材料力学第六章弯曲时的变形
材料力学(理工科课件)第六章 弯曲变形)
§6-1 基本概念及工程实例 (Basic concepts and example problems)
一、工程实例(Example problem)
(Deflection of Beams)
但在另外一些情况下,有时却要求构件具有较大的弹性变 形,以满足特定的工作需要.
例如,车辆上的板弹簧,要求有足够大的变形,以缓解车辆受
M 0 w 0
x
O
M 0 w 0
M
(Deflection of Beams)
w (1 w )
2 3 2
M ( x) EI
2 w 与 1 相比十分微小而可以忽略不计,故上式可近似为
w"
M ( x) EI
(6.5)
此式称为 梁的挠曲线近似微分方程(differential equation of the deflection curve) 近似原因 : (1) 略去了剪力的影响; (2) 略去了 w2项; (3) tan w w( x )
x Cx D
4
(Deflection of Beams)
边界条件x=0 和 x=l时, w 0
梁的转角方程和挠曲线方程 A 分别为 q 2 3 3 (6lx 4 x l ) 24 EI qx 2 3 3 w (2lx x l ) 24 EI 最大转角和最大挠度分别为 在 x=0 和 x=l 处转角的绝对值相等且都是最大值,
A a l D B
b
(Deflection of Beams)
解: 梁的两个支反力为
FRA F FRB F b l a l
x
l x
F FRA
A 1 a D b 2
第6节(弯曲变形)
Mechanics of Materials
中南大学土木建筑学院力学系
Department of Mechanics of School of Civil Engineering and Architecture of Central South University
第六章 弯曲变形 第一节 概述
Fx Fl
转角方程
EI(x)1Fx2FlxC
2 挠度方程
E Iv(x)1F x31F lx2C xD 62
EI
d2v dx2
Fx Fl
EI(x)1Fx2FlxC
2
E Iv(x)1F x31F lx2C xD 62
⑶ 确定积分常数
EI(0)1F02Fl0C0
2 E Iv(0 )1F 0 31F l0 2 C 0D 0
EI(x)b2F l x2C1
E I(x)b 2 F l x2F 2(xa)2C 2
挠度方程
EIv(x)b6F l x3C1xD1 E Iw (x ) b 6 F lx 3F 6(x a )3 C 2xD 2
⑶ 确定积分常数
v(0)E 1 I(b 6 F l03C 10D 1)0
v (l) E 1 I[ b 6 F ll3 F 6(l a )3 C 2 l D 2 ] 0
max
(0)
Fl2 3EI
(x) 0
x (3 3)l 3
(33)l F l3
F l3
vm a xv(
) 0 .0 6 4 2
3 93E I
E I
例:简支梁AB如图所示(图中a > b),承受集中载荷F作 用,梁的弯曲刚度为EI。求此梁的挠曲轴方程和转角方程, 并确定挠度的最大值。
材料力学第六章 弯曲变形
4
2
C
B
)
=
A
( A)q C
l q
( B )q
(b)
B
( wC )q
l
θ B ( θ B )q ( θ B ) M e
+
Me
(c)
Mel ql 24 EI 6 EI
3
A
B
( B ) M e
( A ) MC ( wC ) M
e
e
l
例题3
AB梁的EI为已知,求梁中间C截面挠度.
