第三章离心式压缩机
离心式压缩机.课件
3)润滑油冷却器:润滑油冷却器用于返回油箱的油温有所升高的润滑油 冷却,以控制油温升高。油冷器一般配置两台,一台使用,一台备用, 当投用的油冷器冷却效果不能满足要求时,要切换至备用的油冷器, 将停用的油冷器清洗后备用。
3、检查联轴节。 4、拆卸联轴节,检查其不平衡性。 5、检修或更换密封。 6、消除油膜涡动对轴承影响 7、设法使压缩机运行条件偏离喘振点。
8、气体带液体或杂质侵入
8、更换密封、排放积水。
9、叶轮过盈量小,在工作转速下消失。 9、消除叶轮与轴装配过盈小的缺陷。
离心式压缩机故障
压缩机 喘振
1、运行点落入喘振区或离喘 振线太近。
3)工艺系统 按规定时间和路线,检查工艺系统各部位的 温度、压力、液面的指示值,发现偏离及时调节,确保工 艺系统正常运行。
离心式压缩机的使用维护
4)主机 主机是检查维护的主体,要按规定时间,严格检 查各轴承的振动、瓦温、回油情况、转速和轴位移的指示 情况,如发现偏离操作指标规定的范围,要采取有效措施, 排出故障因素,使主机运行正常。
径向轴承是影响其安全工作和 使用率的关键零件之一,常用 可倾瓦轴承,可倾瓦支撑轴承 包括沿中心线 剖分的圆柱形轴承套和五个可 倾斜的扇形轴瓦,瓦块可以使 转子偏心,可以优化轴承瓦块 上的载荷分布情况,并且形成 更好的油楔。
油锲倾斜块式径向轴承
1.瓦块 2.上轴承套3.螺栓4.圆柱销5.下轴承套 6.定位螺钉 7.进油节流圈
移大波动 不好,压比变化大。
离心式压缩机叶轮
2、叶轮 叶轮又称工作轮,是压缩机的最主要的部件。叶轮随主轴高速旋转,对气
离心式压缩机3
第三章 叶轮21thdp h ρΩ=∫222222212121222th u u w w c c h −−−=+−222211()22th hyd c cdp h h ρ=+−+∫§3-1 叶轮典型结构比较 一、反作用度为了评定在叶轮中提高压力能的部分与气体得到的能量的关系,引入反作用度,定义为叶轮中得到的静压能和气体的能量头之比伯努利方程:§3-1 叶轮典型结构比较22222222211221122222th u u u w w u u w w h c u −+−−+−Ω==假定0hyd h =1110,u r c c c ==112r rc c c =≈由速度三角形222111w u c−=2222222()ru w c u c −=−222222122222222222()()22u r uu u c u u c c u u c c u c u +−−−−−Ω==2222222222221111ctg 22222u u u u r u c u c c c u u ϕϕβ−Ω==−=−=+叶片出口角大,叶轮反作用度低流量系数大,叶轮反作用度低反作用度大的级效率高(尽量提高压能,减少动能损失)§3-1 叶轮典型结构比较二、叶轮效率§3-1 叶轮典型结构比较222211()()22th hyd imp c cdp h h ρ=+−+∫122111()11ii m m i pol impi m p dp h RT m p ρ−⎡⎤⎛⎞⎢⎥==−⎜⎟⎢⎥−⎝⎠⎢⎥⎣⎦∫12112222212111()()(1)22ii m m i i pol imp pol imp tot l df th m p RT m p h c c c c h h ηββ−⎡⎤⎛⎞⎢⎥−⎜⎟⎢⎥−⎝⎠⎢⎥⎣⎦==−−−++−()11i i pol imp i m k m k ση==−−0.84-0.92三、叶轮型式1 后弯叶片式2 径向叶片式3 前弯叶片式§3-1 叶轮典型结构比较290A β<�290A β=�290Aβ>�三、叶轮型式1 后弯叶片式2 径向叶片式3 前弯叶片式出口绝对速度和其圆周分速度较小,作功最小§3-1 叶轮典型结构比较290Aβ<�290Aβ=�290Aβ>�出口绝对速度和其圆周分速度较大,作功最大出口绝对速度和其圆周分速度级作功介于前后弯之间§3-1 