八年级下数学期中考试试题及答案

合集下载

人教版数学八年级下册《期中考试题》及答案解析

人教版数学八年级下册《期中考试题》及答案解析

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、选择题(每题3分,共30分)1. 函数24y x =-中自变量x 的取值范围是( ) A. x >2 B. x ≥2 C. x ≤2 D. x ≠22. 下列各式属于最简二次根式的是( )A. 8B. 21x +C. 2yD. 123. 下列计算,正确的是( ) A. 325+= B. 3223-= C. 5315⨯= D. 632÷=4. ,,k m n 为三个整数,若13515k =,45015m =,1806n =,则下列有关于,,k m n 的大小关系,正确的是( ).A. k m n <=B. m n k =<C. m n k <<D. m k n << 5. 如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,不能判断四边形ABCD 是平行四边形的是( )A. AB =DC ,AD =BCB. AB ∥DC ,AD ∥BCC. AB ∥DC ,AD =BCD. OA =OC ,OB =OD6. 如图,在平行四边形ABCD 中,AD =5,AB =3,AE 平分∠BAD 交BC 边于点E ,则线段BE ,EC 的长度分别为( )A. 3和2B. 2和3C. 4和1D. 1和47. 顺次连接对角线相等的四边形的各边中点,所形成的四边形是A. 平行四边形B. 菱形C. 矩形D. 正方形8. 菱形的两条对角线的分别为60cm 和80cm ,那么边长是( )A. 100cmB. 80cmC. 60cmD. 50cm9. 等腰三角形的腰长为10,底长为12,则其底边上的高为( )A. 13B. 8C. 25D. 6410. 如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用,表示直角三角形的两直角边(x y >),下列四个说法:①2249x y +=,②2x y -=,③2449xy +=,④9x y +=.其中说法正确的是( )A. ①②B. ①②③C. ①②④D. ①②③④二、填空题(每题3分,共15分)11. 计算:13=_____.12. 如图,DE 为△ABC 中位线,点F 在DE 上,且∠AFB=90°,若AB =6,BC =8,则EF 的长为______.13. 已知实数a 在数轴上位置如图所示,则化简|a -1|-2a 的结果是____________.14. 观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律第⑥组勾股数:__________.15. 如图,在平行四边ABCD 中,AD=2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论中一定成立的是_______(把所有正确结论的序号都填在横线上)(1)∠DCF=∠BCD ,(2)EF=CF ;(3)S ΔBEC =2S ΔCEF ;(4)∠DFE=3∠AEF三、解答题(共75分)16. 计算:(1)(246-)÷3 (2)(2+1)2﹣8+(﹣2)217. (1)当54x =时,求1x +的值;(2)①x 为何值时二次根式12x -的值是10?②当x = 时二次根式12x -有最小值.18. 在平面直角坐标系中(1)在图中描出A (﹣2,﹣2),B (﹣8,6),C (2,1)(2)连接AB 、BC 、AC ,试判断△ABC 的形状.19. 如图,在ABCD 中,对角线AC ,BD 相交于点O ,E ,F 分别为BO ,DO 的中点,求证:AF ∥CE .20. 如图,P 是正方形ABCD 对角线BD 上一点,PE DC ⊥,PF BC ⊥,E 、F 分别为垂足,若3CF =,4CE =,求AP的长.21. 如图,将两张长为8,宽为4的矩形纸条交叉叠放,使一组对角的顶点重合,其重叠部分是四边形AGCH.(1)证明:四边形AGCH是菱形:(2)求菱形AGCH的周长.22. 如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB 的外角平分线于点F,(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.23. 如图1,P是线段AB上一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.(1)猜想四边形EFGH的形状,直接回答,不必说明理由;(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH形状,并说明理由.答案与解析一、选择题(每题3分,共30分)1. 函数y=x的取值范围是()A. x>2B. x≥2C. x≤2D. x≠2[答案]B[解析][分析][详解]根据题意得:2x−4⩾0,解得:x⩾2.故选B.2. 下列各式属于最简二次根式的是( )A. B. C. D.[答案]B[解析][分析]最简二次根式满足:(1)被开方数不含分母;(2)被开方数中不含能开得尽方因数或因式,由此结合选项可得出答案.[详解]解:A,不是最简二次根式,故本选项错误;B,故本选项正确;C含有能开方的因式,不是最简二次根式,故本选项错误;D,故本选项错误;故选:B.[点睛]此题主要考查最简二次根式的识别,解题的关键是熟知最简二次根式的定义.3. 下列计算,正确的是( )= B. 3= =2= [答案]C[解析][分析]直接根据二次根式的运算法则进行计算即可.[详解]A不是同类二次根式,不能合并,故此选项错误;B .(3=-=故此选项错误;C =正确;D =故此选项错误.故选:C .[点睛]此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.4. ,,k m n 为三个整数,===,则下列有关于,,k m n 的大小关系,正确的是( ).A. k m n <=B. m n k =<C. m n k <<D. m k n << [答案]D[解析][分析]根据二次根式的化简方法,逐个化简可求出k,m,n ,再进行比较.[详解]因为===所以,k=3,m=2,n=5所以,m <k <n故选D[点睛]本题考核知识点:二次根式的化简. 解题关键点:掌握二次根式的化简方法.5. 如图,在四边形ABCD 中,对角线AC 与BD 相交于点O ,不能判断四边形ABCD 是平行四边形的是( )A AB=DC,AD=BC B. AB∥DC,AD∥BCC. AB∥DC,AD=BCD. OA=OC,OB=OD[答案]C[解析][分析]根据平行四边形的判定定理进行判断即可.[详解]解:A.根据“两组对边分别相等的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;B.根据“两组对边分别平行的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;C.“一组对边平行,另一组对边相等”是四边形也可能是等腰梯形,故本选项符合题意;D.根据“对角线互相平分的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意.故选:C.[点睛]本题考查平行四边形的判定,关键是掌握判定定理:(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形.6. 如图,在平行四边形ABCD中,AD=5,AB=3,AE平分∠BAD交BC边于点E,则线段BE,EC的长度分别为( )A. 3和2B. 2和3C. 4和1D. 1和4[答案]A[解析][分析]利用平行四边形的性质、角平分线的性质和等腰三角形的性质可得AD=BC,BE= AB,然后根据EC=BC-BE 即可.[详解]解:∵AE平分∠BAD∴∠BAE=∠DAE∵四边形ABCD是平行四边形∴AD//BC,AD=BC∴∠DAE=∠AEB∴∠BAE=∠BEA∴AB=BE=3∴EC=AD-BE=2故答案为A.[点睛]本题主要考查了平行四边形性质及等腰三角形的性质,根据题意说明△ABE是解答本题的关键.7. 顺次连接对角线相等的四边形的各边中点,所形成的四边形是A. 平行四边形B. 菱形C. 矩形D. 正方形[答案]B[解析][分析]菱形,理由为:利用三角形中位线定理得到EF与HG平行且相等,得到四边形EFGH为平行四边形,再由EH =EF,利用邻边相等的平行四边形是菱形即可得证.[详解]解:菱形,理由为:如图所示,∵E,F分别为AB,BC的中点,∴EF为△ABC的中位线,∴EF∥AC,EF=12 AC,同理HG∥AC,HG=12 AC,∴EF∥HG,且EF=HG,∴四边形EFGH为平行四边形,∵EH=12BD,AC=BD,∴EF=EH,则四边形EFGH为菱形,故选B.[点睛]此题考查了中点四边形,平行四边形的判定,菱形的判定,熟练掌握三角形中位线定理是解本题的关键.8. 菱形的两条对角线的分别为60cm和80cm,那么边长是( )A. 100cmB. 80cmC. 60cmD. 50cm[答案]D[解析][分析]根据菱形对角线的性质可求解.[详解]∵菱形的两条对角线的分别为60cm和80cm,2230+40=50.故答案选D.[点睛]本题主要考查了菱形的性质应用,准确理解对角线平分且垂直.9. 等腰三角形的腰长为10,底长为12,则其底边上的高为()A. 13B. 8C. 25D. 64[答案]B[解析]试题解析:作底边上的高并设此高的长度为x,根据勾股定理得:62+x2=102,解得:x=8.故选B .10. 如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用,表示直角三角形的两直角边(x y >),下列四个说法:①2249x y +=,②2x y -=,③2449xy +=,④9x y +=.其中说法正确的是( )A. ①②B. ①②③C. ①②④D. ①②③④ [答案]B[解析][分析][详解]可设大正方形边长为a,小正方形边长为b ,所以据题意可得a 2=49,b 2=4;根据直角三角形勾股定理得a 2=x 2+y 2,所以x 2+y 2=49,式①正确;因为是四个全等三角形,所以有x=y+2,所以x-y=2,式②正确;根据三角形面积公式可得S △=xy/2,而大正方形的面积也等于四个三角形面积加上小正方形的面积,所以44492xy ⨯+=,化简得2xy+4=49,式③正确; 而据式④和式②得2x=11,x=5.5,y=3.5,将x,y 代入式①或③都不正确,因而式④不正确.综上所述,这一题的正确答案为B .二、填空题(每题3分,共15分)11. 3=_____. [答案3 [解析][分析]先分母有理化,即可解答.[详解]解:原式=13=33故答案为:3 3[点睛]此题考查二次根式的性质化简,解题关键在于掌握运算法则.12. 如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC=8,则EF的长为______.[答案]1[解析][分析]根据直角三角形斜边上的中线等于斜边的一半求出DF的长度,根据三角形的中位线平行于第三边并且等于第三边的一半求出DE的长,然后相减即可得到EF的长.[详解]∵DE为△ABC的中位线,∴DE=12BC=12×8=4,∵∠AFB=90°,D是AB 中点,∴DF=12AB=12×6=3,∴EF=DE-DF=1,故答案为1.[点睛]本题考查了三角形的中位线定理,直角三角形斜边上的中线等于斜边的一半的性质,熟记定理与性质是解题的关键.13. 已知实数a在数轴上的位置如图所示,则化简|a-1|- 2a的结果是____________.[答案]1-2a[解析][分析]根据数轴得到a 的取值范围,然后化简二次根式和绝对值,即可得到答案.[详解]解:由数轴可知:01a <<,∴10a -<, ∴21112a a a a a --=--=-;故答案为12a -.[点睛]本题考查了二次根式的性质,以及化简绝对值,解题的关键是根据数轴得到a 的取值范围进行化简. 14. 观察以下几组勾股数,并寻找规律:①3,4,5;②5,12,13;③7,24,25;④9,40,41;…,请你写出具有以上规律的第⑥组勾股数:__________.[答案]13,84,85[解析][分析]先根据给出的数据找出规律,再根据勾股定理求解即可.[详解]由题意得,每组第一个数是奇数,且逐步递增2,第二、第三个数相差为一故第⑥组的第一个数是13设第二个数为x ,第三个数为x+1根据勾股定理得()22213+1x x =+解得84x =则第⑥组勾股数:13,84,85故答案为:13,84,85.[点睛]本题考查了勾股数的规律题,掌握这些勾股数的规律、勾股定理是解题的关键.15. 如图,在平行四边ABCD 中,AD=2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF 、CF ,则下列结论中一定成立的是_______(把所有正确结论的序号都填在横线上)(1)∠DCF=∠BCD ,(2)EF=CF ;(3)S ΔBEC =2S ΔCEF ;(4)∠DFE=3∠AEF[答案]①②④[解析]试题解析:①∵F是AD的中点, ∴AF=FD,∵在▱ABCD中,AD=2AB,∴AF=FD=CD,∴∠DFC=∠DCF,∵AD∥BC,∴∠DFC=∠FCB,∴∠DCF=∠BCF,∴∠DCF=1∠BCD,故此选项正确;2延长EF,交CD延长线于M,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠A=∠MDF,∵F为AD中点,∴AF=FD,在△AEF和△DFM中,{A FDM AF DFAFE DFM∠=∠=∠=∠,∴△AEF≌△DMF(ASA),∴FE=MF,∠AEF=∠M,∵CE⊥AB,∴∠AEC=90°,∴∠AEC=∠ECD=90°,∵FM=EF,∴FC=FM,故②正确;③∵EF=FM,∴S△EFC=S△CFM,∵MC>BE,∴S△BEC<2S△EFC故S△BEC=2S△CEF错误;④设∠FEC=x,则∠FCE=x,∴∠DCF=∠DFC=90°-x,∴∠EFC=180°-2x,∴∠EFD=90°-x+180°-2x=270°-3x,∵∠AEF=90°-x,∴∠DFE=3∠AEF,故此选项正确.考点:1.平行四边形的性质;2.全等三角形的判定与性质;3.直角三角形斜边上的中线.三、解答题(共75分)16. 计算:(1(2+1)2+(﹣2)2[答案](2)7[解析][分析](1)先计算二次根式除法,再合并同类二次根式即可;(2)先分别计算各式,再合并同类二次根式即可.[详解]解:(1)=(2)原式34=+7=.[点睛]本题是对二次根式混合运算的考查,熟练掌握二次根式乘除法及合并同类二次根式是解决本题的关键.17. (1)当54x =时,的值;(2)①x 10?②当x = 时二次根式[答案](1)32,(2)①-88;②12 [解析][分析](1)把54x =代入计算,再根据二次根式的化简法则化简即可得到答案;(2)10=得到12100x -=,即可求出x 的值;②根据二次根式的性质,0≥,取等号时当且仅当12-x=0,计算即可得到答案;详解]解:(1)当54x =时,59311442x +=+==, (2)①由题意得:12﹣x=210 解得x= ﹣88即:x= ﹣88时二次根式12x -的值是10.②∵120x -≥,取等号时当且仅当12-x=0,即x=12;故答案是:12;[点睛]本题主要考查了与二次根式相关的知识点,掌握二次根式的化简法则以及二次根式的性质是解题的关键;18. 在平面直角坐标系中(1)在图中描出A (﹣2,﹣2),B (﹣8,6),C (2,1)(2)连接AB 、BC 、AC ,试判断△ABC 的形状.[答案](1)见解析;(2)△ABC 直角三角形[解析][分析](1)根据题目中给出的点的坐标描出点;(2)连接AB 、BC 、AC ,利用勾股定理结合网格算出AB 、BC 、AC 的长,根据数据可得到AB 2+AC 2=BC 2,由勾股定理逆定理可得△ABC 是直角三角形.[详解]解:(1)如图所示:(2)AB=22+=10,68AC=22+=5,34CB=22+=55,510∵52+102=(55)2,∴AB2+AC2=BC2,∴∠A=90°,∴△ABC是直角三角形.[点睛]此题主要考查了描点,勾股定理,以及勾股定理逆定理,关键是正确画出图形,算出AB、BC、AC的长.19. 如图,在ABCD中,对角线AC,BD相交于点O,E,F分别为BO,DO的中点,求证:AF∥CE.[答案]证明见解析[解析][分析]证出△AFO≌△CEO(SAS),得出∠AFO=∠CEO,再由平行线的判定方法得出结论.[详解]证明:∵四边形ABCD是平行四边形,∴AO=CO,BO=DO,∵E,F分别为BO,DO的中点,∴EO =FO ,∵在△AFO 和△CEO 中 AOF CO AO CO FO EO E =⎧=∠∠⎪⎨⎪⎩= ,∴△AFO ≌△CEO (SAS ),∴∠AFO =∠CEO ,∴AF ∥EC .-[点睛]此题主要考查了平行四边形的判定及其性质、全等三角形的判定与性质等知识,正确应用全等三角形的判定方法是解题关键.20. 如图,P 是正方形ABCD 对角线BD 上一点,PE DC ⊥,PF BC ⊥,E 、F 分别为垂足,若3CF =,4CE =,求AP 的长.[答案]5[解析][分析]连接CP 时,可以证明△APD ≌△CPD ,然后根据全等三角形的性质可以得到AP=CP ,由已知条件可以得出四边形PECF 是矩形,根据矩形对角线相等可得PC=EF ,结合已知条件利用勾股定理可求出EF 的长,求出EF 的长即可得AP 的长.[详解]如图,连接PC,四边形ABCD 是正方形,AD DC ∴=,ADP CDP ∠∠=, PD PD =,APD ∴≌CPD ,AP CP ∴=,四边形ABCD 是正方形,DCB 90∠∴=,PE DC ⊥,PF BC ⊥,四边形PFCE 是矩形,PC EF ∴=,DCB 90∠=,在Rt CEF 中,22222EF CE CF 4325=+=+=, EF 5∴=,AP CP EF 5∴===.[点睛]本题考查了正方形的性质,矩形的判定与性质,勾股定理,全等三角形的判定与性质,根据全等三角形的性质得出AP 与CP 相等是解题的关键. 21. 如图,将两张长为8,宽为4的矩形纸条交叉叠放,使一组对角的顶点重合,其重叠部分是四边形AGCH .(1)证明:四边形AGCH 是菱形:(2)求菱形AGCH 的周长.[答案](1)证明见解析;(2)20[解析][分析](1)根据邻边相等的平行四边形是菱形证明即可.(2)设AH=CH=x,利用勾股定理构建方程即可解决问题.[详解](1)证明:∵四边形ABCD,四边形AECF都是矩形,∴CH∥AG,AH∥CG,∴四边形AHCG是平行四边形,∵∠D=∠F=90°,∠AHD=∠CHF,AD=CF,∴△ADH≌△CFH(AAS),∴AH=HC,∴四边形AHCG是菱形.(2)解:设AH=CH=x,则DH=CD﹣CH=8﹣x,在Rt△ADH中,∵AH2=AD2+DH2,∴x2=42+(8﹣x)2,∴x=5,∴菱形AHCG的周长为5×4=20.[点睛]本题考查矩形的性质,菱形的判定和性质,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.22. 如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC,设MN交∠ACB的平分线于点E,交∠ACB 的外角平分线于点F,(1)求证:OE=OF;(2)若CE=12,CF=5,求OC的长;(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.[答案]解:(1)证明:如图,∵MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F,∴∠2=∠5,4=∠6.∵MN∥BC,∴∠1=∠5,3=∠6.∴∠1=∠2,∠3=∠4.∴EO=CO,FO=CO.∴OE=OF.(2)∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°.∵CE=12,CF=5,∴22EF12513=+.EF=6.5.∴OC=12(3)当点O在边AC上运动到AC中点时,四边形AECF是矩形.理由如下:当O为AC的中点时,AO=CO,∵EO=FO,∴四边形AECF是平行四边形.∵∠ECF=90°,∴平行四边形AECF是矩形.[解析](1)根据平行线的性质以及角平分线的性质得出∠1=∠2,∠3=∠4,进而得出答案.(2)根据已知得出∠2+∠4=∠5+∠6=90°,进而利用勾股定理求出EF的长,即可根据直角三角形斜边上的中线性质得出CO的长.(3)根据平行四边形的判定以及矩形的判定得出即可.23. 如图1,P是线段AB上的一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,点E、F、G、H分别是AC、AB、BD、CD的中点,顺次连接E、F、G、H.(1)猜想四边形EFGH的形状,直接回答,不必说明理由;(2)当点P在线段AB的上方时,如图2,在△APB的外部作△APC和△BPD,其他条件不变,(1)中的结论还成立吗?说明理由;(3)如果(2)中,∠APC=∠BPD=90°,其他条件不变,先补全图3,再判断四边形EFGH的形状,并说明理由.[答案](1)四边形EFGH是菱形;(2)成立,理由见解析;(3)补全图形见解析;四边形EFGH是正方形,理由见解析.[解析][分析](1)连接AD、BC,利用SAS可判定△APD≌△CPB,从而得到AD=BC,因为EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线,则可以得到EF=FG=GH=EH,根据四边都相等的四边形是菱形,可推出四边形EFGH是菱形;(2)成立,可以根据四边都相等的四边形是菱形判定;(3)先将图形补充完整,再通过角之间的关系得到∠EHG=90°,已证四边形EFGH是菱形,则四边形EFGH是正方形.[详解](1)四边形EFGH是菱形.连接AD,BC.∵∠APC=∠BPD,∴∠APC+∠CPD=∠BPD+∠CPD.即∠APD=∠CPB.又∵PA=PC,PD=PB,∴△APD≌△CPB(SAS)∴AD=CB.∵E、F、G、H分别是AC、AB、BD、CD的中点,∴EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线.∴EF=12BC,FG=12AD,GH=12BC,EH=12AD.∴EF=FG=GH=EH.∴四边形EFGH是菱形.(2)成立.理由:连接AD,BC.∵∠APC=∠BPD,∴∠APC+∠CPD=∠BPD+∠CPD.即∠APD=∠CPB.又∵PA=PC,PD=PB,∴△APD≌△CPB(SAS)∴AD=CB.∵E、F、G、H分别是AC、AB、BD、CD的中点,∴EF、FG、GH、EH分别是△ABC、△ABD、△BCD、△ACD的中位线.∴EF=12BC,FG=12AD,GH=12BC,EH=12AD.∴EF=FG=GH=EH.∴四边形EFGH是菱形.(3)补全图形,如答图.判断四边形EFGH是正方形.理由:连接AD,BC.∵(2)中已证△APD≌△CPB.∴∠PAD=∠PCB.∵∠APC=90°,∴∠PAD+∠1=90°.又∵∠1=∠2.∴∠PCB+∠2=90°.∴∠3=90°.∵(2)中已证GH,EH分别是△BCD,△ACD的中位线,∴GH∥BC,EH∥AD.∴∠EHG=90°.又∵(2)中已证四边形EFGH是菱形,∴菱形EFGH是正方形.[点睛]本题考查了考查了菱形的判定,正方形的判定,全等三角形的判定等知识点的综合运用及推理论证能力.正方形、矩形、菱形、平行四边形之间的关系,反映了几种特殊的平行四边形由特殊到一般的关系,可从概念、性质、判定三方面进行对比理解;各种特殊的四边形之间的联系及区别要掌握好,通常还会和三角形中位线、勾股定理想联系.。

【典型题】八年级数学下期中试题(及答案)

【典型题】八年级数学下期中试题(及答案)

【典型题】八年级数学下期中试题(及答案) 一、选择题1.如图,四边形ABCD是长方形,AB=3,AD=4.已知A(﹣32,﹣1),则点C的坐标是()A.(﹣3,32)B.(32,﹣3)C.(3,32)D.(32,3)2.在学校的体育训练中,小杰投掷实心球的7次成绩如统计图所示,则这7次成绩的中位数和平均数分别是()A.9.7m,9.9m B.9.7m,9.8m C.9.8m,9.7m D.9.8m,9.9m 3.如图,在矩形ABCD中,AB=2,BC=3.若点E是边CD的中点,连接AE,过点B作BF ⊥AE交AE于点F,则BF的长为()A 310B.3105C.105D354.正方形具有而菱形不具有的性质是()A.四边相等 B.四角相等C.对角线互相平分 D.对角线互相垂直5.已知函数()()()()22113{513x xyx x--≤=-->,则使y=k成立的x值恰好有三个,则k的值为()A.0 B.1 C.2 D.36.把式子1 aa-号外面的因式移到根号内,结果是()A .aB .a-C.a-D.a--7.如图,若点P为函数(44)y kx b x=+-≤≤图象上的一动点,m表示点P到原点O的距离,则下列图象中,能表示m与点P的横坐标x的函数关系的图象大致是()A.B.C.D.8.如图,在正方形网格(每个小正方形的边长都是1)中,若将△ABC沿A﹣D的方向平移AD长,得△DEF(B、C的对应点分别为E、F),则BE长为()A.1B.2C5D.39.下列各组数据中能作为直角三角形的三边长的是()A.1,2,2B.1,13C.4,5,6D.13,2 10.菱形ABCD中,AC=10,BD=24,则该菱形的周长等于()A.13B.52C.120D.24011.《九章算术》勾股章有一问题,其意思是:现有一竖立着的木柱,在木柱上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵着绳索退行,在离木柱根部8尺处时绳索用尽,请问绳索有多长?若设绳索长度为x尺,根据题意,可列方程为( )A .82﹢x 2 = (x ﹣3)2B .82﹢(x +3)2= x 2C .82﹢(x ﹣3)2= x 2D .x 2﹢(x ﹣3)2= 82 12.下列运算正确的是( )A .235+=B .3262=C .235=gD .1333÷= 二、填空题13.使二次根式1x -有意义的x 的取值范围是 _____.14.当直线y=kx+b 与直线y=2x-2平行,且经过点(3,2)时,则直线y=kx+b 为______.15.将一个矩形 纸片折叠成如图所示的图形,若∠ABC=26°,则∠ACD=____.16.一组数据4、5、a 、6、8的平均数5x =,则方差2s =________.17.将函数31y x =+的图象平移,使它经过点()1,1,则平移后的函数表达式是____.18.如图,正方形ABCD 中,AE=AB ,直线DE 交BC 于点F ,则∠BEF=_____度.19.一根旗杆在离地面4.5 m 的地方折断,旗杆顶端落在离旗杆底部6 m 外,则旗杆折断前的高度是________.20.如图,菱形ABCD 的周长为20,点A 的坐标是(4,0),则点B 的坐标为_______.三、解答题21.如图,已知AC 是矩形ABCD 的对角线,AC 的垂直平分线EF 分别交BC 、AD 于点E 和F ,EF 交AC 于点O .(1)求证:四边形AECF 是菱形;(2)若AB =6,AD =8,求四边形AECF 的周长.22.计算:322223÷⨯÷. 23.(1)用>=<、、填空 ①32- 21- ②23- 32- ③52- 23-④65- 52-⑤20182017- 20172016-(2)观察.上式,请用含1)1,(,1n n n n -+≥的式子,把你发现的规律表示出来,并证明结论的正确性.24.如图,菱形ABCD 的边长为2,60DAB ︒∠=,点E 为BC 边的中点,点P 为对角线AC 上一动点,则PB+PE 的最小值为_____.25.“五一”节假期间, 小亮一家到某度假村度假.小亮和他妈妈坐公交车先出发,他爸爸自驾车沿着相同的道路后出发,他爸爸到达度假村后,发现忘了东西在家里,于是立即返回家里取,取到东西后又马上驾车前往度假村,如图是他们离家的距离()s km 与小亮离家的时间()t h 的关系图,请根据图回答下列问题:(1)小亮和妈妈坐公交车的速度为 /km h ;爸爸自驾的速度为 /km h (2)小亮从家到度假村期间,他离家的距离()s km 与离家的时间()t h 的关系式为 ;小亮从家到度假村的路途中,当他与他爸爸相遇时,离家的距离是 km(3)当小亮和妈妈与他爸爸第2次相遇后,一直到全家会和为止,t为多少时小亮和妈妈与爸爸相距10km?【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】由矩形的性质可知CD=AB= 3,BC=AD= 4,结合A点坐标即可求得C点坐标.【详解】∵四边形ABCD是长方形,∴CD=AB= 3,BC=AD= 4,∵点A(﹣32,﹣1),∴点C的坐标为(﹣32+3,﹣1+4),即点C的坐标为(32,3),故选D.【点睛】本题考查了矩形的性质和坐标的平移,根据平移的性质解决问题是解答此题的关键.2.B解析:B【解析】【分析】将这7个数据从小到大排序后处在第4位的数是中位数,利用算术平均数的计算公式进行计算即可.【详解】把这7个数据从小到大排列处于第4位的数是9.7m,因此中位数是9.7m,平均数为:(9.59.69.79.79.810.110.2)79.8++++++÷=m,故选:B.【点睛】考查中位数、算术平均数的计算方法,将一组数据从小到大排列后处在中间位置的一个数或两个数的平均数就是这组数据的中位数,平均数则是反映一组数据的集中水平.3.B解析:B【解析】【分析】根据S △ABE =12S 矩形ABCD =3=12•AE•BF ,先求出AE ,再求出BF 即可. 【详解】如图,连接BE .∵四边形ABCD 是矩形,∴AB=CD=2,BC=AD=3,∠D=90°,在Rt △ADE 中,22AD DE +2231+10, ∵S △ABE =12S 矩形ABCD =3=12•AE•BF , ∴BF=3105. 故选:B .【点睛】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型.4.B解析:B【解析】解:正方形和菱形都满足:四条边都相等,对角线平分一组对角,对角线垂直且互相平分;菱形的四个角不一定相等,而正方形的四个角一定相等.故选B .5.D解析:D【解析】【分析】【详解】解:如图:利用顶点式及取值范围,可画出函数图象会发现:当x=3时,y=k 成立的x 值恰好有三个. 故选:D.6.D解析:D【解析】【分析】先根据二次根式有意义的条件求出a 的范围,再把根号外的非负数平方后移入根号内即可.【详解】Q 1a- 10a∴-≥ 0a ∴<211a a a a∴-=-⨯=--故选D .【点睛】本题考查了二次根式的意义,解题的关键是能正确把根号外的代数式或数字移到根号内部,它是开方的逆运算.从根号外移到根号内要平方,并且移到根号内与原来根号内的式子是乘积的关系.如果根号外的数字或式子是负数时,代表整个式子是负值,要把负号留到根号外再平方后移到根号内.7.A解析:A【解析】【分析】当OP 垂直于直线y =kx +b 时,由垂线段最短可知:OP <2,故此函数在y 轴的左侧有最小值,且最小值小于2,从而得出答案.【详解】解:如图所示:过点O作OP垂直于直线y=kx+b,∵OP垂直于直线y=kx+b,∴OP<2,且点P的横坐标<0.故此当x<0时,函数有最小值,且最小值<2,根据选项可知A符合题意.故选:A.【点睛】本题主要考查的是动点问题的函数图象,由垂线段最短判定出:当x<0时,函数有最小值,且最小值小于2是解题的关键.8.C解析:C【解析】【分析】直接根据题意画出平移后的三角形进而利用勾股定理得出BE的长.【详解】如图所示:22BE+=125故选:C.【点睛】此题主要考查了勾股定理以及坐标与图形的变化,正确得出对应点位置是解题关键.9.D解析:D【解析】【分析】根据勾股定理的逆定理对各选项进行逐一分析即可.【详解】解:A、∵12+22=5≠22,∴此组数据不能作为直角三角形的三边长,故本选项错误;B、∵12+12=2≠3)2,∴此组数据不能作为直角三角形的三边长,故本选项错误;C、∵42+52=41≠62,∴此组数据不能作为直角三角形的三边长,故本选项错误;D、∵12+2=4=22,∴此组数据能作为直角三角形的三边长,故本选项正确.故选D.【点睛】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.10.B解析:B【解析】试题解析:菱形对角线互相垂直平分,∴BO=OD=12,AO=OC=5,∴==,AB13故菱形的周长为52.故选B.11.C解析:C【解析】【分析】设绳索长为x尺,根据勾股定理列出方程解答即可.【详解】解:设绳索长为x尺,可列方程为(x-3)2+82=x2,故选:C.【点睛】本题考查了勾股定理的应用,找准等量关系,正确列出一元二次方程是解题的关键. 12.D解析:D【解析】【分析】根据二次根式的运算法则即可求出答案.【详解】A、原式+B=,故错误;C、原式,故C错误;=,正确;D3故选:D.【点睛】本题考查二次根式,解题的关键是熟练运用二次根式的运算,本题属于基础题型.二、填空题13.x≤1【解析】由题意得:1-x≥0解得x≤1故答案为x≤1点睛:二次根式有意义的条件是:a≥0解析:x≤1【解析】由题意得:1-x≥0,解得x≤1.故答案为x≤1.a≥0.14.y=2x﹣4【解析】【分析】根据两直线平行可得出k=2再根据直线y=kx+b过点(32)利用一次函数图像上点的坐标特征即可得出关于b的一元一次方程解方程即可求出b值即可求y=kx+b【详解】解:∵直解析:y=2x﹣4【解析】【分析】根据两直线平行可得出k=2,再根据直线y=kx+b过点(3,2)利用一次函数图像上点的坐标特征即可得出关于b的一元一次方程,解方程即可求出b值,即可求y=kx+b.【详解】解:∵直线y=kx+b与直线y=2x-2平行,∴k=2.又∵直线y=kx+b过点(3,2),∴2=2×3+b,解得:b=-4.∴y=kx+b=2x-4.故答案为y=2x-4.【点睛】本题考查的知识点是两直线相交或平行问题已经一次函数图像上点的坐标特征,解题关键是求出k和b的值.15.128°【解析】【分析】如图延长DC到F根据折叠的性质可得∠ACB=∠BCF 继而根据平行线的性质可得∠BCF=∠ABC=26°从而可得∠ACF=52°再根据平角的定义即可求得答案【详解】如图延长DC解析:128°.【解析】【分析】如图,延长DC到F,根据折叠的性质可得∠ACB=∠BCF,继而根据平行线的性质可得∠BCF=∠ABC=26°,从而可得∠ACF=52°,再根据平角的定义即可求得答案.【详解】如图,延长DC到F,∵矩形纸条折叠,∴∠ACB=∠BCF,∵AB∥CD,∴∠BCF=∠ABC=26°,∴∠ACF=52°,∵∠ACF+∠ACD=180°,∴∠ACD=128°,故答案为128°.【点睛】本题考查了折叠的性质,平行线的性质,熟练掌握相关知识是解题的关键.16.4【解析】【分析】首先根据其平均数为5求得a的值然后再根据方差的计算方法计算即可【详解】解:根据题意得(4+5+a+6+8)=5×5解得a=2则这组数据为45268的平均数为5所以这组数据的方差为s解析:4【解析】【分析】首先根据其平均数为5求得a的值,然后再根据方差的计算方法计算即可.【详解】解:根据题意得(4+5+a+6+8)=5×5,解得a=2,则这组数据为4,5,2,6,8的平均数为5,所以这组数据的方差为s2= 15[(4-5)2+(5-5)2+(2-5)2+(6-5)2+(8-5)2]=4.故答案为:4【点睛】本题考查方差的定义、意义、计算公式,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.17.y=3x﹣2【解析】【分析】根据函数图象平移的性质得出k的值设出相应的函数解析式再把经过的点代入即可得出答案【详解】解:新直线是由一次函数y=3x+1的图象平移得到的∴新直线的k=3可设新直线的解析解析:y=3x﹣2【解析】【分析】根据函数图象平移的性质得出k的值,设出相应的函数解析式,再把经过的点代入即可得出答案.【详解】解:新直线是由一次函数y=3x+1的图象平移得到的,∴新直线的k=3,可设新直线的解析式为:y=3x+b.∵经过点(1,1),则1×3+b=1,解得b=﹣2,∴平移后图象函数的解析式为y=3x﹣2;故答案为y=3x﹣2.【点睛】此题考查了一次函数图形与几何变换,求直线平移后的解析式时要注意平移时k和b的值的变化.18.45【解析】【分析】先设∠BAE=x°根据正方形性质推出AB=AE=AD∠BAD=90°根据等腰三角形性质和三角形的内角和定理求出∠AEB和∠AED的度数根据平角定义求出即可【详解】解:设∠BAE=解析:45【解析】【分析】先设∠BAE=x°,根据正方形性质推出AB=AE=AD,∠BAD=90°,根据等腰三角形性质和三角形的内角和定理求出∠AEB和∠AED的度数,根据平角定义求出即可.【详解】解:设∠BAE=x°.∵四边形ABCD是正方形,∴∠BAD=90°,AB=AD.∵AE=AB,∴AB=AE=AD,∴∠ABE=∠AEB=12(180°﹣∠BAE)=90°﹣12x°,∠DAE=90°﹣x°,∠AED=∠ADE=12(180°﹣∠DAE)=12[180°﹣(90°﹣x°)]=45°+12x°,∴∠BEF=180°﹣∠AEB﹣∠AED=180°﹣(90°﹣12x°)﹣(45°+12x°)=45°.故答案为45.点睛:本题考查了三角形的内角和定理的运用,等腰三角形的性质的运用,正方形性质的应用,解答此题的关键是如何把已知角的未知角结合起来,题目比较典型,但是难度较大.19.12米【解析】【分析】【详解】解:如图所示AC=6米BC=45米由勾股定理得AB==75(米)故旗杆折断前高为:45+75=12(米)故答案为:12米解析:12米【解析】【分析】【详解】解:如图所示,AC=6米,BC=4.5米,由勾股定理得,AB= 22=7.5(米).4.56故旗杆折断前高为:4.5+7.5=12(米).故答案为:12米.20.(03)【解析】【分析】先根据菱形的性质确定菱形的长度再设B点的坐标为(0y)最后根据两点之间的距离公式即可求得B点的坐标【详解】解:设B点的坐标为(0y)根据菱形的性质得AB=20÷4=5;由两点解析:(0,3)【解析】【分析】先根据菱形的性质确定菱形的长度,再设B点的坐标为(0,y),最后根据两点之间的距离公式即可求得B点的坐标.【详解】解:设B点的坐标为(0,y),根据菱形的性质,得AB=20÷4=5;22+=(y>0),解得y=3(0-4)(y-0)5所以B点坐标为(0,3).故答案为(0,3).【点睛】本题考查了菱形的性质和两点间的距离公式,掌握菱形的性质和两点间的距离公式是解答本题的关键.三、解答题21.(1)见解析;(2)25【解析】【分析】(1)根据四边相等的四边形是菱形即可判断;(2)设AE=EC为x,利用勾股定理解答即可.【详解】(1)证明:∵四边形ABCD是矩形∴AD∥BC,∴∠DAC=∠ACB,∵EF垂直平分AC,∴AF=FC,AE=EC,∴∠FAC=∠FCA,∴∠FCA=∠ACB,∵∠FCA+∠CFE=90°,∠ACB+∠CEF=90°,∴∠CFE=∠CEF,∴CE=CF,∴AF=FC=CE=AE,∴四边形AECF是菱形.(2)设AE=EC为x,则BE=(8-x)在Rt△ABE中,AE2=AB2+BE2,即x2=62+(8-x)2,解得:x=254,所以四边形AECF的周长=254×4=25.【点睛】考查矩形的性质、线段的垂直平分线的性质、菱形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题.22.1【解析】【分析】直接利用二次根式的乘法运算法则计算得出答案.【详解】原式1==【点睛】此题主要考查了实数运算,正确掌握相关运算法则是解题关键.23.(1)<,<,<,<,<;(2<【解析】【分析】(1)首先用1除以每个数,求出商是多少;再比较出它们商的大小;然后根据商越大,则原来的数就越小,判断出它们的大小关系即可;(2)根据(1<【详解】=解:(1)1=>11;=2=∵>∴2=2=2>+22<2==2>22==>故答案为:<;<;<;<;<;()211n n n n +-<-- 证明: 因为()2211221n n n n ++-=+-① ()224n n =②②-①得()()222211221n n n n n -++-=--因为1n ≥,所以221n n -<,即21n n -<所以()()222110n n n -++->20110n n n >++->,Q211n n n ∴>++-所以11n n n n +-<--.【点睛】此题主要考查了实数大小的比较,二次根式的性质,以及不等式的性质,解答此题的关键是要明确:被除数一定时,商越大,则除数越小. 24. 3【解析】【分析】根据ABCD 是菱形,找出B 点关于AC 的对称点D ,连接DE 交AC 于P ,则DE 就是PB+PE 的最小值,根据勾股定理求出即可.【详解】解:如图,连接DE 交AC 于点P ,连接DB ,∵四边形ABCD 是菱形,∴点B 、D 关于AC 对称(菱形的对角线相互垂直平分),∴DP=BP ,∴PB+PE 的最小值即是DP+PE 的最小值(等量替换),又∵ 两点之间线段最短,∴DP+PE 的最小值的最小值是DE ,又∵60DAB ︒∠=,CD=CB,∴△CDB 是等边三角形,又∵点E 为BC 边的中点,∴DE ⊥BC (等腰三角形三线合一性质),菱形ABCD 的边长为2,∴CD=2,CE=1,由勾股定理得=,.【点睛】本题主要考查轴对称、最短路径问题、菱形的性质以及勾股定理(两直角边的平方和等于斜边的平方),确定P 点的位置是解题的关键.25.(1)20,60;(2)()2003s t t =≤≤,30或45;(3)198t =或236t =时,小亮和妈妈与爸爸相距10km【解析】【分析】(1)根据函数图象可以分别求得小亮和妈妈坐公交车的速度和爸爸自驾的速度; (2)根据题意可以求得相应的函数解析式;(3)根据函数图象和各段对应的函数解析式可以解答本题.【详解】解:(1)由图可得,小亮和妈妈坐公交车的速度为:60÷3=20km/h ,爸爸自驾的速度为:60×(2-1)=60km/h ,故答案为:20,60;(2)∵小亮和妈妈坐公交车的速度为20km/h ,∴小亮从家到度假村期间,他离家的距离s (km )与离家的时间(h )的关系式为:s=20t ,当1≤t≤2时,设小亮爸爸离家的距离s (km )与离家的时间(h )的关系式为:s=kt+b ,则0260k b k b +=⎧⎨+=⎩,得6060k b =⎧⎨=-⎩, 即当1≤t≤2时,小亮爸爸离家的距离s (km )与离家的时间(h )的关系式为:s=60t-60, 当2≤t≤3时,设小亮爸爸离家的距离s (km )与离家的时间(h )的关系式为:s=ct+d ,则 30260c d c d +=⎧⎨+=⎩,得60180c d =-⎧⎨=⎩, 即当2≤t≤3时,小亮爸爸离家的距离s (km )与离家的时间(h )的关系式为:s=-60t+180,令20t=60t-60,得t=1.5,此时,s=20×1.5=30, 20t=-60t+180,得t=2.25,此时s=20×2.25=45,故答案为:()2003s t t =≤≤,30或45;(3)解:由题意:第2次相遇时,小明离家45km ,离家的时间(h )为45÷20=94h , ①当爸爸在回家途中当94≤t≤3时,20t-(-60t+180)=10,解得,198t =, 即小明离家198h ,小亮和妈妈与爸爸相距10km ②当爸爸再次返回,3≤t≤4时,设小亮爸爸离家的距离s (km )与离家的时间(h )的关系式为:s=et+f ,则30460e f e f +=⎧⎨+=⎩,得60180e f =⎧⎨=-⎩, ∴当3≤t≤4时,小亮爸爸离家的距离s (km )与离家的时间(h )的关系式为: s=60t-180,令60-(60t-180)=10,得236t =, 即小明离家236h ,小亮和妈妈与爸爸相距10km , 综上:198t =或236t =时,小亮和妈妈与爸爸相距10km . 【点睛】本题考查函数图象以及常量与变量、函数关系式,利用函数图象获取正确信息是解题关键.。

