56含时微扰理论
微扰理论
第五章 微扰理论Chapter five perturbation Theory§5-1 非简并定态微扰理论一、体系本征方程nn n E H ψ=ψˆ here '0ˆˆˆH H H+= 二、方程近似解设 +ψ+ψ+ψ=ψ)2()1()0(n n nn+++=)2()1()0(nnnn E E E E))(())(ˆˆ()2()1()0()2()1()0()2()1()0(10 +ψ+ψ+ψ+++=+ψ+ψ+ψ+n n n n n n n n n E E E H H 零阶: )0()0()0(0ˆnn n E H ψ=ψ (零级就是未受微扰情况) (1) 一阶:)0(1)1()1()0(0)ˆ()ˆ(nnn H E E H ψ-=ψ- (2) 二阶:0(0)(2)(1)1(1)(2)(0)ˆˆ()()n n n n n nH E E H E -ψ=-ψ+ψ (3) 三阶:n 阶:…1.能量的一阶修正)1(nE(1)0*0ˆn n n E Hdx ψψ'=⎰conclusion: H ˆ在)0(nψ平均值即能量一阶修正 证明: )0()1()1()1()ˆ()ˆ(nn n n H E E H ψψ'-=- 上式两边和*)0(nψ然后对空间积分⎰⎰-=-τψψτψψd H E d E H n n nn n n)0(1)1()*0()1()0(0)*0()ˆ()ˆ( 左=⎰-τψψd E H n nn)1(*)0()0(0])ˆ[(=0 右=⎰-τψψd H E nnn)0()*0()1('ˆ⎰=τψψd H E nnn)0()*0()1('ˆ 2.波函数的一阶修正)1(n ψ∑-'=m n mn mn E E H )0()0()0()1(0ψψ证明:设(1)(0)n l a ψψ=∑()0()0(H n 是ψ本函)因:)0()1(nn a ψψ∑'=是方程(2)的解则∑+)0()0(na a ψψ也是(2)的解适当选a :消取a n 项 则)0()1(ψψa n '∑=撇“’”表示n ≠代入(2)式0(0)(0)(0)(0)ˆˆ(()n n nH E a E H ψψ''-∑=-) 两边采)*0(m ψ然后空间积分⎰⎰⎰-=ψ∑-τψψτψψτψd H d E d a E H n m n n m n m )0()*0()0()1((*))0()0(0)0('ˆ')ˆ(mn n m H d E E a 'ˆ)(')0()0()0()0(-=-∑⎰τψψmn n m H E E a ')(')0()0(-=-∑δ)0()0()0()0(''mn mnn m mn m E E H E E H a -=--=)0()0()0()1(''mmn mn n E E H ψψ-∑=3.能量二阶修正)2(n E (不讲推导)2200()()()''nmn mn mH E E E =∑-(注:*''m n nm H H m n =≠厄米矩阵)三、conclusion1.设,ˆˆˆ0H H H+=若)0()0('mn mnE E H -〈〈1式'ˆH 很小,且)0()0(m n E E -能级间隔较大则波函数 )2()1()0(n n n n ψ+ψ+ψ=ψ 能级 +++=)2()1()0(n n n n E E E E2.一般情况下能级修正到二阶,波函数修正到一阶(1)能级 1002200'()()*()()()()ˆ||'一级修正二级修正n n nnm nm n mE H dx H EE E ⎧=ψψ⎪⎨=∑⎪-⎩⎰(2)波函数一阶修正)0()0()0()1(''mmn mn mn E E H ψψ-∑= 参原讲义例题例题例题⎪⎭⎪⎬⎫321§5-2 简并的定态微扰理论一、体系的本征方程nn n E H ψ=ψˆ 'ˆˆˆ0H H H += 但in i E H ϕϕ=0ˆ k i ,2,1= (k 重简并) 设 +ψ+ψ+ψ=ψ2)1()0(n n n n +++=2)1()0(n n n n E E E E则()0110()()()()ˆˆ()'n n n nH E E H -ψ=-ψ 一阶方程 二、近似求解1.零阶波函数设001kniii c ψϕ==∑ k i ,2,1=2.久期方程对一阶方程两边同乘*ϕ,后对空间积分⎰ψ-=τϕd E H n n )1()0(0*)ˆ( 左0=⎰ψ-=τϕd H E nn )0()1(*)'ˆ( 右*(1)(0)ˆ(')n i iiE H c d ϕϕτ=-∑⎰10()**()ˆ['] ni i i iE d H d c ϕϕτϕϕτ=∑-⎰⎰(1)(0)[']0n i i iiE H c δ=∑-= (1)(0)(')0i n i iiH E c δ∑-=线性方程组11(1)(0)(0)'(0)111122133(0)'(1)(0)'(0)2112222331(')'02'()0n H E c H c H c H cH E cH c=-+++==+-++=(0)(0)(1)(0)1122'()0k k kk n k kH c H c H E c =+++-=(1)(0)1112131(2)(0)2122132(0)(1)123''''''0''''n n k k k k k n H E H H c H H E H c c H H H k H E ⎛⎫⎡⎤- ⎪⎢⎥- ⎪⎢⎥= ⎪⎢⎥ ⎪⎢⎥⎪⎢⎥-⎣⎦⎝⎭ (1) 齐次线性方程组0'''''''''')0(212)1(222111312)1(11=---nkk k k kn knE H H H H E H H H H H E H 久期方程 (2)三、conclusions1.