叶轮典型结构比较前弯叶片式叶轮效率低:(1)反总用度最小,动能在叶片扩压器中损失最大(2)叶道短,弯曲度大-叶道截面积增大快-叶道当量扩张角大-扩压度大-边界层分离-损失大,效率低前弯叶片式叶轮效率低:(3)由于轴向涡流影响和气流通过曲线型通道受离心离作用而形成的速度差相叠 加--叶道中速度分布不均匀度大--边界层分离和二次涡流增大-后面固 定元件进口条件恶化-效率下降(4)叶轮出口绝对速度受Ma c2数限制,圆周速度不能太高,作功能力收到限制前弯叶片式:通风机; 后弯和径向叶片式:鼓风机和压缩机§3-1 叶轮典型结构比较§3-1 叶轮典型结构比较四、强后弯型、后弯型和径向型叶轮1 强后弯型(水泵型)2 后弯型 (压缩机型)3 径向型径向出口叶片式径向直叶片式(前设导风轮)21530A β=−��290A β=�23060A β=−��§3-1 叶轮典型结构比较2222222(1ctg )th u r h u uϕϕβ==−(1)径向型叶轮能量头不随流量系数变化,后弯型叶轮能量头随流量系数增大而减小(2)径向直叶片式叶轮气体所获能量头较后弯型叶轮大20-25%,强后 弯型叶轮大40-50%;故采用径向直叶片式叶轮可减少离心压缩机 级数。
离心式压缩机 原理
离心式压缩机原理
离心式压缩机是一种常用的空气压缩机,它利用离心力将空气压缩,从而提高空气的压力和温度。
其工作原理如下:
1. 空气吸入:离心式压缩机通过一个入气口将空气吸入,空气随着转子的旋转进入离心式压缩机的轮盘。
2. 加速:空气被转子迅速旋转,离心力使得空气被从中心向外部推进,从而加速了空气的流动速度。
3. 压缩:随着空气流动速度的增加,空气被推至离心式压缩机的外围。
在外围,由于叶轮的不断压缩,空气的压力逐渐上升。
4. 出气:当空气达到所需的压力时,压缩后的空气通过排气管道被释放出来,并被送入用途。
需要注意的是,离心式压缩机的压缩过程是连续不断的。
通过不断的旋转和压缩,离心式压缩机可以提供持续的高压空气。
离心式压缩机的主要优点是结构简单、体积小、重量轻、维护方便,并且具有较高的压缩比和较小的功率损失。
因此,离心式压缩机被广泛应用于空气压缩、空调、制冷等各个领域。
离心式压缩机原理pdf
离心式压缩机原理pdf
离心式压缩机是一种广泛应用于各种工业领域的压缩设备。
它的
原理是通过离心力将气体加速到高速旋转的离心鼓中,然后通过叶轮
将气体压缩,最终达到所需的压缩效果。
离心式压缩机的结构包括离心鼓、进气口、出气口、叶轮、电机等。
离心鼓通常由多个离心筒组成,在高速旋转时通过离心力将气体
加速到鼓内,然后被叶轮旋转,快速压缩。
气体经过压缩后通过出气
口排出系统。
离心式压缩机有很多优点,例如占地面积小、噪音低、运作稳定等。
它适用于空气压缩、空气分离、低温制冷、饮料制造行业、氧气
生产等领域。
在空调系统中,离心式压缩机也是常见的压缩设备之一,它能够有效提高空调系统的制冷效果。
离心式压缩机的使用需要注意以下几点:
1. 离心式压缩机的运转必须保证平稳,避免剧烈震荡和突然停机,这有可能损害设备或者危及安全。
2. 在设备的安装和使用过程中,必须要严格按照相关规定和操作
手册进行操作,以免因操作不当导致设备出现故障和损坏。
3. 各种易燃易爆物品应该放置在离心式压缩机的远离位置,避免
因意外事故而引起火灾等危险。
4. 定期检查和清洁离心式压缩机设备,及时更换需要更换的零部件和进行维护保养。
这可以有效地延长设备的使用寿命,提高使用效率。
总之,离心式压缩机作为常见的压缩设备之一,可以为各种行业的生产和制造提供帮助和支持。
但是,在使用过程中需要遵守相关规定和操作手册,以确保设备的安全、有效运转。
同时,进行定期检查和维护保养,可以大大延长设备的使用寿命和提高工作效率。
H《化工过程流体机械》第3章叶片式压缩机-总结思考公式习题