人教版数学八年级下册《期中考试试卷》(带答案)

人教版数学八年级下册《期中考试试卷》(带答案)

人教版数学八年级下学期期中测试卷学校________ 班级________ 姓名________ 成绩________一.选择题(每小题3分,共30分)1. 下列方程中,是一元二次方程的是( )A. x2-4=0B. x=1xC. x2+3x-2y=0D. x2+2=(x-1)(x+2)2. 以下列线段的长为三边的三角形中,能构成直角三角形的是()A. 32,42,52B. 13,5,12C. 13,14,15D.132,142,1523. 菱形具有而平行四边形不一定具有的性质是()A. 对角线互相垂直B. 对角线相等C. 对角线互相平分D. 对角相等4. 下列各曲线中表示y是x的函数的是( )A. B. C. D.5. 关于x一元二次方程x2-kx-6=0根的情况为()A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定根的情况6. 如图,Rt△ABC中,∠C=90°,AC=8,AB=10,D、E分别为AC、AB中点,连接DE,则DE长为( )A. 4B. 3C. 8D. 57. 如图,在处测得点在北偏东60︒方向上,在处测得点在北偏东30︒方向上,若2AB=米,则点到直线AB距离PC为().A. 米B. 3米C. 米D. 米8. 如图,在矩形ABCD 中,AE平分∠BAD 交BC于点E,ED=5,EC=3,则矩形的周长为( )A. 18B. 20C. 22D. 249. 下列命题正确的是()A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 两条对角线相等且有一个角是直角的四边形是矩形C. 平行四边形两条对角线的平方和等于四条边的平方和D. 有一条对角线平分一组对角四边形是菱形10. 如图,正方形ABCD 中,AB=4,E为CD上一动点,连接AE交BD于F,过F作FH⊥AE于F,过H 作HG⊥BD 于G.则下列结论:①AF=FH;②∠HAE=45°;③BD=2FG;④△CEH 周长为8.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个二.填空题(每小题3分,共30分)11. 函数x–1的自变量x的取值范围是_____.12. 在四边形ABCD中,AB∥CD,AD∥BC,如果∠B=50°,则∠D=_____.13. 若关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一个根为0,则m的值为_____.14. 菱形ABCD的一条对角线长为6,边AB的长是方程27120-+=的一个根,则菱形ABCD的周长为x x_____15. 某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为______.16. 如图,将两条宽度为3的直尺重叠在一起,使∠ABC=60°,则四边形ABCD的面积是_____________17. 如图,将正方形ABCD 沿FG 折叠,点A恰好落在BC上的点E处,若BE=2,CE=4,则折痕FG 的长度为_________.18. 如图,在正方形ABCD 中,AC=62,E是BC边的中点,F是AB边上一动点,则FB+FE 的最小值为_________.19. 在ABCD 中,AB=10,BC边上的高为6,AC=5则▭ABCD 的面积为_________.20. 如图,在△ABC中,∠ABC=90°,D为AB边上一点(BD<BC),AE⊥AB,AE=BD,连接DE交AC于F,若∠AFE=45°,AD=5CD=5,则线段AC长度为_________.三.解答题(21、22题各7分,23、24题各 8分,25、26、27题各10分,共60分)21. 解下列方程 (1)(3x -1)2=2(3x -1) (2)3x 2-23 x +1=022. 方格纸中的每个小正方形的边长均为1,请分别画出符合要求的图形.要求:所画图形的各顶点必须与方格纸中的小正方形的顶点重合. (1)画一个面积为10的等腰直角三角形; (2)画一个周长为20,面积为15菱形.23. 将 4个数a ,b ,c ,d 排成2 行、2 列,两边各加一条竖直线记成|a b |c d ,定义|a b |cd =ad-bc ,上述记号就叫做2阶行列式. (1)若249|x13|x=0,求x 的值; (2)若11|x x +-11|x x -+=6,求x 的值.24. 已知,在△ABC 中,AB =AC ,点D 、点O 分别为BC 、AC 的中点,AE//BC . (1)如图1,求证:四边形ADCE 是矩形;(2)如图2,若点 F 是 CE 上一动点,在不添加任何辅助线的情况下,请直接写出与四边形 ABDF 面积相等的三角形和四边形.25. 某商场经销一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题.(1)当销售单价定为每千克55元,计算月销售量和月销售利润;(2)商场计划在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少? 26. 已知正方形ABCD中,点E、F分别为边AB、BC上的点,连接CE、DF相交于点G,CE=DF.(1)如图①,求证:DF⊥CE;(2)如图②,连接BD,取BD的中点O,连接OE、OF、EF,求证:△OEF为等腰直角三角形(3)如图③,在(2)的条件下,将△CBE和△DCF分别沿CB、DC翻折到△CBM和△DCN的位置,连接OM、ON、MN,若AE=2BE,ON=34,求EG的长.27. 已知,在四边形ABCD中,AD∥BC,AB∥DC,点E在BC延长线上,连接DE,∠A+∠E=180°.(1)如图1,求证:CD=DE;(2)如图2,过点C作BE的垂线,交AD于点F,请直接写出BE、AF、DF 之间的数量关系_______________________;(3)如图3,在(2)的条件下,∠ABC的平分线,交CD于G,交CF于H,连接FG,若∠FGH=45°,DF=8,CH=9,求BE的长.答案与解析一.选择题(每小题3分,共30分)1. 下列方程中,是一元二次方程的是( )A. x2-4=0B. x=1xC. x2+3x-2y=0D. x2+2=(x-1)(x+2)[答案]A[解析][分析]本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.[详解]A.该方程符合一元二次方程的定义,故本选项符合题意;B.x=1x,不是整式方程,故本选项不符合题意;C.x2+3x-2y=0,含有两个未知数,故不是一元二次方程,故本选项错误;D.x2+2=(x-1)(x+2),方程整理后是一元一次方程,故本选项错误;故选:A.[点睛]本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.2. 以下列线段的长为三边的三角形中,能构成直角三角形的是()A. 32,42,52B. 13,5,12C. 13,14,15D.132,142,152[答案]B[解析][分析]根据勾股定理的逆定理,验证四个选项中数据是否满足“较小两边平方的和等于最大边的平方”,由此即可得出结论.[详解]A、因为32=9,42=16,52=25,92+162≠252,不能构成直角三角形,此选项错误;B、因为52+122=132,能构成直角三角形,此选项正确;C、因为(13)2+(14)2(15)2,不故能构成直角三角形,此选项错误.D、因为222111345222⎛⎫⎛⎫⎛⎫+≠⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,不能构成直角三角形,此选项错误.故选:B.[点睛]本题考查了勾股定理的逆定理,解题的关键是根据勾股定理的逆定理验证四个选项.本题属于基础题,难度不大,解决该题型题目时,套入数据验证“较小两边平方的和是否等于最大边的平方”是关键.3. 菱形具有而平行四边形不一定具有的性质是()A. 对角线互相垂直B. 对角线相等C. 对角线互相平分D. 对角相等[答案]A[解析][分析]根据菱形性质和平行四边形的性质逐一判断即可.[详解]解:A.菱形对角线互相垂直,而平行四边形的对角线不一定垂直,故本选项符合题意;B.菱形和平行四边形的对角线都不一定相等,故本选项不符合题意;C.菱形和平行四边形的对角线都互相平分,故本选项不符合题意;D.菱形和平行四边形的对角都相等,故本选项不符合题意.故选A.[点睛]此题考查的是菱形的性质和平行四边形的性质,掌握菱形的性质和平行四边形的性质是解决此题的关键.4. 下列各曲线中表示y是x的函数的是( )A. B. C. D.[答案]D[解析]根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,故D正确.故选D.5. 关于x一元二次方程x2-kx-6=0的根的情况为()A. 有两个不相等的实数根B. 有两个相等的实数根C. 无实数根D. 无法确定根的情况[答案]A[解析][分析]先计算△=(-k)2-4×1×(-6)=k2+24>0,即可判断方程根的情况.[详解]∵△=(-k)2-4×1×(-6)=k2+24>0,∴一元二次方程x2-kx-6=0有两个不相等的实数,故选:A.[点睛]本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.6. 如图,Rt△ABC中,∠C=90°,AC=8,AB=10,D、E分别为AC、AB中点,连接DE,则DE长为( )A. 4B. 3C. 8D. 5[答案]B[解析][分析]根据勾股定理求出BC,根据三角形中位线定理计算即可.[详解]∵∠C=90°,AC=8,AB=10,∴22AB AC,∵D、E分别为AC、AB中点,∴DE=12BC=3,故选:B.[点睛]本题考查的是三角形中位线定理和勾股定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.7. 如图,在处测得点在北偏东60︒方向上,在处测得点在北偏东30︒方向上,若2AB =米,则点到直线AB 距离PC 为( ).A. 米B. 3米C. 米D. 米[答案]B [解析] [分析]设点到直线AB 距离PC 为米,根据正切的定义用表示出AC 、BC ,根据题意列出方程,解方程即可. [详解]解:设点到直线AB 距离PC 为米, 在Rt APC △中,3tan PCAC x PAC==∠,在Rt BPC △中,3tan 3PC BC x PBC ==∠,由题意得,3323x x -=, 解得,3x =(米),故选:.[点睛]本题考查的是解直角三角形的应用,掌握锐角三角函数的定义、正确标注方向角是解题的关键. 8. 如图,在矩形ABCD 中,AE 平分∠BAD 交BC 于点E ,ED =5,EC =3,则矩形的周长为( )A. 18B. 20C. 22D. 24 [答案]C[解析][分析]根据勾股定理求出DC=4;证明BE=AB=4,即可求出矩形的周长.[详解]∵四边形ABCD是矩形,∴∠C=90°,AB=CD;AD∥BC;∵ED=5,EC=3,∴DC2=DE2-CE2=25-9,∴DC=4,AB=4;∵AD∥BC,∴∠AEB=∠DAE;∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠AEB,∴BE=AB=4,矩形的周长=2(4+3+4)=22.故选:C.[点睛]该题主要考查了矩形的性质及其应用问题;解题的关键是灵活运用矩形的性质.9. 下列命题正确的是()A. 一组对边平行,另一组对边相等的四边形是平行四边形B. 两条对角线相等且有一个角是直角的四边形是矩形C. 平行四边形两条对角线的平方和等于四条边的平方和D. 有一条对角线平分一组对角的四边形是菱形[答案]C[解析][分析]利用平行四边形及特殊的平行四边形的判定方法判定后即可确定正确的选项.[详解]A.一组对边平行,另一组对边相等的四边形是平行四边形或等腰梯形,故选项A错误;B.两条对角线相等且有一个角是直角的平行四边形是矩形,故选项B错误;C.如图,作AE⊥BC于点E,DF⊥BC交BC的延长线于F,则∠AEB=∠DFC=90°.∵四边形ABCD是平行四边形,∴AB=DC,AB∥CD,∴∠ABE=∠DCF,∴△ABE≌△DCF,∴AE=DF,BE=CF.在Rt△ACE和Rt△BDF中,由勾股定理得,AC2=AE2+EC2=AE2+(BC-BE)2,BD2=DF2+BF2=DF2+(BC+CF)2=AE2+(BC+BE)2,∴AC2+BD2=2AE2+2BC2+2BE2=2(AE2+BE2)+2BC2.又∵AE2+BE2=AB2,故AC2+BD2=2(AB2+BC2);即平行四边形两条对角线的平方和等于四条边的平方和,正确;D.有两条对角线平分一组对角的四边形是菱形,故选项D错误.故答案为:C[点睛]考查了命题与定理的知识,解题的关键是了解平行四边形的判定及特殊的平行四边形的判定方法,难度不大.10. 如图,正方形ABCD 中,AB=4,E为CD上一动点,连接AE交BD于F,过F作FH⊥AE于F,过H 作HG⊥BD 于G.则下列结论:①AF=FH;②∠HAE=45°;③BD=2FG;④△CEH 的周长为8.其中正确的个数是()A. 1个B. 2个C. 3个D. 4个[答案]D[解析][分析]①作辅助线,延长HF交AD于点L,连接CF,通过证明△ADF≌△CDF,可得:AF=CF,故需证明FC=FH,可证:AF=FH;②由FH⊥AE,AF=FH,可得:∠HAE=45°;③作辅助线,连接AC交BD于点O,证BD=2FG,只需证OA=GF即可,根据△AOF≌△FGH,可证OA=GF,故可证BD=2FG;④作辅助线,延长AD至点M,使AD=DM,过点C作CI∥HL,则IL=HC,可证AL=HE,再根据△MEC≌△MIC,可证:CE=IM,故△CEH的周长为边AM的长.[详解]①连接FC,延长HF交AD于点L,∵BD为正方形ABCD的对角线,∴∠ADB=∠CDF=45°.∵AD=CD,DF=DF,∴△ADF≌△CDF.∴FC=AF,∠ECF=∠DAF.∵∠ALH+∠LAF=90°,∴∠LHC+∠DAF=90°.∵∠ECF=∠DAF,∴∠FHC=∠FCH,∴FH=FC.∴FH=AF.②∵FH⊥AE,FH=AF,∴∠HAE=45°.③连接AC交BD于点O,可知:BD=2OA,∵∠AFO+∠GFH=∠GHF+∠GFH,∴∠AFO=∠GHF.∵AF=HF,∠AOF=∠FGH=90°,∴△AOF≌△FGH.∴OA=GF.∵BD=2OA,∴BD=2FG.④连接EM,延长AD至点M,使AD=DM,过点C作CI∥HL,则:LI=HC,∵HL⊥AE,CI∥HL,∴AE⊥CI,∴∠DIC+∠EAD=90°,∵∠EAD+∠AED=90°,∴∠DIC=∠AED,∵ED⊥AM,AD=DM,∴EA=EM,∴∠AED=∠MED,∴∠DIC=∠DEM,∴∠CIM=∠CEM,∵CM=MC,∠ECM=∠CMI=45°,∴△MEC≌△CIM,可得:CE=IM,同理,可得:AL=HE,∴HE+HC+EC=AL+LI+IM=AM=8.∴△CEH的周长为8,为定值.故①②③④结论都正确.故选D.[点睛]解答本题要充分利用正方形的特殊性质,在解题过程中要多次利用三角形全等.二.填空题(每小题3分,共30分)11. 函数–1的自变量x的取值范围是_____.[答案]x≥0[解析]试题分析:根据二次根式有意义的条件是被开方数大于等于0,可知x≥0.考点:二次根式有意义12. 在四边形ABCD中,AB∥CD,AD∥BC,如果∠B=50°,则∠D=_____.[答案]50°[解析]在四边形ABCD中,AB∥CD,AD∥BC,根据两组对边分别平行的四边形为平行四边形,可得四边形ABCD为平行四边形,根据平行四边形的对角相等即可得∠B=∠D=50°.13. 若关于x的一元二次方程(m﹣1)x2+x+m2﹣1=0有一个根为0,则m的值为_____.[答案]﹣1.[解析][分析]根据一元二次方程的定义得到m-1≠0;根据方程的解的定义得到m2-1=0,由此可以求得m的值.[详解]解:把x=0代入(m﹣1)x2+x+m2﹣1=0得m2﹣1=0,解得m=±1,而m﹣1≠0,所以m=﹣1.故答案为﹣1.[点睛]本题考查一元二次方程的解的定义和一元二次方程的定义.注意:一元二次方程的二次项系数不为零.14. 菱形ABCD的一条对角线长为6,边AB的长是方程27120-+=的一个根,则菱形ABCD的周长为x x_____[答案]16[解析][分析]边AB的长是方程x2-7x+12=0的一个根,解方程求得x的值,根据菱形ABCD的一条对角线长为6,根据三角形的三边关系可得出菱形的边长,即可求得菱形ABCD的周长.[详解]∵解方程x2-7x+12=0得:x=3或4∵对角线长为6,3+3=6,不能构成三角形;∴菱形的边长为4.∴菱形ABCD的周长为4×4=16.[点睛]本题考查菱形的性质,由于菱形的对角线和两边组成了一个三角形,根据三角形三边的关系来判断出菱形的边长是多少,然后根据题目中的要求进行解答即可.15. 某市政府为了改善城市容貌,绿化环境,计划经过两年时间,使绿地面积增加44%,则这两年平均绿地面积的增长率为______.[答案]20%[解析][分析]本题可设这两年平均每年的增长率为x,因为经过两年时间,让市区绿地面积增加44%,则有(1+x)2=1+44%,解这个方程即可求出答案.[详解]解:设这两年平均每年的绿地增长率为x,根据题意得,(1+x)2=1+44%,解得x1=-2.2(舍去),x2=0.2.答:这两年平均每年绿地面积的增长率为20%.故答案为20%[点睛]此题考查增长率的问题,一般公式为:原来的量×(1±x)2=现在的量,增长用+,减少用-.但要注意解的取舍,及每一次增长的基础.16. 如图,将两条宽度为3的直尺重叠在一起,使∠ABC=60°,则四边形ABCD的面积是_____________[答案]63[解析]分析:先根据两组对边分别平行证明四边形ABCD是平行四边形,再根据两张纸条的宽度相等,利用面积求出AB=BC,然后根据邻边相等的平行四边形是菱形;根据宽度是3与∠ABC=60°求出菱形的边长,然后利用菱形的面积=底×高计算即可.详解:纸条的对边平行,即AB∥CD,AD∥BC ,∴四边形ABCD是平行四边形,∵两张纸条的宽度都是3 ,∴S四边形ABCD=AB×3=BC×3 ,∴AB=BC ,∴平行四边形ABCD是菱形,即四边形ABCD是菱形.如图,过A作AE⊥BC,垂足为E,∵∠ABC=60∘ ,∴∠BAE=90°−60°=30°,∴AB=2BE ,在△ABE中,AB2=BE2+AE2 ,即AB2=14AB2+32 ,解得AB=23,∴S四边形ABCD=BC⋅AE=23×3=63.故答案是:63.点睛:本题考查了平行四边形的判定与性质,含30°角的直角三角形的性质,勾股定理,菱形的判定与性质,熟练掌握菱形的判定与性质是解答本题的关键.17. 如图,将正方形ABCD 沿FG 折叠,点A恰好落在BC上的点E处,若BE=2,CE=4,则折痕FG 的长度为_________.[答案]210[解析][分析]过G作GM⊥AB于M,连接AE,则MG=AD=AB,根据折叠的性质得到AE⊥GF,根据全等三角形的性质得到MF=BE=2,根据勾股定理即可得到结论.[详解]过G作GM⊥AB于M,连接AE,则MG=AD=AB,∵将正方形ABCD的一角折向边CD,使点A与CB上一点E重合,∴AE⊥GF,∴∠FAE+∠AFG=∠AFG+∠MGF ,∴∠BAE=∠MGF ,在△ABE 与△MGF 中B GMF AB GMMGF BAM ∠∠⎧⎪⎨⎪∠∠⎩===, ∴△ABE ≌△GMF ,∴MF=BE=2,∵MG=AD=BC=6,∴FG=22=210FM MG +, 故答案为:210.[点睛]此题主要考查了图形的翻折变换,根据图形折叠前后图形不发生大小变化得出三角形的全等是解决问题的关键,难度一般.18. 如图,在正方形ABCD 中,AC =62,E 是BC 边的中点,F 是AB 边上一动点,则FB +FE 的最小值为_________.[答案]35[解析][分析]首先确定ED=EF+FD=EF+BF 的值最小.然后根据勾股定理计算.[详解]连接BD ,ED 交AC 于O ,F ,连接BF ,此时EF+BF= EF+FD =ED 的值最小.在正方形ABCD 中,AC =62, ∴BC=CD=6, ∵E 是BC 边的中点,∴CE=3在Rt △CDE 中,根据勾股定理可得DE=2263635CE CD +=+=. ∴FB +FE 的最小值为35故答案为:35.[点睛]此题考查了线路最短的问题,确定动点F 的位置时,使EC+ED 的值最小是关键. 19. 在ABCD 中,AB =10,BC 边上的高为6,AC =35,则▭ABCD的面积为_________.[答案]66[解析][分析]解直角三角形得到BC 的长,根据平行四边形的面积计算公式可得到结论.[详解]如图,∵AE ⊥BC ,在Rt △ABE 中,∵AB=10,AE=6,∴22AB AE -=8,在Rt △AEC 中,∵AC=35,AE=6,∴CE=22AC AE -=3,∴BC=BE+CE=11,∴平行四边形ABCD 的面积=11×6=66, 故答案为:66.[点睛]本题考查了平行四边形的面积,勾股定理,熟练掌握平行四边形的性质是解题的关键.20. 如图,在△ABC 中,∠ABC =90°,D 为AB 边上一点(BD <BC ),AE ⊥AB ,AE =BD ,连接DE 交AC 于F ,若∠AFE =45°,AD =35,CD =5,则线段AC 的长度为_________.[答案]10[解析][分析]延长BC 到G ,使BG=AD ,连接DG 、EG ,证明ACGE 是平行四边形,可得CG=AE=BD ,在直角三角形DBC 中运用勾股定理求出BD 、BC 的长,最后运用勾股定理求出AC 的长即可.[详解]延长BC 到G ,使BG=AD ,连接DG 、EG ,90,ABC AE AB ︒∠=⊥90EAD DBG ∴∠=∠=︒180EAD DBG ∴∠+∠=︒90AED ADE ∠+∠=︒//AE BG ∴,AE BD AD BG ==()AED BDG SAS ∴≅∆,DE DG AED BDG ∴=∠=∠90ADE BDG ∴∠+∠=︒1809090EDG ︒∴-︒∠==︒DEG ∴是等腰直角三角形,45DEG ∴∠=︒45AFE =︒∠AFE FEG ∴∠=∠AC EG ∴//∴四边形ACGE 是平行四边形,AE CG ∴=∵AE=BDBD CG ∴=∵AD =∴设BD=x ,则,在Rt △BCD 中,∵CD=5,∴222CD BD BC =+,即2225=)x x +,解得,1x =,2x当x =,即BD =此时BC =,BD BC >, 不合题意,∴x =即∴在直角三角形ABC 中,10==故答案为:10.[点睛]此题主要考查了平行四边形的判定与性质,以及勾股定理,作辅助线构造平行四边形以及证明CG=AE=BD 是解题的关键.三.解答题(21、22题各7分,23、24题各 8分,25、26、27题各10分,共60分)21. 解下列方程(1)(3x -1)2=2(3x -1)(2)3x 2-x +1=0[答案](1)113x =,21x =;(2)12x x == [解析][分析](1)原方程移项后进行因式分解,变形为两个一元一次方程求出方程的解即可;(2)原方程运用公式法求解即可.[详解](1)(3x -1)2=2(3x -1)(3x -1)2-2(3x -1)=0(3x -1)[(3x -1)-2]=0(3x -1)(3x -3)=0∴3x -1=0,3x -3=0解得,113x =,21x =;(2)3x 2-x +1=0这里a=3,b=-c=1∴△=b 2-4ac=(-2-4×3×1=0∴x ==∴12x x ==. [点睛]此题主要考查了解一元二次方程的方法灵活运用,熟练掌握解一元二次方程的方法是解题的关键.22. 方格纸中的每个小正方形的边长均为1,请分别画出符合要求的图形.要求:所画图形的各顶点必须与方格纸中的小正方形的顶点重合.(1)画一个面积为10的等腰直角三角形;(2)画一个周长为20,面积为15的菱形.[答案](1)见解析;(2)见解析[解析]分析](1)利用数形结合的思想画出直角边为25的等腰三角形即可.(2)利用数形结合的思想画出边长5,高为3的菱形即可.[详解](1)如图1中,平行四边形ABCD即为所求.(2)如图2中,菱形ABCD即为所求.[点睛]本题考查作图-应用与设计,等腰直角三角形的判定,菱形的判定等知识,解题的关键是学会利用数形结合的思想思考问题.23. 将 4个数a ,b ,c ,d 排成2 行、2 列,两边各加一条竖直线记成|a b |c d ,定义|a b |c d =ad-bc ,上述记号就叫做2阶行列式.(1)若249|x13|x =0,求x 的值; (2)若11|x x +- 11|x x -+=6,求x 的值.[答案](1)1x =2x =(2)1x =,2x =[解析][分析] (1)根据2阶行列式公式列出方程26490x -=,运用直接开平方法即可求得答案;(2)根据2阶行列式公式列出方程2(1)(1)(1)6x x x +---=,即可求得答案.[详解](1)由题意可得:26490x -=∴26=49x 249=6x∴1x =2x = (2)由题意可得:2(1)(1)(1)6x x x +---=,整理得,22x =,解得,1x =,2x =.[点睛]考查了解一元二次方程-直接开平方法,本题根据2阶行列式的公式来解一元二次方程,比较简单,容易掌握.24. 已知,在△ABC 中,AB =AC ,点D 、点O 分别为BC 、AC 的中点,AE//BC .(1)如图1,求证:四边形ADCE 是矩形;(2)如图2,若点 F 是 CE 上一动点,在不添加任何辅助线的情况下,请直接写出与四边形 ABDF 面积相等的三角形和四边形.[答案](1)证明见解析;(2)S△ABC,S四边形ABDE,S矩形ADCE[解析][分析](1)首先得到四边形ADCE是平行四边形,然后利用有一个角是直角的平行四边形是矩形判断矩形即可;(2)根据四边形ADCE是矩形,得到AD∥CE,于是得到S△ADC=S△ADF=S△AED,即可得到结论.[详解](1)证明:∵点D、点O别是BC、AC的中点,∴OD∥AB,∴DE∥AB,又∵AE∥BD,∴四边形ABDE是平行四边形,∵点D是BC的中点,∴AE平行且等于DC,∴四边形AECD是平行四边形,∵AB=AC,D为BC的中点,∴AD⊥BC,∴四边形ADCE是矩形;(2)解:∵四边形ADCE是矩形,∴AD∥CE,∴S△ADC=S△ADF=S△AED,∴四边形ABDF面积=S△ABC=S四边形ABDE=S矩形ADCE.[点睛]本题考查了矩形判定和性质,平行线的性质,三角形的中位线的性质,熟练掌握矩形的判定和性质定理是解题的关键.25. 某商场经销一种成本为每千克40元的水产品,经市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨价1元,月销售量就减少10千克.针对这种水产品的销售情况,请解答以下问题.(1)当销售单价定每千克55元,计算月销售量和月销售利润;(2)商场计划在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少? [答案](1)月销售量450千克,月利润6750元;(2)销售单价应定为80元/千克[解析][分析](1)销售单价每涨价1元,月销售量就减少10千克.那么涨价5元,月销售量就减少50千克.根据月销售利润=每件利润×数量,即可求解;(2)等量关系为:销售利润=每件利润×数量,设单价应定为x元,根据这个等量关系列出方程,解方程即可.[详解](1)月销售量为:500﹣5×10=450(千克),月利润为:(55﹣40)×450=6750(元).(2)设单价应定为x元,得:(x﹣40)[500﹣10(x﹣50)]=8000,解得:x1=60,x2=80.当x=60时,月销售成本为16000元,不合题意舍去.∴x=80.答:销售单价应定为80元/千克.[点睛]本题主要考查一元二次方程的实际应用,找出等量关系,列出方程,是解题的关键.26. 已知正方形ABCD中,点E、F分别为边AB、BC上的点,连接CE、DF相交于点G,CE=DF.(1)如图①,求证:DF⊥CE;(2)如图②,连接BD,取BD的中点O,连接OE、OF、EF,求证:△OEF为等腰直角三角形(3)如图③,在(2)的条件下,将△CBE和△DCF分别沿CB、DC翻折到△CBM和△DCN的位置,连接OM、ON、MN,若AE=2BE,求EG的长.[答案](1)证明见解析;(2)证明见解析;(3)7105[解析][分析](1)如图1中,证明Rt△CBE≌△Rt△DCF(HL),即可解决问题.(2)如图2中,连接OC.想办法证明△OBE≌△OCF(SAS),即可解决问题.(3)如图3中,连接OC.设BE=a,则BM=EB=CF=CN=a,AE=2a,BC=AB=3a,首先证明△OMN是等腰直角三角形,利用勾股定理求出a即可解决问题.[详解](1)如图1中,∵四边形ABCD是正方形,∴BC=CD,∠B=∠DCF=90°,∵DE=CE,∴Rt△CBE≌△Rt△DCF(HL),∴BE=CF,∠ECB=∠CDF,∵∠ECB+∠DCE=90°,∴∠CDF+∠DCE=90°,∴∠CGD=90°,∴EC⊥DF.(2)如图2中,连接OC.∵CB=CD,∠BCD=90°,OB=OD,∴OC=OB=OD,OC⊥BD,∴∠OCB=45°,∵四边形ABCD是正方形,∴∠ABD=45°,∴∠OBE=∠OCF,∵BE=CF,OB=OC,∴△OBE≌△OCF(SAS),∴OE=OF,∠BOE=∠COF,∴∠EOF=∠BOC=90°,∴△EOF是等腰直角三角形.(3)如图3中,连接OC.设BE=a,则BM=EB=CF=CN=a,AE=2a,BC=AB=3a,∵BE=BM,CF=CN,BE=CF,∴BM=CN,∵OB=OC,∠OBM=∠OCN=135°,BM=CN,∴△OBM≌△OCN(SAS),∴∠BOM=∠COM,∴∠MON=∠BOC=90°,∴△MON是等腰直角三角形,∵34∴MN=217, 在Rt △MBN 中,a 2+16a 2=68,∴a=2(负根已经舍弃),BE=2,BC=6,EC=210,∵△CGF ∽△CBE ,CG CF CB CE∴=, 26210CG ∴=, 3105CG ∴=, 31071021055EG EC CG ∴=-=-=. [点睛]本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题.27. 已知,在四边形ABCD 中,AD ∥BC ,AB ∥DC ,点E 在BC 延长线上,连接DE ,∠A +∠E =180°.(1)如图1,求证:CD=DE ;(2)如图2,过点C 作BE 的垂线,交AD 于点F ,请直接写出BE 、AF 、DF 之间的数量关系_______________________;(3)如图3,在(2)的条件下,∠ABC 的平分线,交CD 于G ,交CF 于H ,连接FG ,若∠FGH=45°,DF=8,CH=9,求BE 的长.[答案](1)证明见解析;(2)BE=AF+3DF ;(3)31[解析][分析](1)利用等角的补角判断出∠DCE=∠E即可;(2)先判断出四边形CFDN是矩形,再判断出CN=NE=FD,即可得出结论;(3)先判断出∠ABG=∠BGC,进而得出四边形BCFM是正方形,即可判断出△BMK≌△BCH,再用勾股定理求出BM=15,即可得出AD=BC=BM=15,即可求出结论.AD BC AB DC[详解](1)∵//,//四边形ABCD是平行四边形,∴∠A=∠BCD,∵∠A+∠E=180°,∠BCD+∠DCE=180°,∴∠DCE=∠E,∴CD=DE;(2)如图2,过点D作DN⊥BE于N,∵CF⊥BE,∴∠DNC=∠BCF=90°,∴FC∥DN,∵四边形ABCD是平行四边形,∴AD∥BC,∴四边形CFDN是矩形,∴FD=CN,∵CD=DE,DN⊥CE,∴CN=NE=FD,∵四边形ABCD是平行四边形,∴BC=AD=AF+FD,∴BE=AF+3DF.(3)如图3,过点B作BM⊥AD于点M,延长FM至K,使KM=HC.连接BK,∵▱ABCD,∴AB∥CD,∴∠ABG=∠BGC,∵BG平分∠ABC,∴设∠ABG=∠CBG=∠BGC=α,∴BC=CG,∵∠FGH=45°,∴∠FGC=45°+α,∵∠BCF=90°,∴∠BHC=∠FHG=90°-α,∴∠HFG=45°+α=∠FGC,∴FC=CG=BC,∵BM⊥AD,∴∠MBC=90°=∠FCE=∠MFC,∴四边形BCFM是矩形,∵BC=FC,∴四边形BCFM是正方形,∴BM=MF=BC=AD,∴MA=DF=8,∵∠KMB=∠BCH=90°,KM=CH,∴△BMK≌△BCH,∴KM=CH=9,∠KBM=∠CBH=α,∠K=∠BHC=90°-α, ∵∠MBC=90°,∴∠MBA=90°-2α,∴∠KBA=90°-α=∠K,∴AB=AK=8+9=17,在Rt△ABM中,∠BMA=90°,=15,∴AD=BC=BM=15,∴AF=AD-DF=15-8=7,∴BE=AF+3DF=7+3×8=31.[点睛]此题是四边形综合题,主要考查了平行四边形的性质,矩形的判定和性质,正方形的判定和性质,全等三角形的判定和性质,勾股定理,解本题的关键是(2)判断出四边形CFDN是矩形,(3)求出AB=17.。

人教版数学八年级下册期中考试试题附答案

人教版数学八年级下册期中考试试题附答案

人教版数学八年级下册期中考试试卷一、单选题1.下列条件中,不能判断四边形ABCD 是平行四边形的是()A .∠A=∠C ,∠B=∠DB .AB ∥CD ,AB=CDC .AB=CD ,AD ∥BCD .AB ∥CD ,AD ∥BC2.下列各组长度的线段能组成直角三角形的是().A .a =2,b =3,c =4B .a =4,b =4,c =5C .a =5,b =6,c =7D .a =5,b =12,c =133.下列各式中,最简二次根式是()AB C .D 4.若式子在实数范围内有意义,则x 的取值范围是()A .x≤﹣3B .x≥﹣3C .x <﹣3D .x >﹣35.平行四边形ABCD 中,若2B A ∠=∠,则C ∠的度数为().A .120︒B .60︒C .30︒D .15︒6.下列命题中,正确的是().A .有一组邻边相等的四边形是菱形B .对角线互相平分且垂直的四边形是矩形C .两组邻角相等的四边形是平行四边形D .对角线互相垂直且相等的平行四边形是正方形7.如图,矩形ABCD 中,AB=3,两条对角线AC 、BD 所夹的钝角为120°,则对角线BD 的长为A .B .C .33D .38.如图,在矩形ABCD 中,84AB BC ==,,将矩形沿对角线AC 折叠,则重叠部分AFC △的面积为()A .12B .10C .8D .69.如图,正方形ABCD 的两条对角线AC ,BD 相交于点O ,点E 在BD 上,且BE =CD ,则∠BEC 的度数为()A .22.5°B .60°C .67.5°D .75°10.如图,点P 是正方形ABCD 的对角线BD 上一点,PE ⊥BC ,PF ⊥CD ,垂足分别为点E ,F ,连接AP ,EF ,给出下列四个结论:①AP=EF;②∠PFE=∠BAP;③2EC;④△APD 一定是等腰三角形.其中正确的结论有().A .1个B .2个C .3个D .4个二、填空题11.在研究了平行四边形的相关内容后,老师提出这样一个问题:“四边形ABCD 中,AD ∥BC ,请添加一个条件,使得四边形ABCD 是平行四边形”.经过思考,小明说“添加AD=BC”,小红说“添加AB=DC”.你同意________的观点,理由是________.12.如图,菱形ABCD 中,若BD=24,AC=10,则AB 的长等于________,该菱形的面积为____________.13.在Rt △ABC 中,a ,b 均为直角边且其长度为相邻的两个整数,若1a b <<,则该直角三角形斜边上的高为____________.14.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a ,b ,c ,则该三角形的面积为.现已知△ABC 的三边长分别为1,2ABC的面积为______.15.已知:,x y为实数,且4y <,则4y --果为_______.16.如图以直角三角形ABC 的斜边BC 为边在三角形ABC 的同侧作正方形BCEF ,设正方形的中心为O,连结AO,如果AB=4,,则AC=________三、解答题17.计算:(1+;(2.18.如图,已知 ABCD,E,F是对角线BD上的两点,且DE=BF.求证:四边形AECF是平行四边形.19.如图所示,已知平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OCB.(1)求证:平行四边形ABCD是矩形;(2)请添加一个条件使矩形ABCD为正方形.20.如图,P是正方形ABCD对角线AC上一点,点E在BC上,且PE=PB.(1)求证:PE=PD;(2)连接DE,试判断∠PED的度数,并证明你的结论.21.如图,菱形ABCD的对角线AC和BD交于点O,分别过点C.D作CE∥BD,DE∥AC,CE和DE交于点E.(1)求证:四边形ODEC是矩形;(2)当∠ADB=60°,AD=23EA的长。