F1l 2 F2 la 0.4 400 200 B ( ) 16 EI 3 EI 210 1880 16 3 +0.423 10-4 (rad)
F1l a F2a F2a l wC 5.19 106 m 16 EI 3 EI 3 EI wmax w (3)校核刚度: l l
x A
dx
F
x
C' dω
B
d tg dx
二、挠曲线的微分方程
1.纯弯曲时曲率与弯矩的关系
M EI
1
横力弯曲时, M 和 都是x的函数.略去剪力对梁的位移的影 响, 则
1 M ( x) ( x) EI
2.由数学得到平面曲线的曲率
F
1 | w | 3 2 2 ( x) (1 w )
q
A x B
w w F wq
+
w wF wq
例1 已知:EI, F,q .求C点挠度 F q
A
C a a
B
Fa 3 ( wC )F 6 EI
材料力学刘鸿文第六版最新课件第六章 弯曲变形
内容回顾
6.1:基本概念 挠度;转角;挠曲线;挠度和转角的关系;挠度 和转角的符号定义。
6.2:挠曲线的微分方程
d2w M dx2 EI
6.3:积分法求弯曲变形
w" M(x) EI
EIw M ( x )dx C1 (转角方程) EIw M ( x )dxdx C1 x C 2 (挠度方程)
确定积分常数C1和C2
确定积分常数C1和C2
(1)在简支梁中, 左右两铰支座处的
挠度 w A 和 wB 都等于0。
A
wA 0
(2)在悬臂梁中,固定端处的挠度 w A
和转角 A 都应等于0。
(3)在弯曲变形对称点,转角为0。
A
wA 0
A 0
B
wB 0
B
42
(4)若B支座改为弹簧支撑,则: (5)若B支座改为
又:
1M
EI
B
d2w M
ds
A
此式称为
dx2 EI
梁的挠曲线近似微分方15程
横力弯曲梁:
w" M(x) EI
近似原因 : (1) 略去了剪力的影响; (2) 略去了 w2项;
(3) tan w w ( x )
16
§6-3 用积分法求弯曲变形
一、微分方程的积分 w M ( x) EI
x a时,wC 左 wC 右
x L, w FBy
B
k
B kx
h F EA
A
C
a
bB
L
x 0, wA 0
x a时,C左 C右
x a时,wC左 wC右
x
L, wB
lBD
FByh EA
例题1 图示一抗弯刚度为 EI 的悬臂梁, 在自由端受一集中力 F
材料力学第6章弯曲变形
M1 EIw1
Fb x1 l
2 x1
" EIw2
Fb M2 x2 F ( x2 a ) l
2 x2 2
EIw1
Fb C1 l 2
x2 a Fb F C2 (i) EIw2 l 2 2
工学院
§6.2 挠曲线的微分方程
纯弯曲情况下,弯矩与曲率 间的关系(5.1):
M EI
1
--(a)
横力弯曲时,梁截面上有弯矩也有剪力,对于跨 度远大于截面高度的梁,剪力对弯曲变形的影响可以 省略,(a)式便可以作为横力弯曲变形的基本方程。其 中,M和1/ρ都是x的函数。
工学院
§6.2 挠曲线的微分方程
(o) (p)
CB段 (a x2 l )
Fb 2 3l 2 2 2 l b 3 x ( x a ) 2 2 6l b Fb 2 l 2 2 3 EIw2 l b x x ( x a ) 2 2 6l b 2 EIw2
车床主轴的变形过大会影响 齿轮的啮合和轴承的配合, 造成磨损不匀,产生噪音, 降低寿命以及影响加工精度。
工学院
§6.1 工程中的弯曲变形问题
吊车梁的变形过大,会 使梁上小车行走困难, 出现爬坡现象,还会引 起较严重的振动。
变形超过允许数值,即 使在弹性范围内,也被 认为是一种失效现象。
工学院
§6.1 工程中的弯曲变形问题
l
2
b
2
3
工学院
§6.3 用积分法求弯曲变形—实例3
7). 讨论
上面得到最大挠度表达式为: 3 1 Fb 2 2 wmax l b 9 3 EIl
弯曲变形——精选推荐
第六章弯曲变形判断弯曲变形1、“平面弯曲梁的挠曲线必定是一条与外力作用面重合或平行的平面曲线”2、“由于挠曲线的曲率与弯矩成正比,因此横截面的挠度与转角也与横截面的弯矩成正比”3、“只要满足线弹性条件,就可以应用挠曲线的近似微分方程”4、“两梁的抗弯刚度相同、弯矩方程相同,则两梁的挠曲线形状相同”5、“梁的挠曲线方程随弯矩方程的分段而分段,只要梁不具有中间铰,梁的挠曲线仍然是一条光滑、连续的曲线。
