪作用的影响,间隙水中以及吸附于底泥颗粒上的分子态NH 3在底部湖流运动及再悬浮作用下,更易进入上覆水体,部分经物理挥发逸出水面进入大气,较大程度降低了表层底泥中NH +4-N 的含量.表3 太湖各湖区底泥间隙水NH +4-N 和PO 3-4-P 含量垂直分布单位:mg ·L -1T ab .3 NH +4-N and PO 3-4-P vertical distributions in the interstitialw ater o f the different layers of every lake region深度/cm NH +4-N五里湖梅梁湾其它湖区PO 3-4-P五里湖梅梁湾其它湖区0—55—1010—2020—3030—406.118.0410.889.457.593.044.065.708.909.524.009.0711.5229.7941.390.1570.0970.0530.1100.2000.1600.1720.1360.1420.1700.1210.2820.1520.3830.344相对于上层,下层沉积物通常缺氧程度较高,不仅适宜于厌氧微生物活动,适宜于反硝化和氨化作用,自高价态氮(如NO -3-N 、NO -2-N 等)向铵态氮等低价态氮转化,并且下层受水动力扰动作用较小,比上层沉积物更有利于NH +4-N 在沉积层中保存,因而在图2中反映,大致362湖 泊 科 学 12卷图3 五里湖(左)、梅梁湾(中)和其它湖区(右)间隙水PO 3-4-P 含量垂直变化Fig .3 Vertical chang es of phosphate phosphorus in the interstitial water of Wuli Lake (left ),M eiliang Bay (middle )and the other lake regio nes (right )在10—15cm 以下,下层NH 3含量比上层沉积物层略高.太湖PO 3-4-P 含量在间隙水中的垂直分布与NH +4-N 含量分布相比有明显差异,但不同湖区上下层之间的含量关系则与NH +4-N 含量分布较接近(图2和图3).除五里湖和梅梁湾两个湖区外,太湖湖心、大浦口、竺山湖和东太湖大致表现为自表层起向下层PO 3-4-P 含量逐渐升高,但中层的增加程度不如NH +4-N 明显.在五里湖和梅梁湾5个测点的间隙水中,PO 3-4-P 含量基本以表层0—5cm 处浓度为基准左右波动,含量与深度无明显对应关系.比较不同湖区各相应层间隙水PO 3-4-P 含量,0—5cm 五里湖和梅梁湾略高于其它湖区,自5cm 向下,后者则高于前者(表3).注意到在其它湖区各测点中,间隙水中PO 3-4-P 与NH +4-N 不同,在含量上相互差异较大(图3),如太湖湖心底泥间隙水PO 3-4-P 含量明显高于其它任一测点(图3),除表层0—5cm 含量与其它测点较接近外,自5—10cm 起,其各层PO 3-4-P 含量为其它各测点相应层的4.5—9.8倍,这一现象可能与湖心区表层沉积物中微生物数量较少,同化作用较弱有关.对照已有研究,1993年高光[6]在东太湖所获得的表层(1cm )沉积物间隙水中PO 3-4-P 浓度(0.200mg ·L -1)远大于下层(18cm )深处的含量(0.080mg ·L -1)的现象在本研究各测点(包括东太湖)中未被发现.但是在五里湖和梅梁湾各测点,上下层PO 3-4-P 浓度变化普遍较平缓,差异亦较小.另外发现,在梅梁湾马山和太湖湖心两测点6cm 深度附近,显示间隙水PO 3-4-P 含量出现较大的跳跃式上升(见图3).在6cm 左右深度,底质已较密实,显然不存在活性的有机碎屑层,为什么能在该层维持较高浓度的PO 3-4-P ,除与沉积物性质有关外,可能还有一些未3634期 范成新等:太湖底泥及其间隙水中氮磷垂直分布及相互关系分析知的控制因素作用.但从整体柱样浓度分布来看,间隙水中PO 3-4-P 仍处于表层含量低、下层含量高的状态.2.3 间隙水中NH +4-N 和PO 3-4-P 含量与底泥中氮磷含量的关系氮在间隙水中的存在形态较多,主要为NH +4-N 、NO -3-N 、NO -2-N 和一些有机小分子化合物,磷则主要为PO 3-4-P ;而在底泥中,无机氮化物因易溶于水而形态较简单,磷则因与多种元素结合形成难溶物甚至结晶体,以及与多种有机物结合而形态复杂.底泥中的氮磷含量与间隙水中NH +4-N 、PO 3-4-P 含量存在何种关系,也是研究的重要内容之一.图4 太湖不同湖区间隙水PO 3-4-P (上)和NH +4-N (下)浓度与底泥中T P 和T N 含量对应关系Fig .4 Cor respondence of concentrations of PO 3-4-P (upper )and NH +4-N (lo wer )in the interstitial w ater with respectiv e contents of T N and TP in the sediments将太湖五里湖、梅梁湾、太湖湖心和竺山湖湖区底泥间隙水PO 3-4-P 和NH +4-N 浓度与底泥中TP 和TN 含量比较(图4),各湖区几乎无对应关系,相关水平较低(表4).仅发现在五里湖的NH +4-N 浓度和底泥中TN 含量在底较低值区内,两者相关性才进入可信区范围.表明太湖底泥中赋存氮磷物质的多少,并不是其间隙水中NH +4-N 和PO 3-4-P 含量大小的决定因素.