江苏省徐州市2023-2024学年八年级下学期期中数学试题(含答案)

江苏省徐州市2023-2024学年八年级下学期期中数学试题(含答案)

2023~2024学年度第二学期期中检测八年级数学试题(本卷共4页,满分为140分,考试时间为90分钟;答案全部涂、写在答题卡上)一、选择题(本大题有8小题,每题3分,共24分)1.徐州剪纸是一种江苏省的传统民俗工艺品,鱼与“余”同音,寓意生活富裕、年年有余.以下关于鱼的剪纸中,是轴对称图形,但不是中心对称图形的是A .B .C .D .2.牛奶中含有蛋白质、脂肪、碳水化合物等多种营养成分,下列统计图,最能清楚地表示出牛奶中各种营养成分所占百分比的是A .条形统计图B .扇形统计图C .折线统计图D .频数分布直方图3.下列事件中,是不可能事件的是A .买一张电影票,座位号是奇数B .射击运动员射击一次,命中9环C .没有水分,种子发芽D .3天内将下雨4.平行四边形的一边长为6,另一边长为12,则对角线的长可能是A .6B .5C .22D .105.今年某市有近5万名考生参加中考,为了解这些考生的数学成绩,从中抽取了1500名考生的数学成绩进行统计分析,下列说法正确的是A .近5万名考生是总体B .这1500名考生是总体的一个样本C .每位考生的数学成绩是个体D .1500名考生是样本容量6.在复习特殊的平行四边形时,某小组同学画出了如下关系图,组内一名同学在箭头处填写了它们之间转换的条件,其中填写错误的是A .①对角相等B .③有一组邻边相等C .②对角线互相垂直D .④有一个角是直角7.如图,点E 在矩形纸片的边上,将纸片沿折叠,点C 的对应点F 恰好在线段上.若,,则的长是ABCD CD BE AE 5=AB 1=CE BCA .2B .3C .4D .1.58.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是A .矩形B .等腰梯形C .对角线相等的四边形D .对角线互相垂直的四边形二、填空题(本大题有8个小题,每题4分,共32分)9.小明在农贸市场购买葡萄时,为了解葡萄的甜度,他取了一颗品尝.这种了解方式属于________(填“普查”或“抽样调查”).10.一个不透明袋中装有5个红球、3个黑球、2个白球,每个球除颜色外完全相同,从袋中任意摸出一个球,那么摸出________球的可能性最大(填“红”、“黑”或“白”).11.“永不言弃”的英语翻译是 Never give up ,短语中“e ”出现的频率为________.12.在平行四边形中,,则的度数为________.13.如图,一、二两组同学将本组最近5次数学平均成绩分别绘制成折线统计图.由统计图可知,成绩进步幅度较大的组是________组.(填“一”或“二”)14.如图,,分别以A ,B 为圆心,5长为半径画弧,两弧相交于M ,N 两点.连接,,,,则四边形的面积为________.15.数学家笛卡尔在《几何》一书中阐述了坐标几何思想,主张取代数和几何中最好的东西,互相以长补短.如图,在平面直角坐标系中,矩形的顶点B 的坐标是,则的长是________.ABCD 130∠+∠=︒A C ∠B ︒8cm =AB cm AM BM AN BN AMBN 2cm OABC (1,3)AC16.如图,正方形的边长为4,点A 、C 分别在x 轴、y 轴的正半轴上,点D 在上,且点D 的坐标为,点P 是上的一个动点,则的最小值是________.三、解答题(本大题有9个小题,共84分)17.(本题8分)科学教育是提升国家科技竞争力、培养创新人才、提高全民科学素质的重要基础,某学校计划在八年级开设“人工智能”、“无人机”、“创客”、“航模”四门校本课程,要求每人必须参加,并且只能选择其中一门课程,为了解学生对这四门课程的选择情况,学校从八年级全体学生中随机抽取部分学生进行问卷调查,并根据调查结果绘制成如图所示的条形统计图和扇形统计图(部分信息未给出).请你根据以上信息解决下列问题:(1)参加问卷调查的学生人数为50名,补全条形统计图(画图并标注相应数据);(2)在扇形统计图中,选择“创客”课程的学生占________%,所对应的圆心角度数为________;(3)若该校八年级一共有1000名学生,试估计选择“航模”课程的学生有多少名?18.(本题8分)下表是某校生物兴趣小组在相同的实验条件下,对某植物种子发芽率进行研究时所得到的数据:试验的种子数n 10001500200030004000发芽的种子粒数m 9461425189828533812发芽频率0.946x0.949y0.953(1)表中________,________;OABC OA (1,0)OB +PD PA ︒mn=x =y(2)任取一粒这种植物的种子,它能发芽的概率的估计值是________(精确到0.01);(3)若该学校劳动基地需要这种植物幼苗7600株,试估算该小组需要准备多少粒种子进行发芽培育.19.(本题10分)正方形网格中(网格中的每个小正方形边长是1,小正方形的顶点叫做格点),的顶点均在格点上,请在所给的直角坐标系中解答下列问题:(1)画出绕点A 顺时针旋转的,并写出点C 的对应点的坐标为________;(2)画出关于点O 成中心对称的;(3)点D 为平面内一点,若以点A 、B 、C 、D 为顶点的四边形为平行四边形,则所有满足条件的点D 的坐标为________.20.(本题8分)已知:如图,在平行四边形中,点E 、F 在上,且.求证:四边形是平行四边形.21.(本题8分)如图,在平行四边形中,的平分线交于点E ,的平分线交于点F .求证:四边形是菱形.22.(本题10分)如图,在中,,点D 是边的中点,以、为邻边作平行四边形,连接、.(1)求证:四边形是矩形;(2)要使四边形是正方形,则需要满足的条件是________.ABC △ABC △90︒111A B C △1C ABC △222A B C △ABCD AC =AE CF EBFD ABCD ∠BAD BC ∠ABC AD ABEF ABC △=AB AC BC AB BD ABDE AD CE ADCE ADCE ABC △23.(本题10分)如图,在四边形中,,,M 、N 分别是、的中点,连接、、.(1)求证:;(2)若,平分,,求的长.24.(本题10分)如图,点O 是内一点,求作线段,使P 、Q 分别在射线、上,且点O 是的中点(要求:用无刻度的直尺和圆规作图,保留作图痕迹).小亮的作法如下:作,交于点T ,在射线上截取,在上截取,使得,连接,延长交于点P ,线段即为所求.(1)请证明小亮作法的正确性;(2)请你再设计另一种尺规作图的方法(保留作图痕迹,不写作法).25.(本题12分)【阅读理解】如图1,在矩形中,若,,则________(用含a 、b 的式子表示);【探究发现】如图2,小华发现在平行四边形中,若,,则上述结论依然成立,请你跟随小华的思路,帮他继续完成证明过程.证明:如图3,延长,过点B 、点C 分别作于点E ,于点F .在中,且,,..设,.……ABCD 90∠=︒ABC =AC AD AC CD BM MN BN =BM MN 60∠=︒BAD AC ∠BAD 2=AC BN ∠MAN PQ AM AN PQ ∥OT AN AM TO =OE OT AN AQ =AQ TE QO QO AM PQ ABCD =AB a =BC b 22+=AC BD ABCD =AB a =BC b DA ⊥BE AD ⊥CF AD ABCD =AB CD ∥AB CD ∴∠=∠BAE CDF ∴≌ABE DCF △△∴=AE DF ==AE DF d ==BE CF h________(请继续完成以上证明)【拓展提升】如图4,已知为的一条中线,,,.求证:.【尝试应用】如图5,在矩形中,若,,点P 在边上,则的取值范围为________.2023—2024学年度第二学期期中检测八年级数学试题参考答案及评分标准题号12345678选项DBCDCABC9.抽样调查 10.红 11.12.115 13.一14.24151617.(1)(2)20,72BO ABC △=AB a =BC b =AC c 222224+=-a b c BO ABCD 4=AB 6=BC AD 22+PB PC 311(3)名答:估计选择“航模”课程的学生有100名.18.(1)0.95,0.951(2)0.95(3),答:估算需要准备8000粒种子进行发芽培育.19.(1)如图为所画的三角形(字母标错或未标扣1分)的坐标为(2)如图为所画的三角形(字母标错或未标扣1分)(3)或或.20.证明:如图,连接,交于点O .四边形是平行四边形,∴,.∵,∴,即,∴四边形是平行四边形.21.证明:∵四边形是平行四边形,∴AD //BC ,∴∠DAE =∠AEB .∵∠BAD 的平分线交BC 于点E ,∴∠DAE =∠BAE ,∴∠BAE =∠AEB ,∴AB=BE .同理可得AB=AF ,∴AF=BE ,∵AF //BE ,∴四边形ABEF 是平行四边形,∵AB=AF ,∴四边形ABEF 是菱形.22.(1)证明:∵四边形ABDE 是平行四边形,∴BD ∥AE .∵点D 是BC 中点,∴BD =CD ,∴AE ∥CD ,AE =CD ,∴四边形ADCE 是平行四边形.在△ABC 中,AB =AC ,BD =CD ,∴AD ⊥BC ,即∠ADC=90°,∴平行四边形ADCE 是矩形.(2)∠BAC =90°23.(1)证明:在△CAD 中,∵M 、N 分别是AC 、CD 的中点,∴MN //AD ,MN=.5100010050⨯=76000.958000÷=111A B C △1C (2,3)-222A B C △(5,3)--(3,1)-(1,1)-BD BD AC ABCD OA OC =OB OD =AE CF =OA AE OC CF -=-OE OF =EBFD ABCD 12AD 第20题在Rt△ABC中,∵M是AC中点,∠ABC=90°,∴BM=.∵AC=AD,∴BM=MN.(2)解:∵∠BAD=60°,AC平分∠BAD,∴∠BAC=∠DAC==30°.由(1)可知,BM=AM=MC=,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°.∵MN//AD,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,.由(1)可知MN=BM==1,∴BN.24.(1)证明:连接EQ,∵OT//AN,TE=AQ,∴四边形ATEQ是平行四边形,∴AT//QE,∴∠QEO=∠PTO.∵OE=OT,∠QOE=∠POT,∴△QOE≌△POT(ASA),∴QO=PO,即点O是PQ的中点.(2)方法一:连接AO,延长AO到T,使得OT=OA,作TP//AN交AM于点P,连接PO,延长PO交AN于点Q,线段PQ即为所求.方法二:连接AO,作OR//AN,交AM于点R,在射线AM上截取RP=RA,连接PO,延长PO交AN于点Q,线段PQ即为所求.(画出其中一种即可)25.【阅读理解】【探究发现】在Rt△BED中,,即.同理.∴,整理得.在Rt△AEB中,,即.∴.【拓展提升】(法一)如图25-1,延长BO至点D,使BO=OD.∵BO为△ABC的中线,∴AO=CO.∴四边形ABCD为平行四边形.依上述结论,得.∴,即.12AC12BAD∠12AC222=∴+BN BM MN12AC2222a b+222BD BE DE=+222()BD h b d=++222()AC h b d=+-222222()()AC BD h b d h b d+=+-+++222222()2AC BD h d b+=++222AB AE BE=+222a h d=+222222AC BD a b+=+22222()AC BD AB BC+=+2222(2)2()c BO a b+=+222224a b cBO+=-(法二)如图25-2,过点B 作BE ⊥AC ,垂足于点E .设OE =d ,则,.在Rt △ABE 中,依勾股定理,得,∴,即①.同理②,③.①+②,得:④.④-③×2,得,∴.【尝试应用】.图25-1图25-212AE AC d =-12CE AC d =+222AB BE AE =+222()2ACAB BE OE =+-22212a BE c d ⎛⎫=+- ⎪⎝⎭22212b BE c d ⎛⎫=++ ⎪⎝⎭222BO BE d =+22222222c a b BEd +=++222222c a b BO +-=222224a b c BO +=-225068PB PC ≤+≤。

2023年部编版八年级数学下册期中考试卷(及参考答案)

2023年部编版八年级数学下册期中考试卷(及参考答案)

2023年部编版八年级数学下册期中考试卷(及参考答案)班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.6的相反数为()A.-6 B.6 C.16-D.162.若12xyx-=有意义,则x的取值范围是()A.1x2≤且x0≠B.1x2≠C.1x2≤D.x0≠3.一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.108°B.90°C.72°D.60°4.化简x1x-,正确的是()A.x-B.x C.﹣x-D.﹣x5.已知4821-可以被在0~10之间的两个整数整除,则这两个数是()A.1、3 B.3、5 C.6、8 D.7、96.如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C 旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2,其中正确结论有()A.0个B.1个C.2个D.3个7.下面四个手机应用图标中是轴对称图形的是()A.B.C.D.8.已知a=2018x+2018,b=2018x+2019,c=2018x+2020,则a2+b2+c2-ab -ac -bc 的值是( )A .0B .1C .2D .39.如图,点P 是∠AOB 内任意一点,且∠AOB =40°,点M 和点N 分别是射线OA 和射线OB 上的动点,当△PMN 周长取最小值时,则∠MPN 的度数为( )A .140°B .100°C .50°D .40°10.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.计算:123-=________.2.若(x+p)与(x+5)的乘积中不含x 的一次项,则p =__________.3.若2|1|0a b -++=,则2020()a b +=_________.4.含45°角的直角三角板如图放置在平面直角坐标系中,其中A(-2,0),B(0,1),则直线BC 的解析式为________.5.如图,直线AB ,CD 被BC 所截,若AB ∥CD ,∠1=45°,∠2=35°,则∠3=_________度。

河南省洛阳市第二外国语学校2023-2024学年八年级下学期期中数学试题(解析版)

河南省洛阳市第二外国语学校2023-2024学年八年级下学期期中数学试题(解析版)

洛阳市第二外国语学校2023-2024学年第二学期八年级数学学科期中考试一、选择题(每题3分,共30分)1. 下列各式中,属于最简二次根式的是( )A. B. C. D. 【答案】A【解析】【分析】根据最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式判断即可.【详解】解:AB不属于最简二次根式,故本选项不符合题意;C不属于最简二次根式,故本选项不符合题意;D故选:A【点睛】本题考查最简二次根式,掌握最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式是解题的关键.2. 下列运算正确的是( )A. B.C. D. 【答案】D【解析】【分析】根据二次根式的性质对A 选项进行判断;根据二次根式的加法运算对B 选项和C 选项进行判断;根据二次根式的除法法则对D 选项进行判断.【详解】解:,所以A 选项不符合题意;B,所以B选项不符合题意;2===5=-=+==A 5=+=+=C .C 选项不符合题意;D,所以D 选项符合题意.故选:D .【点睛】本题考查了二次根式的混合运算,熟练掌握二次根式的性质、二次根式的加减法则和除法法则是解决问题的关键.3.x 的取值范围是( )A. x ≥4B. x >4 C. x ≤4 D. x <4【答案】D【解析】【分析】直接利用二次根式有意义的条件分析得出答案.4﹣x >0,解得:x <4即x 的取值范围是:x <4故选D .【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.4. 已知的、和的对边分别是,和,下列给出了五组条件:①;② ;③;④;⑤,,是直角三角形的条件有( )A. 2B. 3C. 4D. 5【答案】C【解析】【分析】根据三角形的内角和定理和勾股定理逆定理对各选项分析判断即可求出答案.【详解】解:①∵∠A:∠B:∠C=1: 2: 3,∴∠A+∠B+∠C=180°,∴∠A+2∠A+3∠A=180°, ∴∠C=90°, ∴ 是直角三角形;②∵a: b: c=3: 4: 5,∴ (3x) ²+(4x) ²=(5x) ²,∴是直角三角形;③∵∠A=∠B+∠C 是直角三角形,而2∠A=∠B+∠C 不是直角三角形;④∵a ²-c ²=b ²∴是c 为斜边的直角三角形;+=÷==ABC A ∠B ∠C ∠a b c 123A B C ∠∠∠=::::::3:4:5a b c =2A B C ∠=∠+∠222a c b -=1a =2b =c =ABC ABC ABC ABC⑤∵而1²2=2²∴此三角形是以b 为斜边的直角三角形.故选: C.【点睛】本题考查了直角三角形的判定,主要利用了三角形的内角和定理及勾股定理逆定理来判断.5. 如图,在中,.C 是上一点,已知,,,则的长是( )A. 5B. 9C. 6D. 15【答案】A【解析】【分析】本题考查勾股定理,利用勾股定理求出的长,用求出的长即可.【详解】解:∵,,,∴,∴;故选A .6. 如图,E 是平行四边形边上一点,且,连结,并延长与的延长线交于点F ,,则的度数是( )A. B. C. D. 【答案】B【解析】【分析】此题考查了平行四边形的性质、等边对等角、三角形内角和定理等知识,利用平行四边形的性质得到,,则,由等腰三角形的性质得出,再利用三角形的内角和定理得到,即可得到答案.【详解】解:如图所示,∵四边形是平行四边形,∴,,ABD △90D Ð=°BD 7CB =15AB =9AD =DC BD BD CB -DC 90D Ð=°15AB =9AD =12B D ==1275DC BD CB =-=-=ABCD BC AB BE =AE AE DC 70F ∠=︒D ∠30︒40︒50︒70︒AB DC B D ∠=∠70BAE F ∠=∠=︒70BAE AEB ∠=∠=︒40B ∠=︒ABCD AB DC B D ∠=∠∴.∵,∴,∴,∴故选:B .7. 如图,在中,为斜边上的中线,点是上方一点,且,连接,若,,则的长为( )A. B. C. 4 D. 【答案】B【解析】【分析】先利用直角三角形斜边上的中线性质可得,然后利用等腰三角形的三线合一性质可得,从而在中,利用勾股定理进行计算即可解答.【详解】解:在中,为斜边上的中线,,,,中,,故选:B .【点睛】本题考查了直角三角形斜边上的中线,等腰三角形的性质,熟练掌握直角三角形斜边上的中线等于斜边的一半,以及等腰三角形的性质是解题的关键.8. 如图,在平行四边形ABCD 中,∠BAD =120°,连接BD ,作AE ∥BD 交CD 的延长线于点E ,过点E 作EF ⊥BC 交BC 的延长线于点F ,若CF =2,则AB 的长是( )在70BAE F ∠=∠=︒AB BE =70BAE AEB ∠=∠=︒18040B BAE AEB ∠=︒-∠-∠=︒40D B ∠=∠=︒Rt ABC △CD AB E AB AE BE =DE 3CD =7AE =DE3CD AD BD ===ED AD ⊥Rt ADE △Rt ABC △CD AB 132CD AD BD AB ∴====7AE BE == ED AD ∴⊥Rt ADE△DE ===A. 4B. 2D. 【答案】B【解析】【分析】先根据平行四边形的性质可得,从而可得,再利用直角三角形的性质可得,然后根据平行四边形的判定与性质可得,最后根据线段的和差即可得.【详解】四边形ABCD 是平行四边形,在中,,,即又四边形ABDE 是平行四边形解得故选:B .【点睛】本题考查了平行四边形的判定与性质、直角三角形的性质、平行线的性质等知识点,熟练掌握平行四边形的判定与性质是解题关键.9. 如图,四边形OABC 为矩形,点A ,C 分别在x 轴和y 轴上,连接AC ,点B 的坐标为(8,6),以A 为圆心,任意长为半径画弧,分别交AC 、AO 于点M 、N ,再分别以M 、N 为圆心,大于MN 长为半径画弧两弧交于点Q ,作射线AQ 交y 轴于点D ,则点D 的坐标为( ),//,60AB CD AB CD ABC =∠=︒60ECF ∠=︒24CE CF ==AB DE = 120BAD ∠=︒,//,18060AB CD AB CD AB BA C D ∴=∠=︒-=∠︒60ECF ABC ∴∠=∠=︒Rt CEF 2CF =9060CEF ECF ∠=︒-∠=︒24CE CF ∴==4CD DE +=//,//A D EE B A B D ∴AB DE∴=4AB AB ∴+=2AB =12A. B. C. D. 【答案】B【解析】【分析】过点D 作DE ⊥AC 于点E ,由勾股定理可求AC =10,由“AAS ”可证△ADO ≌△ADE ,可证AE =AO =8,OD =DE ,可得CE =2,由勾股定理可求OD 的长,即可求点D 坐标.【详解】解:如图,过点D 作DE ⊥AC 于点E ,∵四边形OABC 为矩形,点B 的坐标为(8,6),∴OA =8,OC =6∴AC10由题意可得AD 平分∠OAC∴∠DAE =∠DAO ,AD =AD ,∠AOD =∠AED =90°∴△ADO ≌△ADE (AAS )∴AE =AO =8,OD =DE∴CE =2,∵CD 2=DE 2+CE 2,∴(6-OD )2=4+OD 2,∴OD =∴点D (0,)()0,180,3⎛⎫ ⎪⎝⎭50,3⎛⎫ ⎪⎝⎭()0,28383故选B .【点睛】本题考查了矩形的性质,坐标与图形的性质,勾股定理,全等三角形的判定和性质,证明△ADO ≌△ADE 是本题的关键.10. 如图,在正方形中,边长为2的等边三角形的顶点E 、F 分别在和上,下列结论:①;②;③;④,其中正确的个数是( )。

人教版八年级下册数学期中考试试题含答案

人教版八年级下册数学期中考试试题含答案

人教版八年级下册数学期中考试试卷一、选择题(本大题共12个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.要使式子有意义,则x的取值范围是()A.x≤﹣2B.x≤2C.x≥2D.x≥﹣22.下列二次根式中,最简二次根式是()A.B.C.D.3.下列二次根式中,与之积为无理数的是()A.B.C.D.4.若(m﹣1)2+=0,则m+n的值是()A.﹣1B.0C.1D.25.以下列长度为三角形边长,不能构成直角三角形的是()A.5,12,13B.4,5,6C.1,,D.7,24,256.如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2B.∠BAD=∠BCD C.AB=CD D.AC⊥BD7.如图,是由三个正方形组成的图形,则∠1+∠2+∠3等于()A.60°B.90°C.120°D.180°8.如图,在△ABC中,∠C=90°,AB=17cm,AC=8cm,若BE=3cm,则矩形CBEF 的面积是()A.9cm2B.24cm2C.45cm2D.51cm29.设n为正整数,且n<<n+1,则n的值为()A.5B.6C.7D.810.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形11.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()A.B.C.D.12.如图,在平行四边形ABCD中,AB=4,∠BAD的平分线与BC的延长线交于点E,与DC交于点F,且点F为边DC的中点,DG⊥AE,垂足为G,若DG=1,则AE的边长为()A.2B.4C.4D.8二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.计算:=.14.相邻两边长分别是2+与2﹣的平行四边形的周长是.15.等腰三角形的腰为13cm,底边长为10cm,则它的面积为.16.已知▱ABCD中,∠A+∠C=240°,则∠B的度数是.17.若菱形的两条对角线长分别是6和8,则此菱形的周长是,面积是.18.如图所示,平行四边形ABCD中,顶点A、B、D在坐标轴上,AD=5,AB=9,点A的坐标为(﹣3,0),则点C的坐标为.19.如图,在平行四边形ABCD中,DE平分∠ADC,AD=8,BE=4,则平行四边形ABCD的周长是.20.如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为.三、解答下列各题(本题有7个小题,共60分)21.计算:(1)4+﹣+4(2)(﹣2)2÷(+3﹣)22.(1)先化简,再求值:÷(﹣),其中x=+,y=﹣.(2)在数轴上画出表示的点.(要求画出作图痕迹)(3)如图,左边是由两个边长为2的小正方形组成,沿着图中虚线剪开,可以拼成右边的大正方形,求大正方形的边长.23.如图,平行四边形ABCD,点E,F分别在BC,AD上,且BE=DF,求证:四边形AECF是平行四边形.24.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.25.观察下列等式:①==;②==;③==…回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.26.如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.27.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.参考答案与试题解析一、选择题(本大题共12个小题;每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.要使式子有意义,则x的取值范围是()A.x≤﹣2B.x≤2C.x≥2D.x≥﹣2【考点】二次根式有意义的条件.【分析】根据二次根式的性质,被开方数大于或等于0,列不等式,即可求出x的取值范围.【解答】解:由题意得:2+x≥0,解得:x≥﹣2,故选D.【点评】本题考查了二次根式有意义的条件,难度不大,解答本题的关键是掌握二次根式的被开方数为非负数.2.下列二次根式中,最简二次根式是()A.B.C.D.【考点】最简二次根式.【分析】根据最简二次根式的概念进行判断即可.【解答】解:=a,A错误;=,B错误;=3,C错误;是最简二次根式,D正确,故选:D.【点评】本题考查的是最简二次根式的概念,最简二次根式的概念:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式.3.下列二次根式中,与之积为无理数的是()A.B.C.D.【考点】二次根式的乘除法.【分析】根据二次根式的乘法进行计算逐一判断即可.【解答】解:A、,不是无理数,错误;B、,是无理数,正确;C、,不是无理数,错误;D、,不是无理数,错误;故选B.【点评】此题考查二次根式的乘法,关键是根据法则进行计算,再利用无理数的定义判断.4.若(m﹣1)2+=0,则m+n的值是()A.﹣1B.0C.1D.2【考点】非负数的性质:算术平方根;非负数的性质:偶次方.【分析】根据非负数的性质列式求出m、n的值,然后代入代数式进行计算即可得解.【解答】解:由题意得,m﹣1=0,n+2=0,解得m=1,n=﹣2,所以,m+n=1+(﹣2)=﹣1.故选A.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.5.以下列长度为三角形边长,不能构成直角三角形的是()A.5,12,13B.4,5,6C.1,,D.7,24,25【考点】勾股定理的逆定理.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、52+122=132,故是直角三角形,故正确;B、42+52≠62,故不是直角三角形,故错误;C、12+()2=()2,故是直角三角形,故正确;D、72+242=252,故是直角三角形,故正确.故选B.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.6.如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2B.∠BAD=∠BCD C.AB=CD D.AC⊥BD【考点】平行四边形的性质.【分析】根据平行四边形的性质,平行四边形对边平行以及对边相等和对角相等分别判断得出即可.【解答】解:∵在平行四边形ABCD中,∴AB∥CD,∴∠1=∠2,(故A选项正确,不合题意);∵四边形ABCD是平行四边形,∴∠BAD=∠BCD,(故B选项正确,不合题意);AB=CD,(故C选项正确,不合题意);无法得出AC⊥BD,(故D选项错误,符合题意).故选:D.【点评】此题主要考查了平行四边形的性质,熟练掌握相关的性质是解题关键.7.如图,是由三个正方形组成的图形,则∠1+∠2+∠3等于()A.60°B.90°C.120°D.180°【考点】三角形内角和定理;正方形的性质.【分析】根据三角形内角和为180°,得到∠BAC+∠BCA+∠ABC=180°,又∠4=∠5=∠6=90°,根据平角为180°,即可解答.【解答】解:如图,∵图中是三个正方形,∴∠4=∠5=∠6=90°,∵△ABC的内角和为180°,∴∠BAC+∠BCA+∠ABC=180°,∵∠1+∠4+∠BAC=180°,∠2+∠6+∠ABC=180°,∠3+∠5+∠ACB=180°,∴∠1+∠4+∠BAC+∠2+∠6+∠ABC+∠3+∠5+∠ACB=540°,∴∠1+∠2+∠3=540°﹣(∠4+∠5+∠6+∠BAC+∠ABC+∠ACB)=540°﹣90°﹣90°﹣90°﹣180°=90°,故选:B.【点评】本题考查了三角形内角和定理,解决本题的关键是运用三角形内角和为180°,正方形的内角为90°以及平角为180°,即可解答.8.如图,在△ABC中,∠C=90°,AB=17cm,AC=8cm,若BE=3cm,则矩形CBEF 的面积是()A.9cm2B.24cm2C.45cm2D.51cm2【考点】勾股定理;矩形的性质.【专题】计算题.【分析】在直角三角形ABC中,由AB与AC的长,利用勾股定理求出BC的长,再由BE的长,求出矩形CBEF的面积即可.【解答】解:在Rt△ABC中,AB=17cm,AC=8cm,根据勾股定理得:BC==15cm,则矩形CBEF面积S=BC•BE=45cm2.故选C【点评】此题考查了勾股定理,以及矩形的性质,熟练掌握勾股定理是解本题的关键.9.设n为正整数,且n<<n+1,则n的值为()A.5B.6C.7D.8【考点】估算无理数的大小.【分析】首先得出<<,进而求出的取值范围,即可得出n的值.【解答】解:∵<<,∴8<<9,∵n<<n+1,∴n=8,故选;D.【点评】此题主要考查了估算无理数,得出<<是解题关键.10.三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形是()A.钝角三角形B.锐角三角形C.直角三角形D.等边三角形【考点】勾股定理的逆定理.【分析】对原式进行化简,发现三边的关系符合勾股定理的逆定理,从而可判定其形状.【解答】解:∵原式可化为a2+b2=c2,∴此三角形是直角三角形.故选:C.【点评】解答此题要用到勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.11.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD的面积的()【考点】矩形的性质.【分析】本题主要根据矩形的性质,得△EBO ≌△FDO ,再由△AOB 与△OBC 同底等高,△AOB 与△ABC 同底且△AOB 的高是△ABC 高的得出结论.【解答】解:∵四边形为矩形,∴OB=OD=OA=OC ,在△EBO 与△FDO 中,∵,∴△EBO ≌△FDO (ASA ),∴阴影部分的面积=S △AEO +S △EBO =S △AOB ,∵△AOB 与△ABC 同底且△AOB 的高是△ABC 高的,∴S △AOB =S △OBC =S 矩形ABCD .故选:B .【点评】本题考查矩形的性质,矩形具有平行四边形的性质,又具有自己的特性,要注意运用矩形具备而一般平行四边形不具备的性质.12.如图,在平行四边形ABCD 中,AB=4,∠BAD 的平分线与BC 的延长线交于点E ,与DC 交于点F ,且点F 为边DC 的中点,DG ⊥AE ,垂足为G ,若DG=1,则AE 的边长为()【考点】平行四边形的性质;等腰三角形的判定与性质;含30度角的直角三角形;勾股定理.【专题】计算题;压轴题.【分析】由AE为角平分线,得到一对角相等,再由ABCD为平行四边形,得到AD与BE 平行,利用两直线平行内错角相等得到一对角相等,等量代换及等角对等边得到AD=DF,由F为DC中点,AB=CD,求出AD与DF的长,得出三角形ADF为等腰三角形,根据三线合一得到G为AF中点,在直角三角形ADG中,由AD与DG的长,利用勾股定理求出AG的长,进而求出AF的长,再由三角形ADF与三角形ECF全等,得出AF=EF,即可求出AE的长.【解答】解:∵AE为∠DAB的平分线,∴∠DAE=∠BAE,∵DC∥AB,∴∠BAE=∠DFA,∴∠DAE=∠DFA,∴AD=FD,又F为DC的中点,∴DF=CF,∴AD=DF=DC=AB=2,在Rt△ADG中,根据勾股定理得:AG=,则AF=2AG=2,∵平行四边形ABCD,∴AD∥BC,∴∠DAF=∠E,∠ADF=∠ECF,在△ADF和△ECF中,,∴△ADF≌△ECF(AAS),∴AF=EF,则AE=2AF=4.故选:B【点评】此题考查了平行四边形的性质,全等三角形的判定与性质,勾股定理,等腰三角形的判定与性质,熟练掌握平行四边形的判定与性质是解本题的关键.二、填空题(本大题共8个小题;每小题3分,共24分.把答案写在题中横线上)13.计算:=6.【考点】二次根式的混合运算.【专题】计算题.【分析】先把化简,然后把括号内合并后进行二次根式的乘法运算即可.【解答】解:原式=(+2)×=3×=6.故答案为6.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.14.相邻两边长分别是2+与2﹣的平行四边形的周长是8.【考点】二次根式的应用.【分析】根据平行四边形的周长等于相邻两边的和的2倍进行计算即可.【解答】解:平行四边形的周长为:(2++2﹣)×2=8.故答案为:8.【点评】本题考查的是平行四边形的周长的计算和二次根式的加减,掌握平行四边形的周长公式和二次根式的加减运算法则是解题的关键.15.等腰三角形的腰为13cm,底边长为10cm,则它的面积为60cm2.【考点】勾股定理;等腰三角形的性质.【分析】根据题意画出图形,过点A作AD⊥BC于点D,根据BC=10cm可知BD=5cm.由勾股定理求出AD的长,再由三角形的面积公式即可得出结论.【解答】解:如图所示,过点A作AD⊥BC于点D,∵AB=AC=13cm,BC=10cm,∴BD=5cm,∴AD===12cm,∴S△ABC=BC•AD=×10×12=60(cm2).故答案为:60cm2.【点评】本题考查的是勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.16.已知▱ABCD中,∠A+∠C=240°,则∠B的度数是60°.【考点】平行四边形的性质.【分析】由平行四边形的性质得出∠A=∠C,∠A+∠B=180°,再由已知条件求出∠A,即可得出∠B.【解答】解:∵四边形ABCD是平行四边形,∴∠A=∠C,∠A+∠B=180°,∵∠A+∠C=240°,∴∠A=120°,∴∠B=60°;故答案为:60°.【点评】本题考查了平行四边形的性质;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.17.若菱形的两条对角线长分别是6和8,则此菱形的周长是20,面积是24.【考点】菱形的性质.【分析】首先根据题意画出图形,然后由菱形的两条对角线长分别是6和8,可求得OA=4,OB=3,再由勾股定理求得边长,继而求得此菱形的周长与面积.【解答】解:如图,菱形ABCD中,AC=8,BD=6,∴OA=AC=4,OB=BD=3,AC⊥BD,∴AB==5,∴此菱形的周长是:5×4=20,面积是:×6×8=24.故答案为:20,24.【点评】此题考查了菱形的性质以及勾股定理.注意菱形的面积等于对角线积的一半.18.如图所示,平行四边形ABCD中,顶点A、B、D在坐标轴上,AD=5,AB=9,点A的坐标为(﹣3,0),则点C的坐标为(9,4).【考点】平行四边形的性质;坐标与图形性质.【分析】由平行四边形的性质得出CD=AB=9,由勾股定理求出OD,即可得出点C的坐标.【解答】解:∵四边形ABCD是平行四边形,∴CD=AB=9,∵点A的坐标为(﹣3,0),∴OA=3,∴OD===4,∴点C的坐标为(9,4).故答案为:(9,4).【点评】本题考查了平行四边形的性质、坐标与图形性质、勾股定理;熟练掌握平行四边形的性质,由勾股定理求出OD是解决问题的关键.19.如图,在平行四边形ABCD中,DE平分∠ADC,AD=8,BE=4,则平行四边形ABCD的周长是24.【考点】平行四边形的性质.【分析】由在平行四边形ABCD中,DE平分∠ADC,易证得△CDE是等腰三角形,继而求得CD的长,则可求得答案.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,BC=AD=8,∴∠ADE=∠DEC,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠CDE=∠DEC,∴CD=CE=BC﹣BE=8﹣4=4,∴AB=CD=4,∴平行四边形ABCD的周长是:AD+BC+CD+AB=24.故答案为:24.【点评】此题考查了平行四边形的性质以及等腰三角形的判定与性质.注意证得△CDE是等腰三角形是关键.20.如图所示的一块地,已知AD=4米,CD=3米,∠ADC=90°,AB=13米,BC=12米,这块地的面积为24m2.【考点】勾股定理的应用.【分析】连接AC,利用勾股定理可以得出三角形ACD和ABC是直角三角形,△ABC的面积减去△ACD的面积就是所求的面积.【解答】解:如图,连接AC由勾股定理可知AC===5,又AC2+BC2=52+122=132=AB2故三角形ABC是直角三角形故所求面积=△ABC的面积﹣△ACD的面积==24(m2).【点评】考查了直角三角形面积公式以及勾股定理的应用.三、解答下列各题(本题有7个小题,共60分)21.计算:(1)4+﹣+4(2)(﹣2)2÷(+3﹣)【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算.【解答】解:(1)原式=4+3﹣2+4=7+2;(2)原式=4×12÷(5+﹣4)=48÷(2)=8.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.22.(1)先化简,再求值:÷(﹣),其中x=+,y=﹣.(2)在数轴上画出表示的点.(要求画出作图痕迹)(3)如图,左边是由两个边长为2的小正方形组成,沿着图中虚线剪开,可以拼成右边的大正方形,求大正方形的边长.【考点】图形的剪拼;实数与数轴;分式的化简求值;勾股定理.【分析】(1)首先将括号里面通分,进而利用分式的除法运算法则化简,进而将已知代入求出答案;(2)直接利用勾股定理结合数轴得出的位置;(3)直接利用勾股定理得出大正方形的边长即可.【解答】解:(1)原式=÷=×=,当x=+,y=﹣时,原式==;(2)因为30=25+5,则首先作出以5和为直角边的直角三角形,则其斜边的长即是.如图所示:;(3)如图所示:∵左边是由两个边长为2的小正方形组成,∴大正方形的边长为:=2.【点评】此题主要考查了分式的混合运算以及无理数的确定方法以及勾股定理、图形的剪拼,正确应用勾股定理是解题关键.23.如图,平行四边形ABCD,点E,F分别在BC,AD上,且BE=DF,求证:四边形AECF是平行四边形.【考点】平行四边形的判定与性质.【专题】证明题.【分析】根据平行四边形的性质得出AD∥BC,AD=BC,求出AF=CE,根据平行四边形的判定得出即可.【解答】证明:四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵DF=BE,∴AF=CE,∴四边形AECF是平行四边形.【点评】本题考查了平行四边形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键.24.如图,折叠矩形的一边AD,使点D落在BC边的点F处,已知AB=8cm,BC=10cm,求EC的长.【考点】翻折变换(折叠问题).【专题】计算题.【分析】根据矩形的性质得DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,再根据折叠的性质得AF=AD=10,DE=EF,在Rt△ABF中,利用勾股定理计算出BF=6,则FC=4,设EC=x,则DE=EF=8﹣x,在Rt△EFC中,根据勾股定理得x2+42=(8﹣x)2,然后解方程即可.【解答】解:∵四边形ABCD为矩形,∴DC=AB=8,AD=BC=10,∠B=∠D=∠C=90°,∵折叠矩形的一边AD,使点D落在BC边的点F处∴AF=AD=10,DE=EF,在Rt△ABF中,BF===6,∴FC=BC﹣BF=4,设EC=x,则DE=8﹣x,EF=8﹣x,在Rt△EFC中,∵EC2+FC2=EF2,∴x2+42=(8﹣x)2,解得x=3,∴EC的长为3cm.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.25.观察下列等式:①==;②==;③==…回答下列问题:(1)利用你观察到的规律,化简:(2)计算:+++…+.【考点】分母有理化.【专题】规律型.【分析】(1)根据观察,可发现规律;=,根据规律,可得答案;(2)根据二次根式的性质,分子分母都乘以分母两个数的差,可分母有理化.【解答】解:(1)原式==;(2)原式=+++…+=(﹣1).【点评】本题考查了分母有理化,分子分母都乘以分母两个数的差是分母有理化的关键.26.如图,在四边形ABCD中,AB=BC,对角线BD平分∠ABC,P是BD上一点,过点P作PM⊥AD,PN⊥CD,垂足分别为M,N.(1)求证:∠ADB=∠CDB;(2)若∠ADC=90°,求证:四边形MPND是正方形.【考点】正方形的判定;全等三角形的判定与性质.【专题】证明题.【分析】(1)根据角平分线的性质和全等三角形的判定方法证明△ABD≌△CBD,由全等三角形的性质即可得到:∠ADB=∠CDB;(2)若∠ADC=90°,由(1)中的条件可得四边形MPND是矩形,再根据两边相等的四边形是正方形即可证明四边形MPND是正方形.【解答】证明:(1)∵对角线BD平分∠ABC,∴∠ABD=∠CBD,在△ABD和△CBD中,,∴△ABD≌△CBD(SAS),∴∠ADB=∠CDB;(2)∵PM⊥AD,PN⊥CD,∴∠PMD=∠PND=90°,∵∠ADC=90°,∴四边形MPND是矩形,∵∠ADB=∠CDB,∴∠ADB=45°∴PM=MD,∴四边形MPND是正方形.【点评】本题考查了全等三角形的判定和性质、角平分线的性质、矩形的判定和性质以及正方形的判定,解题的关键是熟记各种几何图形的性质和判定.27.如图,△ABC中,AB=AC,AD是∠BAC的角平分线,点O为AB的中点,连接DO并延长到点E,使OE=OD,连接AE,BE.(1)求证:四边形AEBD是矩形;(2)当△ABC满足什么条件时,矩形AEBD是正方形,并说明理由.【考点】矩形的判定;正方形的判定.【专题】压轴题.【分析】(1)利用平行四边形的判定首先得出四边形AEBD是平行四边形,进而由等腰三角形的性质得出∠ADB=90°,即可得出答案;(2)利用等腰直角三角形的性质得出AD=BD=CD,进而利用正方形的判定得出即可.【解答】(1)证明:∵点O为AB的中点,连接DO并延长到点E,使OE=OD,∴四边形AEBD是平行四边形,∵AB=AC,AD是∠BAC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴平行四边形AEBD是矩形;(2)当∠BAC=90°时,理由:∵∠BAC=90°,AB=AC,AD是∠BAC的角平分线,∴AD=BD=CD,∵由(1)得四边形AEBD是矩形,∴矩形AEBD是正方形.【点评】此题主要考查了正方形的判定以及矩形的判定和等腰直角三角形的性质等知识,熟练掌握正方形和矩形的判定是解题关键.。