求解方程(1)就可以得到能量的一阶修正和零阶波函数)0(n ψ2.求解步骤(1)先解久期方程,解出K 个根,若K 个根无重根,简并全部解除,若有重根则部分解除例第n 个能级 k j E E E njn nj 2,1)1()0(=+=)1()0()1(2)0(2)1(1)0(1njn nj n n n n n n E E E E E E E E E +=+=+=(2)将)1()1(2)1(1,nj n n E E E 代入原方程解出)0(i C例)0(1n E 代入可得出一组)0(i C则i ki i nC ψ=ψ∑=1)0()0(§5-3 氢原子的一阶stark 效应一、stark 效应(定义)原子在外电场的作用下,产生谱线分裂的现象叫~二、体系的Hamiltonianr e re H s ⋅+-∇=εμ2222ˆ'ˆˆ0H H+= ˆ'cos H e r e r εεθ=⋅= (设ε 沿Z 方向)三、方程求解 n=21.能量一阶修正003221200200000322221021100322321121110032242112111002rrr r1r (),))()1(),))cos 1r(),))()sin 1r (),))()sin =((((((((a a a i a i R r Y ea a R r Y e a R r Y ee a a R r Y e e a a ϕϕϕθϕϕθϕθϕθϕθϕθϕθ-------=ψ-=ψ==ψ==ψ=1111''*ˆH H d ϕϕτ=⎰⎰⎰ 4242''*ˆH Hd ϕϕτ=⎰⎰⎰ 110'H = 22111111000''**ˆcos sin H H d r dr d d ππϕϕτϕϕϕθθθ∞==⎰⎰⎰⎰⎰⎰20000cos sin sin sin (sin )|1=2d d πππθθθθθθ==⎰⎰ 110'H =01212000211232''*ˆ()()()cos cos sin ra r r H H d e e xa a a r r drd d ϕϕτθεπθθθϕ-==-⨯⎰⎰⎰⎰⎰⎰1!x n n n e x dx αα∞-+=⎰1203'H e a ε=-同理可以求得其他矩阵元0000003003)1(2)1(2)1(2)1(2=------E E E a e a e E εε解行列式方程得:33)1(24)1(23)1(220)1(21==-==E Ea e E a e E εε2.零阶波函数求解(1)0)1(213a e E ε=⎪⎪⎪⎪⎪⎭⎫⎝⎛------0000003000030000330033a e a e a e a e a e a e εεεεεε(0)1(0)2(0)3(0)4c c c c ⎛⎫ ⎪⎪⎪ ⎪ ⎪⎝⎭=0 解得到 (0)(0)340c c ==(0)(0)12c c =- ∴ (0)(0)(0)(0)211122i i icc c ϕϕϕψ==+∑(0)(0)1112c c ϕϕ=- (0)(0)12001210c c =ψ-ψ⎰=ψψ1)0(21*)0(21τd 得(0)1c = 由此得零级近似波函数为:)(21210200)0(21ψ-ψ=ψ∴同理 12203()E e a ε=-当解出:000034120()()()()c c c c === 由此得零级近似波函数为:)(21210200)0(22ψ+ψ=ψ1122()()340 E E =当=时解出: 010*********0300000000()()()()00 0 0 0=c e a c e a c c εε⎛⎫-⎛⎫ ⎪⎪- ⎪⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭00000()()()()1234 和为不同时等于零的常数。
微扰理论
(三)能量的二阶修正
上式结果表明,展开式中,an n(1) |ψn (0) > 项的存在 只不过是使整个态矢量|ψn > 增加了一个相因子,这是无 关紧要的。所以我们可取 = 0,即 an n(1) = 0。这样一来,
| n |
|
(0) n
(0) nቤተ መጻሕፍቲ ባይዱ
a
k n
其中λ 是很小的实数,表征微扰程度的参量。
因为 En 、 |ψn > 都与微扰有关,可以把它们看成是λ的函数 (0) (1) ( 2) 而将其展开成λ的幂级数: E n E n E n 2 E n