”6、“最大挠度处的截面转角一定为0”7、“最大弯矩处的挠度也一定是最大”8、“梁的最大挠度不一定是发生在梁的最大弯矩处。
”9、“只要材料服从虎克定律,则构件弯曲时其弯矩、转角、挠度都可以用叠加方法来求”10、“两根几何尺寸、支撑条件完全相同的静定梁,只要所受的载荷相同,则两梁所对应的截面的挠度和转角相同,而与梁的材料是否相同无关”11、“一铸铁简支梁在均布载荷的作用下,当其横截面相同且分别按图示两种情况放置时,梁同一截面的应力和变形均相同”选择弯曲变形1、圆截面的悬臂梁在自由端受集中力的作用,当梁的直径减少一半而其他条件不变时,最大正应力是原来的倍;最大挠度是原来的倍。
若梁的长度增大一倍,其他条件不变,最大弯曲正应力是原来的倍,最大挠度是原来的倍。
A:2; B:16 C:8 D:4;2、y’’=M(x)/EI在条件下成立。
A:小变形; B:材料服从虎克定律;C:挠曲线在xoy面内; D:同时满足A、B、C;3、等直梁在弯曲变形时,挠曲线最大曲率发生在处。
A:挠度最大; B:转角最大 C:剪力最大; D:弯矩最大;4、在简支梁中,对于减少弯曲变形效果最明显。
A:减小集中力P; B:减小梁的跨度;C:采用优质钢; D:提高截面的惯性矩5、板条弯成1/4圆,设梁始终处于线弹性范围内:①σ=My/I Z,②y’’=M(x)/EI Z哪一个会得到正确的计算结果?A:①正确、②正确;B:①正确、②错误; C:①错误、②正确; D:①错误、②错误;6、应用叠加原理求横截面的挠度、转角时,需要满足的条件是。
材料力学6弯曲变形
=
M 0 L2 9 3EI Z
<[f ]
刚度满足要求。 刚度满足要求。
例二、长度为 的梁 的梁AC, 为常数, 例二、长度为L的梁 ,其EI为常数,在自由端承受集 为常数 中力P(如图),试求自由端C的挠度和转角 ),试求自由端 的挠度和转角。 中力 (如图),试求自由端 的挠度和转角。 外力分析: 解: 1)外力分析:
解: 1)外力分析: )外力分析: M0 M0 RA = (↓), R B = (↑ ) L L 2)内力分析:(M方程 方程) )内力分析: 方程
3)挠曲线方程和转角方程: )挠曲线方程和转角方程:
M0 M(x) = − x (0 ≤ x ≤ L ) L
M0 2 d2V M0 EIzθ= − x +C x EIz 2 = − 2L dx L M0 3 EI z V = − x + Cx + D 6L
思考题: 思考题:求VB
试用叠加法求C截面的挠度和转角 例5、试用叠加法求C截面的挠度和转角 (I2=2I1)。
EI 2 A a C a EI1
A
C a
m0= Pa A a P
解:(1)BC段变形,AC段刚化 :(1)BC段变形,AC段刚化 段变形 ( VC(1) = 0 θ C1) = 0 B (2)AC段变形 BC段刚化 段变形, (2)AC段变形,BC段刚化 P 3 2 Pa Pa VCP = ( ↑) θ CP = ( ) 3EI 2 2EI 2 B Pa 2 ( ) Pa 3 θ Cm0 = VCm0 = ( ↑) EI 2 2 EI 2 P 5Pa 3 VC( 2 ) = VCP + VCm0 = ( ↑) 6 EI 2 3Pa 2 B ( θ C2 ) = θ CP + θ Cm0 = ( ) 2 EI 2 (3)总变形 (3)总变形
工程力学c材料力学部分第六章 弯曲变形
A l/2
C l
B
解:此梁上的荷载可视为 正对称和反对称荷载的叠加, 正对称和反对称荷载的叠加, 如图所示。 如图所示。 正对称荷载作用下:
q/2
5(q / 2)l 4 5ql 4 wC1 = − =− 384 EI 768 EI
B
(q / 2)l 3 ql 3 θ A1 = −θ B1 = =− 24 EI 48EI
w P A a D
a
A C a H a B
EI
Pl 3 wB = − 3 EI
P
B
l
Pl 2 θB = − 2 EI
P A a 2a 2a C B
P/2
P/2 B
P/2
=
A
+
P/2