表4 不同湖区间隙水中PO 3-4-P 和N H +4-N 浓度(mg ·L -1)与底泥中T P 和T N 含量(%)相关关系T ab .4 Correlation of concentrations of PO 3-4-P and N H +4-N in the intersititial waterw ith contents of T N and T P in the sediments in the different lake regions湖 区PO 3-4-P —TP关系表达式r 2NH +4-N —TN关系表达式r 2五里湖梅梁湾太湖湖心竺山湖y =0.037x +0.1126y =0.025x +0.0107y =0.1767x +1.5176y =4.2821x —0.06330.00120.03310.00170.1743y =22.156x +7.8284y =8.9704x +7.902y =368.18x —13.735y =215.09x —15.870.04690.00020.15780.1690364湖 泊 科 学 12卷2.4 间隙水中Fe (Ⅱ)与PO -34-P 和NH +4-N 含量关系Fe (Ⅱ)易存在于还原环境中,且与Fe (Ⅲ)在浓度上存在氧化还原平衡关系,因此它的存在大致反映所处环境的氧化还原水平[15].将同层分别测定的间隙水中Fe (Ⅱ)与PO 3-4-P 和NH +4-N 含量作出相关图(图5).由图看出,梅梁湾的Fe (Ⅱ)与PO 3-4-P 含量间的相关性较低(R 2=0.1756);而Fe (Ⅱ)与NH +4-N 含量的关系则相关性较高,达R 2=0.8526.虽然PO 3-4-P 与Fe (Ⅱ)是在溶度积限制下存在的沉淀平衡关系,但Fe (Ⅲ)与PO 3-4的溶度积(K sp ,FePO 4=5×10-9)要远小于Fe (Ⅱ)与PO 3-4的溶度积(K sp ,Fe 3(PO 4)2),这样间隙水中的PO 3-4浓度主要由Fe (Ⅲ)含量控制.因此Fe (Ⅱ)含量与PO 3-4不一定有对应关系.但若不计入Fe (Ⅱ)含量在表层底泥为零或接近零的那几个测定,Fe (Ⅱ)与PO 3-4含量的关系大致可用一负相关关系表达.而对于NH +4-N 含量变化,Fe (Ⅱ)含量高意味着底泥中的还原程度较高,底泥的反硝化作用和氨化作用应较强烈,电子的转移向有着利于生成低价态氮的方向进行.图5 梅梁湾心间隙水中F e (Ⅱ)与PO 3-4-P 和N H +4-N 含量相关关系Fig .5 Cor relatio n of Fe (Ⅱ)with TN and T P contents in the interstitialw ater in the center of M eiliang Bay3 结语太湖底泥自10cm 处起向表层,氮磷含量多表现出增加趋势,明显反映近几十年沿湖人类活动作用加强.全湖间隙水NH +4-N 和PO 3-4-P 含量随深度增加大致呈上升趋势,但PO 3-4-P 在中层的含量增加程度不如NH +4-N 明显.在全湖各测点表层4cm 内未发现高浓度磷酸盐峰值出现,因此在太湖这类风浪扰动激烈的浅水湖泊,水土界面磷酸盐浓度自上覆水向下至表层沉积物间隙水应是相对平缓地增加[15],不可能在沉积物近表面形成一个能够稳定存在的磷酸盐高浓度层.不同湖区表层间隙水PO 3-4-P 含量差异,五里湖和梅梁湾高于其它湖区,下层其它湖区则高于五里湖和梅梁湾,尤其是太湖湖心,自5—10cm 起,其各层底泥间隙水PO 3-4-P含量是其他湖区的4倍以上,其原因与微生物数量较少、同化作用强度较低有关.各湖区底泥间隙水中PO 3-4-P 和NH +4-N 浓度与底泥中TP 含量未发现有明显的相关关系,但间隙水Fe(Ⅱ)含量与NH +4-N 含量呈显著的正相关.3654期 范成新等:太湖底泥及其间隙水中氮磷垂直分布及相互关系分析366湖 泊 科 学 12卷参 考 文 献1 孙顺才,黄漪平.太湖.北京:海洋出版社,1993.65—69,129—1302 范成新,刘元波,陈荷生.太湖底泥蓄积量估算及分布特征探讨.上海环境科学,2000,19(2):72—753 隋桂荣.太湖表层沉积物OM、TN、TP的现状与评价.湖泊科学,1996,8(4):319—3244 蔡启铭主编.太湖环境生态研究(一).北京:气象出版社,1998.55—625 余源盛.太湖底质与湖泊富营养化关系,中国科学院南京地理与湖泊研究所集刊,第九号.北京:科学出版社,1993,48—626 高 光.水—沉积物界面氮、磷迁移转化过程研究[学位论文].中国科学院南京地理与湖泊研究所.19937 Garber K J,Hartm an R T.Internal phosphorus l oading to shallow Edinbro Lake in northwestern Pennsylvania.Hyd r obi olo-gia,1985,122(1):45—528 Lambertus L.Phosphorus accumulation in sediments and internal loading.Hydrobiol B ull,1986,20(1—2):213—2149 金相灿等.湖泊富营养化调查规范(第二版).北京:中国环境科学出版社,199010 范成新.太湖水体生态环境历史演变.湖泊科学,1996,8(4):297—30411 金相灿等著.