(0) (1) ( 2) | n | n | n 2 | n
|
(0) n
i |
k 1
(0) n
a
k n
(1) kn
|
(0) k
(1 i ) |
(0) n
k n
(1) (0) akn | k k n
i (0) (1) (0) (0) (1) (0) | a | e i | n akn | k e n kn k k n k n
an n (1) 的实部为 0。an n (1) 是一个纯虚数,故可令 an n (1) = i ( 为实)。
(0) (1) (0) (0) (1) (0) (1) (0) | n | n akn | k | n ann | n akn | k
左乘 <ψm (0) |
k 1
(1) (0) (0) (0) (0) (0) ˆ (1) | ( 0 ) E (1) ( 0 ) | ( 0 ) akn [ Ek En ] m | k m |H n n m n
量子力学第9章-含时微扰
ˆ ˆ H(t) = H0 + H′(t)
量与时间有关, 因为 Hamilton 量与时间有关,所以体系波函数须由含时 方程解出。但是精确求解这种问题通常是很困难的, Schrodinger 方程解出。但是精确求解这种问题通常是很困难的, 而定态微扰法在此又不适用, 而定态微扰法在此又不适用,这就需要发展与时间有关的微扰理 论。 含时微扰理论可以通过 含时微扰理论可以通过 H0 的定态波函数近似地求出微扰存 在情况下的波函数,从而可以计算无微扰体系在加入含时微扰后, 在情况下的波函数,从而可以计算无微扰体系在加入含时微扰后, 体系由一个量子态到另一个量子态的跃迁几率。 体系由一个量子态到另一个量子态的跃迁几率。
比较等式两边得
(0 (1 δnk = an )(0) +λan )(0) +⋯
(0 an )(0 =δnk ) (1 (2 an )(0 = an )(0 =⋯ 0 ) ) =
n
幂次项得: 比较等号两边同 λ 幂次项得:
不随时间变化,所以a 因 an(0)不随时间变化,所以an(0)(t) = an(0)(0) = δnk。 后加入微扰,则第一级近似: t ≥ 0 后加入微扰,则第一级近似:
(0 (1 (2 an = an ) +λan ) +λ2an ) +⋯
∑
n
n
n
n
m n
零级近似波函数 am 不随时 d m) a(0 间变化, = 0 间变化,它由未微扰时体系 (4)解这组方程 解这组方程, (4)解这组方程,我们可得到关于 所处的初始状态所决定。 所处的初始状态所决定。 t d 的各级近似解, an 的各级近似解,从而得到波函 d (1) am (0 ˆ ′ 的近似解。实际上, 数 Ψ 的近似解。实际上,大多数 iℏ n = ∑ an )H neiωm t m d t 情况下,只求一级近似就足够了。 情况下,只求一级近似就足够了。 n a(2 1, (最后令 λ = 1,即用 H’mn代替 d m) (1 ˆ ′ n iℏ = ∑ an )H neiωm t m d t n λ H’mn,用a m (1)代替 λa m (1)。) ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ = ⋯ ⋯
第5章 微扰理论-量子跃迁
§6.含时微扰论前面,我们解决的是H ˆ与t 无关,但不能直接求解,而利用020V m2P H ˆ+=有解析解,并且01V V H ˆ-=较小,通过微扰法求解)r (E )r ()p ˆ,r (H ˆψψ=的近似结果。
有时也能用试探波函数,通过变分来获得。
现在要处理的问题是:体系原处于0H ˆ的本征态(或叠加),而有一与t 有关的微扰)t (H ˆ1附加到该体系。
显然,这时体系的能量不是运动常数,其状态并不处于定态(即使1H ˆ在一段时间中不变),在0H ˆ的各定态中的几率并不是常数,而是随时间变化的。
而且无法获得解析结果。
有时附加作用在一段时间之后结束,这时体系处于0H ˆ的本征态的几率又不随时间变化。
当然,这与作用前的几率已有所不同。
也就是,体系可以从一个态以一定几率跃迁到另一态,这称为量子跃迁。
这就需要利用含时间的微扰论。
总之,含时间的微扰论就是处理体系所处的位势随时间发生变化时,或变化后,体系所处状态发生的变化。
H ˆ与t 有关,体系原处于)P ˆ,r (H ˆ0,随t 加一微动)t (V ψψH ˆti =∂∂ , )t (V H ˆ)t (H ˆ0+= 因0H ˆ不显含t ,而有 )r (E )r (H ˆn0n n 0ϕϕ= 则 ψψ0H ˆti =∂∂的通解为 ∑-=ψnt iEn n 0nea )t ,r (ϕ 0H 的定态∑=nn )t ,r (a ψt iEn ne )r ()t ,r (ϕψ=而 n a 是常数))0,r (),r (())t ,r (),t ,r ((a n n n ψ=ψ=ϕψ 不随t 变当nk n a δ=时,即0t =,处于)r (k ϕ时)t ,r (e )r ()t ,r (k t iEk kψϕ==ψ-即微扰不存在时,体系处于定态)t ,r (k ψ上。