《化工过程流体机械》总结、思考、公式、习题(第三章)2009.10.15(内容总结及思考题)第三章叶片式压缩机§ 3.1 离心压缩机的结构类型3.1.1 离心压缩机的基本结构3.1.2 主要零部件3.1.3 典型结构小结:1.基本结构级、段、缸、列;首级、中间级、末级;叶轮、扩压器、弯道、回流器、吸气室、蜗壳;2.主要零部件叶轮(后弯型,相对宽度b2/D2,直径比D1/D2);扩压器(叶片、无叶片);3.典型结构单级、多级,水平中开型、高压筒型等。
思考题:[2] 3-1.何谓离心压缩机的级?它由哪些部分组成?各部件有何作用?§ 3.2 离心压缩机的工作原理3.2.1 工作原理3.2.2 基本方程3.2.3 压缩过程3.2.4 实际气体小结:1.工作原理离心压缩机特点(优缺点);关键截面参数(s、0、1、2、3、4、5、0');2.基本方程连续性、欧拉方程,焓值方程(热焓形式)、伯努利方程(压损形式);3.压缩过程等温压缩、绝热压缩、多变压缩过程(过程指数m、绝热指数k);4.实际气体压缩性系数Z、混合气体(ρ、R、c p或c v、k)。
思考题:[2] 3-2.离心压缩机与活塞压缩机相比,它有何特点?[2] 3-3.何谓连续方程?试写出叶轮出口的连续方程表达式,并说明式中b2/D2和φr2的数值应在何范围之内?[2] 3-4.何谓欧拉方程?试写出它的理论表达式与实用表达式,并说明该方程的物理意义。
[2] 3-5.何谓能量方程?试写出级的能量方程表达式,并说明能量方程的物理意义。
[2] 3-6.何谓伯努利方程?试写出叶轮的伯努利方程表达式,并说明该式的物理意义。
[2] 3-14.如何计算确定实际气体的压缩性系数Z?[2] 3-15.简述混合气体的几种混合法则及其作用。
§ 3.3 离心压缩机的工作性能3.3.1 能量损失3.3.2 性能参数3.3.3 单级特性3.3.4 多级特性3.3.5 性能换算小结:1.能量损失流动(摩阻、分离、冲击、二次流、尾迹、M)、轮阻、内漏气损失;2.性能参数能头、功率、效率,级中气体状态参数(温度、压比、比容);3.单级特性能头(压比)、功率、效率特性,喘振和堵塞工况、稳定工况区;4.多级特性特性(曲线陡、喘振限大、堵塞限小、稳定区窄)、影响(u2、μ);M、k)、完全相似和近似相似(k=k')换算。
离心式压缩机工作原理
离心式压缩机工作原理
离心式压缩机是一种常见的压缩机类型,其工作原理主要基于离心力的作用。
它通过转子的旋转产生离心力,将气体吸入轴向进口处,随后气体沿着进口通道流入转子,并在离心力作用下被压缩。
压缩后的气体沿着离心力方向排出,经过排气通道被释放出去。
具体来说,离心式压缩机主要由以下几个部件组成:
1. 轴:提供转子旋转的动力源。
2. 转子:位于压缩机的核心部分,通过旋转产生离心力。
3. 进口通道:气体通过此通道进入转子。
4. 排气通道:压缩后的气体通过此通道被排出。
5. 外壳:包围整个压缩机,起到保护和密封的作用。
整个工作过程如下:
1. 当轴开始旋转时,转子也开始转动。
转子的旋转速度非常高,通常达到数千转每分钟。
2. 进口通道使进入压缩机的气体朝向转子的轴线方向流动。
由于转子的旋转,气体被迫转向,形成一个旋涡。
3. 当气体进入旋涡中时,由于离心力的作用,气体被迅速压缩。
离心力的作用使气体的分子更加密集,从而提高了气体的压力。
4. 压缩后的气体沿着离心力方向通过排气通道排出压缩机。
压缩机可以根据需要设计多级压缩,每个级别都会进一步增加气体的压缩。
5. 通过不断循环上述步骤,离心式压缩机可以将气体压缩到所需的压力。
需要注意的是,离心式压缩机适用于处理大量气体,但输出的压缩气体通常具有较低的质量流量。
此外,离心式压缩机相对来说比较复杂,需要较高的维护和操作要求。
离心式压缩机组成
离心式压缩机组成离心式压缩机组成是一种常见的压缩机类型,它在工业生产中广泛应用。
离心式压缩机组成由入口部分、压缩部分和出口部分组成,它通过旋转叶轮的离心力将气体压缩并排出。
本文将介绍离心式压缩机组成的原理和工作过程。
入口部分是离心式压缩机的第一个部分,它负责将气体引入压缩机。