力分解为关于中截面的对称和反对称力( )之和的形式。 解:将P力分解为关于中截面的对称和反对称力(P/2)之和的形式。 力分解为关于中截面的对称和反对称力 显然,在反对称力( / )作用下, 显然,在反对称力(P/2)作用下,wc=0 对称力作用的简支梁, 对称力作用的简支梁,可以等效为悬臂梁受到两个力的作用 的问题。 的问题。
wA=0 θA=0
B
②、变形连续条件 变形连续条件: 连续条件
P A C θC左 wC左= wC右, =θ C右 B
的悬臂梁, 例1:图示一弯曲刚度为 的悬臂梁,在自由端受一集中力 作 :图示一弯曲刚度为EI的悬臂梁 在自由端受一集中力F 试求梁的挠曲线方程,并求最大挠度及最大转角。 用,试求梁的挠曲线方程,并求最大挠度及最大转角。 解:① 建立坐标系并写出弯矩方程 ①
在小变形情况下, 曲线弯曲平缓, 在小变形情况下,挠曲线弯曲平缓,
∴ w′ ≪ 1
2
材料力学 第6章 梁的弯曲变形
(c)
材料力学
第2章第剪6章切与梁连的接弯件曲的变实形用计算
在本章所取的坐标系中,
上凸的曲线w″为正值,下凸的为负值。
如图6-5所示。 按弯矩正负号的规定,正弯矩对应着负的w″, 负弯矩对应着正的w″,故(c)式
w
M (x)
(1
w2 )3 2
EI z
在小变形情况下, w dw 是一个很小的量, dx
则 w'2为高阶微量,可略去不计,故
挠曲线的近似微分方程
M x
w EI z
EIw''= −M (x)
(6-1b)
图6-5
材料力学
第2章第剪6章切与梁连的接弯件曲的变实形用计算
6.4 积分法计算梁的变形
对于等直梁,可以直接积分,计算梁的挠度和转角。 将式(6-1b)积分一次,得到
EIw′ = EIθ = −∫ M (x) dx + C
maxFl 2 2EI来自A xyF
θmax B
x
wmax
l
图6-7 例题 6-1 图
wm a x
Fl 3 3EI
θ max为正值,表明梁变形后,截面B顺时针转动;
wmax为正值,表明点B位移向下。
材料力学
第2章第剪6章切与梁连的接弯件曲的变实形用计算
例题6-2 一简支梁受均布荷载q作用,如图6-8所示。试求梁的转角方程和 挠度方程, 并确定最大挠度和A、B截面的转角。设梁的弯曲刚度为EI。
A x
y
F
θmax B
x
wmax
l
进行两次积分,得到
EIw EI Flx Flx2 C
(a)
2
EIw Flx2 Fx3 Cx D
材料力学课件第六章1 弯曲变形
2 F 1 3 (0) Fl (0) 2 C (0) D 0 6 2 D0
解得: C 0, 6、确定挠曲线方程和转角方程: F EIw ' x 2 Flx 2 F Fl 2 EIw x 3 x 6 2 7、求截面位移
由方程所确定的曲率:
1 3 2 2 ( x) dw 1 dx
d w dx2 dw 1 dx
2 2
d 2w dx2
y
w x
x
3
F
因此有:
2
2
M ( x) EI
dw d 2 w M ( x) 又 1 得: 2 dx EI dx
二、画AB、DE受力图
三、变形协调条件 三、建立补充方程
v AB中 vDE中
( P RC ) L RC L2 48EI1 48EI 2
3 1 3
D
E
3 I 2 L1 P 解得:RC 3 3 I 2 L1 I1 L2 I1 L3 P 2 AB梁负担:P RC 3 3 I 2 L1 I1 L2
ห้องสมุดไป่ตู้
水平位移 2、弯曲变形的度量: (1)截面位移及特点: •横截面形心的竖向线位移 •横截面绕中性轴的角位移。 •横截面形心的水平线位移, 较竖向线位移小许多。
(2)度量变形的基本量: •挠度w: 横截面形心的竖向线位移,向上为正。 •截面转角θ :横截面绕中性轴的角位移,逆时针为正。
3、弯曲变形简化计算 (1)简化: 认为截面只有竖向位移。 y (2)简化后问题的特点: •挠曲线方程为挠度方程:
《材料力学》第六章-弯曲变形
当载荷P处于梁中点,即b=l/2时,xl=0.5l;
当载荷P移至支座B,即b→0时
x1
l2 0.577l 3
即使在这种极端的情况下,最大挠度的位置距中 点只有0.077l,也就是说点的位置影响甚小,最大挠 度总是发生在梁跨中点的附近。可以认为在工程中 当有一集中力作用在简支梁上时,梁的最大挠度发 生在梁的中点,其结果误差不超过3%。
§6.1 工程中的弯曲变形问题