当微扰存在时,特别是与t 有关时,则体系处于0H ˆ的各本征态(或定态) 的几率将可能随时间发生变化。
第五章微扰理论
2b 2 2 nπx 2b nπx ( 0 )∗ (0) = ∫ψ n H 'ψ n dx = − sin dx + sin 2 dx ∫ ∫ a 0 a a a a 0
a a 2 nπ
a
2b =− nπ
=−
2b sin ydy + ∫ nπ 0
2
2
nπ
n
∫ sin π
2
2
ydy ⎞ ⎟=0 。 ⎠
−n
2 3
)
[1 − (− 1) ] sin mLπ x
m+ n
。
⎧− b,0 ≤ x ≤ a / 2, 例 4、粒子处于宽为 a 的一维无限深势阱中,若微扰为 H ' = ⎨ 试求粒子 ⎩ b, a / 2 ≤ x ≤ a, ,
能量和波函数的一级修正。 解: (1)能量的一级修正,按公式
E
(1) n
m+ n
−1
] [
,
所以波函数的一级修正为:
(1) (x ) = ψn
∑
m
'
2 μL2 4 Lamn (− 1)m+ n − 1 ⋅ 2 2 2 2 2 2 2 2 π h (n − m ) (m − n ) π
]
2 mπ sin x L L
4
8μL3 an = 4 2 π h
2 L
∑
m
'
(m
m
2
2
。
E ( 0) + b a ⎞ ( 0) ˆ ( 0) 表象中的表示为 H = ⎛ ⎜ 1 ⎟ ,其中 E1 例 1、设体系的哈密顿在 H , E (20) 为 (0) ⎜ a ⎟ E2 + b⎠ ⎝
56与时间有关的微扰理论
能量并不守恒,mk 不确定。
3) mk
不确定的范围:
mk
:
1 t'
(10)
由于k分立,m连续,所以
mk
( m
k h
)
1 h
m
(11)
结果(10),(11)式: t ' m : h (12)
这个微扰过程是测量末态能量的过程:以ω试, 到达如何 mk 时跃迁,即可从初态推测到末态。 (12)式说明,测量时间间隔t’与能量不确定
1、先求的第k个本征态(初态) k 和第m 个本征态(末态)之间的微扰矩阵元:
Hµ'mk m* Hµ'k d Fmk (eit eit ) (2)
Fmk (m, Fµk),不含时。 (3)
2、将(2)式代入上节 am (t) 公式(5.6-10),即(14) 式中积分:
am
(t)
1 ih
4
H
' mk
h2
2
sin2 mkt
2
2 mk
W 4 h
sin2 mkt
H
' mk
2
(m)
2
2 mk
dmk
(3)
(4)
利用公式
lim
t
sin2 xt
tx2
(x)
W 2t h
H
' mk
2
(m)mk dmk
(5)
如果对(5)式只考虑
H
' mk
和ρ(m)都随
m平滑变
化的情况,将他们移出积分号外。
dt
从k m (初态 终态)。即发生量子跃 迁,从一个定态 另一个定态,系统有局部的能
量子力学第五章微扰理论
c1(0) (0) c2 0 (4) (0) c k
有非零解的条件是系数行列式等于零。
H '11 En(1) H '12 H ' 21 H ' 22 En(1) H ' k1 H 'k 2
H '1k H '2k
' H kk En(1)
ˆ ˆ H li l* H i d
( ˆ ( i En1)li )Ci(0) 0 i
(3)
14
写成矩阵形式:
H '11 En(1) H '12 ' ' (1) H 22 En H 21 H' H 'k 2 k1
' H 2k ' (1) H kk En H '1k
( 0)
5 利用 E
( 2) n
′ ′ | H nm |2 = ∑ ( 0) ( 0 ) 求能级的二级近似 En Em m
12
5.2 简并情况下的微扰理论
( En0) 是 k 度简并的,则有 k 个本征函数 1 , 2 ,k 若
满足方程
( ˆ H (0)i En0)i
(i 1, 2,k )
(16)
代入(9)式得
l
E (0) a (1) (0) E (0)
l l l n
l
a (1) (0) E (1) (0) H (0) ˆ l l n n n
( 以 m0)* (m n) 左乘,并积分,并注意 l(0) 的正交归一
( 性 m0)* l( 0) d ml 得到:
第六章 微扰理论简介
(0) (1) 2 (2) Ψi = Ψi + λΨi + λ Ψi +L
式中 是 的本征函数: 的本征函数
17
量子化学
存在简并态时, 存在简并态时,对应于每个 不止一个,这样 中的 不止一个,这样(1)中的 么如何选取这个函数呢? 么如何选取这个函数呢? 假设相对于 的本征函数有: 的本征函数有:
而E实验=-79.0 eV 可见,经微扰校正后 计算值相当接近于实验值。 经微扰校正后, 可见 经微扰校正后,计算值相当接近于实验值。
21
量子化学