入口部分通常包括进气道和进气滤清器。
进气道是气体进入压缩机的通道,而进气滤清器则起到过滤空气中杂质的作用,保护压缩机内部的部件不受损坏。
压缩部分是离心式压缩机的核心部分,它由旋转叶轮、静止叶轮和机壳组成。
旋转叶轮由驱动装置带动高速旋转,而静止叶轮则位于旋转叶轮的前方,起到引导气体流动的作用。
当气体被旋转叶轮吸入后,离心力使气体获得了动能,气体的压力也随之增加。
随着旋转叶轮的高速旋转,气体逐渐被压缩,并向离心力的方向排出。
出口部分是离心式压缩机的最后一个部分,它将压缩后的气体排出压缩机。
出口部分通常包括出气道和排气阀。
出气道是气体排出压缩机的通道,而排气阀则控制气体的流动,以保证压缩机的正常运行。
离心式压缩机组成的工作过程如下:当压缩机启动后,驱动装置带动旋转叶轮高速旋转。
气体通过进气道进入压缩机,并经过进气滤清器过滤杂质。
随着旋转叶轮的旋转,气体被吸入并受到离心力的作用,压缩过程中气体的温度和压力逐渐增加。
最后,压缩后的气体通过出气道排出压缩机。
离心式压缩机组成在工业生产中有着广泛的应用。
它可以将气体压缩成高压气体,供给工业生产中的各种设备使用。
离心式压缩机组成的结构简单,运行稳定可靠,且具有较高的效率。
在一些需要大量气体供应的场合,离心式压缩机组成可以满足生产需求。
离心式压缩机组成是一种常见的压缩机类型,它由入口部分、压缩部分和出口部分组成。
通过旋转叶轮的离心力将气体压缩并排出。
离心式压缩机组成在工业生产中应用广泛,具有结构简单、运行稳定可靠的特点。
它能够满足工业生产对气体供应的需求,提高生产效率。
离心式压缩机专题(三)
离心式压缩机专题(三)离心式压缩机的叶轮3 离心式压缩机的转动部件在第一部分内容里,学习离心式压缩机的主要构成时,我们知道离心式压缩机主要由本体部分和辅助系统构成。
而离心式压缩机的本体主要包括转动部件和静止部件两个部分。
通过第三部分内容,将重点对离心式压缩机的主要转动部件进行介绍,包括叶轮、主轴、平衡盘、推力盘和轴套等。
3.1 离心式压缩机的叶轮叶轮是离心式压缩机中对气体做功的元件,气体流经叶轮时,压力和速度得到提高,实现将离心式压缩机的动能转换为气体的压力能和动能,是非常重要的元件,而且是高速旋转元件,所以对叶轮的设计、材料、制造和装配都有很高的要求。
①提供较大的能量头,能量头指的是单位质量气体经过压缩后所获得的能量,能够提供较大的能量头可以理解为,叶轮在旋转的过程中,能够对单位质量气体提供较多的能量。
②叶轮以及与之相配套的级的效率要高,指的是从设计、材料和制造工艺上要使得每一级叶轮与之相配套构成的级的能量损失要小,从而实现比较高的级效率。
③叶轮形式能使级及整机的性能稳定,后面的内容里将会介绍到,叶轮形式的不同会对流经叶轮的气流状态产生明显不同的影响,从而会对级的性能稳定性及整机性能的稳定性产生明显影响,因此,叶轮的形式要能使级及整机的性能稳定。
④强度和质量符合要求,不仅因为叶轮需要受力和做功,而且对于高速旋转的叶轮,如果强度和质量不符合要求,是比较危险的,因此不仅需要在设计、材料、制造和装配上确保叶轮的强度和质量,而且在压缩机的运行过程中,一定要确保各种工艺参数满足设计要求,避免对叶轮状态产生不良影响。
3.1.1 叶轮的分类①按照叶轮的结构形式可以分为开式叶轮、半开式叶轮和闭式叶轮;②按照叶片的弯曲形式可以分为前弯叶片式叶轮、后弯叶片式叶轮和径向叶片式叶轮;③按照加工工艺可以分为铆接式叶轮、焊接式叶轮和整体式叶轮。
三种不同结构的叶轮3.1.2 开式叶轮开式叶轮结构最简单,仅由轮毂和叶片组成。
压 缩 机 基 本 知 识
综合上述三个定律可以得到:P1υ1/ T1= P2υ2/ T2=R或Pυ=RT(2——1式,适用于1千克气体)。由于V=mυ,因而 对于m千克的气体来说,上式可以写成:PV=mRT(2——2式适用于m千克气体)。1式和2式称为理想气体状态方程式。 式中: P——绝对压力,N/m2(牛顿/米2) υ——比容,m2/Kg(米3/千克) T——绝对温度,K m——气体质量,Kg R——气体常数,J/(Kg*K)(焦耳/千克*开),R=8314/μ,μ为气体的分子量。