工程中有些受弯构件在载荷作用下虽能满足强度 要求,但由于弯曲变形过大,刚度不足,仍不能保证 构件的正常工作,成为弯曲变形问题。
出现“爬坡”现象
使齿轮啮合力沿齿宽分布极 不均匀,加速齿轮的磨损。
一、挠度和转角
构件的弯曲变形通常用截面的挠度和转角度量。
梁在横向力作用下发生弯曲变形, y
§6.3 用积分法求弯曲变形
一、积分法求弯曲变形 w Mx
EI
积分
挠曲线近似微分方程
w E 1IM xd x C
积分
转角方程
w E 1IM xd x CD x 挠曲线方程
式中C和D是待定的积分常数,可根据梁的具体条件来确定。
积分法计算梁的变形的步骤: 1.建立梁截面的弯矩方程式M(x); 2.代人挠曲线近似微分方程式,并积分; 3.确定积分常数,得到具体的挠度和转角方程式; 4.求梁任一截面的转角和挠度。
令
w1 10 F 2lx b12-F 6lb l2-b2 0
当a>b时,x1<a,wmax发生在AC段内。
得: x1
l2 -b2 3
wm若求最大转角,求θA、θB,比较大小,取其大者。
当
x1
l2 -b2 3
wmax-
Fb 9
材料力学_-刘鸿文-第四版_第六章_课件__弯曲变形
A
B
x l
y A
θ maxB
max
x
' Plx Px2
EI 2EI Plx 2 Px3
2EI 6EI
l
P
max 及 ωmax 都发生在自由端截面处
max
|xl
Pl 2 EI
Pl 2 2EI
Pl 2 2EI
(
)
max
|xl
Pl 3 3EI
()
例题: 图示一抗弯刚度为 EI 的简支梁, 在全梁上受集度为 q 的均布荷载作用。试求此梁的挠曲线方程和转角方程, 并确定其最大挠度 ωmax 和最大转角 max .
B
A
B
例题:确定梁的边界条件和连续条件
A
B
C
D
边界条件
A 0 D 0, D 0
EI M(x)
A
B
C
D
连续条件
C左 C右 , C左 C右 B左 B右
例题 : 图示一抗弯刚度为 EI 的悬臂梁, 在自由端受一集中力 P 作用。试求梁的挠曲线方程和转角方程, 并确定其最大挠度 ωmax 和最大转角 max .
由几何关系知, 平面曲线的曲率可写作
1 (x)
| (1
''| '2 ) 32
1 M(x)
( x) EI
| ''|
(1
'2
)
3 2
M ( x) EI
| ''|
(1
2
)
3 2
M ( x) EI
在规定的坐标系中,x 轴水平向右
为正,y 轴竖直向上为正。
y
M>0
材料力学-6-弯曲刚度
• 引言 • 弯曲刚度的基本原理 • 弯曲刚度的实验验证 • 弯曲刚度在工程中的应用 • 弯曲刚度的优化设计 • 结论与展望
01
引言
主题简介
01
弯曲刚度是材料力学中一个重要 的概念,主要研究材料在受到弯 曲力作用时的行为和性能。
02
弯曲刚度涉及到材料抵抗弯曲变 形的能力,对于工程结构的稳定 性、承载能力和使用寿命具有重 要意义。
车辆行驶安全
弯曲刚度影响桥梁的平顺性,从而 影响车辆行驶的安全性和舒适性。 弯曲刚度不足可能导致桥面不平整, 增加车辆颠簸和振动。
建筑度对其抗震性 能具有重要影响。在地震作用下, 具有较高弯曲刚度的建筑能够更 好地抵抗地震引起的振动,减少
破坏。
风载响应
弯曲刚度也决定了建筑结构对风 载的响应。弯曲刚度较大的建筑 能够更好地承受风力作用,减少
机械零件
在机械零件的设计中,弯曲刚度是评估零件性能的重要指标。例如,在汽车和 航空器的设计中,需要确保关键部件的弯曲刚度满足要求,以保证车辆和飞机 的安全性和稳定性。
03
弯曲刚度的实验验证
实验设备与材料
01
02
03
试样
选择具有代表性的材料试 样,如金属、塑料等。
实验设备
包括万能材料试验机、测 力计、测量工具等。
轻质材料
选择轻质材料,如铝合金、碳纤维复合材料等,以减小结构重量, 提高弯曲刚度。
高强度材料
选用高强度材料,如高强度钢、钛合金等,以提高结构承载能力, 降低弯曲变形。
材料属性优化
通过合金化、热处理等方法优化材料的力学性能,如提高弹性模量、 抗拉强度等,从而提高弯曲刚度。
结构设计优化
合理布局
材料力学 第6章 弯曲变形
6-1 弯曲变形的实例
弯曲变形
摇臂钻床的摇臂或车床的主轴变形过大,就会 影响零件的加工精度,甚至会出现废品。
第6章
6-1 弯曲变形的实例
弯曲变形