Higher-order corrections
第六章
λ E
2 ( 2)
= −4.3 eV, λ E
3 (3)
= 0.1 eV
) ) ) E 2 ≈ E (02 + λE (1) + λ2 E ( 22 + λ3 E (32 2 1s
(1)MØller-Plesset perturbation theory (MPPT) is sometimes called RSPT (Rayleigh-Schrödinger perturbation theory) or alternatively called many-body perturbation theory (MBPT). (2) Useful terminologies: MP2 (second order), MP3 (third order), MP4 (fourth order), …
2
量子化学 6.1 非简并态的微扰理论 6.2 简并态的微扰理论 6.3 微扰理论的应用举例
第六章
6.4 Comments on perturbation theory
含时薛定谔方程的微扰理论
dbm i 0 bk exp(i( Em Ek0 )t / ) H 'mk dt k
0 假定初始态(t=0)为静态 n
0 0 ψ exp(iEn t / ) n
则 如果微扰很 小,bk变化 很小 t=0 to t’
bk (0) kn
dbm i 0 0 exp( i ( Em En )t / ) H 'mn dt
dbk exp(iEk0t / ) k0 Ek0bk exp(iEk0t / ) k0 i k dt k
dbk 0 0 0 ˆ b exp( iE t / ) H ' exp( iE t / ) k k k k i k dt k
引入微扰
ψ 0 ˆ ˆ ( H H ' )ψ i t
0 0 ψ bk (t )ψ 0 b ( t ) exp( iE t / ) k k k k k k
代入含时薛定谔方程
0 0 0 0 0 ˆ b exp( iE t / ) E b exp( iE t / ) H ' k k k k k k k k k
E Ei
i i j
1928
1 | j |2 | i |2 d i d j Ei J ij rij i i j
Hartree-Fock Self-consistent-field method 波函数考虑自旋; Slater 行列式
i i j i i j
可以 忽略
bm (t ' ) mn
i ( mn ) t ' i ( mn ) t ' e 1 e 1 0 0 m Qi xi n [ ] 2i mn mn i
微扰理论
第五章 微扰理论本章介绍:在量子力学中,由于体系的哈密顿算符往往比较复杂,薛定谔方程能严格求解的情况不多(一维谐振子,氢原子)。
因此,引入各种近似方法就显得非常重要,常用的近似方法有微扰论,变分法,WKB (半经典近似),Hatree-Fock 自恰场近似等。
本章将介绍微扰论和变分法。
本章将先讨论定态微扰论和变分法,然后再讨论含时微扰以及光的发射和吸收等问题。
§5.1 非简并定态微扰论 §5.2 简并定态微扰论§5.3 氢原子的一级Stark 效应§5.4 变分法§5.5 氦原子基态§5.6 含时微扰§5.7 跃迁几率和黄金费米规则§5.8 光的发射与吸收§5.9 选择定则附录: 氦原子基态计算过程非简并定态微扰论本节将讨论体系受到外界与时间无关的微小扰动时,它的能量和波函数所发生的变化。
假设体系的哈密顿量不显含时间,能量的本征方程ˆH E ψψ= 满足下列条件: ˆH 可分解为 0ˆH 和 ˆH '两部分,而且 0ˆH 远大于ˆH'。
00ˆˆˆˆˆ H H H H H ''=+ 0ˆH 的本征值和本征函数已经求出,即 0ˆH 的本征方程(0)(0)(00ˆn n n H E ψψ=中,能级(0)n E 和波函数(0)n ψ都是已知的。
微扰论的任务就是从0ˆH 的本征值和本征函数出发,近似求出经过微扰ˆH ' 后,ˆH 的本征值和本征函数。
3. 0ˆH 的能级无简并。
严格来说,是要求通过微扰论来计算它的修正的那个能级无简并的。
例如我们要通过微扰计算ˆH '对 0ˆH 的第n 个能级(0)n E 的修正,就要求(0)nE 无简并,它相应的波函数只有(0)n ψ一个。
其他能级既可以是简并的,也可以是无简并的。
4. 0H 的能级组成分离谱。
严格说来,是要求通过微扰来计算它的修正的那个能级(0)n E 处于分离谱内,(0)n ψ是束缚态。
第四章 微扰理论
…………………………… 假定 n ( ) 已经归一化,则
* n ( ) n ( )d 1
(0) (1) (2) (0) (1) (2) ( n n 2 n )* ( n n 2 n ) d 1
一、一级近似解
(0) E2
... H12
... H11 ... H 21 ... ... ... ... ...
H12 ... H 22 ... ... ...