3
(2)燃烧:燃料加入压缩空气中并点火; (3)膨胀:燃烧后的天然气通过一个喷管而膨胀并对外作功; (4)排气:燃烧后的天然气被排放到大气中。 压缩机广泛应用于化工企业各部门,主要用途是: (1)压缩气体用于输送。 (2)作为动力。
4
(3)用于制冷和气体分离。 (4)用于气体的合成和聚合。 (5)用于油的加氢精制。 2.压缩机的种类: (1)按作用原理分为:容积式和速度式。容积式压缩机靠在气缸作往复运动的活塞或旋转运动的转子来 改变工作容积,从而使气体体积缩小而提高气体的压力,即压力的提高是依靠直接将气体体积压缩来实 现的。速度式压缩机靠高速旋转叶轮的作用,提高
30
3.查理定律:法国科学家查理最先研究发现:比容不变时,理想气体的绝对温度与绝对压力成正比。可以 写成:P1/P2= T1/T2。
31
第二节 理想气体状态方程式 要使燃料的热能部分地转化为机械能,需要依靠工质状态发生一系列有规律的变化。而工质的状态是由压力P、
比容υ和温度T这三个基本参数来表示的。这三个参数之间并不是孤立的,而是有内在联系的。一定量的 气体在开始时的状态我们用P1、υ1 、T1 来表示,经过状态变化后气体状态用P2、υ2 、T2来表示。
第三章 离心式压缩机_7
喘振实例-1
例:前郭炼油厂一催化装置的MB-CH型7级串联水平中 分离心式气体压缩机。 a.由转速变化引起的喘振 正常情况下,压缩机转速的改变由系统反应的压力 信号控制,但机器发生故障时,压力信号不能使汽 轮机转速自由调节。某年冬季,由于蒸汽量不足, 蒸汽管网压力低,汽轮机用蒸汽经常出现0.7~0. 8MPa,机组出现满负荷状况非常多,转速上不去, 有时只达到给定信号的80%~90%,常出现喘振。
体的机器需要两缸或多缸串
联起来形成机组。
百万吨乙烯装置 “中国心”的诞生
a)级数与气体分子量的关系: 达到相同压比2.5时,压缩不同气体时所需压缩 气体分子量对所需压缩功的影响 功和级数的比较 多方压
气体
m 8315 pd 2 dp H pol T1 1 J 氟里昂- 1 kg 136.3 1.10 1 6.15 ps 186 1 m 16.97 11
曲线很陡4轴流压缩机的变工况特性较差轴流离心压缩机性能曲线对比3423按工作介质选型1按轻气体与重气体选型2按工作介质的性质及排气压力是否很高选型3按气固气液两相介质选型?压缩轻气体所需的有效压缩功就大因而选用的压缩机级数就多甚至需要选用多缸串联的压缩机机组为了使结构紧凑应尽可能选用优质材料以提高叶轮的u2并选用叶片出口角较大叶片数较多1按轻气体与重气体选型的叶轮以尽可能的提高单级的压力比从而减少级数
特点:简单、方便,省功,但增加设备。 原理:压缩机特性叠加,使流量或压力倍增。 qv qv1 qv 2 串联: p p1 p2
并联:q q q v v1 v2
2
1
1
dp : 进出口的静压能增量 ,
多变压缩功 多变能量头 ,
过程流体机械课件,过程装备要控制工程,离心压缩机1
一 离心压缩机的典型结构
按叶片类型分类:即按叶片出口角β2A
前弯型(β
2A>90)
后弯型(β2A<90)
径 向 型(β2A=90)
一 离心压缩机的典型结构
(4)扩压器的结构形式
扩压器一般分为无叶扩压器、叶片扩压器两种。
无叶扩压器: 由两个平行壁面
构成的环形通道。气体从叶轮中排 出,经过该环形通道时降速增压。 是一种结构最简单的扩压器, 造价低,变工况适应性好。
一 离心压缩机的典型结构
(3)离心叶轮的结构形式
一 离心压缩机的典型结构
叶轮结构分类:
闭式叶轮
半开式叶轮
双面进气叶轮
闭式叶轮:由轮盘、叶片、轮盖组成。漏气量小,效率高;但 强度低,影响了叶轮圆周速度的提高,单级压力比较低。 半开式叶轮:由轮盘和叶片组成。叶轮强度高,可获得高的单 级压力比;但漏气量大,效率低。 双面进气叶轮:流量大,叶轮轴向力可得到平衡。