桥式起重机的横梁变形过大,则会使小车行走困难, 出现爬坡现象。
第6章
6-1 弯曲变形的实例
弯曲变形
但在另外一些情况下,有时却要求构件具有较大的 弹性变形,以满足特定的工作需要。 例如,车辆上的板弹簧,要求有足够大的变形,以 缓解车辆受到的冲击和振动作用。
F l [ ( x a)3 x 3 (l 2 b 2 ) x] 6 EIl b
F l 1 [ ( x a) 2 x 2 (l 2 b 2 )] 2 EIl b 3
第6章
6-5 叠加法求梁的位移 叠加法求梁的挠曲线
弯曲变形
梁在若干个载荷共同作用时的挠度或转角, 等于在各个载荷单独作用时的挠度或转角的代 数和。这就是计算弯曲变形的叠加原理。
3. 增大梁的弯曲刚度:主要增大I值,在截面面积不变的情况下,采用
适当形状,尽量使面积分布在距中性轴较远的地方。例如:工字形、箱 形等。
q
A B l B l A
q
A
q
B
第6章
6-7 提高弯曲刚度的一些措施
弯曲变形
第6章
6-7 提高弯曲刚度的一些措施
弯曲变形
1) 支承条件:
y
w 0; w 0
弯曲变形
y
y
w0
F A
w0
2) 连续条件:挠曲线是光滑连续唯一的
C
B
w|
x C
w|
x C
, |
x C
|
材料力学第六章
解 1)将梁上的载荷分解
wC wC1 wC2 wC3
B B1 B2 B3
2)查表得3种情形下C截面的 挠度和B截面的转角。
wC1
5ql 4 384EI
wC 2
ql 4 48EI
ql 4 wC3 16EI
B1
ql 3 24EI
B1
ql 3 16EI
B3
ql 3 3EI
wC1
wC2 wC3
3)进行变形比较,列出变形协调
条件
wB 0
4)叠加法
wB (wB )F (wB )FBy 0
MA A
MFAAy A
FAy A
A
MA A FA y
MA A AA
MA A A
F
B
C
2a (a) B
aF C
2a
Ba C
((ba))
B B (b)
F C
C
(c)
FBy F
B
FF C
BB
(c)
FBy
CC
B12 a
Fa 2l 3EI
w1 wB11 wB12
w2
B2a
Fl 2a 16 EI
w w1 w2
用叠加法求跨度中点挠度
解: wc wc1 wc2
由于 wc wc2
=
故
wc
1 2
wc1
1 5q0l 4 5q0l 4 2 384EI 768EI
-
解: wc wc1 wc2
当 d w 0 时,w为极值
dx
EI1
Fb 2l
x2 1
Fb 6l
(l 2
b2 )
E I 2
Fb 2l
x22
材料力学 第六章 弯曲变形
M E F A 0 .5l M 0 解得: Q E 2 P , M E 0
FA Q 0
M A F A M 0
FA
(3)计算截面A+ 和D-的剪力和弯矩
Y 0 M 0
A
同理:
FA 0 P D D
M D Q D
Q D P
Q ( x ) FA qx ql qx 0 x l 2 2 1 M ( x ) FA x qx x qlx q x 2 2 2 2 0 xl
l /2 M
ql 2
x
M ( x) |x0 0
M ( x ) |x l 0
l /2
ql 2 8
求弯矩的极值点:
O
B 1
1 — 1截面:
Q1 FB
1
M1
m2 M 1 0
Q1
FB
M 1 FB ( l x1 ) m1 m 2
4. 剪力、弯矩的正负与横向外力偶的关系
Q2 FA P
a
M 2 F A x 2 P ( x 2 a ) m1 m 2
Q1 FB
一端为固定铰支座一端为活动铰支座。 2、外伸梁 一端或两端向外伸出的简支梁。
3、悬臂梁 一端固定支座一端自由。
§6-3 剪力与弯矩
一、剪力和弯矩
步骤: (1)先求约束反力FA 、FB ; y a P1
x
m
P2
P3
x
A y
m
B
(2)由截面法求横截面上的内力; FA (如:求 m — m 截面的内力)
说明:
Q向下假设为正; M逆时针假设为正。 Q向上假设为正; M顺时针假设为正。
材料力学第四版课件 第六章 弯曲变形
ql
3
()
2
24 EI
Fl ()
(q
A
16 EI
3
q
A
ql
Fl
2
( )
24 EI
16 EI
例6.5:图示外伸梁,其抗弯刚度为EI,求B截 面的转角和C截面的挠度.