河南省新乡市河南师范大学附属中学2023-2024学年八年级下学期期中数学试题(解析版)

河南省新乡市河南师范大学附属中学2023-2024学年八年级下学期期中数学试题(解析版)

2023—2024学年第二学期八年级《数学》期中考试试卷一、选择题(共10小题,每小题3分)1.在实数范围内有意义,则x 的取值范围是( )A. B. C. D. 【答案】B【解析】【分析】根据二次根式的性质,被开方数大于或等于0.解:依题意有,即时,二次根式有意义.故选:B .【点睛】本题主要考查了二次根式的意义和性质,二次根式中的被开方数必须是非负数,否则二次根式无意义,掌握二次根式的意义与性质是解题的关键.2. 下列各组线段,能组成直角三角形的是()A. ,,B. ,,C. ,,D. ,,【答案】D【解析】【分析】根据勾股定理逆定理分别计算并判断.此题考查了勾股定理的逆定理的应用,正确掌握勾股定理逆定理判断直角三角形的方法是解题的关键.解:A 、∵,∴不能组成直角三角形;B 、∵,∴不能组成直角三角形;C 、∵,∴不能组成直角三角形;D 、,∴能组成直角三角形;故选:D .3. 若,则表示实数的点会落在数轴的( )3x ≠-3x ≥-3x ≥0x ≥30x +≥3x ≥-1a =2b =2c=2a =3b =5c =2a =4b =5c =3a =4b =5c =222122+≠222235+≠222245+≠222345+=a =aA. 段①上B. 段②上C. 段③上D. 段④上【答案】B【解析】【分析】此题主要考查了二次根式的化简,减法运算及估算,先化简二次根式,计算出a 的值,再估算出a 范围,再结合数轴即可得出结果.解:,即,,,,即,故实数的点会落在数轴的段②上,故选:B .4. 如图所示的是由两个直角三角形和三个正方形组成的图形,其中阴影部分的面积是()A. B. C. D. 【答案】A【解析】【分析】根据勾股定理计算出大正方形边长的平方,即大正方形的面积,再根据勾股定理可得两个小正方形的边长的平方和等于斜边的平方,即两个小正方形的面积和等于大正方形的面积,从而得出答案.由勾股定理得,大正方形边长的平方==25,即大正方形面积为25,∵两个小正方形的边长的平方和等于斜边的平方,∴两个小正方形的面积和为25,∴阴影部分的面积为:25+25=50.故选:A .【点睛】本题考查了勾股定理,熟练掌握勾股定理是解题关键.5. 如图,中,平分交于E ,若,则度数为( )a +=a =-∴a ==-=<<12∴<<12a <<a 50162541221312-ABCD Y BE ABC ∠AD 56C ∠=︒BED ∠A. B. C. D. 【答案】B【解析】【分析】此题主要考查了平行四边形的性质以及角平分线的定义,关键是掌握平行四边形对边互相平行.首先根据平行四边形的性质可得,,根据平行线的性质可得,,先计算出,然后再计算出的度数,可得答案.解∶四边形是平行四边形.,,,,平分,,,,,故选∶B .6. 如图,长方形的边在数轴上,若点A 与数轴上表示数的点重合,点D 与数轴上表示数的点重合,,以点A 为圆心,对角线的长为半径作弧与数轴负半轴交于一点E ,则点E 表示的数为()A. B. C. D. 1【答案】A【解析】【分析】本题考查勾股定理与无理数,实数与数轴.勾股定理求出的长,进而求出点E 表示的数即可.112︒118︒119︒120︒AD BC ∥AB CD 180ABC C ∠+∠=︒180EBC BED ∠+∠=︒62EBC ∠=︒BED ∠ ABCD ∴AD BC ∥AB CD ∴180ABC C ∠+∠=︒∴180********ABC C ∠=︒-∠=︒-︒=︒ BE ABC ∠∴124262EBC ∠=︒÷=︒ AD BC ∥∴180EBC BED ∠+∠=︒∴180********BED EBC ∠=︒-∠=︒-︒=︒ABCD AD 1-4-1AB =AC 1--1-AC解:由题意,得:,,,∴,∴点表示的数为;故选A .7. 如图,是中位线,点F 在上,且,若,,则()A. 4B. 3C. 2.5D. 1.5【答案】D【解析】【分析】本题主要考查三角形中位线定理,直角三角形斜边中线的性质,根据三角形中位线定理求出,根据直角三角形的性质求出,结合图形计算,得到答案.解:∵是的中位线,∴,在三角形中,是的中点,∴,∴故选:D.8. 如图,O 为菱形ABCD 的对角线的交点,DE ∥AC ,CE ∥BD ,若AC =6,BD =8,则线段OE 的长为( )A. 3B. C. 5 D. 6【答案】C【解析】【分析】先证明四边形OCED 是平行四边形,再根据菱形的对角线互相垂直求出∠COD =90°,则四边形的90ADC ∠=︒()143AD =---=1CD AB ==AE AC ===E 1--DE ABC DE 90AFB ∠=︒7AB =10BC =EF =DE DF DE ABC 152DE BC ==AFB D AB 1 3.52DF AB == 1.5EF DE DF =-=OCED 为矩形,根据菱形的对角线互相平分求出OC 、OD ,再根据勾股定理求出CD ,然后根据矩形的对角线相等求解即可.∵DE ∥AC ,CE ∥BD ,∴四边形OCED 是平行四边形,∵四边形ABCD 是菱形,∴∠COD =90°,∴四边形OCED 是矩形,又∵AC =6,BD =8,∴OC =3,OD =4,∴,在矩形OCED 中,OE =CD =5,故选:C .【点睛】本题考查了菱形的性质,矩形的判定和性质,勾股定理的应用,熟记矩形的判定方法和菱形的性质是解题的关键.9. 如图,中,,,,在上取一点(不与、点重合),连接,当的长度为整数值时,符合条件的值共有()A. 2个B. 3个C. 4个D. 5个【答案】C【解析】【分析】本题考查的是勾股定理的应用,化为最简二次根式,无理数的估算,如图,过作于,先求解,,从而可得答案.解:如图,过作于,∵,,,5CD ===ABC 90BAC ∠=︒2AC =6AB =BC M B C AM AM AM A AD BC ⊥D BC AD 6AM ≤<A AD BC ⊥D 90BAC ∠=︒2AC =6AB =∴∴,,而,∴的整数值为,,,,故选C10. 如图,线段上有一动点从右向左运动,和分别是以和为边的等边三角形,连接两个等边三角形的顶点,为线段的中点;、为线段上两点,且满足,当点从点运动到点时,设点到直线的距离为,点的运动时间为,则与之间函数关系的大致图象是( )A. B.C. D.【答案】D【解析】【分析】分别延长交于点,则可证得四边形为平行四边形,利用平行四边形的性质:对角线相互平分,可得为的中点,也是的中点,所以的运动轨迹是三角形的中位线,所以点到直线的距离为是一个定值, 问题得解.BC ===AD ==6AM ≤<925<<AM 2345AB P AEP △PFB △AP PB EF G EF C D AB AC BD =P D C G AB y P x y x AE BF ,H EPFH G EF PH G HCD G AB y如图, 分别延长交于点,,,,,∴四边形为平行四边形,∴与互相平分,∴为的中点,∵的中点为,∴从点运动到点时,始终为的中点,∴运动的轨迹是三角形的中位线,又∵,∴到直线的距离为一定值,∴与点移动的时间之间函数关系的大致图象是一平行于轴的射线,故选:D .【点睛】本题考查了动点问题的函数图象,利用到的是三角形的中位线定理:三角形的中位线平行且等于第三边的一半.对于此类问题来说是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.二、填空题(共5小题,每小题3分)11.同类二次根式,则_______.【答案】是,AE BF H 60A FPB ∠=∠=︒ AH PF ∴ 60B EPA ∠=∠=︒ BH PE ∴ EPFH EF HP G HP EF G P C D G PH G HCD MN MN CD G AB y P x x ()0x ≥x =4【解析】【分析】本题考查最简二次根式,化为最简二次根式后,它们的被开方数相同,列出方程求解是解题的关键.,∴,解得:,故答案为:.12. 如图,平行四边形的活动框架,当时,面积为,将从扭动到,则四边形面积为_______.【答案】【解析】【分析】本题主要考查了矩形的性质,含有角的直角三角形的性质,根据题意可得,,作,交于点,则,从而即可得到.添加适当的辅助线构造直角三角形是解题的关键.解:当时,面积为,,将从扭动到,,作,交于点,如图所示,,,=13x -=4x =490ABC ∠=︒S ABC ∠90︒30︒D A BC ''12S 30︒S AB BC =⋅30A BC '∠=︒A E BC '⊥BC E 1122A E A B AB ''==111222A BCD S AE BC AB BC AB BC S '''=⋅=⋅=⋅=四边形 90ABC ∠=︒S S AB BC ∴=⋅ ABC ∠90︒30︒30A BC '∴∠=︒A E BC '⊥BC E ∴1122A E AB AB ''==111222A BCD S AE BC A B BC AB BC S '''∴=⋅=⋅=⋅=四边形故答案为:.13. 如图,网格中每个小正方形的边长均为1,以A 为圆心,为半径画弧,交最上方的网格线于点N ,则的长是______.【答案】【解析】【分析】连接,则,中,利用勾股定理求出即可得出答案.解:如图,连接,由题意知:,在中,由勾股定理得:,∴,故答案为:【点睛】本题主要考查了勾股定理,求出的长是解题的关键.14. 如图1,一个正方体铁块放置在圆柱形水槽内,现以一定的速度往水槽中注水,时注满水槽,水槽内水面的高度与注水时间之间的函数图像如图2所示.如果将正方体铁块取出,又经过____秒恰好将水槽注满.在12S AB MN 4AN 4AN AB ==Rt ACN △CN AN 4AN AB ==Rt ACN △CN ==4MN CM CN =-=-4CN 28s ()y cm ()x s【答案】4【解析】【分析】根据函数图像可得正方体的棱长为10cm ,同时可得水面上升从10cm 到20cm,所用的时间为16秒,结合前12秒由于立方体的存在,导致水面上升速度加快了4秒可得答案.解:由题意可得:12秒时,水槽内水面的高度为10cm,12秒后水槽内水面高度变化趋势改变,正方体的棱长为10cm ;没有立方体时,水面上升从10cm 到20cm,所用的时间为:28-12=16秒前12秒由于立方体的存在,导致水面上升速度加快了4秒将正方体铁块取出, 又经过4秒恰好将此水槽注满.故答案:4【点睛】本题主要考查一次函数的图像及应用,根据函数图像读懂信息是解题的关键.15. 在矩形中,,,若是射线上一个动点,连接,点关于直线的对称点为.连接,,当,,三点共线时,的长为______.【答案】1或9【解析】【分析】本题考查了矩形的性质,折叠的性质,勾股定理,分情况讨论,当点在线段上时,当点在的延长线时,根据折叠的性质和勾股定理即可得到结论.解:当点线段上时,如图,与关于直线对称,∴ ∴ABCD 3AB =5BC =P AD BP A BP M MP MC P M C AP P AD P AD P AD ABP MBP BP,,,,,,,设,,,,解得,;当点在的延长线时,如图,与关于直线对称,,,,,,,,,,,,,,综上所述,的长为1或9,故答案为:1或9.90BMP A ∴∠=∠=︒3BM AB ==AP PM =90BMC ∴∠=︒222BM CM BC += 22235CM ∴+=4CM ∴=AP PM x ==90D ∠=︒ 222DP CD CP ∴+=222(5)3(4)x x ∴-+=+1x =1AP ∴=P AD ABP MBP BP 90BMP A ∴∠=∠=︒3BM AB ==AP PM =APB MPB ∠=∠AP BC ∥APB CBP ∴∠=∠CPB CBP ∴∠=∠5CP BC ∴==90BMC ∠=︒ 222BM CM BC ∴+=22235CM ∴+=4CM ∴=549AP PM ∴==+=AP三、解答题(共8小题,共75分)16. 计算(1.(2).【答案】(1)(2)【解析】【分析】本题主要考查二次根式的混合运算,熟练掌握运算法则是解题关键.(1)先运算二次根式的乘除,然后合并解题;(2)先提取公因式,然后运算乘法解题即可.【小问1】【小问2】解:17. 某小区在社区管理人员及社区居民的共同努力之下,在临街的拐角建造了一块绿化地(阴影部分).如图,已知,,,.技术人员通过测量确定了.2++36-3=-+3=-2-+=+-⨯=6=-9m AB =12m BC =17m CD =8m AD =90ABC ∠=︒(1)小区内部分居民每天必须从点A 经过点B 再到点C 位置,为了方便居民出入,技术人员打算在绿地中开辟一条从点A 直通点C 的小路,请问如果方案落实施工完成,居民从点A 到点C 将少走多少路程?(2)这片绿地的面积是多少?【答案】(1)(2)【解析】【分析】(1)连接,利用勾股定理求出,问题随之得解;(2)先利用勾股定理逆定理证明是直角三角形,,再根据三角形的面积公式即可求解.【小问1】如图,连接,∵,,,∴,∴,答:居民从点A 到点C 将少走路程.【小问2】∵,.,∴,∴是直角三角形,,∴,,∴,答:这片绿地的面积是.【点睛】本题主要考查了勾股定理及其逆定理,掌握勾股定理及其逆定理是解答本题的关键.18. 已知:如图,在中,点,分别在,上,且平分.若,连结.求证:四边形是菱形.6m2114mAC ()15m AC ===ADC △90DAC ∠=︒AC 90ABC ∠=︒9m AB =12m BC=()15m AC ===912156m AB BC AC +-=+-=()6m 17m CD =8m AD =15m AC =222AD AC DC +=ADC △90DAC ∠=︒2112281560m DAC S AD AC ⋅=⨯⨯== ()21191254m 22ACB S AB BC =⋅=⨯⨯= ()26054114m ABCD S =+=四边形()2114m ABCD Y E F AD BC BE ABC ∠DE CF =EF ABFE【答案】见解析【解析】【分析】本题考查了菱形的判定,平行四边形的判定和性质.先证明四边形平行四边形,再利用等角对等边证明,即可证明四边形是菱形.证明:∵四边形平行四边形,∴,,又,,四边形平行四边形,平分,∴,∵,,,,∴四边形是菱形.19. 如图,点A 在的边上,于于于C .(1)求证:四边形是矩形;(2)若,求的长.【答案】(1)见(2)5【解析】【分析】此题考查了矩形的判定与性质以及勾股定理.注意利用勾股定理求线段的长是关键.ABFE AB AE =ABFE ABCD AD BC ∥AD BC =DE CF = AE BF ∴=∴ABFE BE ABC ∠ABE FBE ∠=∠AD BC ∥AEB EBF ∴∠=∠ABE AEB ∴∠=∠AB AE =∴ABFE MON ∠ON AB OM ⊥,,B AE OB DE ON =⊥,,E AD AO DC OM =⊥ABCD 3,9DE OE ==AD AD(1)根据全等三角形的判定和性质以及矩形的判定解答即可;(2)根据全等三角形的性质和勾股定理解答即可.【小问1】证明:于,于,.在与中,∴,..又,,.四边形是平行四边形,,四边形是矩形;【小问2】解:由(1)知,,设,则,.在中,由得:,解得..20. 如图,在Rt △ABC 中,∠BAC=90°,E ,F 分别是BC ,AC 的中点,延长BA 到点D ,使2AD=AB ,连接DE ,DF .(1)求证:四边形ADFE 平行四边形;(2)求证:∠DFA=∠C为⊥ AB OM B DE ON ⊥E 90∴∠=∠=︒ABO DEA Rt ABO △Rt DEA V AO AD OB AE=⎧⎨=⎩()Rt Rt HL ABO DEA ≌∴∠=∠AOB DAE AD BC ∴∥⊥ AB OM DC OM ⊥AB DC ∴ ∴ABCD 90ABC ∠=︒ ∴ABCD Rt Rt ABO DEA ≌3AB DE ∴==AD x =OA x =9AE OE OA x =-=-Rt DEA V 222AE DE AD +=222(9)3x x -+=5x =5AD ∴=【答案】(1)见解析;(2)见解析【解析】【分析】(1)根据点,分别为,的中点,可得,,根据 ,则有,可证四边形的平行四边形,(2)在中,根据为的中点,得,则有,再根据四边形是平行四边形 ,可得,即有.解(1)证明:点,分别为,的中点,,,四边形的平行四边形,(2)在中,为的中点,,四边形是平行四边形【点睛】本题考查了平行四边形的判定和性质,直角三角形的性质,三角形的中位线定理,熟练掌握平行四边形的判定和性质定理是解题的关键.21. 一张矩形纸ABCD ,将点B 翻折到对角线AC 上的点M 处,折痕CE 交AB 于点E .将点D 翻折到对角线AC 上的点H 处,折痕AF 交DC 于点F ,折叠出四边形AECF.E F BC AC //EF AD 2AB EF =2AB AD =EF AD =AEFD Rt ABC ∆E BC AE EC =EAF C ∠=∠AEFD DFA EAF ∠=∠DFA C Ð=Ð E F BC AC ∴//EF AD 2AB EF = 2AB AD=∴EF AD= //EF AD ∴AEFD Rt ABC ∆ E BC ∴12AE BC EC ==∴EAF C∠=∠ AEFD ∴//AE DF∴DFA EAF∠=∠∴DFA CÐ=Ð(1)求证:AF CE ;(2)当∠BAC = 度时,四边形AECF 是菱形?说明理由.【答案】(1)见解析;(2)30,理由见解析.【解析】【分析】(1)证出∠HAF =∠MCE ,即可得出AF CE ;(2)证出四边形AECF 是平行四边形,再证出AF =CF ,即可得出四边形AECF 是菱形.(1)证明:∵四边形ABCD 为矩形,∴AD BC ,∴∠DAC =∠BCA ,由翻折知,∠DAF =∠HAF=∠DAC ,∠BCE =∠MCE =∠BCA ,∴∠HAF =∠MCE ,∴AF CE ;(2)解:当∠BAC =30°时四边形AECF 为菱形,理由如下:∵四边形ABCD 是矩形,∴∠D =∠BAD =90°,AB CD ,由(1)得:AF CE ,∴四边形AECF 是平行四边形,∵∠BAC =30°,∴∠DAC =60°.∴∠ACD =30°,由折叠的性质得∠DAF =∠HAF =30°,∴∠HAF =∠ACD ,∴AF =CF ,∴四边形AECF 是菱形;故答案为:30.【点睛】本题考查矩形的性质、平行线的判定、平行四边形的判定与性质、菱形的判定等知识,是重要考//////1212//////点,难度较易,掌握相关知识是解题关键.22. 在中,,且.(1)当是锐角三角形时,小明猜想:.以下是他的证明过程:小明的证明过程如图①,过点作,垂足为.设.∵在中,,在中,①,∴①.化简得,.②.其中,①是______;②是______.(2)如图②,当是钝角三角形时,猜想与之间的关系并证明.【答案】(1),(2);证明见【解析】ABC ,,BC a AC b AB c ===c b a ≥≥ABC 222a b c +>A AD CB ⊥D CD x =Rt ADC 222AD b x =-Rt ADB 2AD =22b x -=2222a b c ax +-=0,0,a x >>∴ 0>2220.a b c ∴+->222.a b c ∴+>ABC 22a b +2c 22()c a x --2ax222a b c +<【分析】本题考查了勾股定理,熟练掌握勾股定理,正确添加辅助线是解题的关键.(1)在中根据勾股定理即可表示出,从而得出,然后进行判断即可;(2)过点作的延长线,垂足为,设,在和中分别根据勾股定理表示出,然后仿照(1)中的方法判断即可.【小问1】解:如图①,过点作,垂足为,设,在中,,在中,,,化简得,,,,,,.其中,①是;②是;故答案为:,;【小问2】;证明:如图,过点作的延长线,垂足为,设,在中,,在中,,Rt ADB 2AD 2222()b x c a x -=--A AD BC ⊥D CD x =Rt ADC Rt ADB 2AD A AD CB ⊥D CD x = Rt ADC 222AD b x =-Rt ADB 222()AD c a x =--2222()b x c a x ∴-=--2222a b c ax +-=0a > 0x >20ax ∴>2220a b c ∴+->222a b c ∴+>22()c a x --2ax 22()c a x --2ax 222a b c +<A AD BC ⊥D CD x = Rt ADC 222AD b x =-Rt ADB 222()AD c a x =-+,化简得,,,,,,.23. 如图,在正方形中,点在边上运动,连接,将绕点顺时针旋转得到.(1)如图1,作,垂足为,求证:;(2)如图2,点恰好落在边上,求的值;(3)若,,连接,求的面积.【答案】(1)见解析(2)(3)【解析】【分析】(1)由旋转的性质可知,,进而可得,证明,进而可证;(2)如图1,作于,由(1)可知,,则,证明,则,由,可得,由勾股定理得,,然后求解作答即可;(3)由勾股定理得,,2,作于2222()b x c a x ∴-=-+2222a b c ax +-=-0a > 0x >20ax ∴-<2220a b c ∴+-<222a b c ∴+<ABCD E CB AE AE A 45︒AF FM AC ⊥M AM AB =F CD CF DF4AB =5AE =CF ACF △CF DF=45AF AE EAF =∠=︒,MAF BAE ∠=∠()AAS AMF ABE ≌AM AB =FM AC ⊥M ()AAS AMF ABE ≌FM BE =()Rt Rt HL ADF ABE ≌DF BE FM ==45MFC MCF ∠=︒=∠CM FM DF ==CF ===3BE ==AC ==FM AC ⊥,连接,由(2)知,,根据,计算求解即可.【小问1】证明:∵正方形,∴,,由旋转的性质可知,,∴,即,∵,,,∴,∴;小问2】解:∵正方形,∴,如图1,作于,图1由(1)可知,,∴,∵,∴,∴,∵,∴,∴,由勾股定理得,,M CF 3FM BE ==12ACF S AC FM =⨯△ABCD 45BAC ∠=︒90B Ð=°45AF AE EAF =∠=︒,EAF EAC BAC EAC ∠-∠=∠-∠MAF BAE ∠=∠MAF BAE ∠=∠90AMF B ∠=︒=∠AF AE =()AAS AMF ABE ≌AM AB =ABCD 9045AD AB D B ACD =∠=∠=︒∠=︒,,FM AC ⊥M ()AAS AMF ABE ≌FM BE =AF AE AD AB ==,()Rt Rt HL ADF ABE ≌DF BE FM ==45ACD ∠=︒45MFC MCF ∠=︒=∠CM FM DF ==CF ===∴;【小问3】解:由勾股定理得,,如图2,作于,连接,图2由(2)知,,∴∴的面积为【点睛】本题考查了正方形的性质,旋转的性质,全等三角形的判定与性质,等腰三角形的判定与性质,勾股定理等知识.熟练掌握正方形的性质,旋转的性质,全等三角形的判定与性质,等腰三角形的判定与性质,勾股定理是解题的关键.CF DF=3BE ==AC ==FM AC ⊥M CF 3FM BE ==11322ACF S AC FM =⨯=⨯=△ACF △。

天津市河东区2023-2024学年八年级下学期期中数学试题(解析版)

天津市河东区2023-2024学年八年级下学期期中数学试题(解析版)

2023-2024学年度第二学期八年级数学期中考试试卷一、选择题:本题共12小题,每小题3分,共36分.1. 下列各式一定是二次根式的是( )A. B. C. D. 【答案】B【解析】【分析】本题考查了二次根式的定义,关键是正确理解二次根式的定义.根据“一般地,我们把形如的式子叫做二次根式”判断即可.详解】解:A 、当无意义,故此选项不合题意;B是二次根式,故此选项符合题意;C 、,该代数式无意义,故此选项不合题意;D的根指数是3,不是二次根式,故此选项不合题意;故选:B.2. 下列二次根式中,是最简二次根式的是( )A. B.C. D. 【答案】D【解析】【分析】根据最简二次根式的定义判断即可.【详解】解:不是最简二次根式,不符合题意;不是最简二次根式,不符合题意;D.故选:D .【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不能含有开得尽方的因数或因式;熟练掌握最简二次根式必须满足的两个条件是解题的关键.3. 下列各数属于勾股数的是( )A. 、、B. 、、C. 、、D. ,,【)0a ≥0x <70-<2===1.52 2.568103465a 12a 13a【答案】B【解析】【分析】本题考查的是勾股数.根据勾股定理一一计算两个较小的数的平方和是否等于最大数的平方即可.【详解】解: A .因为不是整数,所以不是勾股数,故本选项不符合题意.B .,是勾股数,故本选项符合题意.C .,不是勾股数,故本选项不符合题意.D .因为不一定是整数,所以不一定是勾股数,故本选项不符合题意.故选:B .4. 如图,字母B 所代表的正方形的面积是( )A. 12B. 15C. 144D. 306【答案】C【解析】【分析】根据勾股定理求出字母B 所代表的正方形的边长,根据正方形的性质即可求出面积答案.【详解】解:如图,在中,由勾股定理得,,字母代表的正方形的边长为,字母B 所代表的正方形的面积为:.故选C .【点睛】本题考查的是勾股定理的应用、正方形的面积,熟知如果直角三角形的两条直角边长分别是和,斜边长为,那么是解决问题的关键.2226810+=222546+≠2cm 2cm 2cm 2cm Rt DEF△12EF cm ===∴B 12cm ∴22212144cm EF ==a b c 222+=a b c5. 在平行四边形中,,则( )A. B. C. D. 【答案】D【解析】【分析】本题主要考查了平行四边形的性质,根据平行四边形对边平行得到,再根据已知条件求出的度数即可得到答案.【详解】解;∵四边形是平行四边形,∴,∴,∵,∴,∴,故选:D .6. 如图,在四边形中,对角线、相交于点,下列条件不能判定四边形为平行四边形的是( )A. B. C. D. 【答案】B【解析】【分析】根据平行四边形的判定定理逐项分析判断即可求解.【详解】A、根据两组对边分别平行的四边形是平行四边形,可以判定,不符合题意;ABCD 23A B ∠∠=::D ∠=36︒60︒72︒108︒180A D A B +=+=︒∠∠∠∠A ∠ABCD AB CD AD BC ∥,∥180A D A B +=+=︒∠∠∠∠23A B ∠∠=::21807232A =︒⨯=︒+∠108D ∠=︒ABCD AC BD O ABCD ,AB CD AD BC∥∥,AD BC AB CD =∥,OA OC OB OD==,AB CD AD BC==B 、无法判定,四边形可能是等腰梯形,也可能是平行四边形,符合题意;C 、根据对角线互相平分的四边形是平行四边形,可以判定,不符合题意;D 、根据两组对边分别相等的四边形是平行四边形,可以判定,不符合题意;故选:B .【点睛】本题考查了平行四边形的判定,熟练掌握平行四边形的判定定理是解题的关键.7. 下列计算结果正确的是( )A. B. C. D. 【答案】B【解析】【分析】根据算术平方根的定义对A 进行判断;根据二次根式的乘法法则对B 、C 、D 进行判断.【详解】解:A,故错误;BC,故错误;D 、,故错误;故选:B .【点睛】本题考查了二次根式的乘法运算及算术平方根的定义,正确运用二次根式的乘法法则及识别平方根与算术平方根的区别是解题的关键.8. 如图,一棵大树在一次强台风中在距地面处折断,倒下后树顶着地点A 距树底B 的距离为,则这棵大树在折断前的高度为( )A. 10B. 17C. 18D. 20【答案】C【解析】【分析】根据大树的折断部分与未断部分、地面恰好构成直角三角形,再根据勾股定理求出AC 的长,进而可得出结论.【详解】解:∵树的折断部分与未断部分、地面恰好构成直角三角形,且BC =5m ,AB =12m ,5=±=16=26=5==4==212=5m 12m∴,∴这棵树原来的高度为:BC +AC =5+13=18(m ),即:这棵大树在折断前的高度为18m ,故C 正确.故选:C .【点睛】本题考查了勾股定理的应用,熟知直角三角形斜边的平方等于两直角边的平方和是解答此题的关键.9. 已知实数a 、b 在数轴上的位置如图所示,化简|a +bA. B. 2a C. 2b D. 【答案】A【解析】=|a|,再结合绝对值的性质去绝对值符号,再合并同类项即可.【详解】解:由数轴知b <0<a ,且|a|<|b|,则a+b <0,b-a <0,∴原式=-(a+b )+(b-a )=-a-b+b-a=-2a ,故选A .【点睛】此题主要考查了二次根式=|a|.10. 如图,矩形的对角线,相交于点,若,则四边形的周长为( )的()13m AC ===2a-2b-ABCD AC BD O ,CE BD DE AC ∥∥4AC =OCEDA. B. C. D. 【答案】C【解析】【分析】本题考查了菱形的判定和性质,矩形的性质.根据矩形的性质,判定四边形是菱形,故其周长为计算即可.【详解】因为,所以四边形是平行四边形.因为四边形是矩形,所以,所以四边形是菱形,所以周长为,故选:C .11. 如图,点E ,F ,G ,H 分别是四边形边,,,的中点.则下列说法:①若,则四边形为矩形;②若,则四边形菱形;③若四边形是平行四边形,则与互相平分;④若四边形是正方形,则与互相垂直且相等.其中正确的个数是( )A. 1B. 2C. 3D. 4【答案】A 为46810OCED 42OC AC =,CE BD DE AC ∥∥OCED ABCD OD CO =OCED 428OC AC ==ABCD AB BC CD DA AC BD =EFGH AC BD ⊥EFGH EFGH AC BD EFGH AC BD【解析】【分析】本题考查了三角形中位线定理,平行四边形的判定及性质,特殊四边形的判定及性质;由三角形中位线定理及平行四边形的判定方法得四边形是平行四边形,再根据特殊四边形的判定及性质逐一判断即可求解;掌握特殊四边形的判定方法及性质是解题的关键.【详解】解:点E ,F ,G ,H 分别是四边形边,,,的中点,,,,,四边形是平行四边形,①若,则四边形为菱形;结论错误,不符合题意;②若,则四边形为矩形;结论错误,不符合题意;③若四边形是平行四边形,则与不一定互相平分;结论错误,不符合题意;④若四边形是正方形,则与互相垂直且相等;结论正确,符合题意.故选:A .12. 如图,菱形,点、、、均在坐标轴上,,点,点是的中点,点是上的一动点,则的最小值是( )A. 3B. 5C.D. 【答案】A【解析】【分析】直线AC 上的动点P 到E 、D 两定点距离之和最小属“将军饮马”模型,由D 关于直线AC 的对称点B ,连接BE ,则线段BE 的长即是PD +PE 的最小值.【详解】如图:连接BE,EFGH ABCD AB BC CD DA EH BD FG ∴∥∥EF AC GH ∥∥12EH FG BD ==12EF GH AC ==∴EFGH AC BD =EFGH AC BD ⊥EFGH EFGH AC BD EFGH AC BD ABCD A B C D 120ABC ∠=︒()30A -,E CD P OC PD PE+,∵菱形ABCD ,∴B 、D 关于直线AC 对称,∵直线AC 上的动点P 到E 、D 两定点距离之和最小∴根据“将军饮马”模型可知BE 长度即是PD +PE 的最小值.,∵菱形ABCD ,,点,∴,,∴∴△CDB 是等边三角形∴∵点是的中点,∴且BE ⊥CD , ∴故选:A .【点睛】本题考查菱形性质及动点问题,解题关键是构造直角三角形用勾股定理求线段长.二、填空题:本题共6小题,每小题3分,共18分.13.有意义,则x 的取值范围为____________.【答案】x ≥8【解析】【分析】根据被开方数大于等于0列式计算即可得解.∴x ﹣8≥0,的120ABC ∠=︒()30A -,60,30CDB DAO ∠=︒∠=︒3OA =OD AD DC CB ====BD =E CD 12DE CD ==3BE ==解得:x≥8故答案为x≥8【点睛】此题主要考查了二次根式有意义的条件,正确把握二次根式的被开方数为非负数的性质是解题关键.14. 已知|a=0,则a +b =___.【答案】3【解析】【分析】根据非负性即可求出a ,b ,故可求解.【详解】根据题意得:a +2=0,b ﹣5=0,解得:a =﹣2,b =5,∴a +b =﹣2+5=3.故答案为:3.【点睛】此题主要考查代数式求值,解题的关键是熟知绝对值与二次根式的非负性.15. 菱形的两条对角线的长分别为6和8,则这个菱形的周长为_____.【答案】20【解析】【分析】根据菱形的对角线互相垂直平分的性质,利用对角线的一半,根据勾股定理求出菱形的边长,再根据菱形的四条边相等求出周长即可.【详解】解:如图,根据题意得AO=×8=4,BO=×6=3,∵四边形ABCD 是菱形,∴AB=BC=CD=DA ,AC ⊥BD .∴△AOB 是直角三角形.∴.∴此菱形的周长为:5×4=20故答案为:20.16. 如图,正方形ODB C 中,OC =1,OA =OB ,则数轴上点A 表示的数是____.12125AB ===【答案】【解析】,结合数轴即可求解.【详解】∵正方形ODBC 中,OC =1,∴BC =OC =1,∠BCO =90°.∵在Rt△BOC 中,根据勾股定理得,OB .∴OA =OB .∵点A 在数轴上原点的左边,∴点A 表示的数是.【点睛】本题考查了实数与数轴,勾股定理,数形结合是解题关键.17. 如图,点O 是矩形的对角线的中点,点E 是的中点,连接,.若,,则矩形的面积为_______【答案】【解析】【分析】利用直角三角形斜边上中线等于斜边的一半得到,利用中位线定理得到,利用勾股定理得到,即求得矩形的面积.【详解】解:∵四边形是矩形,∴,∵点O 是矩形的对角线的中点,的=ABCD BD BC OA OE 2OA =1OE =ABCD 4BD =22CD OE ==BC =ABCD ABCD 90,BAD BCD ∠=∠=︒AB CD =ABCD BD∴,∴,∵点E 是的中点,∴是的中位线,∴∵,∴,∴,∴矩形的面积为故答案为:【点睛】此题考查了矩形的性质、直角三角形的性质、勾股定理、三角形中位线定理等知识,熟练掌握直角三角形的性质和三角形中位线定理是解题的关键.18. 如图,矩形,,,点在轴正半轴上,点在轴正半轴上.当点在轴上运动时,点也随之在轴上运动,在这个运动过程中,点到原点的最大距离为 __.##【解析】【分析】取 的中点 ,连接, ,由勾股定理可求 的长,由直角三角形的性质可求 的长,由三角形的三边可求解.【详解】如图,取的中点,连接,,122AO BD ==4BD =BC OE BCD △12OE CD =1OE =22CD OE ==BC ===ABCD 2BC CD ⋅==ABCD 1AB =2BC =A x D y A x D y C O 1+1AD H CH OH CH OH AD H CH OH矩形,,,,,点是的中点,,,点是的中点,,在中,,当点在上时,,的最大值为,.【点睛】本题考查了矩形的性质,直角三角形的性质,三角形的三边形关系,勾股定理等知识,添加恰当辅助线构造三角形是解题的关键.三、计算题:本大题共1小题,共6分.19. 计算:(1;(2)【答案】(1)(2)【解析】【分析】(1)先化简二次根式,然后计算加减法.(2)先去利用完全平方公式和平方差公式去括号,然后计算加减法.ABCD1AB=2BC=1CD AB∴==2AD BC==H AD1AH DH∴==CH∴===90AOD∠=︒H AD112OH AD∴==OCH∆CO OH CH<+H OC CO OH CH=+CO∴1OH CH+=+123-+))2233-++5-【小问1详解】;【小问2详解】解:.【点睛】本题主要考查了二次根式的加减计算,二次根式的混合计算,乘法公式,正确计算是解题的关键.四、解答题:本题共5小题,共40分.解答应写出文字说明,证明过程或演算步骤.20. 某开发区有一空地,如图所示,现计划在空地上种草皮,经测量,,,,,,求(1)此四边形空地的面积.(2)若每种植平方米草皮需要元,问总共需要投入多少元?【答案】(1)36平方米(2)3600元【解析】【分析】本题考查了勾股定理,勾股定理逆定理:(1)如图,连接,由勾股定理得,,由,可得是直角三角形,且,根据,求面积即可;23-+(33=--+33=-++=))2233++5459=-++-5=-ABCD 90B Ð=°3m AB =4m BC =12m AD =13m CD =1100AC 5AC =22222251216913AC AD CD +=+===ACD 90CAD ∠=︒ABC ACD ABCD S S S =+四边形△△(2)根据,计算求解即可.【小问1详解】解:如图,连接,∵,,,∴由勾股定理得,,∵,,∴,∴是直角三角形,且,∴.【小问2详解】解:由(1)得共需要投入元,答:共需要投入元.21. 如图,在平行四边形中,对角线,交于点,过点任作直线分别交、于点、.(1)求证:;(2)若,,,求四边形的周长.【答案】(1)见解析(2)15【解析】【分析】此题考查了平行四边形的性质以及全等三角形的判定与性质.(1)根据平行四边形的性质得出,求出,根据推出,即可得出答案;100ABCD S ⨯四边形AC 90B Ð=°3m AB =4m BC=5m AC ==12m AD =13m CD =22222251216913AC AD CD +=+===ACD 90CAD ∠=︒()211113451236m 2222ABC ACD ABCD S S S AB BC AC AD =+=⨯⨯+⨯⨯=⨯⨯+⨯⨯= 四边形361003600⨯=3600ABCD AC BD O O AB CD E F OE OF =6CD =5AD =2OE =AEFD ,AB CD OA OC =∥EAO FCO ∠=∠ASA AEO CFO △△≌(2)由,可得,继而求得答案.【小问1详解】证明:四边形是平行四边形,,,,在和中,,,;【小问2详解】解:,∴,四边形的周长.22. 如图,矩形中,,,是边上一点,将沿直线折叠,点的对应点恰好落在边上,求的长.【答案】3【解析】【分析】本题主要考查了矩形与折叠问题,勾股定理与折叠问题,先由矩形的性质和折叠的性质得到,,,,再利用勾股定理求出,则,设,则,在中,由勾股定理得,解方程即可得到答案.【详解】解:四边形是矩形,将沿直线折叠,点的对应点恰好落在边上AEO CFO △△≌24,6EF OE DF AF AB ==+== ABCD AB CD ∴ OA OC =EAO FCO ∴∠=∠AEO △CFO △OAE OCF OA OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩()ASA AEO CFO ∴ ≌OE OF ∴=OAE OCF △≌△AE CF=24,6EF OE DF AE DF FC CD ∴==+=+==∴AEFD 56415AD DF AE EF =+++=++=ABCD 8AB =10AD =E AB BCE CE B F AD AE 8AB CD ==10BC AD FC ===90D A ∠=∠=︒BE EF =6DF =4AF =AE x =8BE FE x ==-Rt AEF ()22248x x +=- ABCD BCE CE B F AD,,,,,,设,则,在中,由勾股定理得∴,解得,.23. 在中,,C 是的中点,过点D 作,且,连接交于F .(1)求证:四边形是菱形;(2)若,菱形的面积为40,求的长.【答案】(1)见解析;(2)10.【解析】【分析】(1)根据直角三角形斜边上的中线等于斜边的一半,得到,证明即可.(2)根据,计算即可.【小问1详解】证明:,且,∴四边形是平行四边形,∵,C 是的中点,∴,∴平行四边形是菱形.【小问2详解】解:∵四边形是菱形,8AB CD ∴==10BC AD FC ===90D A ∠=∠=︒BE EF=6DF ∴===1064AF ∴=-=AE x =8BE FE x ==-Rt AEF 222AE AF EF +=()22248x x +=-3x =3AE ∴=Rt BDE △90BDE ∠=︒BE AD BE AD BC =AE CD ABCD 8DB =ABCD DE DC BC =12BDE ABCD S S BD DE ==菱形AD BE AD BC =ABCD 90BDE ∠=︒BE DC CB CE ==ABCD ABCD∴,在和中,∵,∴,∴,∵,∴,∴,∴,∴,∴.【点睛】本题考查了平行四边形的判定,菱形的判定,直角三角形的性质,三角形全等的判定和性质,熟练掌握菱形的判定,直角三角形的性质是解题的关键.24. 如图,在矩形中,,,点从点出发向点运动,运动到点停止,同时,点从点出发向点运动,运动到点停止,点,的速度都是每秒个单位长度,连接,,设点,运动的时间为秒.(1)当为何值时,四边形是矩形?(2)当时,判断四边形的形状,并说明理由.(3)整个运动当中,线段扫过的面积是多少?【答案】(1)8(2)四边形为菱形,理由见解析(3)64AB BC CD DA ===ABD △CDB △AB CD AD CB BD DB =⎧⎪=⎨⎪=⎩()SSS ABD CDB ≌ABD CBD S S = BC CE =CDE CBD S S = ABD CBD CDE S S S == 12BDE ABCD S S BD DE == 菱形18402DE ⨯⨯=10DE =ABCD 8AB =16BC =P D A A Q B C C P Q 1PQ AQ .CP P Q t t ABQP 6t =AQCP PQ AQCP【解析】【分析】本题主要考查了矩形的性质与判定,勾股定理,菱形的判定:(1)先由矩形的性质得到,,根据题意可得,则,再由当时,四边形为矩形,得到,据此可得答案;(2)当时,,,再证明四边形是平行四边形,利用勾股定理推出,据此可得结论;(3)连接,,与相交于点,则整个运动当中,线段扫过的面积是的面积的面积,即为矩形的面积的一半,据此求解即可.【小问1详解】解:在矩形中,,,,.由已知可得,∴,在矩形中,,,∴当时,四边形为矩形,∴,解得,当时,四边形是矩形.【小问2详解】解:四边形为菱形,理由如下:当时,,,∵四边形是矩形,∴,∴四边形是平行四边形,在中,由勾股定理得,∴,16BC AD ==8AB CD ==BQ DP t ==16AP CQ t ==-BQ AP =ABQP 16t t =-6t =6BQ DP ==10AP CQ ==APCQ AP AQ =AC BD AC BD E PQ AED △BEC +△ABCD ABCD 8AB =16BC =16BC AD ∴==8AB CD ==BQ DP t ==16AP CQ t ==-ABCD 90B Ð=°AD BC ∥BQ AP =ABQP 16t t =-8t =∴8t =ABQP AQCP 6t =6BQ DP ==10AP CQ ==ABCD 90,B AD BC ∠=︒∥APCQ Rt ABQ10AQ ==AP AQ =∴四边形为菱形;【小问3详解】解:连接,,与相交于点,则整个运动当中,线段扫过的面积是的面积的面积,.,整个运动当中,线段扫过的面积.AQCPAC BD AC BD E PQ AED△BEC+△12AED BEC ABCDS S S+=△△矩形∴PQ118166422AB BC=⨯⨯=⨯⨯=。