叶片扩压器: 在无叶扩压器的环形
通道上,沿圆周安装均布的叶片,就构 成叶片扩压器。
具有扩压程度大、结构尺寸小的优 点;缺点是变工况性能差。
一 离心压缩机的典型结构
(5)平衡盘
轴向力产生原因:
叶轮两侧间隙内气体压力分布不对称,使作用在叶轮两侧的
力不平衡所产生的轴向力; 气体以一定速度沿轴向进入叶轮,而后改为径向流入叶轮通 道,其速度大小和方向的改变,对叶轮产生一个轴向动反力。
0' 2 2 dp c0' c0 H hyd 00' 2
其中,第一项:气体在进出口获得的静压能增量; 第二项:气体在进出口获得的动能增量; 第三项:气体的级内的流动能量损失。
级内流体的伯努利方程:
离心式压缩机
第三节
离心压缩机
防止压缩机喘振的发生的措施:
1、防止进气压力低、进气温度高和气体分子量减小等;
2、防止管网堵塞使管网特性改变; 3、要坚持在开、停车过程中,升、降速度不可太快,并 且先升速后升压和先降压后降速; 4、开、关防喘振阀时要平稳缓慢。关防喘振阀时要先低 压后高压,开防喘振阀时要先高压后低压。
第三节
离心压缩机
压缩机喘振发生后的应急措施:
如万一出现“旋转失速”和“喘振”,首先应立即全部
打开防喘振阀,增加压缩机流量,然后根据情况进行处理。若
是因进气压力低、进气温度高和气体分子量减小等原因造成的, 要采取相应措施使进气气体参数符合设计要求;如是管网堵塞 等原因,就要疏通管网,使管网特性优化;如是操作不当引起 的,就要严格规范操作。
第三节
离心压缩机
喘振发生的条件: 给定压力下,流量小 于最小喘振流量 给定流量下,压力大
于最高喘振压力
第三节
离心压缩机
喘振发生的现象: 发生喘振时,机组开始强烈振动,伴随发生异常
的吼叫声,而且是周期性地发生;
机壳相连接的出口管线也随之发生较大的振动;
进口管线上的压力表指针大幅度摆动;
出口止回阀处发生周期性的开和关的撞击声响;
第三节
2、其它辅助系统
离心压缩机
离心式压缩机还包括有齿轮箱或联轴器、轴向位移安全器和冷却分离 器等辅助设备。
离心式压 缩机的驱 动方式
第三节
离心压缩机
八、离心式压缩机的喘振和临界流速
1、喘振
任何离心压缩机按其结构尺寸, 在某一固定的转速下,都有一个最高 的工作压力,在此压力下有一个相应 的最低的流量。当离心压缩机出口的 压力高于此数值时,就会产生喘振。
第3章:离心压缩机的工作原理
第三章 离心压缩机的工作原理1 速度三角形因为叶轮对气体作功, 叶轮的进出口截面气体运动速度就有变化。
要研究叶轮作功大小,只需讨论叶轮进出口的气体速度。
气体在叶轮中的运动速度有三种相对速度 园周速度 绝对速度气体在叶轮中的实际流动不完全沿着叶片,会有一个与叶轮旋向相反的轴向旋涡。
叶轮出口的速度三角形如下:叶轮对气体所作的功:h = +-g u u 22122+-g w w 22221gc c 22122- (前两项为静压能,第三项为动压能)2 通流元件中参数的变化3 效率的概念压缩机消耗的轴功率 ( N ) 应尽可能用于提高气体压力,因此, 静压能是有用的,其它为无用的损失。
用效率来评价有用的部分。
相应有以下效率:等温效率η i s = N i s / N绝热效率η a d = N a d / N多变效率η p o l = N p o l / N一般地,η a d < η p o l <η i s不同过程下耗功计算:等温功N i s = 1.634 × P s × V × lnsd P P (KW)绝热功 压力温度速度曲线 压力曲线 温度曲线 速度曲线 进气室 叶轮 扩压器 蜗壳 压比N a d = 1.634 × P s × V × 1-k k × ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛-11k k s d p p (KW) 多变功N p o l = 1.634 × P s × V × 1-m m × ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎪⎪⎭⎫ ⎝⎛-11m m s d p p (K W) 式中 P d 排气压力 kgf/cm 2 (A) P s 进气压力 kgf/cm 2 (A) V容积流量 m 3 / min K绝热指数 m多变指数。