(0H (0)表象中, H 的对角元素就是各能级的一级修正, 矩阵 H 的对角元素为一级近似值,二级修正与非对角元素有关。
(0) (1) n
k
k
( ( ( ( ( ( ( ( ˆ ˆ H (0) ck1) k0) H (1) n0) En0) ck1) k0) En1) n0) k
c
k
(1) k
( ( ( ( ( ( ( ˆ Ek( 0) k0) H (1) n0) En0) ck1) k0) En1) n0) k
例如:库仑场
(0) En
1 n2
(0) (0) En Em 0
n
故微扰理论只适用于计算较低能级的修正。 注意:以上公式只适用于能量本征值非简并且分立的情 况。
ˆ 2. H 在 H (0) 表象中的矩阵形式
E1(0) (0) 0 H H H ... E1(0) H11 H 21 ... 0
H n1,n E
(0) n
2 (0) n 1
E
H n1,n
2
(0) (0) En En1
第八章 含时微扰论 光的吸收和辐射
(II) 当ω = ωmk 时,同理有:
第一项起 主要作用
i 2 mk t F e 1 mk (1) ( t ) am it 2 m k
(III) 当ω≠ ±ωmk 时,两项都不随时间增大 总之,仅当 ω =±ωmk = ±(εm –εk)/ 或εm =εk ± ω时,出现明显跃迁。这就是说,仅当外界微扰含有频
光的吸收与受激发射
(1)两点近似
1. 忽略光波中磁场的作用
照射在原子上的光波,其电场 E 和磁场 B 对原子中电ω = ωmk 时,微扰频率ω 与 Bohr 频率相等时,上式第二项 分子分母皆为零。求其极限得:
i[ mk ]t [ mk ]
mk
lim
e
1
it
第二项起 主要作用
i 2 mk t F e 1 mk ( 1 ) am ( t ) it 2 mk
i
n
ˆ (t ) H ˆ H ( t ) H 0
i
ˆ n H 0 n t
d dt an ( t ) n i an ( t ) t n n ˆ ˆ ( t ) a ( t ) H a ( t ) H n 0 n n n 相
H0 的定态波函数可以写为:n =n exp[-iεnt /] 满足上边含时 S - 方程: 定态波函数 n 构成正交完备系,整个体系的波函 数 可按 n 展开:
an ( t )n
i t
n
n
ˆ (t ) an ( t )n H an (t )n
n
ˆ (t ) i H t
2t | Fmk |2 ( m k )
含时微扰理论
含时微扰理论含时微扰理论是量子力学中的重要概念,用于描述系统在外部扰动下的演化过程。
它是对系统的哈密顿量进行微小、有限时间的扰动,从而得到系统的演化方程和一系列重要的物理量。
本文将介绍含时微扰理论的基本原理、应用以及与其相关的一些重要概念。
一、基本原理含时微扰理论是建立在微扰理论的基础上的,而微扰理论是量子力学的重要工具,用于处理系统的哈密顿量具有小扰动的情况。
在含时微扰理论中,我们考虑系统在某个初始态下,受到一个含时外场的作用,即哈密顿量在时间上发生了变化。
我们通过对系统的哈密顿量进行展开,得到系统的演化方程,并计算一系列物理量的期望值。
二、含时微扰理论的应用含时微扰理论在理论物理研究中有广泛的应用。
其一,在量子力学中,它可以用来描述原子和分子在弱外场下的响应行为,比如激光的原子吸收和辐射等。
其二,在凝聚态物理中,含时微扰理论可以用来描述晶体中电子的运动和输运行为。
其三,在核物理中,它可以用来研究核反应和衰变等过程。
除了这些应用,含时微扰理论还被广泛应用于量子信息、量子计算和量子光学等领域。
三、相关概念在含时微扰理论中,有一些重要的概念需要了解。
首先是微扰项的选择,通常我们选择比较简单的形式,比如线性扰动或二次扰动。
其次是系统的响应函数,它描述了系统在外场作用下的响应情况。
响应函数的计算可以借助于微扰展开,通过对微扰项的逐级递推计算,得到系统的响应。
最后是含时微扰理论的有效性和局限性,对于强场或长时间的扰动,微扰理论可能不再适用,此时需要考虑更加复杂的方法。
综上所述,含时微扰理论是量子力学中的重要概念,能够描述系统在外部扰动下的演化过程。
它有着广泛的应用领域,可以用于研究原子、分子、凝聚态物理和核物理等。
在应用含时微扰理论时,我们需要选择适当的微扰项、计算系统的响应函数,并注意其有效性和局限性。
通过对含时微扰理论的研究,我们可以更好地理解量子系统的演化行为,推动理论物理的发展。
量子力学习题解答-第9章
4. 选 择 定 则 : 在 光 波 作 用 下 , 要 实 现 原 子 在 y nlm y 与 n'l'm' 态 之 间 的 跃 迁 , 必 须 满 足
y r y nlm
n 'l 'm'
¹ 0 的条件,不能实现的跃迁称为禁戒跃迁。要使矩阵元不为零,两态之间的
角量子数和磁量子数必须满足
Dl = l' - l = ±1, Dm = m' - m = 0, ±1。
=
2 H b¢a ihw