山东省泰安市东平县2023-2024学年八年级下学期期中考试数学试卷(含答案)

山东省泰安市东平县2023-2024学年八年级下学期期中考试数学试卷(含答案)

八年级数学试题注意事项:1本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,其中选择题56分,非选择题94分,满分150分,考试时间120分钟;2.选择题选出答案后,用2B铅笔把答题卡上对应题目的正确答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案,答案写在试卷上无效;3.数学考试不允许使用计算器,考试结束后,应将答题卡(纸)交回.第I卷(选择题共48分)一、选择题(本大题共12个小题,每小题4分,共48分.每小题给出的四个答案中,只有一项是正确的.)1.关于四边形,下列说法正确的是()A.对角线相等的是矩形B.对角线互相垂直的是菱形C.对角线互相垂直且相等的是正方形D.对角线互相平分的是平行四边形2.在下列各式中,一定是二次根式的是()A. B. C. D.3.在四边形ABCD中,两对角线交于点O,若OA=OB=OC=OD,则这个四边形()A.可能不是平行四边形B.一定是菱形D.一定是矩形 C.一定是正方形4.若方程是关于x的一元二次方程,则a的值是()A.2B.-2C.-2或2D.05.如图,在矩形ABCD中,对角线AC,BD相交于点O,AE垂直平分BO,AE=cm,则OD=()A.1cmB.1.5cmC.2cmD.3cm6.计算的结果为()A.+1B.-1C.1-D.17.如图,顺次连接四边形ABCD各边中点得四边形EFGH,要使四边形EFGH为矩形,应添加的条件是()A.AB//DCB.AC=BDC.AC⊥BDD.AB=DC8.等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x2-12x+k=0的两个根,则k的值是()A.27B.36C.27或36D.189.已知,则x+y的值为()A.1B.-1C.0D.310.如图,在菱形ABCD中,∠A=60°,AD=4,点P是AB边上的一个动点,点E、F分别是DP、BP的中点,则线段EF的长为()A.2B.4C.D.11.已知方程x2+px+q=0的两根分别为3和-4,则x2-px+q可分解为()A.(x-3)(x+4)B.(x+3)(x-4)C.(x+3)(x+4)D.(x-3)(x-4)12.如图,正方形ABCD中,点M是边BC上一点(异于点B、C),AM的垂直平分线分别交AB、CD、BD 于E、F、K,连AK、MK.下列结论:①EF=AM;②AE=DF+BM;③BK=AK;④∠AKM=90°.其中正确的结论个数是()A.1个B.2个C.3个D.4个第Ⅱ卷(非选择题共102分)二、填空题(本大题共6小题,每小题4分,共24分.只要求填写最后结果)13函数中自变量x的取值范围是.14.如图,在正方形ABCD的外侧,作等边三角形ADE,则∠BED为.15.若x2+6x+m2是一个完全平方式,则m=.16.如图所示,将两张等宽的长方形纸条交叉叠放,重叠部分是一个四边形ABCD,若AD=6cm,∠ABC=60°,则四边形ABCD的面积等于.17.如图,Rt△ABC中,∠BAC=90°,AB=3,AC=4,P为边BC上一动点,PE⊥AB于点E,PF⊥AC于点F,则EF的最小值为.18.有理数a、b、c在数轴上的位置如图所示,则的值为.三、解答题(本大题共7小题,共78分.写出必要的文字说明、证明过程或推演步骤)19.(每题3分,共12分)计算:(1)(2)(3)(4)20.(每题3分,共12分)用适当的方法解方程(1)81(x-2)2=16(2)y2-6y-6=0(3)-4x2-8x=-1(4)4x(x-1)=3(x-1)21.(本题8分)先化简,再求值:,其中.22.(本题8分)如图,在矩形ABCD是,对角线AC,BD相交于点O,点E、F分别是AO,AD的中点,连接EF,AB=4cm,BC=6cm,求EF的长.23.(本题10分)如图,在四边形ABCD中,AB//DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=,BD=2,求OE的长.24.(本题14分)配方法不仅可以用来解一元二次方程,还可以用来解决一些最值问题.例如:x2+2x+2=x2+2x+1-1+2=(x+1)2+1>1,所以x2+2x+2的最小值为1,此时x=-1.(1)尝试:①2x2-4x+5=2(x2-2x+1-1)+5=2(x-1)2+3,因此当x=时,代数式2x2-4x+5有最小值,最小值是;②-x2-2x=-x2-2x-1+1=-(x+1)2+1≤1,所以当x=时,代数式-x2-2x有最(填“大”或“小”)值.(2)应用:如图,矩形花圃一面靠墙(墙足够长)另外三面所围成的栅栏的总长是18m,栅栏如何围能使花圃面积最大?最大面积是多少?25.(本题14分)数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点.∠AEF=90°,且EF交正方形外角∠DCG的平行线CF于点F,求证:AE=EF.(1)经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证△AME≌△ECF,所以AE=EF.请你帮小明写出具体的解题步骤.(2)在此基础上,同学们作了进一步的研究:小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(3)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.图1 图2 图3八年级数学参考答案一、选择(本大题共12个小题,每小题4分,共48分.)123456789101112D C D B C B C B A A B C二、填空(本大题共6小题,每小题4分,共24分)13.x≤2且x≠-314.45°15.±316.18cm217.2.418.b-a+2c 19.(每题3分,共12分)(1);(2)5;(3);(4)20.(每题3分,共12分)(1)(2)(3)(4)21.,当时,原式=22.(8分)解:∵四边形ABCD是矩形∴∠ABC=90°,BD=AC,BO=DO在Rt△ABC中,AC=,∵点E、F分别是AO、AD的中点,∴EF是△AOD的中位线,∴EF23.(8分)解:(1)∵AB∥CD∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴ABCD是菱形;(2)∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=2,∴O B=BD=1,在Rt△AOB中,AB=,OB=1,∴OA==2,∴OE=OA=224.(14分)(1)①1 3;②-1 大(2)设垂直一边AD,分隔成两个有一边相邻的矩形花圃,则这个矩形花圃分隔成两个有一边相邻的矩形花圃,则AB=x米,则BC=(18-2x)米,根据题意可得:,,,当x=时,S有最大值为米.25.(14分)(1)证明:如图1在AB上取AB的中点M,连接ME.则图1AM=BM AB BC=BE=EC∴BM=BE,∴∠BME=45°,∴∠AME=135°,∵CF是外角平分线,∴∠DCF=45°,∴∠ECF=135°,∴∠AME=∠ECF,∵∠AEB+∠BAE=90°,∠AEB+∠CEF=90°,∴∠BAE=∠CEF,∴△AME≌△ECF(ASA),∴AE=EF.(2)正确证明:如图2在AB上取一点M,使AM=EC,连接ME.图2∴BM=BE,∴∠BME=45°,∴∠AME=135°,∵CF是外角平分线,∴∠DCF=45°,∴∠ECF=135°,∴∠AME=∠ECF,∵∠AEB+∠BAE=90°,∠AEB+∠CEF=90°,∴∠BAE=∠CEF,∴△AME≌△ECF ASA),∴AE=EF.(3)正确.证明:如图3在BA的延长线上取一点N.使AN=CE,连接NE.图3∴BN=BE,∴∠N=∠NEC=45°,∵CF平分∠DCG,∴∠FCE=45°,∴∠N=∠ECF,∵四边形ABCD是正方形,∴AD∥BE,∴∠DAE=∠BEA,即∠DAE+90°=∠BEA+90°,∴∠NAE=∠CEF,∴△ANE≌△ECF ASA)∴AE=EF.。

人教版八年级下册数学《期中检测试题》及答案

人教版八年级下册数学《期中检测试题》及答案

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________一、单选题(48分)1.下列各式中,正确的是( ) A. 2(3)3-=- B. 233-=- C. 2(3)3±=± D. 23=3±2.下列二次根式中,是最简二次根式的是( ).A. 2xyB. 2abC. 12D. 422x x y + 3.如图,长为8cm 的橡皮筋放置在x 轴上,固定两端A 和B ,然后把中点C 向上拉升3cm 至D 点,则橡皮筋被拉长了( )A. 2cmB. 3cmC. 4cmD. 5cm4. 顺次连接矩形ABCD 各边的中点,所得四边形必定是( )A. 邻边不等的平行四边形B. 矩形C. 正方形D. 菱形5.如图,□ABCD 中,∠C=108°,BE 平分∠ABC,则∠ABE 等于( )A. 18°B. 36°C. 72°D. 108° 6.一次函数24y x =+的图像与y 轴交点的坐标是( )A. (0,-4)B. (0,4)C. (2,0)D. (-2,0)7.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A. k >0,b >0B. k >0,b <0C. k <0,b >0D. k <0,b <08.如图,在△ABC 中,AB=3,AC=4,BC=5,P 为边BC 上一动点,PE ⊥AB 于E,PF ⊥AC 于F,则EF 的最小值为( )A. 2B. 2.2C. 2.4D. 2.59.如图,OP =1,过点P 作PP 1⊥OP ,且PP 1=1,得OP 1=2;再过点P 1作P 1P 2⊥OP 1且P 1P 2=1,得OP 2=3;又过点P 2作P 2P 3⊥OP 2且P 2P 3=1,得OP 3=2……依此法继续作下去,得OP 2018的值为( )A. 2016B. 2017C. 2018D. 201910.如图,把直线y =﹣2x 向上平移后得到直线AB ,直线AB 经过点(a ,b ),且2a +b =6,则直线AB 的解析式是( )A. y =﹣2x ﹣3B. y =﹣2x ﹣6C. y =﹣2x +3D. y =﹣2x +611.如图,正方形ABCD 和正方形CEFG 中,点在CG 上,1BC =,3CE =,是AF 的中点,那么CH 的长是( )A. 2B. 52C.332D. 512.如图,一辆汽车和一辆摩托车分别从A,B两地去同一城市,l1,l2分别表示汽车、摩托车离A地距离s(km)随时间t(h)变化的图象,则下列结论:①摩托车比汽车晚到1 h;②A,B两地的距离为20 km;③摩托车的速度为45 km/h,汽车的速度为60 km/h;④汽车出发1 h后与摩托车相遇,此时距离B地40 km;⑤相遇前摩托车的速度比汽车的速度快.其中正确的结论有( )A. 2个B. 3个C. 4个D. 5个二、填空题(24分)13.已知点M(-1,a)和点N(-2,b)是一次函数y=-2x+1图象上的两点,则a与b的大小关系是__________.14.矩形两条对角线的夹角为60,较短的边长为12cm,则对角线长为________cm.15.如图,直线y=﹣43x+8与x轴,y轴分别交于点A和B,M是OB上的一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点B′处,则直线AM的解析式为______________.16.如图,已知一次函数y=2x+b和y=kx﹣3(k≠0)图象交于点P,则二元一次方程组23x y bkx y-=-⎧⎨-=⎩的解是_____.17.如图,菱形ABCD 中,∠B =60°,AB =3,四边形ACEF 是正方形,则EF 的长为_____.18.已知直线4y kx =-与两坐标轴所围成的三角形面积等于4,则的值为________.三、解答题19.计算: ①4545842+-+; ②12xy x y⨯÷ 20.先化简,再求值:2569122x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中35x =+. 21.一次函数(21)3y m x m =++-.(1)若函数图像经过原点,求的值;(2)若函数图像平行于直线33y x =-,求的值;(3)在(1)的条件下,将这个正比例函数的图像向右平移4个单位,求出平移后的直线解析式.22.如图,在△ABC 中,CD ⊥AB 于点D ,若AC =34,CD =5,BC =13,求△ABC 的面积.DE AC AE与DE相交23.如图,在菱形ABCD中,对角线AC、BD相交于点O过A作AE//BD,过D作//,于点E.求证:四边形AODE为矩形.24.2020年新型冠状病毒肺炎疫情肆虐,红星社区为了提高社区居民的身体素质,鼓励居民在家锻炼,特采购了一批跳绳免费发放,已知2根幸福牌跳绳和1根平安牌跳绳共需31元,2根平安牌跳绳和3根幸福牌跳绳共需54元.(1)求幸福牌跳绳和平安牌跳绳的单价;(2)已知该社区需要采购两种品牌的跳绳共60根,且平安牌跳绳的数量不少于幸福牌跳绳数量的2倍,请设计出最省钱的购买方案,并说明理由.25.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,匀速行驶.设慢车行驶的时间x(h),两车之的距离为y(km),图中的折线表示y与x之间的函数关系.(1)求慢车和快车的速度;(2)求线段BC所表示y与x的函数关系式,并写出自变量x的取值范围;(3)第一列快车出发后又有一列快车(与第一列快车速度相同)从甲地出发,与慢车同时到达各自的目的地.请直接写出第二列快车出发后经过多少小时与慢车相遇,相遇时他们距甲地的距离.答案与解析一、单选题(48分)1.下列各式中,正确的是( )A. 3=-B. 3=-C. 3=±D. 3±[答案]B[解析][分析]如果一个非负数x 的平方等于a ,那么x 是a 的算术平方根,根据此定义即可求出结果.[详解]解:A 3= ,故本选项错误;B 、3=-,故本选项正确;C 3= ,故本选项错误;D 3= ,故本选项错误;故选B .[点睛]本题考查算术平方根的定义,主要考查学生的理解能力和计算能力.2.下列二次根式中,是最简二次根式的是( ).A. [答案]A[解析][详解]根据最简二次根式的意义,可知是最简二次根式=不是最简二次根式. 故选A.3.如图,长为8cm 的橡皮筋放置在x 轴上,固定两端A 和B ,然后把中点C 向上拉升3cm 至D 点,则橡皮筋被拉长了( )A 2cm B. 3cm C. 4cm D. 5cm[答案]A[解析][分析]根据勾股定理可以得到AD和BD的长度,然后用AD+BD-AB的长度即为所求.[详解]根据题意可得BC=4cm,CD=3cm,根据Rt△BCD的勾股定理可得BD=5cm,则AD=BD=5cm,所以橡皮筋被拉长了(5+5)-8=2cm.[点睛]主要考查了勾股定理解直角三角形.4. 顺次连接矩形ABCD各边的中点,所得四边形必定是( )A. 邻边不等平行四边形B. 矩形C. 正方形D. 菱形[答案]D[解析]试题解析:如图,连接AC、BD,∵E、F、G、H分别是矩形ABCD的AB、BC、CD、AD边上的中点,∴EF=GH=12AC,FG=EH=12BD(三角形的中位线等于第三边的一半),∵矩形ABCD的对角线AC=BD, ∴EF=GH=FG=EH,∴四边形EFGH是菱形.考点:中点四边形.5.如图,□ABCD 中,∠C=108°,BE 平分∠ABC,则∠ABE 等于( )A. 18°B. 36°C. 72°D. 108°[答案]B[解析][分析] 因为平行四边形对边平行,由两直线平行,同旁内角互补,已知∠C ,可求∠ABC ,又BE 平分∠ABC ,故12ABE ABC ∠=∠ [详解]∵AB ∥CD ,∴∠ABC+∠C=180°,把∠C=108°代入,得∠ABC=180°-108°=72°.又∵BE 平分∠ABC ,∴∠CBE=12∠ABC=12•72°=36°. 又∵AD ∥BC ,∴∠AEB=∠EBC=36°故选B .[点睛]本题直接通过平行四边形性质的应用,判断出正确的选项,属于基础题.6.一次函数24y x =+的图像与y 轴交点的坐标是( )A. (0,-4)B. (0,4)C. (2,0)D. (-2,0)[解析][分析]根据点在直线上点的坐标满足方程的关系,在解析式中令x=0,即可求得与y轴的交点的纵坐标,由此即可得答案.[详解]令x=0,得y=2×0+4=4,则函数与y轴的交点坐标是(0,4).故选B.7.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是( )A. k>0,b>0B. k>0,b<0C. k<0,b>0D. k<0,b<0[答案]C[解析][分析]根据一次函数的图象与系数的关系进行解答即可.[详解]∵一次函数y=kx+b的图象经过一、二、四象限,∴k<0,b>0,故选C.[点睛]本题考查的是一次函数的图象与系数的关系,即一次函数y=kx+b(k≠0)中,当k<0,b>0时图象在一、二、四象限.8.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,则EF的最小值为( )A. 2B. 2.2C. 2.4D. 2.5[解析][分析]根据三个角都是直角的四边形是矩形,得四边形AEPF是矩形,根据矩形的对角线相等,得EF=AP,则EF的最小值即为AP的最小值,根据垂线段最短,知:AP的最小值即等于直角三角形ABC斜边上的高.[详解]连接AP,∵在△ABC中,AB=3,AC=4,BC=5,∴AB2+AC2=BC2,即∠BAC=90°,又∵PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF=AP,∵AP的最小值即为直角三角形ABC斜边上的高,即2.4,∴EF的最小值为2.4,故选C.[点睛]本题考查了矩形的性质和判定,勾股定理的逆定理,直角三角形的性质的应用,要能够把要求的线段的最小值转化为便于求的最小值得线段是解此题的关键.9.如图,OP=1,过点P作PP1⊥OP,且PP1=1,得OP1=2;再过点P1作P1P2⊥OP1且P1P2=1,得OP2=3;又过点P2作P2P3⊥OP2且P2P3=1,得OP3=2……依此法继续作下去,得OP2018的值为( ) 2016201720182019[解析][分析]由勾股定理求出各边,再观察结果的规律.[详解]∵OP=1,OP 1=2 OP 2=3,OP 3=4=2,∴OP 4=5,…,OP 2018=2019.故选D[点睛]本题考查了勾股定理,读懂题目信息,理解定理并观察出被开方数比相应的序数大1是解题的关键. 10.如图,把直线y =﹣2x 向上平移后得到直线AB ,直线AB 经过点(a ,b ),且2a +b =6,则直线AB 的解析式是( )A. y =﹣2x ﹣3B. y =﹣2x ﹣6C. y =﹣2x +3D. y =﹣2x +6[答案]D[解析][分析] 平移时的值不变,只有发生变化.再把相应的点的坐标代入即可得解.[详解]解:∵直线AB 经过点(),a b ,且26a b +=∴直线AB 经过点(),62a a -∵直线AB 与直线2y x =-平行∴设直线AB 的解析式是:12y x b =-+把(),62a a -代入函数解析式得:1622a a b -=-+∴直线AB 解析式是26y x =-+.故选:D[点睛]本题考查了一次函数图象与几何变换,求直线平移后的解析式时要注意平移值不变.11.如图,正方形ABCD 和正方形CEFG 中,点在CG 上,1BC =,3CE =,是AF 的中点,那么CH 的长是( )A. 2B. 52 3325[答案]D[解析][分析] 连接AC 、CF ,根据正方形性质求出AC 、CF ,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF ,再根据直角三角形斜边上的中线等于斜边的一半解答即可.[详解]如图,连接AC 、CF ,∵正方形ABCD 和正方形CEFG 中,BC=1,CE=3,∴2,CF=32∠ACD=∠GCF=45°,∴∠ACF=90°,由勾股定理得,22AF=AC CF =25-∵H 是AF 的中点,∴CH=12AF=12×255故选D .[点睛]本题考查了直角三角形斜边上的中线等于斜边的一半的性质,正方形的性质,勾股定理,熟记各性质并作辅助线构造出直角三角形是解题的关键.12.如图,一辆汽车和一辆摩托车分别从A,B两地去同一城市,l1,l2分别表示汽车、摩托车离A地的距离s(km)随时间t(h)变化的图象,则下列结论:①摩托车比汽车晚到1 h;②A,B两地的距离为20 km;③摩托车的速度为45 km/h,汽车的速度为60 km/h;④汽车出发1 h后与摩托车相遇,此时距离B地40 km;⑤相遇前摩托车的速度比汽车的速度快.其中正确的结论有( )A. 2个B. 3个C. 4个D. 5个[答案]B[解析][分析]观察图象坐标轴和函数图象表示的意义,再根据问题判断.[详解]观察横坐标,可知,汽车比摩托提前一小时到达目的地①对;观察纵坐标,可知A,B两地距离20km②对;根据图象汽车速度1803=60 km/h,摩托车速度180204-=40km/h,③错.根据图象,两条函数图象交点横坐标是1,1小时后汽车走了60 km,摩托走了40 km,故汽车距离B地40 km,故④对.汽车和摩托都是匀速运动,故⑤错.故答案选B.[点睛]此类问题,一定要先观察直角坐标系横纵坐标表示的实际意义,函数图象表示的实际意义,如果是s-t图,一次函数图象k表示的是速度.s表示路程,t表示时间.二、填空题(24分)13.已知点M(-1,a)和点N(-2,b)是一次函数y=-2x+1图象上的两点,则a与b的大小关系是__________.[答案]a<b[解析][分析]先把点M(-1,a)和点N(-2,b)代入一次函数y=-2x+1,求出a,b的值,再比较出其大小即可.[详解]∵点M(-1,a)和点N(-2,b)是一次函数y=-2x+1图象上的两点,∴a=(-2)×(-1)+1=3,b=(-2)×(-2)+1=5,3<5,∴a<b.故答案为a<b.[点睛]本题考查的一次函数图象上点的坐标特点,熟知一次函数图象上点的坐标一定适合此函数的解析式是解答此题的关键.14.矩形的两条对角线的夹角为60,较短的边长为12cm,则对角线长为________cm.[答案]24[解析]分析:根据矩形对角线相等且互相平分性质和题中条件易得△AOB为等边三角形,即可得到矩形对角线一半长,进而求解即可.详解:如图:AB=12cm,∠AOB=60°.∵四边形是矩形,AC,BD是对角线.∴OA=OB=OD=OC=12BD=12AC.在△AOB中,OA=OB,∠AOB=60°.∴OA=OB=AB=12cm,BD=2OB=2×12=24cm.故答案为24.点睛:矩形的两对角线所夹的角为60°,那么对角线的一边和两条对角线的一半组成等边三角形.本题比较简单,根据矩形的性质解答即可.15.如图,直线y=﹣43x+8与x轴,y轴分别交于点A和B,M是OB上的一点,若将△ABM沿AM折叠,点B恰好落在x轴上的点B′处,则直线AM的解析式为______________.[答案]y=-0.5x+3[解析]此题首先分别求出A,B两个点的坐标,得到OA,OB的长度,再根据勾股定理求出AB,再求出OB′,然后根据已知得到BM=B′M,设BM=x,在Rt△B′OM中利用勾股定理求出x,这样可以求出OM,从而求出了M的坐标,最后用待定系数法求直线的解析式.解:当x=0时,y=8;当y=0时,x=6,∴OA=6,OB=8,∴AB=10,根据已知得到BM=B'M,AB'=AB=10,∴OB'=4,设BM=x,则B'M=x,OM=8﹣x,在直角△B'MO中,x2=(8﹣x)2+42,∴x=5,∴OM=3,设直线AM的解析式为y=kx+b,把M(0,3),A(6,0)代入其中得:∴k=﹣,b=3,∴y=﹣x+3.16.如图,已知一次函数y=2x+b和y=kx﹣3(k≠0)的图象交于点P,则二元一次方程组23x y bkx y-=-⎧⎨-=⎩的解是_____.[答案]46 xy=⎧⎨=-⎩[解析]根据一次函数和二元一次方程组的关系,可知方程组的解为两个一次函数的交点的坐标,故可知方程组的解为46 xy=⎧⎨=-⎩.故答案为46 xy=⎧⎨=-⎩17.如图,菱形ABCD中,∠B=60°,AB=3,四边形ACEF是正方形,则EF的长为_____.[答案]3[分析]由菱形的性质可得AB=BC ,且∠B=60°,可得AC=AB=3,由正方形的性质可得AC=EF=3.[详解]解:∵四边形ABCD 是菱形∴AB=BC ,且∠B=60°,∴△ABC 是等边三角形,∴AB=AC=3,∵四边形ACEF 是正方形,∴AC=EF=3故答案为3[点睛]本题考查了正方形的性质,菱形的性质,等边三角形的判定和性质,熟练运用这些性质解决问题是本题的关键.18.已知直线4y kx =-与两坐标轴所围成的三角形面积等于4,则的值为________.[答案]±2[解析][分析]求出直线与坐标轴的交点坐标或坐标表达式,根据三角形的面积公式建立关系式,即可求出k 的值.[详解]直线与y 轴的交点坐标为(0,﹣4),与x 轴的交点坐标为(4k,0), 则与坐标轴围成的三角形的面积为14442k⨯⨯=, 解得k=±2, 经检验,k=±2是方程的解且符合题意,故答案:±2. [点睛]本题考查了一次函数与坐标轴的交点与相关三角形的面积问题,要熟悉函数与坐标轴的交点的求法.三、解答题19.计算:①②[答案]①2.[解析][分析]①先化简二次根式,再合并同类二次根式即可;②利用二次根式的乘法和除法法则,0,0)0,0)a a b a b b ==≥>)进行化简即可. [详解]解:①原式==②原式===2.[点睛]本题考查二次根式的加减混合运算和二次根式的乘除混合运算.二次根式的加减运算,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并;二次根式的乘除运算,系数的积(商)作为积(商)的系数,被开方数的积(商)作为积(商)的被开方数.20.先化简,再求值:2569122x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中3x =[答案]13x -. [解析][分析]先算括号内的,然后再将除法变为乘倒数的形式化简,最后代值.[详解]原式=22522(3)x x x x +-+⎛⎫⋅ ⎪+-⎝⎭13x =-;当3x =+,原式===[点睛]本题考查分式的化简,注意分式中能够因式分解时,尽量先因式分解,可简化计算.21.一次函数(21)3y m x m =++-.(1)若函数图像经过原点,求的值;(2)若函数图像平行于直线33y x =-,求的值;(3)在(1)的条件下,将这个正比例函数的图像向右平移4个单位,求出平移后的直线解析式.[答案](1)3m =;(2)1m =;(3)728y x =-[解析][分析](1)将x=0,y=0代入函数即可求得m 的值;(2)根据题意可得两直线斜率相等,即213m +=,然后求解即可;(3)先求得函数解析式,再根据“左加右减”进行变形即可.[详解]解:(1)将x=0,y=0代入函数(21)3y m x m =++-得:30m -=,则3m =;(2)∵函数(21)3y m x m =++-图像平行于直线33y x =-,∴213m +=则1m =;(3)当3m =时,函数解析式为:7y x =,平移后:7(4)728y x x =-=-.[点睛]本题主要考查一次函数的性质,解此题的关键在于熟练掌握其知识点.22.如图,在△ABC 中,CD ⊥AB 于点D ,若AC CD =5,BC =13,求△ABC 的面积.[答案]752 [解析][分析]由于CD ⊥AB,CD 为Rt △ADC 和Rt △BCD 的公共边,在这两个三角形中利用勾股定理可求出AD 和BD 的长,然后根据三角形面积公式求得即可.[详解]解:∵CD ⊥AB,∴∠CDA=∠BDC=90°在Rt △ADC 中,AD 2=AC 2﹣CD 2,在Rt △BCD 中,BD 2=BC 2﹣CD 2,∵AC=34 ,CD=5,BC=13,∴AD=3425-=3,BD=22135-=12,∴AB=15,∴S △ABC =12AB•CD=752. [点睛]本题考查了勾股定理的运用,根据勾股定理求得AB 的长是解题的关键.23.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O 过A 作AE//BD ,过D 作//,DE AC AE 与DE 相交于点E .求证:四边形AODE 为矩形.[答案]见解析[解析][分析]根据菱形的性质,可知AC ⊥BD ,利用平行的性质,推导得出∠OAE=90°,∠ODE=90°,从而证矩形.[详解]∵四边形ABCD 是菱形∴∠AOD=90°∵AE ∥BD∴∠EAO=90°∵DE ∥AC∴∠EDO=90°∴四边形AODE 是矩形.[点睛]本题考查证矩形,用到了菱形的性质和平行线的性质,解题关键是得出∠AOD=90°. 24.2020年新型冠状病毒肺炎疫情肆虐,红星社区为了提高社区居民的身体素质,鼓励居民在家锻炼,特采购了一批跳绳免费发放,已知2根幸福牌跳绳和1根平安牌跳绳共需31元,2根平安牌跳绳和3根幸福牌跳绳共需54元.(1)求幸福牌跳绳和平安牌跳绳的单价;(2)已知该社区需要采购两种品牌的跳绳共60根,且平安牌跳绳的数量不少于幸福牌跳绳数量的2倍,请设计出最省钱的购买方案,并说明理由.[答案](1)幸福牌跳绳的单价是8元,平安牌的跳绳单价是15元;(2)幸福牌买20根,平安牌的买40根时最省钱,见解析[解析][分析](1)设一根幸福牌跳绳售价是x 元,一根平安牌跳绳的售价是y 元,根据:“2根幸福牌跳绳和1根平安牌跳绳共需31元,2根平安牌跳绳和3根幸福牌跳绳共需54元”列方程组求解即可;(2)首先根据“平安牌跳绳的数量不少于幸福牌跳绳数量的2倍”确定自变量的取值范围,然后得到有关总费用和幸福牌跳绳之间的关系得到函数解析式,确定函数的最值即可.[详解](1)设一根幸福牌跳绳售价是x 元,一根平安牌跳绳的售价是y 元,根据题意,得:2313254x y x y +⎧⎨+⎩==,解得:815x y ⎧⎨⎩==, 答:幸福牌跳绳的单价是8元,平安牌的跳绳单价是15元;(2)设购进幸福牌跳绳m 根,总费用为W 元,根据题意,得:W=8m+15(60-m )=-7m+900,∵-7<0,∴W 随m 增大而减小,又∵2m≤60-m ,解得:m≤20,而m 为正整数,∴当m=20时,W 最小=-7×20+900=760, 此时60-20=40,答:幸福牌买20根,平安牌的买40根时最省钱.[点睛]此题主要考查了二元一次方程组的应用以及一次函数的应用等知识,根据题意得出正确的等量关系是解题关键.25.一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,匀速行驶.设慢车行驶的时间x (h ),两车之的距离为y (km ),图中的折线表示y 与x 之间的函数关系.(1)求慢车和快车的速度;(2)求线段BC 所表示的y 与x 的函数关系式,并写出自变量x 的取值范围;(3)第一列快车出发后又有一列快车(与第一列快车速度相同)从甲地出发,与慢车同时到达各自的目的地.请直接写出第二列快车出发后经过多少小时与慢车相遇,相遇时他们距甲地的距离.[答案](1)150km h ,75km h ;(2)225900y x =-(46x ≤≤ );(3)经过2小时与慢车相遇,相遇时他们距甲地的距离为300km[解析][分析](1)由图可知甲、乙两地之间的距离为900km;两车同时出发后经4h相遇;图中点D的实际意义是:慢车行驶12h到达甲地;可得慢车12h的行程为900km,即可求出慢车速度;两车出发后经4小时相遇,即可求出快车速度.(2)先求出B、C点坐标,即可求出线段BC所表示的y与x的函数关系式与自变量x的取值范围.(3)已知第一列快车出发后又有一列快车(与第一列快车速度相同)从甲地出发,与慢车同时到达各自的目的地,得第二列开车速度为150(km/h),设第二列快车与慢车相遇时,距离甲地为x米,90075150x x-=,解得x=300,快车出发后3002150=小时,与慢车相遇.[详解]∵甲、乙两地之间的距离为900km;两车同时出发后经4h相遇;图中点D的实际意义是:慢车行驶12h到达甲地;∴慢车12h的行程为900km,所以速度为:900÷12=75(km/h), ∵两车出发后经4小时相遇,∴快车速度为:900÷4−75=150(km/h);故答案为:150(km/h),75(km/h)(2)∵B(4,0),快车速度为:150km/h,∴900÷150=6(小时),C点纵坐标为:75×6=450,∴C(6,450),设线段BC表示的关系为:y=kx+b(4⩽x⩽6),∴40 6450k bk b+=⎧⎨+=⎩解得:k=225,b=−900∴线段BC的函数表达式为:y=225x−900(4⩽x⩽6);故答案为:y=225x−900(4⩽x⩽6)(3)∵第一列快车出发后又有一列快车(与第一列快车速度相同)从甲地出发,与慢车同时到达各自的目的地∴第二列开车速度为150(km/h)设第二列快车与慢车相遇时,距离甲地为x米,∵第二列快车与慢车同时到达各自的目的地∴900 75150 x x-=解得x=300∴快车出发后3002150小时,与慢车相遇.故答案为:经过2小时与慢车相遇,相遇时他们距甲地的距离为300km[点睛]本题考查了一次函数的实际应用—路程问题,解题的关键是能读懂一次函数图象,分段函数每段表示的意义,从中获取已知条件.。