离心式压缩机组成
离心式压缩机组成
离心式压缩机是一种常用的空气压缩机,其主要组成部分包括压缩机
本体、电机、控制系统和冷却系统等。
下面将详细介绍离心式压缩机
的组成。
1. 压缩机本体
离心式压缩机的核心部分是压缩机本体,它由进气口、离心轮、扩压器、排气室和出气口等组成。
进气口将空气引入离心轮,离心轮通过
高速旋转将空气加速,然后经过扩压器进入排气室,最终从出气口排出。
2. 电机
离心式压缩机需要电机提供动力,电机的功率大小与压缩机的排气量
有关。
一般来说,电机的功率越大,压缩机的排气量就越大。
3. 控制系统
离心式压缩机的控制系统包括压力传感器、温度传感器、控制器和电
气元件等。
压力传感器和温度传感器可以实时监测压缩机的运行状态,
控制器可以根据监测到的数据对压缩机进行控制,保证其正常运行。
4. 冷却系统
离心式压缩机在运行过程中会产生大量的热量,如果不及时散热,就会影响压缩机的性能和寿命。
因此,离心式压缩机还需要配备冷却系统,包括散热器、风扇和水泵等。
散热器通过风扇将热量散发出去,水泵则可以将冷却水循环流动,保持压缩机的温度在正常范围内。
总之,离心式压缩机的组成部分包括压缩机本体、电机、控制系统和冷却系统等,每个部分都起着不可或缺的作用。
只有这些部分协同工作,才能保证离心式压缩机的正常运行和高效工作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一段
第二段
级的典型结构与关键截面
级是离心压缩机使气体增压的基本单元。分为首级、 中间级、末级
中间级: 由叶轮、扩压器、弯道、回流器组成;首级: 吸气室+中间级;末级:叶轮、扩压器、蜗壳
离心压缩机的典型结构与特点 级的典型结构 (各元件通流截面变化及能量转换情况)
特征截面 in - in 0-0
实际应用中,主要用进、出口的速度三角形。它的 形状和大小将直接关系到叶轮和流体间的能量交 换(功耗)。
c
w
α
cr β
cu
u
c
w
α
cr β
cu
u
叶轮与速度三角形中各参数的含义如下:
α—气流绝对速度与圆周速度的夹角。 β—气流相对速度与圆周速度反方向的夹角,液流角。 cr —绝对速度的径向分速; cu —绝对速度的周向分速。 βA—叶片安置角(叶片在该点的切线与圆周速度反方
(无限薄,不占体积)
叶轮进口 速度三角形
相对速度
离心叶轮的典型结构 叶轮速度三角形
气流速度: 绝对速度(气流速度) c 、c2 、c1 牵连速度(叶轮圆周速度) u = rω(角速度)、u2 、u1 相对速度(流动速度) w 、w2 、w1
气流角度:(实际参数) β2(∠ w2 ,- u2 ) α2(∠ c2 ,u2 )
绝能流动
离心式叶轮的典型结构
1. 按叶轮结构型式 闭式叶轮:性能好、效率高;由于轮盖的影响,叶轮 圆周速度受到限制。 半开式叶轮:效率较低,强度较高。 双面进气叶轮:适用于大流量,且角)
后弯型叶轮:βA< 90°,级效率高,稳定工作范围宽。 径向型叶轮: βA =90 °,性能介于后弯型和前弯型之间。
离心压缩机是在通风机基础上发展起来 流量10000m3/min 提高了转速,大都在35000rpm以上,同时解决了
高速度轴承及其动平衡问题
浮环密封结构,解决了高压下的轴端密封 筒型及双层壳解决了强度问题和机体密封 电火花加工使小流量下窄流道叶轮的加工得到解决
准三元流动基本理论
60年代开始应用准三元流动理 论,设计空间扭曲叶片,以改善级 的流动性能,提高效率。
口,有的装有导向叶片。 ⑤ 吸气室:将进气管中气体均匀导入叶轮。 ⑥ 蜗 壳:收集气体,引出;降速扩压作用。