iw 0 t
e2
sin
æ çè
wt 2
ö ÷ø
得到:
ca
2
+
cb
2
=
cos2
æ çè
wt 2
ö ÷ø
+
æ çè
w0 w
ö2 ÷ø
sin2
æ çè
wt 2
ö ÷ø
+
4 H a¢b h 2w 2
2
sin 2
æ wt çè 2
ö ÷ø
=
cos2
æ çè
wt 2
ö ÷ø
+
éæ êêëçè
由初始条件 ca (-e )
= 1 Þ c&b (t) t=-e
sin
æ çè
wt 2
öù ÷øúû
由 cb
( 0)
=
0
得: C4
=
iw0 w
,所以
ca
(t)
=
e-
i 2
w0
t
éêëcos
æ çè
wt 2
ö ÷ø
+
微扰理论
微扰理论 (量子力学)维基百科,自由的百科全书跳转至:导航、搜索量子力学的微扰理论引用一些数学的微扰理论的近似方法于量子力学。
当遇到比较复杂的量子系统时,这些方法试着将复杂的量子系统简单化或理想化,变成为有精确解的量子系统,再应用理想化的量子系统的精确解,来解析复杂的量子系统。
基本的点子是,从一个简单的量子系统开始,这简单的系统必须有精确解,在这简单系统的哈密顿量里,加上一个很弱的微扰,变成了较复杂系统的哈密顿量。
假若这微扰不是很大,复杂系统的许多物理性质(例如,能级,量子态)可以表达为简单系统的物理性质加上一些修正。
这样,从研究比较简单的量子系统所得到的知识,我们可以进而研究比较复杂的量子系统。
微扰理论可以分为两类,不含时微扰理论与含时微扰理论。
不含时微扰理论的微扰哈密顿量不相依于时间;而含时微扰理论的微扰哈密顿量相依于时间,详见含时微扰理论。
本篇文章只讲述不含时微扰理论。
此后凡提到微扰理论,皆指不含时微扰理论。
目录[隐藏]∙ 1 微扰理论应用∙ 2 历史∙ 3 一阶修正∙ 4 二阶与更高阶修正∙ 5 简并∙ 6 参阅∙7 参考文献∙8 外部链接[编辑]微扰理论应用微扰理论是量子力学的一个重要的工具。
因为,物理学家发觉,甚至对于中等复杂度的哈密顿量,也很难找到其薛定谔方程的精确解。
我们所知道的就只有几个量子模型有精确解,像氢原子、量子谐振子、与盒中粒子。
这些量子模型都太过理想化,无法适当地描述大多数的量子系统。
应用微扰理论,我们可以将这些理想的量子模型的精确解,用来生成一系列更复杂的量子系统的解答。
例如,通过添加一个微扰的电位于氢原子的哈密顿量,我们可以计算在电场的作用下,氢原子谱线产生的微小偏移(参阅斯塔克效应)。
应用微扰理论而得到的解答并不是精确解,但是,这方法可以计算出相当准确的解答。
假若我们使展开的参数变得非常的小,得到的解答会很准确。
通常,解答是用有限数目的项目的的幂级数来表达。
[编辑]历史薛定谔在创立了奠定基石的量子波力学理论后,经过短短一段时间,于 1926 年,他又在另一篇论文里,发表了微扰理论[1]。
高等量子力学 含时微扰理论
跃迁速率:
费米黄金规则:
2阶微扰:
总跃迁速率:
五、简谐微扰
初态为|i>,
t∞时要求:
综合有:
由于 故有精细平衡关系
§5.7 对与经典辐射场作用的应用
一、吸收与受激发射
根据初末态的能量关系,可知exp(-iωt)对应于吸收, exp(iωt)对应于受激发射。
对吸收项 吸收截面:
§5.5 含时势:相互作用图像 H=H0+V(t),
态矢方程(耦合微分方程组)
§5.6 含时微扰理论
一、直接微扰法:
二、含时微扰的Dyson级数
三、跃迁几率
由
及
知
和
可见
取
则
将微扰展开代入Dyson级数得
其中
四、定势微扰:
据上述微扰理论,有
(时间-能量测不准关系)
末态为准连续态时 对末态求和: 因 故
1 ih
i [x, px ] i
1
于是有(经典结构):
偶极近似
由于 有 利用
得偶极近似下:
求和规则总吸收截面: Nhomakorabea振子强度
Thomas-Reiche-Kuhn求和规则:
n
fni
2m h
n
ni
n
xi
2 2m h
n
ni
n
xi
ixn
2 1
2
2m
h
n
i
n
px
i
i
xn
ih
i
xpx
i
ih
i
x ih [x, H0] i
m (ih)2
i [x,[x, H0 ]] i
量子力学微扰理论
E ( 2) n
E(0) n
H nn
m
Hm n 2
E(0) n
E(0) m
(23)
第五章 微扰理论 5.1、 非简并定态微扰理论
5.1.3、讨论
5.1.3、讨论
微扰理论适用的条件:级数收敛
Hm n 2 1
E(0) n
E(0) m
(
E(0) n
E(0) m
)
因此,要求,
a) 矩阵元 Hm n 很小,即: H 是一个小的扰动;
5.1.3、讨论
为求解能级 Enj
E(0) n
E (1) nj
所对应的零级近似波函数,
可以把
E (1) nj
的值带回(3)式,
k
( H li
E (1) n
il )ci(0)
0,
l 1,2,L ,k 。
(3)
i1
k
解出一组
c(0) i
,再带入(2)式,