中国湖泊环境(第二册).北京:海洋出版社,1995,11212 伍献文等.五里湖1951年湖泊学调查.水生生物学集刊,1962,(1):63—11313 薛 滨,瞿文川,吴艳宏等.太湖晚冰期—全新世气候、环境变化的沉积记录.湖泊科学,1998,10(2):30—3614 范成新.梅梁湖和五里湖水—沉积物界面物质交换.湖泊科学,1998,10(1):53—5815 Bel zile N,Pizarro J,et al,S ediment diffusive fluxes of Fe,M n,and P in a eutrophic lake:Contribution from lateral vs bot-tom sedimen ts.Aquatic Scienc es,1996,58(4):327—354The Vertical Distributions of Nitrogen and Phosphorus in the Sediment and Interstitial Water in Taihu Lake and Their InterrelationsFAN Cheng xin YANG Longyuan ZHANG Lu(Na njing Institute of Ge ography and Limnol ogy,Ch ines e Academy of Scienc es,Nanjing210008,P.R.China)AbstractThe contents of nitrogen and phosphorus and ferrous in the column sediments and their inter-stitial w ater were analy zed and compared in the m ain regions of Taihu Lake in1998.The results show that the upper layer(0—10cm)contained higher contents in TN and TP and than the low-er.And NH4-N and PO4-P in the interstitial w ater are a bit higher in the seriously-polluted w a-ters than those in the gently-polluted waters.However,those of the low er layers are slightly higher in the gently-polluted w aters than those in the seriously-polluted.It w as indicated that there was no distinct corresponding relationships betw een NH4-N/PO4-P co ntents in the intersti-tial w ater and TN/TP contents in the sediments.The ferrous concentratio n in the interstitial w a-ter is distinctly in positive correlation w ith NH4-N content(R=0.9234).Key Words Interstitial w ater,nitrogen,phosphorus,vertical distributio n,Taihu Lake。
太湖的底泥中有哪些矿物质?
![太湖的底泥中有哪些矿物质?](https://img.taocdn.com/s3/m/dd5d1aba760bf78a6529647d27284b73f24236eb.png)
太湖的底泥中有哪些矿物质?
一、铁矿石
太湖底泥是富含铁矿石的宝藏。
铁矿石是指含有较高铁元素的矿石,
经过冶炼可以提取铁。
太湖底泥中富含赤铁矿、磁铁矿等多种铁矿石。
其中,赤铁矿富含氧化铁,颜色呈红色或棕红色;磁铁矿是一种磁性
强的矿石,可以吸引铁矿石,其呈黑色。
二、硅矿石
太湖是中国最大的淡水湖泊之一,其底泥中富含硅矿石。
硅矿石是一
种非金属矿石,主要成分是二氧化硅,具有硬度大、耐磨损等特点。
硅矿石在工业中广泛应用,用于制造玻璃、水泥等。
三、钛矿石
太湖底泥中还含有一定量的钛矿石。
钛矿石是一种重要的金属矿石,
其中富含钛元素。
钛矿石具有较高的耐腐蚀性、强度以及低密度等特点,广泛应用于航空航天、化工、建筑等领域。
四、锆矿石
太湖底泥中的一种重要矿石是锆矿石。
锆矿石是含有锆元素的矿石,
可用于提取锆。
锆矿石具有高熔点、高硬度、高耐火性等特点,广泛
应用于陶瓷、航空航天、化工等领域。
五、稀土矿石
太湖底泥中也含有一定量的稀土矿石。
稀土矿石是指含有稀土元素(包括钆、镝、铽等)的矿石。
稀土矿石是重要的战略资源,广泛应用于电子、磁性材料、光学领域等。
综上所述,太湖的底泥中富含铁矿石、硅矿石、钛矿石、锆矿石和稀土矿石等多种矿物质。
这些矿物质的存在对于太湖地区的经济发展和资源利用具有重要意义。
通过合理开发和利用太湖底泥中的矿物质资源,可以推动当地工业发展,并为国家经济建设做出贡献。
值得注意的是,开发利用矿物资源时应遵循环保原则,保护太湖生态环境,实现可持续发展。