八年级下册数学期中考试题(答案)

八年级下册数学期中考试题(答案)

八年级下册数学期中考试题(答案)一、选择题(本大题共6小题,每小题3分,共18分)1.如果a>b,那么下列各式中正确的是()A.a﹣2<b﹣2B.<C.﹣2a<﹣2b D.﹣a>﹣b2.已知不等式组的解集为﹣1<x<1,则(a+1)(b﹣1)值为()A.6B.﹣6C.3D.﹣33.如图,正方形OABC的两边OA、OC分别在x轴、y轴上,点D(5,3)在边AB上,以C为中心,把△CDB旋转90°,则旋转后点D的对应点D′的坐标是()A.(2,10)B.(﹣2,0)C.(2,10)或(﹣2,0)D.(10,2)或(﹣2,0)4.小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x分钟,则列出的不等式为()A.210x+90(15﹣x)≥1800B.90x+210(15﹣x)≤1800C.210x+90(15﹣x)≥1.8D.90x+210(15﹣x)≤1.85.△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是()A.4.8B.4.8或3.8C.3.8D.56.如图,在直角坐标系中,已知点A(﹣3,0)、B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4、…,△16的直角顶点的坐标为()A.(60,0)B.(72,0)C.(67,)D.(79,)二、填空题(本大题共6小题,每小题3分,共18分)7.如图是一块长方形ABCD的场地,长AB=a米,宽AD=b米,从A、B两处入口的小路宽都为1米,两小路汇合处路宽为2米,其余部分种植草坪,则草坪面积为米2.8.如图,在平面直角坐标系xOy中,点A,点B的坐标分别为(0,2),(﹣1,0),将线段AB沿x轴的正方向平移,若点B的对应点的坐标为B'(2,0),则点A的对应点A'的坐标为.9.如图,函数y1=﹣2x与y2=ax+3的图象相交于点A(m,2),则关于x的不等式﹣2x ≤ax+3的解集是.10.若关于x的不等式的整数解共有4个,则m的取值范围是.11.在RtABC中,∠C=90°,AC=BC=(如图),若将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,联结C′B,则C′B的长为.12.已知△ABC中,BC=6,AB、AC的垂直平分线分别交边BC于点M、N,若MN=2,则△AMN的周长是.三、(本大题共5小题,每小题6分,共30分)13.(6分)解下列不等式(组):(1)(2),并把它的解集表示在数轴上.14.(6分)如图,在△ABC中,AB=AC,D为BC上一点,∠B=30°,连接AD.(1)若∠BAD=45°,求证:△ACD为等腰三角形;(2)若△ACD为直角三角形,求∠BAD的度数.15.(6分)如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为:A(1,﹣4),B(5,﹣4),C(4,﹣1).(1)将△ABC经过平移得到△A1B1C1,若点C的应点C1的坐标为(2,5),则点A,B的对应点A1,B1的坐标分别为;(2)在如图的坐标系中画出△A1B1C1,并画出与△A1B1C1关于原点O成中心对称的△A2B2C2.16.(6分)某市为鼓励居民节约用水,对每户用水按如下标准收费:若每户每月用水不超过8m3,则每m3按1元收费;若每户每月用水超过8m3,则超过部分每m3按2元收费.某用户7月份用水比8m3要多xm3,交纳水费y元.(1)求y关于x的函数解析式,并写出x的取值范围.(2)此用户要想每月水费控制在20元以内,那么每月的用水量最多不超过多少m3?17.(6分)已知:如图,在Rt△ABC中,∠ACB=90°,AC=BC,点D是BC的中点,CE⊥AD,垂足为点E,BF∥AC交CE的延长线于点F.求证:AC=2BF.四、(本大题共3小题,每小题8分,共24分)18.(8分)某年级380名师生秋游,计划租用7辆客车,现有甲、乙两种型号客车,它们的载客量和租金如表.甲种客车乙种客车载客量(座/辆)6045租金(元/辆)550450(1)设租用甲种客车x辆,租车总费用为y元.求出y(元)与x(辆)之间的函数表达式;(2)当甲种客车有多少辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是多少元?19.(8分)在△ABC中,∠B+∠ACB=30°,AB=4,△ABC逆时针旋转一定角度后与△ADE重合,且点C恰好成为AD中点,如图(1)指出旋转中心,并求出旋转角的度数.(2)求出∠BAE的度数和AE的长.20.(8分)如图,在Rt△ABC中,∠ACB=90°,点D、E分别在AB、AC上,且CE=BC,连接CD,将线段CD绕点C按顺时针方向旋转90°后得到CF,连接EF.(1)求证:△BDC≌△EFC;(2)若EF∥CD,求证:∠BDC=90°.五、(本大题共2小题,每小题9分,共18分)21.(9分)如图1,已知△ABC中,AB=AC,点D是△ABC外一点(与点A分别在直线BC两侧),且DB=DC,过点D作DE∥AC,交射线AB于E,连接AE交BC于F.(1)求证:AD垂直BC;(2)如图1,点E在线段AB上且不与B重合时,求证:DE=AE;(3)如图2,当点E在线段AB的延长线上时,写出线段DE,AC,BE的数量关系.22.(9分)为加快“秀美荆河水系生态治理工程”进度,污水处理厂决定购买10台污水处理设备.现有A,B两种型号的设备,每台的价格分别为a万元,b万元,每月处理污水量分别为240吨,200吨.已知购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.(1)求a,b的值;(2)厂里预算购买污水处理设备的资金不超过105万元,你认为有哪几种购买方案;(3)在(2)的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为污水处理厂设计一种最省钱的购买方案.六、(本大题共12分)23.(12分)几何探究题(1)发现:在平面内,若BC=a,AC=b,其中a>b.当点A在线段BC上时(如图1),线段AB的长取得最小值,最小值为;当点A在线段BC延长线上时(如图2),线段AB的长取得最大值,最大值为.(2)应用:点A为线段BC外一动点,如图3,分别以AB、AC为边,作等边△ABD和等边△ACE,连接CD、BE.①证明:CD=BE;②若BC=3,AC=1,则线段CD长度的最大值为.(3)拓展:如图4,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线AB外一动点,且PA=2,PM=PB,∠BPM=90°.请直接写出线段AM 长的最大值及此时点P的坐标.2018-2019学年江西省吉安市青原区八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)1.【分析】A、根据不等式的性质1,可得答案;B、根据不等式的性质2,可得答案;C、根据不等式的性质3,可得答案;D、根据不等式的性质3,可得答案.【解答】解:A、不等式的两边都减2,不等号的方向不变,故A错误;B、不等式的两边都除以2,不等号的方向不变,故B错误;C、不等式的两边都乘以﹣2,不等号的方向改变,故C正确;D、不等式的两边都乘以﹣1,不等号的方向改变,故D错误;故选:C.【点评】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变.2.【分析】先解不等式,求出解集,然后根据题中已告知的解集,进行比对,从而得出两个方程,解答即可求出a、b.【解答】解:不等式组,解得,,即,2b+3<x<,∵﹣1<x<1,∴2b+3=﹣1,,得,a=1,b=﹣2;∴(a+1)(b﹣1)=2×(﹣3)=﹣6.故选:B.【点评】本题考查了一元一次不等式组的解法,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.3.【分析】分顺时针旋转和逆时针旋转两种情况讨论解答即可.【解答】解:∵点D(5,3)在边AB上,∴BC=5,BD=5﹣3=2,①若顺时针旋转,则点D′在x轴上,OD′=2,所以,D′(﹣2,0),②若逆时针旋转,则点D′到x轴的距离为10,到y轴的距离为2,所以,D′(2,10),综上所述,点D′的坐标为(2,10)或(﹣2,0).故选:C.【点评】本题考查了坐标与图形变化﹣旋转,正方形的性质,难点在于分情况讨论.4.【分析】根据题意可以列出相应的不等式,从而可以解答本题.【解答】解:由题意可得210x+90(15﹣x)≥1800,故选:A.【点评】本题考查由实际问题抽象出一元一次不等式,解答本题的关键是明确题意,列出相应的不等式.5.【分析】过A点作AF⊥BC于F,连结AP,根据等腰三角形三线合一的性质和勾股定理可得AF的长,由图形得S ABC=S ABP+S ACP,代入数值,解答出即可.【解答】解:过A点作AF⊥BC于F,连结AP,∵△ABC中,AB=AC=5,BC=8,∴BF=4,∴△ABF中,AF==3,∴×8×3=×5×PD+×5×PE,12=×5×(PD+PE)PD+PE=4.8.故选:A.【点评】本题主要考查了勾股定理、等腰三角形的性质,解答时注意,将一个三角形的面积转化成两个三角形的面积和;体现了转化思想.6.【分析】根据题目提供的信息,可知旋转三次为一个循环,图中第三次和第四次的直角顶点的坐标相同,由①→③时直角顶点的坐标可以求出来,从而可以解答本题.【解答】解:由题意可得,△OAB旋转三次和原来的相对位置一样,点A(﹣3,0)、B(0,4),∴OA=3,OB=4,∠BOA=90°,∴AB=∴旋转到第三次时的直角顶点的坐标为:(12,0),16÷3=5 (1)∴旋转第15次的直角顶点的坐标为:(60,0),又∵旋转第16次直角顶点的坐标与第15次一样,∴旋转第16次的直角顶点的坐标是(60,0).故选:A.【点评】本题考查规律性:点的坐标,解题的关键是可以发现其中的规律,利用发现的规律找出所求问题需要的条件.二、填空题(本大题共6小题,每小题3分,共18分)7.【分析】根据已知将道路平移,再利用矩形的性质求出长和宽,再进行解答.【解答】解:由图可知:矩形ABCD中去掉小路后,草坪正好可以拼成一个新的矩形,且它的长为:(a﹣2)米,宽为(b﹣1)米.所以草坪的面积应该是长×宽=(a﹣2)(b﹣1)=ab﹣a﹣2b+2(米2).故答案为(ab﹣a﹣2b+2).【点评】此题考查了生活中的平移,根据图形得出草坪正好可以拼成一个长方形是解题关键.8.【分析】根据平移的性质即可得到结论.【解答】解:∵将线段AB沿x轴的正方向平移,若点B的对应点B′的坐标为(2,0),∵﹣1+3=2,∴0+3=3∴A′(3,2),故答案为:(3,2)【点评】本题考查了坐标与图形变化﹣平移.解决本题的关键是正确理解题目,按题目的叙述一定要把各点的大致位置确定,正确地作出图形.9.【分析】首先利用待定系数法求出A点坐标,再以交点为分界,结合图象写出不等式﹣2x≤ax+3的解集即可.【解答】解:∵函数y1=﹣2x过点A(m,2),∴﹣2m=2,解得:m=﹣1,∴A(﹣1,2),∴不等式﹣2x<ax+3的解集为x≥﹣1.故答案为:x≥﹣1.【点评】此题主要考查了一次函数与一元一次不等式,关键是求出A点坐标.10.【分析】关键不等式的性质求出不等式的解集,根据找不等式组解集的规律找出不等式组的解集,根据已知得到6≤m<7即可.【解答】解:,由①得:x<m,由②得:x≥3,∴不等式组的解集是3≤x<m,∵关于x的不等式的整数解共有4个,∴6<m≤7,故答案为:6<m≤7.【点评】本题主要考查对解一元一次不等式,不等式的性质,解一元一次不等式组,一元一次不等式组的整数解等知识点的理解和掌握,能根据不等式组的解集得到6<m≤7是解此题的关键.11.【分析】连接BB′,根据旋转的性质可得AB=AB′,判断出△ABB′是等边三角形,根据等边三角形的三条边都相等可得AB=BB′,然后利用“边边边”证明△ABC′和△B′BC′全等,根据全等三角形对应角相等可得∠ABC′=∠B′BC′,延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD﹣C′D计算即可得解.【解答】解:如图,连接BB′,∵△ABC绕点A顺时针方向旋转60°得到△AB′C′,∴AB=AB′,∠BAB′=60°,∴△ABB′是等边三角形,∴AB=BB′,在△ABC′和△B′BC′中,,∴△ABC′≌△B′BC′(SSS),∴∠ABC′=∠B′BC′,延长BC′交AB′于D,则BD⊥AB′,∵∠C=90°,AC=BC=,∴AB=2,∴BD=2×=,C′D=×2=1,∴BC′=BD﹣C′D=﹣1.故答案为﹣1.【点评】本题考查了旋转的性质,全等三角形的判定与性质,等边三角形的判定与性质,等腰直角三角形的性质,作辅助线构造出全等三角形并求出BC′在等边三角形的高上是解题的关键,也是本题的难点.12.【分析】由直线PM为线段AB的垂直平分线,根据线段垂直平分线定理:线段垂直平分线上的点到线段两端点的距离相等可得AM=BM,同理可得AN=NC,然后表示出三角形AMN的三边之和,等量代换可得其周长等于BC的长,由BC的长即可得到三角形AMN的周长.【解答】解:图1,∵直线MP为线段AB的垂直平分线,∴MA=MB,又直线NQ为线段AC的垂直平分线,∴NA=NC,∴△AMN的周长l=AM+MN+AN=BM+MN+NC=BC,又BC=6,则△AMN的周长为6,如图2,△AMN的周长l=AM+MN+AN=BM+MN+NC=BC+2MN,又BC=6,则△AMN的周长为10,故答案为:6或10【点评】此题考查了线段垂直平分线定理的运用,利用了转化的思想,熟练掌握线段垂直平分线定理是解本题的关键.三、(本大题共5小题,每小题6分,共30分)13.【分析】(1)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1)去分母,得:3(x﹣2)≥2(7﹣x),去括号,得:3x﹣6≥14﹣2x,移项,得:3x+2x≥14+6,合并同类项,得:5x≥20,系数化为1,得:x≥4;(2)解不等式﹣x+3<2x,得:x>1,解不等式﹣≥0,得:x≤4,则不等式组的解集为1<x≤4,将不等式组的解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式(组),正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小无解了”的原则是解答此题的关键.14.【分析】(1)根据等腰三角形的性质求出∠B=∠C=30°,根据三角形内角和定理求出∠BAC=120°,求出∠CAD=∠ADC,根据等腰三角形的判定得出即可;(2)有两种情况:①当∠ADC=90°时,当∠CAD=90°时,求出即可.【解答】(1)证明:∵AB=AC,∠B=30°,∴∠B=∠C=30°,∴∠BAC=180°﹣30°﹣30°=120°,∵∠BAD=45°,∴∠CAD=∠BAC﹣∠BAD=120°﹣45°=75°,∠ADC=∠B+∠BAD=75°,∴∠ADC=∠CAD,∴AC=CD,即△ACD为等腰三角形;(2)解:有两种情况:①当∠ADC=90°时,∵∠B=30°,∴∠BAD=∠ADC﹣∠B=90°﹣30°=60°;②当∠CAD=90°时,∠BAD=∠BAC﹣∠CAD=120°﹣90°=30°;即∠BAD的度数是60°或30°.【点评】本题考查了三角形内角和定理,等腰三角形的判定的应用,能根据定理求出各个角的度数是解此题的关键,用了分类讨论思想.15.【分析】(1)根据平移的性质画出图形,进而得出坐标即可;(2)根据关于原点O成中心对称的性质画出图形即可.【解答】解:(1)如图所示:△A1B1C1即为所求:A1,B1的坐标分别为(﹣1,2),(3,2),故答案为:(﹣1,2),(3,2),(2)如图所示:△A2B2C2即为所求.【点评】本题主要考查作图﹣轴对称变换和平移变换,熟练掌握轴对称变换、平移变换的定义是解题的关键.16.【分析】(1)根据总价=单价×数量就可以表示出y与x之间的函数关系式;(2)根据(1)的解析式建立不等式求出其解即可.【解答】解:(1)由题意,得y=2x+8(x>0)(2)由题意,得2x+8≤20,解得:x≤6,∴x最多=6∴每月的用水量最多为14m3.【点评】本题考查了总价=单价×数量的运用,一次函数的解析式的运用及列不等式解实际问题的运用,解答时求出一次函数的解析式是关键.17.【分析】由直角三角形ACD中,CF垂直于AD,利用同角的余角相等得到一对角相等,再由一对直角相等,AC=BC,利用AAS得到三角形ACD与三角形CBF全等,利用全等三角形的对应边相等得到CD=BF,由D为BC中点,得到CD=BD,等量代换即可得证.【解答】证明:∵Rt△ACD中,CE⊥AD,∴∠BCF+∠F=90°,∠BCF+∠ADC=90°,∴∠F=∠ADC,在△ACD和△CBF中,,∴△ACD≌△CBF(AAS),∴CD=BF,∵D为BC中点,∴CD=BD,∴BF=CD=BD=BC=AC,则AC=2BF.【点评】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.四、(本大题共3小题,每小题8分,共24分)18.【分析】(1)根据表格可以求出y(元)与x(辆)之间的函数表达式;(2)由表格中的数据可以得到甲乙两辆车的载客量应至少为380人,从而可以列出相应的不等式得到x的值,因为x为整数,从而可以解答本题.【解答】解:(1)由题意,得y=550x+450(7﹣x),化简,得y=100x+3150,即y(元)与x(辆)之间的函数表达式是y=100x+3150;(2)由题意,得60x+45(7﹣x)≥380,解得,x≥.∵y=100x+3150,∴k=100>0,∴x=5时,租车费用最少,最少为:y=100×5+3150=3650(元),即当甲种客车有5辆时,能保障所有的师生能参加秋游且租车费用最少,最少费用是3650元.【点评】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件.19.【分析】(1)先根据三角形内角和计算出∠BAC=150°,然后利用旋转的定义可判断旋转中心为点A,旋转角为150°;(2)根据旋转的性质得到∠DAE=∠BAC=150°,AB=AD=4,AC=AE,利用周角定义可得到∠BAE=60°,然后利用点C为AD中点得到AC=AD=2,于是得到AE=2.【解答】解:(1)在△ABC中,∵∠B+∠ACB=30°,∴∠BAC=150°,当△ABC逆时针旋转一定角度后与△ADE重合,∴旋转中心为点A,∠BAD等于旋转角,即旋转角为150°;(2)∵△ABC绕点A逆时针旋转150°后与△ADE重合,∴∠DAE=∠BAC=150°,AB=AD=4,AC=AE,∴∠BAE=360°﹣150°﹣150°=60°,∵点C为AD中点,∴AC=AD=2,∴AE=2.【点评】本题考查了转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.20.【分析】(1)根据旋转的性质可得CD=CF,∠DCF=90°,然后根据同角的余角相等求出∠BCD=∠ECF,再利用“边角边”证明即可;(2)根据两直线平行,同旁内角互补求出∠F=90°,再根据全等三角形对应角相等可得∠BDC=∠F.【解答】证明:(1)由旋转的性质得,CD=CF,∠DCF=90°,∴∠DCE+∠ECF=90°,∵∠ACB=90°,∴∠BCD+∠DCE=90°,∴∠BCD=∠ECF,在△BDC和△EFC中,,∴△BDC≌△EFC(SAS);(2)∵EF∥CD,∴∠F+∠DCF=180°,∵∠DCF=90°,∴∠F=90°,∵△BDC≌△EFC,∴∠BDC=∠F=90°.【点评】本题考查了旋转的性质,全等三角形的判定与性质,平行线的性质,旋转前后对应边相等,此类题目难点在于利用同角的余角相等求出相等的角.五、(本大题共2小题,每小题9分,共18分)21.【分析】(1)根据线段垂直平分线的判定定理得到直线AD是BC的垂直平分线,证明结论;(2)证明△ABD≌△ACD,得到∠BAD=∠CAD,根据平行线的性质得到∠BAD=∠CAD,等量代换得到∠BAD=∠EDA,根据等腰三角形的判定定理证明;(3)仿照(2)的证明方法解答.【解答】(1)证明:∵AB=AC,DB=DC,∴直线AD是BC的垂直平分线,∴AD垂直BC;(2)证明:在△ABD和△ACD中,,∴△ABD≌△ACD,∴∠BAD=∠CAD,∵DE∥AC,∴∠EDA=∠CAD,∴∠BAD=∠EDA,∴DE=AE;(3)DE=AC+BE.由(2)得,∠BAD=∠CAD,∵DE∥AC,∴∠EDA=∠CAD,∴∠BAD=∠EDA,∴DE=AE,∵AB=AC,∴DE=AB+BE=AC+BE.【点评】本题考查的是全等三角形的判定和性质、平行线的性质,掌握全等三角形的判定定理和性质定理是解题的关键.22.【分析】(1)由“已知购买一台A型设备比购买一台B型设备多2万元,购买2台A 型设备比购买3台B型设备少6万元”,即可得出关于a、b的二元一次方程组,解之即可得出结论;(2)设购买A型设备m台,则购买B型设备(10﹣m)台,根据总价=单价×数量结合厂里预算购买污水处理设备的资金不超过105万元,即可得出关于m的一元一次不等式,解之取其中的整数即可得出各购买方案;(3)由每月要求处理污水量不低于2040吨,来验证m的值,再利用总价=单价×数量找出最省钱的购买方案.【解答】解:(1)根据题意得:,解得:.答:a的值为12,b的值为10.(2)设购买A型设备m台,则购买B型设备(10﹣m)台,根据题意得:12m+10(10﹣m)≤105,解得:m≤,∴m可取的值为0,1,2.故有3种购买方案,方案1:购买B型设备10台;方案2:购买A型设备1台,B型设备9台;方案3:购买A型设备2台,B型设备8台.(3)当m=0时,每月的污水处理量为:200×10=2000(吨),∵2000<2040,∴m=0不合题意,舍去;当m=1时,每月的污水处理量为:240+200×9=2040(吨),∵2040=2040,∴m=1符合题意,此时购买设备所需资金为:12+10×9=102(万元);当m=2时,每月的污水处理量为:240×2+200×8=2080(吨),∵2080>2040,∴m=2符合题意,此时购买设备所需资金为:12×2+10×8=104(万元).∵102<104,∴为了节约资金,该公司最省钱的一种购买方案为:购买A型设备1台,B型设备9台.【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式;(3)由每月要求处理污水量来确定m可取的值.六、(本大题共12分)23.【分析】(1)根据点A位于线段BC上时,线段AB的长取得最小值,根据点A位于BC的延长线上时,线段AB的长取得最大值,即可得到结论;(2)①根据等边三角形的性质得到AD=AB,AC=AE,∠BAD=∠CAE=60°,推出△CAD≌△EAB,根据全等三角形的性质得到CD=BE;②由于线段CD长的最大值=线段BE的最大值,根据(1)中的结论即可得到结果;(3)将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,得到△APN是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM,根据当N在线段BA的延长线时,线段BN取得最大值,即可得到最大值为2+3;如图2,过P作PE⊥x轴于E,根据等腰直角三角形的性质即可得到结论.【解答】解:(1)∵当点A在线段BC上时,线段AB的长取得最小值,最小值为BC ﹣AC,∵BC=a,AC=b,∴BC﹣AC=a﹣b,当点A在线段BC延长线上时,线段AB的长取得最大值,最大值为BC+AC,∵BC=a,AC=b,∴BC+AC=a+b,故答案为:a﹣b,a+b;(2)①∵△ABD和△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠DAC=∠BAE,在△ACD和△AEB中,,∴△ACD≌△AEB(SAS),∴CD=BE;②∵线段CD的最大值=线段BE长的最大值,由(1)知,当线段BE的长取得最大值时,点E在BC的延长线上,∴最大值为BC+CE=BC+AC=4;故答案为:4;(3)∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(5,0),∴OA=2,OB=5,∴AB=3,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN=AP=2,∴最大值为2 +3;如图2,过P作PE⊥x轴于E,连接BE,∵△APN是等腰直角三角形,∴PE=AE=,∴OE=BO﹣AB﹣AE=5﹣3﹣=2﹣,∴P(2﹣,).如图3中,根据对称性可知,当点P在第四象限时,P(2﹣,﹣)时,也满足条件.综上述,满足条件的点P坐标(2﹣,)或(2﹣,﹣),AM的最大值为2+3.【点评】此题是三角形综合题,主要考查了全等三角形的判定和性质,等腰直角三角形的性质,最大值问题,旋转的性质.正确的作出辅助线构造全等三角形是解题的关键.人教版八年级(下)期中模拟数学试卷(答案)一、选择题:(每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题意的,请把符合题意的序号号填在该题中的括号内)1.(3分)使二次根式的有意义的x的取值范围是()A.x>0B.x>1C.x≥1D.x≠12.(3分)方程x2+2x﹣3=0的二次项系数、一次项系数、常数项分别是()A.1,2,3B.1,2,﹣3C.1,﹣2,3D.﹣1,﹣2,3 3.(3分)用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为()A.(x+3)2=1B.(x﹣3)2=1C.(x+3)2=19D.(x﹣3)2=19 4.(3分)下列是勾股数的一组是()A.1,3,4B.3,4,5C.4,5,6D.5,7,12 5.(3分)一元二次方程x2﹣2x=0的根是()A.x1=0,x2=﹣2B.x1=1,x2=2C.x1=1,x2=﹣2D.x1=0,x2=2 6.(3分)下列根式中,不能与合并的是()A.B.C.D.7.(3分)已知,x=,y=,则(x+y)2的值为()A.2B.4C.5D.78.(3分)如果将长为6cm,宽为5cm的长方形纸片折叠一次,那么这条折痕的长不可能是()A.8cm B.5cm C.5.5cm D.1cm9.(3分)若关于x的方程x2+4x+a=0有两个相等的实数根,则a的值为()A.﹣4B.2C.4D.810.(3分)某小区在规划设计时,准备在两幢楼房之间,设置一块面积为900平方米的矩形绿地,并且长比宽多10米.设绿地的宽为x米,根据题意,可列方程为()A.x(x+10)=900B.(x﹣10)=900C.10(x+10)=900D.2[x+(x+10)]=90011.(3分)若方程x2﹣3x+2=0较小的根为p,方程3x2﹣2x﹣1=0较大的根为q,则p+q 等于()A.B.3C.2D.112.(3分)若,,以此类推,则的值为()A.2018B.2019C.2020D.2021二、填空题:(每小題3分.共18分,请将答案直接写在题中的横线上)13.(3分)计算=.14.(3分)已知关于x的方程x k﹣1﹣2x+3=0是一元二次方程,则k=.15.(3分)当k时,关于x的方程x2﹣3x+k=0没有实数根.16.(3分)一个圆锥形的漏斗,小李用三角板测得其高度的尺寸如图所示,那么漏斗的斜壁AB的长度为cm.17.(3分)已知一元二次方程x2﹣4x﹣3=0的两根为m,n,则m2﹣mn+n2=.18.(3分)如图,将两个大小、形状完全相同的△ABC和△A′B′C′拼在一起,其中点A′与点A重合,点C′落在AB上,连接B′C,若∠ACB=∠AC′B′=90°,AC=BC =3,则B′C的长为.三、解答题:(本大题共8小题,共计66分;解答题要写出文字说明、演算步骤或证明过程.)19.(10分)计算(1)(2)20.(6分)先化简再求值:,其中x=﹣2.21.(6分)如图,已知在Rt△ABC中,∠C=90°,AC=9,BC=12,求点C到AB的距离.22.(8分)已知:关于x的方程x2+2mx+m2﹣1=0(1)不解方程,判断方程根的情况;(2)若方程有一个根为3,求m的值.23.(8分)已知关于x的方程x2+(2k﹣1)x+k2﹣1=0有两个实数根x1,x2.(1)求k的取值范围;(2)若x1,x2满足x1x2+x1+x2=3,求k的值.24.(8分)如图所示,在△ABC中,AC=8cm,BC=6cm;在△ABE中,DE为AB边上的高,DE=12cm,△ABE的面积S=60cm2.(1)求出AB边的长;(2)你能求出∠C的度数吗?请试一试.25.(10分)如图,为美化环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为a米.(1)用含a的式子表示花圃的面积;(2)如果通道所占面积是整个长方形空地面积的,求出此时通道的宽.26.(10分)2016年,市区某楼盘以每平方米6000元的均价对外销售.因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2018年的均价为每平方米4860元.(1)求平均每年下调的百分率;(2)假设2019年的均价仍然下调相同的百分率,张强准备购买一套100平方米的住房,他持有现金15万元,可以在银行贷款30万元,张强的愿望能否实现?请说明理由.(房价每平方米按照均价计算)2018-2019学年广西贺州市昭平县八年级(下)期中数学试卷参考答案与试题解析一、选择题:(每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题意的,请把符合题意的序号号填在该题中的括号内)1.(3分)使二次根式的有意义的x的取值范围是()A.x>0B.x>1C.x≥1D.x≠1【分析】根据中a≥0得出不等式,求出不等式的解即可.【解答】解:要使有意义,必须x﹣1≥0,解得:x≥1.故选:C.【点评】本题考查了二次根式有意义的条件,解一元一次不等式的应用,解此题的关键是得出关于x的不等式,难度适中.2.(3分)方程x2+2x﹣3=0的二次项系数、一次项系数、常数项分别是()A.1,2,3B.1,2,﹣3C.1,﹣2,3D.﹣1,﹣2,3【分析】找出方程的二次项系数,一次项系数,以及常数项即可.【解答】解:方程x2+2x﹣3=0的二次项系数、一次项系数、常数项分别是1,2,﹣3,故选:B.【点评】此题考查了一元二次方程的一般形式,其一般形式为ax2+bx+c=0(其中a,b,c为常数,且a≠0).3.(3分)用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为()A.(x+3)2=1B.(x﹣3)2=1C.(x+3)2=19D.(x﹣3)2=19【分析】方程移项变形后,利用完全平方公式化简得到结果,即可做出判断.【解答】解:方程移项得:x2﹣6x=10,配方得:x2﹣6x+9=19,即(x﹣3)2=19,故选:D.【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.4.(3分)下列是勾股数的一组是()。