主要部件及典型结构: 吸气室、叶轮、扩压器、弯道、回流器、蜗壳
级: 由一个叶轮与其相配合的固定元件所构成
段: 以中间冷却器作为分段的标志,可以由几个 级构成
缸: 一个机壳称为一缸,多机壳称为多缸(在叶 轮数较多时采用)
径向分速度 (c 在直径方向分量) cr 、c2r 、c1r 与流量(流速)有关
吴仲华教授 (1917-1992) 1947年美国麻省理工
博士学位 美国NASA科学家
离心式压缩机
单轴离心式压缩机
工作原理
气体的流动过程:
驱动机 转子高速旋转 气体在叶轮增速及 后面流道中扩压
叶轮入口产生负压(吸气) 被压缩气体连续 从蜗壳排出
能量转化过程:机械能→气体动能、压能→进 一步转换成压能 叶轮转速越高、直径越大传递的能量越大。
过程流体机械
离心式压缩机
第三章 离心式压缩机
3.1 离心式压缩机典型结构和工作原理 离心式压缩机的基本方程
3.2 性能调节与控制
3.3 安全可靠性
3.4 选型(轴流式压缩机)
菜单
概述
气体压缩机 容积式
透平式
往复式
回转式
活 柱隔 塞 塞膜 式 式式
罗叶螺滑 茨氏杆片 式式式式
离轴斜复 心流流合 式式式式
结构角度:(理论参数) 叶片出口角β2A(∠ 切线,- u 反向) 与流动和介质无关 (理想状况β2 =β2A )
绝对速度
叶轮出口 速度三角形
圆周 速度
叶轮进口 速度三角形
离心叶轮的典型结构 叶轮速度三角形
分速度:
周向分速度 (c 在圆周方向分量)
cu 、c2u 、c1u 与能量(扬程)有关
能量头(周速)系数 φ2u=c2u / u2
概述
离心压缩机:速度式透平机械。
离心压缩机和轴流式压缩机等习惯称为风机,
分压缩机、鼓风机和通风机。
按排出压力分类
≤0.015MPa
通风机
0.015MPa-(0.3MPa-0.35MPa) 鼓风机
≥(0.3MPa-0.35MPa)
压缩机
离心压缩机的发展概况
新技术、新工艺使得离心压缩机的应用领域愈来愈 广。(石油化工、油气集输)。
前弯型叶轮: βA>90°,级效率较低,稳定工作范围窄。
βA
速度三角形 牵连速度u 绝对速度c
相对速度w
叶轮进出口的速度三角形
气流在叶轮中流动的绝对速度为相对速 度和牵连速度的矢量和
cw u
c,w,u三矢量组成一个封闭 三角形,称为速度三角形。
位于叶轮叶道内任一点的流体质点的运动状态,均 可用一个速度三角形来表达。
主要结构
EI 120~6.35/0.95 E:有中间冷却器的多级高速离心压缩机 I:代表汽缸,罗马字I
v 扩压器 弯道
吸气室
回流器
蜗壳
叶轮 吸气室
离心式压缩 机典型结构
弯道 扩压器
叶轮
吸气室
回流器 出口蜗壳
离心式压缩机典型结构
离心压缩机
转子:转轴,固定在轴上的叶轮、 轴套、联轴器及平衡盘等。
定子:压缩机的固定元件,如机壳、 扩压器、弯道、回流器、蜗壳、吸 气室。
离心式压缩机典型结构
主要过流部件: ① 叶 轮:唯一做功部件,增加气体能量; ② 扩压器:主要转能装置(泵中蜗壳或导叶)速度能
转换为压力能 ③ 弯 道:在扩压器后使离心流动变为向心流动,引
入下一级 ④ 回流器:使气流以一定方向均匀流入下一级叶轮入
向的夹角)。
当叶片数无穷多时, βA=β 叶轮出口处的叶片安置角βA又叫叶片离角。
牵连速度u 绝对速度c 相对速度w
离心叶轮的典型结构
叶轮速度三角形: 叶轮透平机械理论基础 适用压缩机、泵、汽轮机等
实际参数
理论参数
叶轮出口 速度三角形
下标:
1 — 叶轮进口截面 2 — 叶轮出口截面 A — 叶片 th — 理论参数 ∞ — 叶片无限多
说明
吸气管 叶轮
(首级,中间级) (机)进口 (级)进口
参数
p↓, c↑, t↓
能量
绝能流动
1-1 叶片 进口
2-2 叶轮 出口
p↑, c↑, t↑ 增能(做功)
3-3
4-4
5-5
6-6
0′- 0′
扩压器 扩压器出口 弯道出口 回流器 级出口
进口 弯道进口 回流器进口 出口 下级进口
压力 p↑, 流速 c↓, 温度 t↑