2
2
l
EIw 2 M 2 F
x F ( x a)
2
转角方程
b x F ( x a) C2 l 2 2
3 3
b x F ( x a) C 2x D 2 挠度方程 EIw 2 F l 6 6
F A a l C b B
(3)确定积分常数 边界条件: 在 x = 0 处, w1 0 在 x = l 处, w2 0 C点的连续条件: 在 x = a 处, w1 w2 , w1 w2 再将边界条件和连续条件分别代入 AC与CB的转角方程与闹曲轴方程中。
F B
当 x 0 时 : q 0, w 0
q
w 1 EI
1 EI
( FLx
1 2
2
1 2
Fx
2
C)
3
(
FLx
1 6
Fx
Cx D )
4.根据边界条件确定积分常数
当 x 0 时 : q 0, w 0
解得
C 0; D 0
5.得到转角方程和挠度方程,计算B截面的 挠度和转角
B
(4) 根据边界条件求积分常数 当x=0 和 x=l 时, w = 0
EIq EIw
EIw ql 12 x
3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
qx w (2lx 2 x 3 l 3 ) 24 EI
在 x=0 和 x=l 处转角的绝对值相等且都是最大值,
max
ql A B 24 EI
x l 2
3
在梁跨中点 处有最大挠度值 wmax w
5ql 384 EI
4
例题3:图示一抗弯刚度为EI的简支梁, 在D点处受一集中 力F的作用.试求此梁的挠曲线方程和转角方程,并求其最大 挠度和最大转角. F
x 0,
将边界条件代入(3)
(4)
w 0
(4)两式中,可得:
C1 0
2 3
C2 0
梁的转角方程和挠曲线方程分别为
Fx 2 EIw Flx 2
Flx Fx EIw 2 6
y A
F
B x
wmax
l
max
max 和 wmax都发生在自由端截面处
Fl 2 Fl 2 Fl 2 ( ) max | x l EI 2 EI 2 EI Pl 3 wmax w | x l ( ) 3 EI
将 x = 0 和 x = l 分别代入转角方程左右两支座处截面的转角
Pab( l b ) A 1 | x 0 6lEI Pab( l a ) B 2 | x l 6lEI
当 a > b 时, 右支座处截面的转角绝对值为最大
max
Pab( l a ) B 6lEI
(1)
l
(2) 挠曲线的近似微分方程为
EIw '' M ( x ) Fl Fx (2)
对挠曲线近似微分方程进行积分
Fx 2 EIw ' Flx C1 (3) 2 2 3 Flx Fx EIw C 1x C 2 2 6
(4)
Fx 2 EIw Flx C1 (3) 2 2 3 EIw Flx Fx C 1x C 2 2 6 边界条件为 : x 0, w 0
B
x
C C'
转角
w挠度
挠曲线
B
5、挠度和转角符号的规定 挠度:向上为正,向下为负.
转角:自x 转至切线方向,逆时针转为正,顺时针转为负.
w
A
C C'
B
x
w挠度
挠曲线
转角
B
§6–2 挠曲线的微分方程
一、推导公式
1、纯弯曲时曲率与弯矩的关系
M EI
横力弯曲时, M 和 都是x的函数.略去剪力对梁的位移的影响, 则:
1、积分一次得转角方程
EIw M ( x )d x C1
2、再积分一次, 得挠度方程
EIw M ( x )dxdx C1 x C 2
二、积分常数的确定
1、边界条件
2、连续条件
在简支梁中, 左右两铰支座处的 挠度 w A 和 w B 都等于0.
A B
wA 0
在悬臂梁中,固定端处的挠度 和转角 A 都应等于零.