(0) n
ci(
0) i
,即可。
i1
第五章 微扰理论 5.3、 氢原子的一级斯塔克效应
5.1.3、讨论
5.3、 氢原子的一级斯塔克效应
斯塔克(Stark)效应:将原子置于外电场中,它发射的光谱
线会发生分裂的现象。
氢原子:能级的裂距 E1(外电场)一级斯塔克效应
碱金属:… …
E2
第五章 微扰理论 5.3、 氢原子的一级斯塔克效应
5.1.3、讨论
无外场时,氢原子中,库仑势( es2 r )具有球对称性,
5.1.2、 非简并情况下的微扰
(b) 波函数的一级修正
当k
n
时,由
C (1) k
微扰理论
(1) (0) ˆ (1) ( 0 ) d En n *H n
在一级近似下能级为
En E
( 0) n
E
(1) n
其中能级的一级修正是
(1) (0) (0) ˆ (1) ( 0 ) d ( 0 ) *H ˆ E n n *H n n d H nn n
E
( 0) ˆ (1) ( 0) d a k n *H k k n
k n
此项等于零
ak
(0) k
ˆ *H
(1) (0) n
(0) n
d
可以得到
( 2) En
E
E
( 0) n
(0) k
k n
因为
(1) H kn (1) H nk ( 0) ( 0) En Ek
(13)
n
( 0) n
H kn ( 0) ( 0) (0) k E E k n n k
(14)
(0) ˆ 的平均值 ˆ 就是在 n H 能级的一级修正 H 中 nn
(1) exnn 0 En H nn
很容易证明能级的一级修正为零.
( 0 )* ˆ (0) n H nn H n dx
( 0) ( 0) 谐振子的能级有 E n En 1
( 0) ( 0) En En 1
e 2 2 n 1 n e 2 2 上式 2 2 2
(0) (0) ( 2) (1) (0) (1) ( 2) (0) (0) En * d E * d E * n n n n n n d n n
( 1) 左边第一项和右边第一项可以约去,再把 n
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i, j
2 Hikci 2E Oikci
i
i
0
Oijcic j
Oijcic j
i, j
i, j
(Hij EOij )c j 0 j
§5.5 含时势:相互作用图像
一、问题:
已知 初态
, H0(t)=H0, H=H0+V(t),
t>t0,
, 求cn(t).
二、相互作用表象
注意差别与相似性: 态矢随时间的变化:
共振分量的频率)。
共振问题在解释原子分子束和核磁共振实验有重要意 义。通过改变振荡磁场的频率,可精确测得体系的磁 矩。
§5.6 含时微扰理论
一、直接微扰法:
二、含时微扰的Dyson级数
三、跃迁几率
由
及
知
和
可见
取
则
将微扰展开代入Dyson级数得
其中
四、定势微扰:
据上述微扰理论,有
即: 同理可得:
三、态矢方程 由
得
三、态矢方程
即有耦合微分方程组:
四、含时的两态问题
正弦交变势中两能态体系是可严格求解的含时势 问题
四、含时的两态问题
对:
有
振荡角频率的1/2: 共振:
共振:
一般情况:
五、自旋的磁共振
自旋1/2体系受沿z向恒定磁场与在xy平面内转动的磁场 作用:
[x, H0] i
m (i )2
i [x,[x, H0 ]] i
1 i
i [x, px ] i
1
于是有:
作业:题30、36 、37
对吸收项 吸收截面:
偶极近似
由于 有 利用
得偶极近似下:
求和规则
总吸收截面:
振子强度
Thomas-Reiche-Kuhn求和规则:
fni 2m ni n x i 2 2m ni n x i i x n
n
n
n
2 1
2
2m
n i n px
i
i
ix i
相当于:
体系自旋在进动基础上有翻转行为,可半经典地理解为 受磁场的扭矩所引起。
当磁场的转动频率与自旋进动频率( 体系产生共振,自旋翻转的几率特别大。
)相同时,
旋转磁场不易实现,但固定方向振荡的磁场可产生相 似效果:
对B1/B0«1,
共振即ω≈ω21时,顺时针分量
(相当于-ω)可忽略(且相应分量的振荡频率远大于
变分方法/例3:常见电子结构理论计算原理
一般均可表示为:
cii;
i
H
E
Hijcic j
i, j
Oijcic j
i, j
E
ij
Hij (ci jk c jik )
ck
Oijcic j
i, j
Hijcic j
i, j
( Oijcic j )2
ij
(ci jk c jik )Oij
(时间-能量测不准关系)
末态为准连续态时 对末态求和: 因 故
跃迁速率:
费米黄金规则:
2阶微扰:
总跃迁速率:
五、简谐微扰
初态为|i>,
t∞时要求:
综合有:
由于 故有精细平衡关系
§5.7 对与经典辐射场作用的应用
一、吸收与受激发射
根据初末态的能量关系,可知exp(-iωt)对应于吸收, exp(iωt)对应于受激发射。