八年级下册数学期中考试试题【含答案】

八年级下册数学期中考试试题【含答案】

八年级下册数学期中考试试题【含答案】一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选择项中,只有一项是符合题目要求的)1.(3分)若代数式有意义,则x的取值范围()A.x≥5B.x≤5C.x>5D.x<52.(3分)在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,下列结论中不正确的是()A.如果∠A﹣∠B=∠C,那么△ABC是直角三角形B.如果a2=b2﹣c2,那么△ABC是直角三角形且∠C=90°C.如果∠A:∠B:∠C=1:3:2,那么△ABC是直角三角形D.如果a2:b2:c2=9:16:25,那么△ABC是直角三角形3.(3分)在、、、、中,最简二次根式的个数是()A.1B.2C.3D.44.(3分)下列命题的逆命题正确的是()①对顶角相等;②同位角相等,两直线平行;③若a=b,则=.A.0个B.1个C.2个D.3个5.(3分)下列算式正确的是()A.B.C.D.6.(3分)如图,在周长为20cm的▱ABCD中,AB≠AD,对角线AC、BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为()A.4cm B.6cm C.8cm D.10cm7.(3分)如图,在四边形ABCD中,点P是对角线BD的中点,点E、F分别是AB、CD 的中点,AD=BC,∠PEF=30°,则∠PFE的度数是()A.15°B.20°C.25°D.30°8.(3分)如图,在平面直角坐标系中,以O(0,0),A(1,1),B(3,0)为顶点,构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是()A.(﹣3,1)B.(4,1)C.(﹣2,1)D.(2,﹣1)9.(3分)如图,下列四组条件中,能判定▱ABCD是正方形的有()①AB=BC,∠A=90°;②AC⊥BD,AC=BD;③OA=OD,BC=CD;④∠BOC=90°,∠ABD=∠DCA.A.1个B.2个C.3个D.4个10.(3分)一位工人师傅测量一个等腰三角形工件的腰,底及底边上的高,并按顺序记录下数据,量完后,不小心与其他记录的数据记混了,请你帮助这位师傅从下列数据中找出等腰三角形工件的数据()A.13,10,10B.13,10,12C.13,12,12D.13,10,11二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)若实数a、b满足|a+2|,则=.12.(3分)如图,在直角三角形ABC中,斜边上的中线CD=AC,则∠B等于.13.(3分)若5+的整数部分是a,则a=.14.(3分)已知矩形的面积是,其中一边长为,则对角线长为.15.(3分)如图,将平行四边形ABCD的边DC延长到E,使CE=CD,连接AE交BC 于F,∠AFC=n∠D,当n=时,四边形ABEC是矩形.16.(3分)如图是根据某公园的平面示意图建立的平面直角坐标系,公园的入口位于坐标原点O,古塔位于点A(400,300),从古塔出发沿射线OA方向前行300m是盆景园B,从盆景园B向左转90°后直行400m到达梅花阁C,则点C的坐标是.三、解答题(本大题共9题,共72分,解答应写出文字说明、证明过程或演算步骤.)17.(6分)计算:(1)+(2)(2)()18.(6分)实数a,b在数轴上的位置如图所示,化简.19.(6分)如图,在▱ABCD中,点O是对角线AC、BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=BC,求证:四边形OCFE是平行四边形.20.(10分)如图,在由边长为1的小正方形组成的网格中,三角形ABC的三个顶点均在格点上,请按要求完成下列各题:(1)画出AD∥BC且AD=BC(要求D在网格图中),连接CD;(2)判断三角形ABC的形状,并说明理由;(3)若E为BC中点,F为AD中点,四边形AECF是什么特殊的四边形?请说明理由.21.(8分)如图,四边形ABCD是矩形,E为AD上一点,且∠CBD=∠EBD,P为对角线BD上一点,PN⊥BE于点N,PM⊥AD于点M.(1)求证:BE=DE;(2)试判断AB和PM,PN的数量关系并说明理由.22.(8分)如图,在平行四边形ABCD中,点P为边AB上一点,将△CBP沿CP翻折,点B的对应点B'恰好落在DA的延长线上,且PB'⊥AD,若CD=3,BC=4.(1)求证:∠DCB′=90°;(2)求BP的长度.23.(8分)先阅读下列材料,再解决问题:阅读材料:数学上有一种根号内又带根号的数,它们能通过完全平方公式及二次根式的性质化去一层根号.例如:====|1+|=1+解决问题:①模仿上例的过程填空:=====②根据上述思路,试将下列各式化简.(1)(2).24.(8分)定义:有一个内角为90°,且对角线相等的四边形称为准矩形.(1)如图1,正方形ABCD中,点E、F分别是边AD、AB上的点,且CF⊥BE,求证:四边形BCEF是准矩形;(2)如图2,准矩形ABCD中,M、N分别AD、BC边上的中点,若AC=MN,求AB2、BC2、CD2、AD2之间的关系.25.(12分)如图,在菱形ABCD中,对角线AC与BD交于点O,且AC=8,BD=6,现有两动点M、N分别从A、C同时出发,点M沿线段AB向终点B运动,点N沿折线C ﹣D﹣A向终点A运动,当其中一点到达终点时,另一点也随之停止运动,设运动时间为t(秒).(1)填空:AB=;菱形ABCD的面积S=;菱形的高h=.(2)若点M的速度为每秒1个单位,点N的速度为每秒2个单位,连接AN、MN.当0<t<2.5时,是否存在t的值,使△AMN为等腰直角三角形?若存在,请求出t的值;若不存在,请说明理由.(3)若点M的速度为每秒1个单位,点N的速度为每秒a个单位(其中a<),当t =4时在平面内存在点E使得以A、M、N、E为顶点的四边形为菱形,请求出所有满足条件的a的值.2017-2018学年广东省实验中学八年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个选择项中,只有一项是符合题目要求的)1.(3分)若代数式有意义,则x的取值范围()A.x≥5B.x≤5C.x>5D.x<5【分析】直接利用二次根式有意义的条件分析得出答案.【解答】解:代数式有意义,则x﹣5>0,解得:x>5.故选:C.【点评】此题主要考查了二次根式有意义的条件,正确把握二次根式的定义是解题关键.2.(3分)在△ABC中,∠A,∠B,∠C的对边分别记为a,b,c,下列结论中不正确的是()A.如果∠A﹣∠B=∠C,那么△ABC是直角三角形B.如果a2=b2﹣c2,那么△ABC是直角三角形且∠C=90°C.如果∠A:∠B:∠C=1:3:2,那么△ABC是直角三角形D.如果a2:b2:c2=9:16:25,那么△ABC是直角三角形【分析】根据勾股定理的逆定理、三角形内角和定理、直角三角形的判定定理解得即可.【解答】解:如果∠A﹣∠B=∠C,那么△ABC是直角三角形,A正确;如果a2=b2﹣c2,那么△ABC是直角三角形且∠B=90°,B错误;如果∠A:∠B:∠C=1:3:2,设∠A=x,则∠B=2x,∠C=3x,则x+3x+2x=180°,解得,x=30°,则3x=90°,那么△ABC是直角三角形,C正确;如果a2:b2:c2=9:16:25,则如果a2+b2=c2,那么△ABC是直角三角形,D正确;故选:B.【点评】本题考查的是勾股定理的逆定理的应用,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.3.(3分)在、、、、中,最简二次根式的个数是()A.1B.2C.3D.4【分析】根据最简二次根式的定义对二次根式分析判断即可得.【解答】解:在所列二次根式中,最简二次根式有,这2个,故选:B.【点评】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.4.(3分)下列命题的逆命题正确的是()①对顶角相等;②同位角相等,两直线平行;③若a=b,则=.A.0个B.1个C.2个D.3个【分析】分别写出各个命题的逆命题后再判断其正确或错误,即确定它是真命题还是假命题.【解答】解:①“对顶角相等”的逆命题是“相等的角是对顶角”,相等的角不一定是对顶角,所以逆命题错误,故是假命题;②“同位角相等,两直线平行”的逆命题是“两直线平行,同位角相等”正确,故是真命题;③“若a=b,则=”的逆命题是“若=,则a=b”正确,故是真命题.故选:C.【点评】主要考查了逆命题和真假命题的定义.对事物做出判断的语句叫做命题,正确的命题叫做真命题,错误的命题叫做假命题.举出反例能有效的说明该命题是假命题.5.(3分)下列算式正确的是()A.B.C.D.【分析】根据二次根式的加减运算顺序和运算法则计算可得.【解答】解:A.、不是同类二次根式,不能合并;B.3﹣2=,此选项错误;C.3+3=6,此选项正确;D.==,此选项错误;故选:C.【点评】本题主要考查二次根式的加减法,解题的关键是掌握二次根式的加减运算顺序和运算法则.6.(3分)如图,在周长为20cm的▱ABCD中,AB≠AD,对角线AC、BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为()A.4cm B.6cm C.8cm D.10cm【分析】根据线段垂直平分线的性质可知BE=DE,再结合平行四边形的性质即可计算△ABE的周长.【解答】解:根据平行四边形的性质得:OB=OD,∵EO⊥BD,∴EO为BD的垂直平分线,根据线段的垂直平分线上的点到两个端点的距离相等得:BE=DE,∴△ABE的周长=AB+AE+DE=AB+AD=×20=10cm.故选:D.【点评】此题主要考查了平行四边形的性质及全等三角形的判定及性质,还利用了中垂线的判定及性质等,考查面积较广,有一定的综合性.7.(3分)如图,在四边形ABCD中,点P是对角线BD的中点,点E、F分别是AB、CD 的中点,AD=BC,∠PEF=30°,则∠PFE的度数是()A.15°B.20°C.25°D.30°【分析】根据中位线定理和已知,易证明△EPF是等腰三角形.【解答】解:∵在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,∴FP,PE分别是△CDB与△DAB的中位线,∴PF=BC,PE=AD,∵AD=BC,∴PF=PE,故△EPF是等腰三角形.∵∠PEF=30°,∴∠PEF=∠PFE=30°.故选:D.【点评】本题考查了三角形中位线定理及等腰三角形的性质,解题时要善于根据已知信息,确定应用的知识.8.(3分)如图,在平面直角坐标系中,以O(0,0),A(1,1),B(3,0)为顶点,构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是()A.(﹣3,1)B.(4,1)C.(﹣2,1)D.(2,﹣1)【分析】所给点的纵坐标与A的纵坐标相等,说明这两点所在的直线平行于x轴,这两点的距离为:1﹣(﹣3)=4;点O和点B的纵坐标相等,这两点所在的直线平行于x 轴,这两点的距离为:3﹣0,相对的边平行,但不相等,所以A选项的点不可能是行四边形顶点坐标.【解答】解:因为经过三点可构造三个平行四边形,即▱AOBC1、▱ABOC2、▱AOC3B.根据平行四边形的性质,可知B、C、D正好是C1、C2、C3的坐标,故选:A.【点评】理解平行四边形的对边平行且相等,是判断本题的关键.9.(3分)如图,下列四组条件中,能判定▱ABCD是正方形的有()①AB=BC,∠A=90°;②AC⊥BD,AC=BD;③OA=OD,BC=CD;④∠BOC=90°,∠ABD=∠DCA.A.1个B.2个C.3个D.4个【分析】根据平行四边形的性质,矩形、菱形以及正方形的判定方法对各组条件进行判断即可得出答案.【解答】解:①AB=BC,∠A=90°;根据有一个角是直角且有一组邻边相等的平行四边形是正方形,能判定▱ABCD是正方形,故此选项正确;②AC⊥BD,AC=BD;由对角线互相垂直的平行四边形是菱形,对角线相等的平行四边形是矩形,既是菱形又是矩形的四边形是正方形,能判定▱ABCD是正方形,故此选项正确;③OA=OD,BC=CD;由ABCD是平行四边形,可得AC与BD互相平分,而OA=OD,所以AC=BD,对角线相等的平行四边形是矩形,有一组邻边相等的平行四边形是菱形,既是矩形又是菱形的四边形是正方形,能判定▱ABCD是正方形,故此选项正确;④∠BOC=90°,∠ABD=∠DCA;由∠BOC=90°,根据对角线互相垂直的平行四边形是菱形,可得▱ABCD是菱形;由ABCD是平行四边形,可得AC与BD互相平分,AB∥CD,则∠ABD=∠CDB=∠DCA,所以OC=OD,又对角线相等的平行四边形是矩形,既是菱形又是矩形的四边形是正方形,能判定▱ABCD是正方形,故此选项正确.故选:D.【点评】本题主要考查了正方形的判别方法,正方形的判定方法有:①先判定四边形是矩形,再判定这个矩形有一组邻边相等;②先判定四边形是菱形,再判定这个菱形有一个角为直角;③还可以先判定四边形是平行四边形,再用1或2进行判定.10.(3分)一位工人师傅测量一个等腰三角形工件的腰,底及底边上的高,并按顺序记录下数据,量完后,不小心与其他记录的数据记混了,请你帮助这位师傅从下列数据中找出等腰三角形工件的数据()A.13,10,10B.13,10,12C.13,12,12D.13,10,11【分析】根据等腰三角形的三线合一,得底边上的高也是底边上的中线.根据勾股定理知:底边的一半的平方加上高的平方应等于腰的平方,即可得出正确结论.【解答】解:由题可知,在等腰三角形中,底边的一半、底边上的高以及腰正好构成一个直角三角形,且()2+122=132,符合勾股定理,故选B.【点评】考查了等腰三角形的三线合一以及勾股定理的逆定理.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)若实数a、b满足|a+2|,则=1.【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【解答】解:根据题意得:,解得:,则原式==1.故答案是:1.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.12.(3分)如图,在直角三角形ABC中,斜边上的中线CD=AC,则∠B等于30°.【分析】根据直角三角形斜边上的中线等于斜边的一半求出CD=AD,得到△ADC是等边三角形,求出∠A的度数,根据直角三角形两锐角互余求出∠B的度数.【解答】解:∵CD是斜边AB上的中线,∴CD=AD,又CD=AC,∴△ADC是等边三角形,∴∠A=60°,∴∠B=90°﹣∠A=30°.故答案为:30°.【点评】本题考查的是直角三角形的性质和等边三角形的性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.13.(3分)若5+的整数部分是a,则a=7.【分析】根据的取值范围进行估计解答即可.【解答】解:∵2<<3,∴7<5+<8,∴5+的整数部分是a=7,故答案为:7【点评】此题主要考查了估算无理数的大小,正确得出的取值范围是解题关键.14.(3分)已知矩形的面积是,其中一边长为,则对角线长为.【分析】先运用矩形面积公式求出它的另一边,再运用勾股定理求出对角线即可.【解答】解:∵矩形的面积是,其中一边长为,∴另一边=,∴对角线长=,故答案为:【点评】考查了二次根式的应用,关键是根据矩形的性质和勾股定理求出对角线.15.(3分)如图,将平行四边形ABCD的边DC延长到E,使CE=CD,连接AE交BC 于F,∠AFC=n∠D,当n=2时,四边形ABEC是矩形.【分析】首先根据四边形ABCD是平行四边形,得到四边形ABEC是平行四边形,然后证得FC=FE,利用对角线互相相等的四边形是矩形判定四边形ABEC是矩形.【解答】解:当∠AFC=2∠D时,四边形ABEC是矩形.∵四边形ABCD是平行四边形,∴BC∥AD,∠BCE=∠D,由题意易得AB∥EC,AB=EC,∴四边形ABEC是平行四边形.∵∠AFC=∠FEC+∠BCE,∴当∠AFC=2∠D时,则有∠FEC=∠FCE,∴FC=FE,∴四边形ABEC是矩形,故答案为:2.【点评】此题考查了平行四边形的性质以及矩形的判定.此题难度适中,注意掌握数形结合思想的应用,解题的关键是了解矩形的判定定理.16.(3分)如图是根据某公园的平面示意图建立的平面直角坐标系,公园的入口位于坐标原点O,古塔位于点A(400,300),从古塔出发沿射线OA方向前行300m是盆景园B,从盆景园B向左转90°后直行400m到达梅花阁C,则点C的坐标是(400,800).【分析】根据题意结合全等三角形的判定与性质得出△AOD≌△ACB(SAS),进而得出C,A,D也在一条直线上,求出CD的长即可得出C点坐标.【解答】解:连接AC,由题意可得:AB=300m,BC=400m,在△AOD和△ACB中∵,∴△AOD≌△ACB(SAS),∴∠CAB=∠OAD,∵B、O在一条直线上,∴C,A,D也在一条直线上,∴AC=AO=500m,则CD=AC+AD=800m,∴C点坐标为:(400,800).故答案为:(400,800).【点评】此题主要考查了全等三角形的判定与性质以及勾股定理,得出C,A,D也在一条直线上是解题关键.三、解答题(本大题共9题,共72分,解答应写出文字说明、证明过程或演算步骤.)17.(6分)计算:(1)+(2)(2)()【分析】(1)先化简二次根式,再计算乘法,最后合并同类二次根式即可得;(2)先化简二次根式,再利用平方差公式计算可得.【解答】解:(1)原式=4×+=3+;(2)原式=(2﹣2)(2+2)=(2)2﹣(2)2=20﹣12=8.【点评】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算顺序和运算法则.18.(6分)实数a,b在数轴上的位置如图所示,化简.【分析】先根据数轴得出b﹣1>0,a﹣b<0,再根据=|a|和绝对值的性质化简可得.【解答】解:由数轴知a<1<b,∴b﹣1>0,a﹣b<0,则原式=|a|﹣|b﹣1|﹣|a﹣b|=﹣a﹣(b﹣1)﹣(b﹣a)=﹣a﹣b+1﹣b+a=1.【点评】本题主要考查二次根式的性质与化简,解题的关键是掌握=|a|和绝对值的性质.19.(6分)如图,在▱ABCD中,点O是对角线AC、BD的交点,点E是边CD的中点,点F在BC的延长线上,且CF=BC,求证:四边形OCFE是平行四边形.【分析】利用三角形中位线定理判定OE∥BC,且OE=BC.结合已知条件CF=BC,则OE CF,由“有一组对边平行且相等的四边形为平行四边形”证得结论.【解答】证明:如图,∵四边形ABCD是平行四边形,∴点O是BD的中点.又∵点E是边CD的中点,∴OE是△BCD的中位线,∴OE∥BC,且OE=BC.又∵CF=BC,∴OE=CF.又∵点F在BC的延长线上,∴OE∥CF,∴四边形OCFE是平行四边形.【点评】本题考查了平行四边形的性质和三角形中位线定理.此题利用了“平行四边形的对角线互相平分”的性质和“有一组对边平行且相等的四边形为平行四边形”的判定定理.20.(10分)如图,在由边长为1的小正方形组成的网格中,三角形ABC的三个顶点均在格点上,请按要求完成下列各题:(1)画出AD∥BC且AD=BC(要求D在网格图中),连接CD;(2)判断三角形ABC的形状,并说明理由;(3)若E为BC中点,F为AD中点,四边形AECF是什么特殊的四边形?请说明理由.【分析】(1)利用平移的性质画出图象即可;(2)利用勾股定理等逆定理证明;(3)根据平行四边形的判定定理证明即可.【解答】解:(1)如图所示.(2)△ABC是直角三角形,理由:∵AB=,AC=2,BC=5,∴AB2+AC2=BC2,∴△ABC是直角三角形,(3)四边形AECF是平行四边形,理由:∵E为BC中点,∴AE=BC,∵F为AD中点,∴AF=AD,∵AD=BC,AD∥BC,∴AF=BE,AF∥BE,∴四边形AECF是平行四边形.【点评】本题考查了勾股定理的逆定理,平行线的性质、平行四边形的判定和性质、勾股定理、直角三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.21.(8分)如图,四边形ABCD是矩形,E为AD上一点,且∠CBD=∠EBD,P为对角线BD上一点,PN⊥BE于点N,PM⊥AD于点M.(1)求证:BE=DE;(2)试判断AB和PM,PN的数量关系并说明理由.【分析】(1)由矩形的性质得出∠ADB=∠CBD,由已知条件∠CBD=∠EBD,证出∠ADB=∠EBD,即可得出结论;(2)延长MP交BC于Q,先由角的平分线性质得出PQ =PN,再由AB=MQ,即可得出结论.【解答】(1)证明:∵四边形ABCD是矩形,∴AD∥BC,∴∠ADB=∠CBD,∵∠CBD=∠EBD,∴∠ADB=∠EBD,∴BE=DE;(2)解:PM+PN=AB;理由如下:延长MP交BC于Q,如图所示:∵AD∥BC,PM⊥AD,∴PQ⊥BC,∵∠CBD=∠EBD,PN⊥BE,∴PQ=PN,∴AB=MQ=PM+PQ=PM+PN.【点评】本题考查了矩形的性质、平行线的性质以及角平分线的性质;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.22.(8分)如图,在平行四边形ABCD中,点P为边AB上一点,将△CBP沿CP翻折,点B的对应点B'恰好落在DA的延长线上,且PB'⊥AD,若CD=3,BC=4.(1)求证:∠DCB′=90°;(2)求BP的长度.【分析】(1)由折叠的性质可得:PB′=PB,∠PB′C=∠B,又由在平行四边形ABCD 中,PB′⊥AD,求得△B′CD是直角三角形;(2)根据勾股定理求得DB′的长,然后设BP=x,在Rt△AB′P中,利用勾股定理即可求得答案.【解答】解:(1)由折叠的性质可得:PB′=PB,∠PB′C=∠B,∵四边形ABCD是平行四边形,PB′⊥AD,∴∠B=∠D,∠PB′A=90°,∴∠D+∠CB′D=90°,∴∠DCB′=90°,(2)∵CD=3,BC=4,∴AD=B′C=BC=4,∴DB′==5,∴AB′=DB′﹣AD=1,设BP=x,则PB′=x,PA=3﹣x,在Rt△AB′P中,PA2=AB′2+PB′2,∴x2+12=(3﹣x)2,解得:x=,∴BP=.【点评】本题考查了轴对称﹣最短问题,勾股定理,菱形的性质等知识点的应用,关键是理解题意确定出P的位置和求出DE=PE+PB,题目比较典型,综合性比较强,主要培养学生的计算能力.23.(8分)先阅读下列材料,再解决问题:阅读材料:数学上有一种根号内又带根号的数,它们能通过完全平方公式及二次根式的性质化去一层根号.例如:====|1+|=1+解决问题:①模仿上例的过程填空:====|3+|=3+②根据上述思路,试将下列各式化简.(1)(2).【分析】①模仿阅读材料的方法将原式变形,计算即可得到结果;②仿照以上方法将各式化简即可.【解答】解:①原式====|3+|=3+;故答案为:;;|3+|;3+;②(1)原式===|5﹣|=5﹣;(2)原式===|+|=+.【点评】此题考查了二次根式的性质与化简,熟练掌握运算法则是解本题的关键.24.(8分)定义:有一个内角为90°,且对角线相等的四边形称为准矩形.(1)如图1,正方形ABCD中,点E、F分别是边AD、AB上的点,且CF⊥BE,求证:四边形BCEF是准矩形;(2)如图2,准矩形ABCD中,M、N分别AD、BC边上的中点,若AC=MN,求AB2、BC2、CD2、AD2之间的关系.【分析】(1)先利用正方形的性质判断出△ABE≌△BCF即可;(2)连接AN、DN,过点C作CE∥BD,过点B作BE∥DC则四边形BECD为平行四边形,连接DE,则D、N、E三点共线,过点B作BF⊥CE于F,过点D作DG⊥EC交EC延长线于点G,证明△BEF≌△DCG,得出BF=DG,EF=CG,由勾股定理得出BC2=BF2+FC2=BF2+(EC﹣EF)2,DE2=DG2+EG2=DG2+(EC+CG)2=BF2+(EC+EF)2,得出BC2+DE2=2BD2+2CD2,得出BC2+4DN2=2BD2+2CD2,DN2=(2BD2+2CD2﹣BC2),同理:AN2=(2AB2+2AC2﹣BC2),MN2=(2AN2+2DN2﹣AD2)=AC2+(AB2+CD2﹣BC2﹣AD2),由已知得出MN2=AC2,MN2=MN2+(AB2+CD2﹣BC2﹣AD2),即可得出结论.【解答】(1)证明:∵四边形ABCD是正方形,∴AB=BC∠A=∠ABC=90°,∴∠EAF+∠EBC=90°,∵BE⊥CF,∴∠EBC+∠BCF=90°,∴∠EBF=∠BCF,∴△ABE≌△BCF,∴BE=CF,∴四边形BCEF是准矩形;(2)解:连接AN、DN,过点C作CE∥BD,过点B作BE∥DC,则四边形BECD为平行四边形,连接DE,则D、N、E三点共线,过点B作BF⊥CE于F,过点D作DG⊥EC交EC延长线于点G,如图2所示:∵四边形BECD为平行四边形,∴BE=DC,BE∥DC,ED=2DN,∴∠BEF=∠DCG,在△BEF和△DCG中,,∴△BEF≌△DCG(AAS),∴BF=DG,EF=CG,在Rt△BFC中,BC2=BF2+FC2=BF2+(EC﹣EF)2,在Rt△DEG中,DE2=DG2+EG2=DG2+(EC+CG)2=BF2+(EC+EF)2,∴BC2+DE2=2BF2+2EC2+2EF2=2(BF2+EF2)+2EC2=2BE2+2EC2=2BD2+2CD2,∴BC2+4DN2=2BD2+2CD2,∴DN2=(2BD2+2CD2﹣BC2),同理:AN2=(2AB2+2AC2﹣BC2),MN2=(2AN2+2DN2﹣AD2)=(BD2+CD2﹣BC2+AB2+AC2﹣BC2﹣AD2)=(AC2+CD2﹣BC2+AB2+AC2﹣BC2﹣AD2)=AC2+(AB2+CD2﹣BC2﹣AD2),∵AC=MN,∴MN2=AC2,∴MN2=MN2+(AB2+CD2﹣BC2﹣AD2),即:(AB2+CD2﹣BC2﹣AD2)=0,∴AB2+CD2=BC2+AD2.【点评】此题考查了新定义,平行四边形的判定与性质、正方形的性质、勾股定理、全等三角形的判定与性质等知识;本题综合性强,难度较大.25.(12分)如图,在菱形ABCD中,对角线AC与BD交于点O,且AC=8,BD=6,现有两动点M、N分别从A、C同时出发,点M沿线段AB向终点B运动,点N沿折线C ﹣D﹣A向终点A运动,当其中一点到达终点时,另一点也随之停止运动,设运动时间为t(秒).(1)填空:AB=5;菱形ABCD的面积S=24;菱形的高h=.(2)若点M的速度为每秒1个单位,点N的速度为每秒2个单位,连接AN、MN.当0<t<2.5时,是否存在t的值,使△AMN为等腰直角三角形?若存在,请求出t的值;若不存在,请说明理由.(3)若点M的速度为每秒1个单位,点N的速度为每秒a个单位(其中a<),当t =4时在平面内存在点E使得以A、M、N、E为顶点的四边形为菱形,请求出所有满足条件的a的值.【分析】(1)AB由勾股定理直接求出,菱形面积为对角线之积的一半,还可以表示为边长×高,由此可得高h的长;(2)当0<t<2.5时,M在边AB上,N在边CD上,当∠AMN=90°时,如图1所示,因为t<,此种情况不成立,可得结论;(3)t=4,时间固定,AM的长度也就固定,A、M、N、E四点要形成菱形,分两大类情况,第一类以AM为边,这种情况可以画两种菱形;第二类以AM为对角线,只有一种.因此共三种情况,分别计算.【解答】解:(1)∵四边形ABCD是菱形,AC与BD交于点O,AC=8,BD=6,∴AO=CO=4,BO=DO=3,AC⊥BD,∴AB=5,设菱形的高为h,则菱形ABCD的面积为×8×6=AB×h=24,∴h=,故答案为:5,24,;(2)当0<t<2.5时,M在边AB上,N在边CD上,当∠AMN=90°时,如图1所示,由(1)知:MN=,当AM=t=时,AM=MN,所以此种情况不成立,∴当0<t<2.5时,不存在t的值,使△AMN为等腰直角三角形;(3)当t=4时,AM=4,①如图2,四边形AMEN为菱形,∴AN=AM=4,∴ND+CD=10﹣4=6,∴4a=6,a=.②如图3,AENM为菱形,EM交AN于点R,作DP垂直BC于P,∵菱形面积为24,∴DP=4.8,∴CP=,∵∠MAR=∠BCD∴∠AMR=∠PDC∴sin∠AMR=sin∠PDC∴,∴AR=1.12,∴AN=2.24,∴a=(ND+CD)÷4=(10﹣2.24)÷4=1.94,③如图4,AEMN为菱形,EN交AM于点T,作BS垂直CD于S,则AT=MT=2,∴BT=NS=5﹣2=3,∵BS =4.8, ∴CS =1.4,∴CN =NS +CS =1.4+3=4.4, ∴a =CN ÷4=4.4÷4=1.1;综上所述,a 的取值有 1.5或1.94或1.4.【点评】本题考查了菱形的性质、相似三角形的判定与性质、勾股定理、面积计算,分类讨论等重要知识点和技能,综合性和技巧性很强,计算量也较大,对学生的能力要求较高,是一道经典压轴题.人教版八年级第二学期下册期中模拟数学试卷【答案】一、选择题:(本大题 12 个小题,每小题 4 分,共 48 分)在每个小题的下面,都给出了代号为 A 、 B 、 C 、 D 的四个答案,其中只有一个是正确的,请将正确答案的代号填入答题卷中对应的表格内 .1.下列“表情图”中,属于轴对称图形的是( )A. B. C. D.2. 已知一个三角形的两边长为3cm 和5cm,则此三角形的第三边长可能是 ( ) A .1cm B .2cm C .3cm D .8cm 3.下列式子中,一定成立的是( )A .2a a a =⋅ B .23325a a a += C .321a a ÷= D .()22ab ab =4.若一个多边形内角和等于540°,则该多边形边数是( ) A .4 B .5 C .6 D .75.一个等腰三角形两边的长分别为4和9,那么这个三角形的周长是( ) A .13 B .17 C .22 D .17或226.如图,已知点A D C F 、、、在同一条直线上,AB DE =,BC EF =,要使ABC DEF △≌△,还需要添加一个条件是( )A .BCA F ∠=∠B .B E ∠=∠C .BC EF ∥D .A EDF ∠=∠ 7.如图,在平面直角坐标系xOy 中,点P(-3,5)关于y 轴的对称点的坐标为( ) A.(3-,5-) B.(3,5) C.(3,5-) D.(5,3-)8. 如图,△ABC 中,AB =AC ,点D 在AC 边上,且BD=BC=AD,则∠A 的度数是( ) A .18° B .24° C .30° D .36°9.如图,直线DE 是ABC △的边AB 的垂直平分线,已知5cm AC =,ADC △的周长为17cm ,则BC 的长为( ).A .7cmB .10cmC .12cmD .22cmA10.已知: 3x=2,9y=3,则3x+2y的值为( )A .1B .4C .5D .611.在下列去括号或添括号的变形中,错误的是( ).A .a-(b-c)=a-b+cB .a-b+c=a-(b+c)C .(a+1)-(b-c)=a+1-b+cD .a-b+c-d=a-(b-c+d)12.等腰△ABC 中,AB =AC ,一边上的中线BD 将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为( )A .7B .11C .7或11D .7或10二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡(卷)中对应的横线上。

河北省石家庄市石家庄外国语教育集团2023-2024学年八年级下学期期中数学试题(解析版)

河北省石家庄市石家庄外国语教育集团2023-2024学年八年级下学期期中数学试题(解析版)

2023—2024学年第二学期八年级期中考试 数学 学科试卷(满分120分,考试时间120分钟)一.选择题(共16小题,1-10小题各3分,11-16小题各2分,共42分)1. 在平面直角坐标系中,所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】C【解析】【分析】本题主要考查了各象限内点的坐标的符号特征,熟记各象限内点的坐标的符号特征是解答的关键.根据各象限内的点坐标的符号特征:在第三象限即可解答.【详解】解:∵,∴点所在的象限是第三象限.故选:C .2. 下面的多边形中,内角和等于外角和的是( )A. B. C. D.【答案】B【解析】【分析】本题主要考查多边形的内角和,外角和,三角形内角和,任意多边形的外角和都等于,所以当内角和等于外角和时,内角和等于,利用公式求出多边形内角和即可.【详解】解:A 、三角形的内角和等于,任意多边形的外角和等于,故三角形的内角和与外角和不相等,那么A 不符合题意;B 、四边形的内角和等于,任意多边形的外角和等于,故四边形的内角和和外角和相等,那么B 符合题意;C 、五边形的内角和等于,任意多边形的外角和等于,故五边形的内角和与外角和不相等,那么C 不符合题意;D 、六边形的内角和等于,任意多边形的外角和等于,故六边形的内角和与外角和不相等,那么D不符合题意;()2,1--(),--20-<-1<0,360︒360︒180︒360︒()42180360-⨯︒=︒360︒()52180540-⨯︒=︒360︒()62180720-⨯︒=︒360︒故选:B .3. 如图,货船与港口相距35海里,货船相对港口的位置用有序数对(南偏西,35海里)来描述,那么港口相对货船的位置可描述为( )A. (南偏西,35海里)B. (北偏西,35海里)C. (北偏东,35海里)D. (北偏东,35海里)【答案】D【解析】【分析】本题考查坐标确定位置,用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方向角时,一般先叙述北或南,再叙述偏东或偏西.以点B 为中心点,来描述点A 的方向及距离即可.【详解】解:由题意知货船A 相对港口B 的位置可描述为北偏东,35海里.故选:D .4. 某小区的圆形花园中间有两条互相垂直的小路,园丁在花园中栽种了8棵桂花树,A ,B 两处桂花树的位置关于小路对称.在如图所示的平面直角坐标系内,若点A 的坐标为,则点B 的坐标为( )A. B. C. D. 【答案】D【解析】【分析】本题考查关于y 轴对称点坐标特点.根据题意可知A ,B 关于y 轴对称,纵坐标不变,横坐标互为相反数,继而得到本题答案.B A B A 40︒A B 50︒40︒50︒40︒40︒(82)-,(28),(2,8)-(8,2)--(8),2【详解】解:∵A ,B 关于y 轴对称,点A 的坐标为,∴点B 的坐标为,故选:D .5. 在平行四边形中,,则等于( )A. B. C. D. 【答案】D【解析】【分析】本题主要考查了平行四边形的性质,先根据平行四边形对边平行推出,再由已知条件得到,则.【详解】解;∵四边形是平行四边形,∴,∴,∴,∵,∴,∴,故选;D .6. 已知正比例函数的图象如图所示,则这个函数的关系式为( )A. y =xB. y =﹣xC. y =﹣3xD. y =﹣x/3【答案】B【解析】【分析】根据正比例函数的待定系数法,即可求解.(82)-,(8),2ABCD 100A C ∠+∠=︒D ∠50︒80︒100︒130︒A C ∠=∠50A C ∠=∠=︒130D ∠=︒ABCD AB CD AD BC ∥,∥180AD C D +=︒=+∠∠∠∠A C ∠=∠100A C ∠+∠=︒50A C ∠=∠=︒130D ∠=︒【详解】设函数解析式为:y =kx (k≠0),∵图象经过(3,﹣3),∴﹣3=k×3,解得:k =﹣1,∴这个函数的关系式为:y =﹣x ,故选:B .【点睛】本题主要考查正比例函数的待定系数法,掌握待定系数法,是解题的关键.7. 如图,是边长为6的等边三角形,则A 点的坐标是( ).A. B. C. D. 【答案】C【解析】【分析】本题主要考查了等边三角形性质、勾股定理等知识点,灵活运用等边三角形的性质成为解题的关键.如图,过点A 作轴,根据等边三角形的性质可得,,再根据勾股定理求得,然后根据坐标系即可确定点A 的坐标.【详解】解:如图,过点A 作轴,∵是边长为6的等边三角形,∴,,∴,∴点A 的坐标是.的AOB ()3,4()3,4-(-(AD x ⊥6O A O B ==132BD OD AO ===AD =AD x ⊥AOB 6O A O B ==132BD OD AO ===AD ==(-8. 如图,在平行四边形中,,,将线段水平向右平移a 个单位长度得到线段,若四边形为菱形时,则a 的值为( )A. 1B. 2C. 3D. 4【答案】B【解析】【分析】首先根据平行四边形的性质得到,然后根据菱形的性质得到,然后求解即可.【详解】∵四边形是平行四边形,∴,∵四边形为菱形,∴,∵,∴,∴.故选:B .【点睛】此题考查了平行四边形和菱形的性质,平移的性质等知识,解题的关键是熟练掌握以上知识点.9. 如图,在平面直角坐标系中,已知点A (2,1),点B (3,﹣1),平移线段AB ,使点A 落在点(0,2)处,则点B 的对应点的坐标为( )A. (﹣1,﹣1)B. (1,0)C. (﹣1,0)D. (3,0)【答案】B ABCD 4AB =6BC =AB EF ECDF 4CD AB ==4EC CD ==ABCD 4CD AB ==ECDF 4EC CD ==6BC =2BE BC CE =-=2a =1A 1B【分析】由点A (2,1)平移后(0,2)可得坐标的平移方式,由此可得点B 的对应点的坐标.【详解】解:由点A (2,1)平移后(0,2)可得坐标的平移方式是:横坐标−2,纵坐标+1,∴点B (3,−1)的对应点的坐标(1,0).故选:B .【点睛】本题考查了图形与平移,关键是由点A (2,1)平移后(0,2)可得坐标的平移方式,由此可得点B 的对应点的坐标.10. 依据所标数据,下列一定为平行四边形的是( )A. B. C. D.【答案】C【解析】【分析】本题考查平行四边形的判定,掌握平行四边形的判定方法是解题的关键.根据平行四边形的判定定理判断即可.【详解】解:A .∵,,∴一组对边平行,另一组对边不平行,∴图中的四边形不可能是平行四边形,故A 不符合题意;B .由图中数据只能得到一组对边平行,不能判断四边形是平行四边形,故B 不符合题意;C .由图中数据可得两组对边分别相等,能判断四边形是平行四边形,故C 符合题意;D .由图中数据只能得到一组对边相等,不能判断四边形是平行四边形,故D 不符合题意.故选:C .11. 关于一次函数,下列说法正确的是( )A. 图象经过点B. 图象向上平移1个单位长度后得到函数解析式为C. 图象不经过第二象限D. 若两点在该函数图象上,则【答案】D的1A 1B 1A 1B 1A 1B 10080180︒+︒=︒11080190︒+︒=︒6y x =-+()2,15y x =-+()()121,,1,A y B y -12y y <【分析】本题考查了一次函数的几何变换,一次函数的性质,掌握函数的性质是解题的关键.把代入求出y 的值,即可判断A ;根据平移的性质即可判断B ;由,利用一次函数图象与系数的关系,可得出一次函数的图象经过第一、二、四象限,可判断C ;由,利用一次函数的性质,可得出y 随x 的增大而减小,即可判断D .【详解】解:A 、当时,,∴图象不经过点,故A 错误,不符合题意;B 、图象向上平移1个单位长度后得到的函数解析式为,故B 错误,不符合题意;C 、解:∵,∴一次函数的图象经过第一、二、四象限,∴一次函数的图象不经过第三象限,故C 错误,不符合题意;D 、∵,∴y 随x 的增大而减小,又∵点都在该函数图象上,∴,故D 正确,符合题意.故选:D .12. 如图,在矩形中,对角线,相交于点O ,,则矩形的周长为( )A. 12B. 16C.D. 2x =6y x =-+1060k b =-<=>,6y x =-+1060k b =-<=>,2x =2641y =-+=≠()2,17y x =-+1060k b =-<=>,6y x =-+6y x =-+1060k b =-<=>,()()121,,1,A y B y -12y y <ABCD AC BD 304ACB BD ∠=︒=,ABCD 2+4【解析】【分析】本题考查了矩形的性质、含的直角三角形的性质、勾股定理及矩形的周长,解题的关键是求得矩形的长和宽.先根据矩形的对角线相等可求得的长,然后再根据含角的直角三角形的性质求得矩形的宽,进一步根据勾股定理求得矩形的长,最后求得矩形的周长.【详解】∵矩形,∴,∵,∴,由勾股定理得:∴矩形的周长为:.故选:D .13. 若用图象法解二元一次方程组时所画的图象如图所示,则该方程组的解是()A. B. C. D. 【答案】A【解析】【分析】根据一次函数图象的交点写出方程组的解即可.【详解】解:∵解二元一次方程组时所画的图象交点为,∴方程组的解为,故选:A 30︒AC 30︒ABCD 90,4ABC AC BD ∠=︒==30ACB ∠=︒114222AB AC ==⨯=BC ===ABCD ()(2224AB BC +=⨯+=+y kx by mx n =+⎧⎨=+⎩12x y =-⎧⎨=⎩21x y =⎧⎨=-⎩13x y =-⎧⎨=⎩22x y =⎧⎨=⎩y kx by mx n =+⎧⎨=+⎩()1,2-y kx by mx n =+⎧⎨=+⎩12x y =-⎧⎨=⎩【点睛】此题考查了图象法解二元一次方程组,熟知根据图象交点即可得到方程组的解是解题的关键.14. 如图将正方形B 的一个顶点与正方形A 的对角线交点重合放置,已知正方形A 的边长为4,正方形B 的边长为3,则阴影部分面积是( )A. 3B. C. 4 D. 8【答案】C【解析】【分析】根据正方形的性质可得,,,再利用等量代换可得,从而可证,可得,再由求解即可.【详解】解:如图,∵四边形A 、B 是正方形,∴,,,∵,,∴,∴,∴,∴,∵,∴,故选:C.94==90DOE MON ∠∠︒OD OE ===45CDO FEO ∠∠︒=COD FOE ∠∠()COD FOE ASA ≌COD FOE S S = DOE S S = 阴影==90DOE MON ∠∠︒OD OE ===45CDO FEO ∠∠︒90COD DOF ∠+∠=︒=90FOE DOF ∠+∠︒=COD FOE ∠∠()COD FOE ASA ≌COD FOE S S = COD DOF DOF FOE DOE S S S S S S =+=+= 阴影4416A S =⨯=144DOE A S S S === 阴影15. 国内航空规定,乘坐飞机经济舱旅客所携带行李的重量x 与其运费y (元)之间是一次函数关系,其图象如图所示,那么旅客可携带的免费行李的最大重量为( )A. 20kgB. 25kgC. 28kgD. 30kg【答案】A【解析】【详解】试题分析:设携带行李的重量x 与其运费y (元)之间的函数关系式为y=kx+b ,由题意,得,解得:,∴y=30x-600.当y=0时,30x-600=0,∴x=20.故选A.考点:一次函数的应用.16. 如图,有六根长度相同的木条,小明先用四根木条制作了能够活动的菱形学具,他先将该活动学具调成图1所示菱形,测得,对角线,接着将该活动学具调成图2所示正方形,最后用剩下的两根木条搭成了如图3所示的图形,连接,则图3中的面积为( )30300{40600k b k b +=+=30{600k b ==-=60B ∠︒10cm AC =BE BCE ∆A. B. 50 C. D. 25【答案】D【解析】【分析】根据菱形的性质可知,过点作,交的延长线于点,根据等边三角形的性质可知,根据含角的直角三角形的性质可得的长,再根据的面积求解即可.【详解】解:图1连接,菱形中,,,是等边三角形,对角线,,,图3过点作,交的延长线于点,是等边三角形,,,,的面积,2cm 2cm 2cm 2cm 10cm BC =E EH BC ⊥BC H 30ECH ∠=︒30︒EH BCE 12BC EH =⋅AC ABCD AB BC =60B ∠=︒ ABC ∴ 10cm AC =10cm BC ∴=10cm CE BC ∴==E EH BC ⊥BC H DCE 60DCE ∴∠=︒30ECH ∴∠=︒15cm 2EH CE ∴==BCE ∴△21110525(cm )22BC EH =⋅=⨯⨯=故选:D【点睛】本题考查了正方形的性质,菱形的性质,等边三角形的性质,含30°角的直角三角形的性质,三角形的面积等,熟练掌握这些性质是解题的关键.二.填空题(共4小题,每小题3分,共12分)17. 函数 中,自变量x 的取值范围是__________.【答案】【解析】【分析】本题考查了二次根式有意义的条件,可得,解不等式即可,熟知根号下需要大于等于0,是解题的关键.【详解】解:根据二次根式的意义,有,解得,故自变量x 的取值范围是,故答案为:.18. 在周长为600米的三角形地块中修建如图所示的三条水渠,则水渠的总长为______米.【答案】300【解析】【分析】本题考查三角形中位线的的应用,根据“三角形中位线等于第三边的一半”即可求解.【详解】解:如图,周长为600米,分别为的中点,则均为的中位线,(米),即水渠的总长为300米,y =1x ≥10x -≥10x -≥1x ≥1x ≥1x ≥ABC ,,D E F ,,AB AC BC ,,DE EF DF ABC ∴()1160030022DE EF DF BC AB AC ++=++=⨯=故答案为:300.19. 已知y 与成正比例,当时,,则当时,y 的值是________.【答案】6【解析】【分析】设,把,代入,求出k 的值,确定x ,y 的关系式,然后把,代入解析式求对应的函数值即可.【详解】解:∵y 与成正比例,∴设,把,代入,可得∴,∴.则当时,.故答案为:6.【点睛】本题考查了正比例函数关系式为:,只需一组对应量就可确定解析式.也考查了给定自变量会求对应的函数值.20. 如图,在平面直角坐标系中,放置一平面镜,其中点的坐标分别为,,从点发射光线,其图象对应的函数解析式为.(1)若入射光线与平面镜有公共点,的取值范围是______.(2)规定横坐标与纵坐标均为整数的点是整点,光线经过镜面反射后,反射光1x +1x =4y =2x =()1y k x =+1x =4y =2x =1x +()1y k x =+1x =4y =()411k =+2k =()2122y x x =+=+2x =2226y =⨯+=()0y kx k =≠AB ,A B ()4,2()4,6()1,0C -()0,1y nx n n x =+≠≥-()0,1y nx n n x =+≠≥-AB n ()0,1y nx n n x =+≠≥-线与轴相交于点,点是整点的个数是______.【答案】①. ②. 7【解析】【分析】本题考查待定系数法求函数解析式,一次函数图象及性质,熟练掌握一次函数的性质是解答本题的关键.(1)先求出直线解析式,再求出直线解析式,即可求出本题答案;(2)作出点关于对称点,可知的坐标,作直线,,分别求出这两条直线与轴交点,则点坐标即在范围内,即可得到整数点的个数.【详解】(1)解:当入射光线经过时,则,解得,当入射光线经过时,则,,解得,入射光线与平面镜有公共点,的取值范围:;故答案为:.(2)作出点关于对称点,则,作直线,分别交轴于,,,设直线的直线解析式为,代入得:,y E E 2655n ≤≤CA CB C AB C 'C 'AC 'BC 'y E (0,1)y nx n n x =+≠≥-(4,2)A 42n n +=25n =(0,1)y nx n n x =+≠≥-(4,6)B 46n n +=65n = (0,1)y nx n n x =+≠≥-AB n ∴2655n ≤≤2655n ≤≤C AB C '(9,0)C 'AC 'BC 'y 1E 2E BC '()0y ax c a =+≠()()9,0,4,64690a c a c +=⎧⎨+=⎩解得:,设直线的直线解析式为,代入得:,解得:,反射光线与轴相交于点,点纵坐标的取值范围为:,点整点有:4,5,6,7,8,9,10,共7个.故答案为:7.三、解答题(本大题共7个小题,共66分,解答应写出文字说明、证明过程或演算步骤)21. 已知一次函数的图象经过,两点,如图所示.(1)求这个函数的表达式;(2)求这条直线与坐标轴围成的的面积;(3)当时,的取值范围是______.【答案】(1)(2)(3)65545a c ⎧=-⎪⎪⎨⎪=⎪⎩AC '111(0)y a x c a =+≠()()9,0,4,211114290a c a c +=⎧⎨+=⎩1125185a c ⎧=-⎪⎪⎨⎪=⎪⎩y E ∴E 185455y ≤≤∴E ()0,2A ()3,4B -AOC 0x ≥y 22y x =-+12y ≤【解析】【分析】本题考查了待定系数法求一次函数解析式:求一次函数,则需要两组,值.也考查了一次函数图象和性质.(1)利用待定系数法求一次函数解析式;(2)先求出点C 坐标,然后根据三角形面积公式计算;(3)根据一次函数的图象与性质求解.【小问1详解】设一次函数表达式为将,分别代入解得函数表达式为【小问2详解】中令;则,,,,,【小问3详解】当时,的取值范围是.22. 小红星期天从家里出发骑车去舅舅家做客,当她骑了一段路时,想起要买个礼物送给表弟,于是又折回到刚经过的一家商店,买好礼物后又继续骑车去舅舅家,如图是小红离家的距离与所用时间的关系示意图.根据图中提供的信息回答下列问题:的y kx b =+x y y kx b=+()0,2A ()3,4B -0234k b k b +=⎧⎨+=-⎩22k b =-⎧⎨=⎩∴22y x =-+22y x =-+0y =1x =()1,0C ∴1OC ∴=()0,2A 2OA ∴=1121122AOC S OA OC ∴=⋅=⨯⨯=△0x ≥y 2y ≤(1)小红在商店停留了______分钟,由于途中返回给表弟买礼物比直接去舅舅家多走了______米;(2)小红在整个骑车去舅舅家的途中,最快速度是______米分钟;(3)小红在骑车______分钟时,距离舅舅家300米.【答案】(1)4,1200(2)(3)4或【解析】【分析】本题主要考查了函数的图像、函数图像的应用等知识点,从函数图像上获取所需信息成为解题的关键.(1)根据题意以及图像可知,小红在商店停留了4分钟,小红途中返回给表弟买礼物多走了两个600米;(2)根据图像中的数据用路程除以所用的时间即可;(3)分开始去时和离开商店去时,两种情况分别根据图像解答即可.【小问1详解】解:小红在商店停留了的时间为分钟,小红途中返回给表弟买礼物多走了两个600米,即1200米.故答案为:4,1200.【小问2详解】解:在分钟时,速度为:(米/分钟);在分钟时,速度为:(米/分钟);在分钟时,速度为:0(米/分钟);在分钟时,(米/分钟),所以,小红在整个骑车去舅舅家的途中,最快速度是450米分钟.故答案为:450./45011331284-=02-12004300÷=48-()()120060084150-÷-=810-1214-()()15006001412450-÷-=【小问3详解】解:由函数图像可知小红4分钟时距离家1200米,即距离舅舅家300米;由函数图像可得:当小红再次离开商店时速度为米分钟,∴当小红再次离开商店后距离舅舅家距离300米的时间为:;故答案为:4或.23. 如图,把一些相同规格的碗整齐地叠放在水平桌面上,这摞碗的高度随着碗的数量变化而变化的情况如表格所示:碗的数量(只)12345…高度4 5.2 6.47.68.8…(1)用表示这摞碗的高度,用x (只)表示这摞碗的数量,求出h 与x 的函数关系式;(2)求10个碗总高度;(3)若这摞碗的高度为,求这摞碗的数量.【答案】(1)(2)10个碗的总高度为(3)这摞碗有7个【解析】【分析】本题考查了一次函数的实际应用问题,考查学生对常量与变量的理解,根据表格中变量的变化规律得出函数关系式是解决问题的关键.(1)根据表格列出这摞碗的高度和碗的数量的关系式;(2)利用关系式求出当时,y 的值即可;(3)利用关系式求出当时吗,x 值即可.【小问1详解】由表格可知,x 每个1只,h 个的的450600112134503+=1133()cm ()cm h 11.2cm 1.2 2.8h x =+14.8cm 10x =11.2h = 1.2cm【小问2详解】当时答:10个碗的总高度为.【小问3详解】当时答:这摞碗有7个.24. 如图,在中,是的中点,是的中点,过点作,与的延长线相交于点,连接.(1)求证:四边形是平行四边形;(2)填空:①当满足条件时,四边形是______形;②如果,,,则四边形的面积是______.【答案】(1)详见解析(2)①矩形;②【解析】【分析】(1)证明,由全等三角形的性质得出,得出,由平行四边形的判定可得出结论;(2)①由矩形的判定方法可得出答案;②先判断出四边形的面积就是的面积,再利用三角形的面积公式求解即可.【小问1详解】证明:为的中点,为中点,14 1.21x h -∴=+⨯1.2 2.8h x ∴=+10x =()1.2102.814.8cm h =⨯+=14.8cm 11.2h =1.2 2.811.2x +=7x =ABC D BC E AD A AF BC ∥AF CE F BF AFBD ABC AB AC =AFBD AB AC =90BAC ∠=︒1AD =AFBD 1()AAS AFE DCE ≌AF CD =AF BD =AFBD ABC E AD D BC,,∵,,,在和中,,,,,,∵,四边形为平行四边形;【小问2详解】解:①当时,四边形是矩形,证明:,为中点,即为边上的中线,,即,四边形为平行四边形,四边形为矩形;②由①知,四边形为矩形,∴,∵,∴,∴,∴,∵,,∴,∴.故答案为:.【点睛】本题主要考查了矩形的判定与性质,平行四边形的判定,等腰三角形的判定和性质以及全等三角形的判定与性质、直角三角形斜边中线的性质等知识点,熟练掌握平行四边形的判定是解题关键.25. 某中学举行校庆活动,使用了两架小型无人机进行现场拍摄,1号机所在高度与上升时间AE DE ∴=BD CD =AF CD ∥AFE DCE ∴∠=∠FAE CDE ∠=∠AFE △DCE △AFE DCE ∠=∠FAE CDE ∠=∠AE DE=()AAS AFE DCE ∴ ≌AF CD ∴=AF BD ∴=∥A F B D ∴AFBD AB AC =AFBD AB AC = D BC AD BC AD BC ∴⊥90ADB ∠=︒ AFBD ∴AFBD AFBD AD BC ⊥AB AC =BD CD =ABD ACD ABD S S S ==ABC AFBD S S =四边形90BAC ∠=︒1AD =22BC AD ==1121122ABC S BC AD =´´=´=1()1m y ()s x的函数图象如图所示;2号机从高度,以的速度上升,两架无人机同时起飞,设2号机所在高度为.(1)求1号机所在高度与上升时间之间的函数表达式(不必写出的取值范围);(2)2号机所在高度与上升时间之间的函数表达式为______,并在图中画出该函数图象(描两点画图象);(3)在某时刻两架无人机能否位于同一高度?如果能,求此时两架无人机的高度;如果不能,请说明理由.【答案】(1)(2),见解析(3)两架无人机可以位于同一高度.高度为9米【解析】【分析】本题考查一次函数的图象及性质,待定系数法求函数解析式,(1)设,函数的图象经过,两点,运用待定系数法求解即可;(2)根据题意可以直接写出函数的解析式,根据图象过点,,即可得到函数图象;(3)令,求出x 的值,即可解答.【小问1详解】设,由图象知,函数的图象经过,两点.将,分别代入得:,解得:.6m 0.5m /s ()2m y 1y x x 2y x 13y x =+20.56y x =+1y kx b =+1y (0,3)(9,12)2y (0,6)(6,9)12y y =1y kx b =+1y (0,3)(9,12)(0,3)(9,12)3912b k b =⎧⎨+=⎩13k b =⎧⎨=⎩.【小问2详解】由题意得:.当,,∴在直角坐标系中描点,,画得函数的图象如图.【小问3详解】在某时刻两架无人机能位于同一高度,理由如下:当时,,解得.此时.答:此时两架无人机高度为.26. 某专卖店购进两种礼盒进行销售,两种礼盒的进价、售价如表所示.现计划购进两种礼盒共100个,其中种礼盒不少于60个.设购进种礼盒个,两种礼盒全部售完,该专卖店获利元.进价(元/个)售价(元/个)160220120160(1)求与之间的函数关系式;(2)若购进100个礼盒的总费用不超过15000元,求最大利润为多少元?(3)在(2)的条件下,该专卖店对种礼盒以每个优惠元的价格进行优惠促销活动,B 种礼盒每个进价、售价保持不变,若最大利润为4900元,则m 的值为______.【答案】(1)(2)(元)13y x ∴=+20.56y x =+6x =9y =(0,6)(6,9)2y 12y y =30.56x x +=+6x =()13639m y x =+=+=9m ,A B A A x y A B y x A ()020m m <<204000y x =+max 5500y =(3)【解析】【分析】本题主要考查了列一次函数关系式、一次函数的应用、一次函数的增减性,一元一次不等式组的应用,等知识点,根据题意建立函数关系式是解答本题的关键.(1)设购进种服装x 件,则购进种服装件,然后根据进价、售价和利润之间的关系列出函数关系式即可;(2)根据不等关系“购进100件服装的总费用不超过15000元”和“种服装不少于60件”列不等式组求得x 的取值范围,再根据一次函数的增减性即可解答;(3)由题意可得,由,,当时,y 最大值,再根据最大利润为4900元,列出关于m 的方程分别求解即可.【小问1详解】解:设购进种服装x 件,则购进种服装件,由题意得:,【小问2详解】解:由题意得:,∴,∵中,,∴y 随x 的增大而增大,∴当时,y 最大(元).【小问3详解】解:由题意得:.∵,,∴y 随x 的增大而增大,∴当时,y 最大为:,8A B ()100x -A ()204000y m x =-+6075x ≤≤020m <<75x =A B ()100x -()()()220160160120100204000y x x x =-+-⨯-=+()6016012010015000x x x ≥⎧⎨+⨯-≤⎩6075x ≤≤204000y x =+200>75x =207540005500=⨯+=()()()220160*********y m x x =--+--()60400040m x x=-+-()204000m x =-+6075x ≤≤020m <<200m ∴->75x =()207540004900m -⨯+=∴,故答案为:8.27. 如图,在中,,,.动点从点出发沿以速度向终点运动,同时点从点出发,以速度沿射线运动,当点到达终点时,点也随之停止运动,设点的运动时间为秒.(1)的长为______.(2)当时,用含的代数式表示线段的长______.(3)连接.是否存在的值,使得与互相平分?若存在,求出的值;若不存在,请说明理由.(4)若点关于直线对称的点恰好落在直线上,请直接写出的值.【答案】(1)10(2) (3)存在, (4)或【解析】【分析】(1)根据平行四边形的性质得,再根据勾股定理即可求解;(2)根据题意可得,先求出当点Q 与点B 重合时,所花费的时间,再根据题意可知当时,点Q 在线段的延长线上,得,即可求解;(3)连接, ,假设与互相平分,则可得四边形是平行四边形,进而可得,解得即可到答案;(4)根据题意分两种情况讨论即可:当点P 关于直线对称的点落在点A 下方时和当点P 关于直线对称的点落在点A 上方时.8m =ABCD Y 90BAC ∠=︒6cm CD =8cm AC =P A AD 2cm D Q C 8cm CB P Q P t ()0t >CB cm 54t >t BQ PQ t PQ AB t P AQ AB t 810t -53t =12t =2t =6AB DC ==8CQ t =54t >CB 810QB CQ BC t =-=-PB AQ PQ AB AP BQ =AQ AQ【小问1详解】解:∵四边形是平行四边形,∴,∵,∴;【小问2详解】在中,,,由题意得,,当点Q 与点B 重合时,,∴,当时,点Q 在线段的延长线上,,故答案为:;【小问3详解】存在,理由如下:如图,连接,,若与互相平分,则四边形是平行四边形,∴,∴,∴,∴当时,与互相平分;【小问4详解】当点P 关于直线对称的点落在点A 下方时,如图,ABCD 6AB DC ==90BAC ∠=︒10BC ===ABCD Y AD BC =AD BC ∥8CQ t =810t =5s 4t =54t >CB 810QB CQ BC t =-=-810t -PB AQ PQ AB APBQ AP BQ =2810t t =-5s 3t =5s 3t =PQ AB AQ由对称得,,∵,∴,∴,即,∴,∴,∴,解得;当点P 关于直线对称的点落在点A 上方时,如图,由对称得,,∵,∴,∵∴,∴,∴,∴,解得,PAQ P AQ '∠=∠AD BC ∥PAQ AQB ∠=∠P AQ AQB '∠=∠BAQ AQB ∠=∠6BQ AB ==4CQ BC BQ =-=84t =12t =AQ 12∠=∠AD BC ∥13∠=∠24∠∠=3=4∠∠6BQ AB ==16CQ BC BQ =+=816t =2t =综上所述,t 的值为或2.【点睛】本题考查了平行四边形的判定和性质、勾股定理的应用和动点问题,轴对称的性质,等腰三角形的判定与性质,灵活运用所学知识求解是解决本题的关键.12。