w
M
M
w 0 M 0
M 0 w 0
M M
w
因此,
w 与 M 的正负号相同
O
M 0 w 0
x x
O
w 0 M 0
w (1 w )
2
2
3
2
M ( x) EI
v' 与 1 相比十分微小而可以忽略不计,故上式可近似为
M ( x) w" EI
例题2:图示一抗弯刚度为 EI 的简支梁,在全梁上受集度为q 的
均布荷载作用.试求此梁的挠曲线方程和转角方程,并确定其
max 和 wmax
q A B
l
q
解: 由对称性可知,梁的 两个支反力为
A x
B
ql RA RB 2
RA
l
RB
此梁的弯矩方程及挠曲线微分方程分别为
ql q 2 M ( x) x x 2 2 ql q 2 EIw x x 2 2
m
q A C l B
解:将梁上荷载分为两项简单 的荷载,如图所示
m
A
q C B
w C w Cq w Cm
5ql ml ( 384 EI 16 EI
4 2
(a)
l
)
(b) A
q
θ A θ Aq θ Am
ml ql ( )( 24 EI 3 EI θ B θ Bq θ Bm
( F1 , F2 , , Fn ) 1 ( F1 ) 2 ( F2 ) n ( Fn )
w( F1 , F2 , , Fn ) w1 ( F1 ) w2 ( F2 ) wn ( Fn )
2、结构形式叠加(逐段刚化法)
F q
ql 2 q 3 EIw x x C 4 6
ql 3 q 4 EIw x x Cx D 12 24
q
wmax B
边界条件为 :
x l ,时 w 0
A
梁的转角方程和挠曲线方程分 别为:
A
x
B
l
q (6lx 2 4 x 3 l 3 ) 24 EI
qa 3 3 EI
2
w PC
Fa 3 6 EI
C a a
qA
wqC
F
A
5qa 4 24 EI
=
B
(3)叠加
A PA qA
q A B
a (3 F 4qa ) 12 EI
5qa 4 Fa 3 wC ( ) 24 EI 6 EI
2
+
例题5:一抗弯刚度为 EI 的简支梁受荷载如图 所示.试按叠加原 理求梁跨中点的挠度 wC 和支座处横截面的转角 A , B 。
A
C a a
B
1、 按叠加原理求A点转角和C点挠 度. 解:(1)载荷分解如图
F
A
=
B
(2)由梁的简单载荷变形表, 查简单载荷引起的变形.
q
A B
PA
Fa 4 EI
qa 3 3 EI
2
w PC
Fa 3 6 EI
+
qA
wqC
5qa 4 24 EI
F q
A
B
PA
Fa 4 EI
3 ml ( ql 24 EI 6 EI 3
Aq
C l
B
Bq
wCq
) m
(c) A B
Bm
)
Am
C l
wCm
例题6:试利用叠加法,求图 所示抗弯刚度为EI的简支
A
q C B
梁跨中点的挠度 wC 和两端
截面的转角 A , B .
A C
l/2 l
q/2
解:可视为正对称荷载与反
简支梁的最大挠度应在
w' 0 处
先研究第一段梁,令 w1 0 得
Fb 2 2 (l b 3 x 2) 0 1 w 1' 6lEI
l 2 b2 a (a 2b ) x1 3 3
当 a > b时, x1 < a 最大挠度确实在第一段梁中
2 Fb Pbl 2 2 3 w | ( l b ) 0.0642 w max x x1 EI 9 3lEI
2 2
转角方程
挠度方程
b x F ( x a) C 2x D 2 EIw 2 F l 6 6
3
3
D点的连续条件: 在x=a处
w2 w1 w1 w2
F
RA
A
1
D
2
RB
B
边界条件: 在 x = 0 处, w1 0 在 x = l 处, w2 0 代入方程可解得:
a
b
l
D1 D 2 0
Fb 2 2 (l b ) C1 C 2 6l
1
(0 x a )
Fb 2 2 2 ( 1 w1 l b 3x ) 6lEI Fbx 2 2 [ l b x 2] w1 6lEI
2
(a x l )
Fb l 1 2 2 2 2 [ ( x a ) x ( l b )] 2 w 2' 2lEI b 3 Fb l 3 3 2 2 [ ( ( x a ) w2 x l b ) x] 6lEI b
b EIw 1 M 1 F x l
b x2 EIw F C1 l 2 b x EIw1 F C1 x D1 l 6
3
转角方程
挠度方程
2 (axl )
挠曲线方程
b EIw 2 M 2 F x F ( x a ) l
b x F ( x a) C2 EIw 2' F l 2 2
第六章
§6–1 §6–2 §6–3 §6–4 §6–5 §6–6
弯曲变形
基本概念及工程实例 挠曲线的微分方程 用积分法求弯曲变形 用叠加法求弯曲变形 静不定梁的解法 提高弯曲刚度的措施
§6–1 基本概念及工程实例
一. 工程实例
(Deflection of Beams)
A
B
但在另外一些情况下,有时却要求构件具有较大的弹性变
就分别等于每一荷载单独作用下该截面的挠度和转角的叠加. 当
每一项荷载所引起的挠度为同一方向(如均沿v 轴方向), 其转角 是在同一平面内(如均在 xy 平面内)时,则叠加就是代数和. 这就 是叠加原理.