山东省青岛市城阳区2023-2024学年八年级下学期期中考试数学试题(含解析)

山东省青岛市城阳区2023-2024学年八年级下学期期中考试数学试题(含解析)

山东省青岛市城阳区2023-2024学年八年级下学期期中考试数学试卷一、选择题(本大题共10小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列四个图形中是中心对称图形的是( )A.B.C.D.2.如图,屋顶钢架外框是等腰三角形,其中AB=AC,工人师傅在焊接立柱时,只用找到BC的中点D,这就可以说明竖梁AD垂直于横梁BC了,工人师傅这种操作方法的依据是( )A.等边对等角B.等角对等边C.垂线段最短D.等腰三角形“三线合一”3.交通法规人人遵守,文明城市处处安全.在通过桥洞时,我们往往会看到如图所示的标态.则通过该桥洞的车高x(m)的范围在数轴上可表示为( )A.B.C.D.4.如图,△ABC的顶点坐标分别为A(1,4),B(﹣1,1),C(2,2),如果将△ABC先向左平移3个单位,再向上平移1个单位得到△A′B′C′,那么点B的对应点B′的坐( )A.(﹣4,0)B.(2,0)C.(﹣4,2)D.(2,2)5.若a<b,则下列不等式一定成立的是( )A.a﹣6>b﹣6B.3a>3b C.﹣2a<﹣2b D.a﹣b<06.用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中( )A.每一个内角都大于60°B.每一个内角都小于60°C.有一个内角大于60°D.有一个内角小于60°7.已知点A(a﹣2,2a+6)在第二象限,则a的取值范围是( )A.a<﹣3或a>2B.﹣3<a<2C.a<2D.a>﹣38.如图,把△ABC绕C点顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A的度数( )A.35°B.75°C.55°D.65°9.如果不等式(a+1)x>a+1的解集为x<1,则a必须满足( )A.a<0B.a≤1C.a>﹣1D.a<﹣110.如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,以点A为圆心,适当长为半径作弧,分别交AB,AC于点E,F,分别以点E,F为圆心,大于EF的长为半径作弧,两弧在∠BAC的内部相交于点G,作射线AG,交BC于点D,则BD的长为( )A.B.C.D.二.填空题(本大题共6小题,每小题3分,共18分)11.如图是环岛行驶的交通标志,表示在环形交叉路口中,车辆按逆时针方向绕行.将这个图案绕着它的中心旋转一定角度后与自身重合,则旋转的角度至少为 .12.某校举行“学以致用,数你最行”数学知识抢答赛,共有20道题,规定答对一道题得10分,答错或放弃扣4分,在这次抢答赛中,八年级1班代表队被评为优秀(88分或88分以上),则这个队至少答对 道题.13.如图,在△ABC中,∠ABC的平分线与BC的垂直平分线交于点P,连接CP.若∠A=75°,∠ABC=62°,则∠ACP的度数为 °.14.若不等式组的解集是x>3,则m的取值范围是 .15.如图,已知在四边形ABCD中,AD∥BC,AM平分∠BAD交BC于点M,BE⊥AM于点E,EF⊥AD 于点F,AB=7,EF=3,则△ABM的面积为 .16.如图,函数y=kx+b(k,b为常数,k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,下列结论:①点A的横坐标为2;②关于x的不等式kx+b<0的解集为x>2;③关于x的方程kx+b=2x的解为x=2;④关于x的不等式组0<kx+b<2x的解集为1<x<2.其中正确的是 (只填写序号).三、作图题(本大题满分4分)用直尺、圆规作图,不写作法,但要保留作图痕迹.17.(4分)已知:如图,四边形ABCD;求作:点P,使点P在四边形ABCD内部,PD=PC,且点P到∠BAD两边的距离相等.四.解答题(本大题共7小题,共68分)18.(20分)计算:(1)解不等式x﹣1≥2x;(2)解不等式,并把解集表示在数轴上;(3)求不等式3(x﹣3)﹣6<2x﹣10的非负整数解;(4)解不等式组:;(5)解不等式组:.19.(6分)如图,BD,CE是△ABC的高,且BD=CE.(1)求证:△ABC是等腰三角形;(2)若∠A=60°,AB=2,求△ABC的高BD.20.(6分)△ABC的各顶点坐标分别为A(1,4),B(3,4),C(3,1),将△ABC先向下平移2个单位长度,再向左平移4个单位长度,得到△A1B1C1.(1)如果将△A1B1C1看成是由△ABC经过一次平移得到的,则平移的距离是 个单位长度;(2)在y轴上有点D,则AD+CD的最小值为 个单位长度;(3)作出△ABC绕点O顺时针旋转90°后的△A2B2C2.21.(8分)如图,已知△ABC,以AC为边构造等边△ACD,连接BD,在BD上取一点O,使∠AOD=60°,在OD上取一点E,使AO=AE,连接OC.(1)求证:△AOC≌△AED;(2)OA,OB,OC三条线段长度之和与图中哪条线段的长度相等?请说明理由.22.(9分)两个家庭暑假结伴自驾到某景区旅游,该景区售出的门票分为成人票和儿童票,小鹏家购买3张成人票和1张儿童票共需350元,小波家购买1张成人票和2张儿童票共需200元.(1)求成人票和儿童票的单价;(2)售票处规定:一次性购票数量达到30张,可购买团体票,即每张票均按成人票价的八折出售.若干个家庭组团到该景区旅游,导游收到通知该团成人和儿童共30人,估计儿童8至16人.导游选择哪种购票方式花费较少?23.(9分)【问题情境】如图①,△ABC的内角∠ABC,∠ACB的平分线BD,CD交于点D.【建立模型】(1)如图②,过点D作BC的平行线分别交AB,AC于点E,F.请你写出EF与BE,CF的数量关系并证明.(2)如图③,在图①的基础上,过点A作直线l∥BC,延长BD和CD,分别交l于点E,F,若AB=4,AC=3,请你直接写出EF的长度(不需要证明).【类比探究】如图④,△ABC的内角∠ABC的平分线BD,与它的外角∠ACG的平分线CD交于点D,过点D作BC 的平行线分别交AB,AC于点E,F.请你写出EF与BE,CF的数量关系并证明.24.(10分)如图,在长方形ABCD中,DC=3cm,AD=6cm,延长BC至点E,使CE=4cm,连接DE.点P从点A出发,沿AD方向匀速运动,速度为1cm/s;同时,点Q从点C出发,沿CB方向匀速运动,速度为2cm/s;连接PQ,DQ.当点Q停止运动时,点P也停止运动.设运动时间为t(s)(0<t≤3),解答下列问题:(1)当t为何值时,使点Q在∠PDC的平分线上?(2)当t为何值时,△DQE为等腰三角形?(3)设四边形PQED的面积为y(cm2),求y与t之间的关系式及四边形PQED面积的最大值.山东省青岛市城阳区2023-2024学年八年级下学期期中考试数学试卷参考答案一、选择题(本大题共10小题,每小题3分,共30分)在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列四个图形中是中心对称图形的是( )A.B.C.D.【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,由此即可得到答案.【解答】解:选项A、B、C中的图形都不能找到一个点,使图形绕某一点旋转180°后与原来的图形重合,所以不是中心对称图形.选项D中的图形能找到一个点,使图形绕某一点旋转180°后与原来的图形重合,所以是中心对称图形.故选:D.【点评】本题考查中心对称图形,关键是掌握中心对称图形的定义.2.如图,屋顶钢架外框是等腰三角形,其中AB=AC,工人师傅在焊接立柱时,只用找到BC的中点D,这就可以说明竖梁AD垂直于横梁BC了,工人师傅这种操作方法的依据是( )A.等边对等角B.等角对等边C.垂线段最短D.等腰三角形“三线合一”【分析】根据等腰三角形的性质解答即可.【解答】解:∵AB=AC,BD=CD,∴AD⊥BC,故工人师傅这种操作方法的依据是等腰三角形“三线合一”,故选:D.【点评】本题考查等腰三角形的性质,熟知等腰三角形“三线合一”性质是解答的关键.3.交通法规人人遵守,文明城市处处安全.在通过桥洞时,我们往往会看到如图所示的标态.则通过该桥洞的车高x(m)的范围在数轴上可表示为( )A.B.C.D.【分析】利用已知图表直接得出该桥洞的车高x(m)的取值范围.【解答】解:由题意可得:通过该桥洞的车高x(m)的取值范围是:0<x≤4.5.在数轴上表示如图:.故选:D.【点评】此题主要考查了在数轴上表示不等式的解集.根据图表理解题意是解题的关键.4.如图,△ABC的顶点坐标分别为A(1,4),B(﹣1,1),C(2,2),如果将△ABC先向左平移3个单位,再向上平移1个单位得到△A′B′C′,那么点B的对应点B′的坐( )A.(﹣4,0)B.(2,0)C.(﹣4,2)D.(2,2)【分析】根据左减右加,上加下减的规律解决问题即可.【解答】解:∵将△ABC先向左平移3个单位,再向上平移1个单位得到△A′B′C′,∴点B的对应点B'的坐标是(﹣1﹣3,1+1),即(﹣4,2).故选:C.【点评】本题考查坐标与图形变化﹣平移,用到的知识点为:左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.5.若a<b,则下列不等式一定成立的是( )A.a﹣6>b﹣6B.3a>3b C.﹣2a<﹣2b D.a﹣b<0【分析】根据不等式的性质分析判断.【解答】解:A、已知a<b,根据不等式的基本性质不等式两边加(或减)同一个数(或式子),不等号的方向不变,所以a﹣6>b﹣6错误;B、不等式两边乘(或除以)同一个正数,不等号的方向不变,所以3a>3b错误;C、不等式两边乘(或除以)同一个负数,不等号的方向改变,所以﹣2a<﹣2b错误;D、a﹣b<0即a<b两边同时减去b,不等号方向不变.不等式一定成立的是a﹣b<0.故选:D.【点评】此题主要考查了不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.6.用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应假设这个三角形中( )A.每一个内角都大于60°B.每一个内角都小于60°C.有一个内角大于60°D.有一个内角小于60°【分析】熟记反证法的步骤,然后进行判断即可.【解答】解:用反证法证明“三角形中必有一个内角小于或等于60°”时,应先假设三角形中每一个内角都不小于或等于60°,即都大于60°.故选:A.【点评】此题主要考查了反证法,反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.7.已知点A(a﹣2,2a+6)在第二象限,则a的取值范围是( )A.a<﹣3或a>2B.﹣3<a<2C.a<2D.a>﹣3【分析】根据题意列出不等式组,解之即可得出答案.【解答】解:由题意知,,解得﹣3<a<2,故选:B.【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.8.如图,把△ABC绕C点顺时针旋转35°,得到△A′B′C,A′B′交AC于点D,若∠A′DC=90°,则∠A的度数( )A.35°B.75°C.55°D.65°【分析】根据旋转的性质可得∠ACA′=35,∠A=∠A′,结合∠A′DC=90°,可求得∠A′,即可获得答案.【解答】解:根据题意,把△ABC绕C点顺时针旋转35°,得到△A′B′C,由旋转的性质,可得∠ACA′=35,∠A=∠A′,∵∠A′DC=90°,∴∠A′=90°﹣∠ADA′=55°,∴∠A=∠A′=55°.故选:C.【点评】本题主要考查旋转的性质、直角三角形两锐角互余等知识,熟练掌握旋转的性质是解题关键.9.如果不等式(a+1)x>a+1的解集为x<1,则a必须满足( )A.a<0B.a≤1C.a>﹣1D.a<﹣1【分析】根据不等式的解集,得到不等号方向改变,即a+1小于0,即可求出a的范围.【解答】解:∵不等式(a+1)x>(a+1)的解为x<1,∴a+1<0,解得:a<﹣1.故选:D.【点评】此题考查了解一元一次不等式,熟练掌握不等式的解法是解本题的关键.10.如图,在Rt△ABC中,∠C=90°,AB=5,BC=3,以点A为圆心,适当长为半径作弧,分别交AB,AC于点E,F,分别以点E,F为圆心,大于EF的长为半径作弧,两弧在∠BAC的内部相交于点G,作射线AG,交BC于点D,则BD的长为( )A.B.C.D.【分析】由角平分线的性质定理推出CD=MD,由勾股定理求出AC的长,由△ABC的面积=△ACD的面积+△ABD的面积,得到AC•BC=AC•CD+AB•MD,因此4×3=4CD+5CD,即可求出CD的长,得到DB的长.【解答】解:作DM⊥AB于M,由题意知AD平分∠BAC,∵DC⊥AC,∴CD=DM,∵∠C=90°,AB=5,BC=3,∴AC==4,∵△ABC的面积=△ACD的面积+△ABD的面积,∴AC•BC=AC•CD+AB•MD,∴4×3=4CD+5CD,∴CD=,∴BD=BC﹣CD=3﹣=.故选:D.【点评】本题考查勾股定理,角平分线的性质,作图—基本作图,三角形的面积,关键是由角平分线的性质得到CD=MD,由三角形面积公式得到AC•BC=AC•CD+AB•MD.二.填空题(本大题共6小题,每小题3分,共18分)11.如图是环岛行驶的交通标志,表示在环形交叉路口中,车辆按逆时针方向绕行.将这个图案绕着它的中心旋转一定角度后与自身重合,则旋转的角度至少为 120° .【分析】根据图形的对称性,用360°除以3计算即可得解.【解答】解:∵360°÷3=120°,∴旋转的角度是120°的整数倍,∴旋转的角度至少是120°.故答案为:120°.【点评】本题考查了利用旋转设计图案,仔细观察图形求出旋转角是120°的整数倍是解题的关键.12.某校举行“学以致用,数你最行”数学知识抢答赛,共有20道题,规定答对一道题得10分,答错或放弃扣4分,在这次抢答赛中,八年级1班代表队被评为优秀(88分或88分以上),则这个队至少答对 12 道题.【分析】设这个队答对了x道题,则答错或放弃(20﹣x)道题,利用得分=10×答对题目数﹣4×答错或放弃题目数,结合得分不低于88分,可列出关于x的一元一次不等式,解之取其中的最小值,即可得出结论.【解答】解:设这个队答对了x道题,则答错或放弃(20﹣x)道题,根据题意得:10x﹣4(20﹣x)≥88,解得:x≥12,∴x的最小值为12,即这个队至少答对12道题.故答案为:12.【点评】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.13.如图,在△ABC中,∠ABC的平分线与BC的垂直平分线交于点P,连接CP.若∠A=75°,∠ABC=62°,则∠ACP的度数为 12 °.【分析】根据线段的垂直平分线的性质得到PB=PC,得到∠PBC=∠PCB,根据角平分线的定义、三角形内角和定理及角的和差求解即可.【解答】解:∵BP是∠ABC的平分线,∠ABC=62°,∴∠ABP=∠CBP=∠ABC=31°,∵P是线段BC的垂直平分线上一点,∴PB=PC,∴∠PBC=∠PCB,∴∠ABP=∠CBP=∠PCB=31°,∵∠A=75°,∠ABC=62°,∠A+∠ABC+∠ACB=180°,∴∠ACP=∠ACB﹣∠PCB=12°,故答案为:12.【点评】本题考查的是线段的垂直平分线的性质、三角形内角和定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.14.若不等式组的解集是x>3,则m的取值范围是 m≤3 .【分析】先解第一个不等式得到x>3,由于不等式组的解集为x>3,根据同大取大得到m≤3.【解答】解:,解①得x>3,∵不等式组的解集为x>3,∴m≤3.故答案为m≤3.【点评】本题考查了解一元一次不等式组:分别求出不等式组各不等式的解集,然后根据“同大取大,同小取小,大于小的小于大的取中间,大于大的小于小的无解”确定不等式组的解集.15.如图,已知在四边形ABCD中,AD∥BC,AM平分∠BAD交BC于点M,BE⊥AM于点E,EF⊥AD 于点F,AB=7,EF=3,则△ABM的面积为 21 .【分析】过E作EG⊥AB于G,则EG=EF=3,即可求出△ABE的面积,证明BE是△ABM的中线,由三角形中线的性质即可得出答案.【解答】解:过E作EG⊥AB于G,如图:∵AM平分∠BAD,∴EG=EF=3,∠DAM=∠BAM,∴S△ABE=×7×3=,∵AD∥BC,∴∠BAM=∠AMB,∴AB=BM,∵BE⊥AM,∴BE是△ABM边AM上的中线,∴S△ABM=2S△ABE=2×=21.故答案为:21.【点评】本题考查了角平分线的性质,平行线的性质、等腰三角形的判定与性质、三角形中线的性质等知识;熟练掌握角平分线的性质是解题的关键.16.如图,函数y=kx+b(k,b为常数,k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,下列结论:①点A的横坐标为2;②关于x的不等式kx+b<0的解集为x>2;③关于x的方程kx+b=2x的解为x=2;④关于x的不等式组0<kx+b<2x的解集为1<x<2.其中正确的是 ②④ (只填写序号).【分析】根据所给函数图象,利用数形结合的思想及一次函数与一元一次不等式的关系,对所给结论依次进行判断即可.【解答】解:由所给函数图象可知,A点的纵坐标为2,则2x=2,解得x=1,所以点A的横坐标为1.故①错误.因为点B坐标为(2,0),所以当x>2时,函数y=kx+b的图象在x轴下方,即kx+b<0,则不等式kx+b<0的解集为x>2.故②正确.因为函数y=2x和函数y=kx+b交点的横坐标为1,所以方程kx+b=2x的解为x=1.故③错误.由函数图象可知,当x>1时,函数y=kx+b的图象在函数y=2x图象的下方,即kx+b<2x,当x<2时,函数y=kx+b的图象在x轴上方,即kx+b>0,所以关于x的不等式组0<kx+b<2x的解集为1<x<2.故④正确.故答案为:②④.【点评】本题考查一次函数与一元一次不等式及一次函数与一元一次方程,数形结合思想的巧妙运用是解题的关键.三、作图题(本大题满分4分)用直尺、圆规作图,不写作法,但要保留作图痕迹.17.(4分)已知:如图,四边形ABCD;求作:点P,使点P在四边形ABCD内部,PD=PC,且点P到∠BAD两边的距离相等.【分析】作∠BAD的角平分线,作CD的垂直平分线,两条线交于点P即可.【解答】解:如图,点P即为所求.【点评】本题考查了作图﹣复杂作图,角平分线的性质,线段垂直平分线的性质,解决本题的关键是掌握角平分线和线段垂直平分线的作法.四.解答题(本大题共7小题,共68分)18.(20分)计算:(1)解不等式x﹣1≥2x;(2)解不等式,并把解集表示在数轴上;(3)求不等式3(x﹣3)﹣6<2x﹣10的非负整数解;(4)解不等式组:;(5)解不等式组:.【分析】(1)先移项,再合并同类项,把x的系数化为1即可;(2)先去分母,再去括号,移项,合并同类项,把x的系数化为1,并把解集表示在数轴上即可;(3)先求出不等式的解集,再求出其非负整数解即可;(4)(5)分别求出各不等式的解集,再求出其公共解集即可.【解答】解:(1)移项得,x﹣2x≥1,合并同类项得,﹣x≥1,x的系数化为1得,x≤﹣1;(2)去分母得,4+3x≤2(1+2x),去括号得,4+3x≤2+4x,移项得,3x﹣4x≤2﹣4,合并同类项得,﹣x≤﹣2,x的系数化为1得,x≥2,在数轴上表示为:;(3)去括号得,3x﹣9﹣6<2x﹣10,移项得,3x﹣2x<﹣10+9+6,合并同类项得,x<5,故其非负整数解为:0,1,2,3,4;(4),由①得,x≤1,由②得,x<3,故不等式组的解集为:x≤1;(5),由①得,x<,由②得,x≥1.故不等式组的解集为:1≤x<.【点评】本题考查的是解一元一次不等式组,解一元一次不等式及在数轴上表示不等式的解集,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解题的关键.19.(6分)如图,BD,CE是△ABC的高,且BD=CE.(1)求证:△ABC是等腰三角形;(2)若∠A=60°,AB=2,求△ABC的高BD.【分析】(1)由“HL”可证Rt△CDB≌Rt△BEC,可得∠ABC=∠ACB,即可求解;(2)由直角三角形的性质可求AD的长,由勾股定理可求解.【解答】(1)证明:∵BD,CE是△ABC的高,∴∠ADB=∠AEC=90°,在Rt△CDB和Rt△BEC中,,∴Rt△CDB≌Rt△BEC(HL),∴∠ABC=∠ACB,∴AB=AC,∴△ABC是等腰三角形;(2)解:∵∠A=60°,∠BDA=90°,∴∠ABD=30°,∴AD=AB=1,∴BD===.【点评】本题考查了全等三角形的判定和性质,直角三角形的性质,证明三角形全等是解题的关键.20.(6分)△ABC的各顶点坐标分别为A(1,4),B(3,4),C(3,1),将△ABC先向下平移2个单位长度,再向左平移4个单位长度,得到△A1B1C1.(1)如果将△A1B1C1看成是由△ABC经过一次平移得到的,则平移的距离是 2 个单位长度;(2)在y轴上有点D,则AD+CD的最小值为 5 个单位长度;(3)作出△ABC绕点O顺时针旋转90°后的△A2B2C2.【分析】(1)利用网格根据勾股定理计算即可;(2)取点A关于y轴的对称点A′,连接A′C交y轴于点D,可得AD+CD的最小值即为A′C的长度;(3)根据旋转的性质即可作出△ABC绕点O顺时针旋转90°后的△A2B2C2.【解答】解:(1)∵将△A1B1C1看成是由△ABC经过一次平移得到的,∴平移的距离是=2个单位长度;故答案为:2;(2)如图点D为所求,∴AD+CD的最小值为=5个单位长度;故答案为:5;(3)如图,△A2B2C2即为所求.【点评】本题考查了作图﹣旋转变换,平移变换,轴对称﹣最短路线问题,解决本题的关键是掌握旋转和平移的性质.21.(8分)如图,已知△ABC,以AC为边构造等边△ACD,连接BD,在BD上取一点O,使∠AOD=60°,在OD上取一点E,使AO=AE,连接OC.(1)求证:△AOC≌△AED;(2)OA,OB,OC三条线段长度之和与图中哪条线段的长度相等?请说明理由.【分析】(1)根据SAS证明三角形全等即可;(2)结论:BD=OA+OB+OC,理由全等三角形的性质证明.【解答】(1)证明:∵∠AOE=60°,AO=AE,∴△AOE是等边三角形,∴∠OAE=60°,∵△ACD是等边三角形,∴AC=AD,∠CAD=60°=∠OAE,∴∠OAC=∠EAD,在△OAC和△EAD中,,∴△AOC≌△AED(SAS);(2)解:结论:BD=OA+OB+OC.理由:∵△AOE是等边三角形,∴OA=OE,∵△AOC≌△AED,∴OC=DE,∴BD=OB+OE+ED=OB+OA+OC.【点评】本题考查全等三角形的判定和性质,等边三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.22.(9分)两个家庭暑假结伴自驾到某景区旅游,该景区售出的门票分为成人票和儿童票,小鹏家购买3张成人票和1张儿童票共需350元,小波家购买1张成人票和2张儿童票共需200元.(1)求成人票和儿童票的单价;(2)售票处规定:一次性购票数量达到30张,可购买团体票,即每张票均按成人票价的八折出售.若干个家庭组团到该景区旅游,导游收到通知该团成人和儿童共30人,估计儿童8至16人.导游选择哪种购票方式花费较少?【分析】(1)设成人票的单价是x元,儿童票的单价是y元,根据“小鹏家购买3张成人票和1张儿童票共需350元,小波家购买1张成人票和2张儿童票共需200元”,可列出关于x,y的二元一次方程组,解之即可得出结论;(2)设该团儿童有m人,则该团成人有(30﹣m)人,购买团体票所需费用为2400元,不购买团体票所需费用为(﹣50m+3000)元,分2400<﹣50m+3000,2400=﹣50m+3000及2400>﹣50m+3000三种情况,求出x的取值范围或x的值,再结合“估计儿童8至16人”,即可得出结论.【解答】解:(1)设成人票的单价是x元,儿童票的单价是y元,根据题意得:,解得:.答:成人票的单价是100元,儿童票的单价是50元;(2)设该团儿童有m人,则该团成人有(30﹣m)人,购买团体票所需费用为100×0.8×30=2400(元),不购买团体票所需费用为100(30﹣m)+50m=(﹣50m+3000)元,当2400<﹣50m+3000时,m<12,∴当8≤m<12时,购买团体票花费较少;当2400=﹣50m+3000时,m=12,∴当m=12时,两种购票方式花费一样多;当2400>﹣50m+3000时,m>12,∴当12<m≤16时,不购买团体票花费较少.答:当8≤m<12时,购买团体票花费较少;当m=12时,两种购票方式花费一样多;当12<m≤16时,不购买团体票花费较少.【点评】本题考查了二元一次方程组的应用、一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式(或一元一次方程).23.(9分)【问题情境】如图①,△ABC的内角∠ABC,∠ACB的平分线BD,CD交于点D.【建立模型】(1)如图②,过点D作BC的平行线分别交AB,AC于点E,F.请你写出EF与BE,CF的数量关系并证明.(2)如图③,在图①的基础上,过点A作直线l∥BC,延长BD和CD,分别交l于点E,F,若AB=4,AC=3,请你直接写出EF的长度(不需要证明).【类比探究】如图④,△ABC的内角∠ABC的平分线BD,与它的外角∠ACG的平分线CD交于点D,过点D作BC 的平行线分别交AB,AC于点E,F.请你写出EF与BE,CF的数量关系并证明.【分析】(1)先由角平分线定义得∠DBC=∠DBE,∠DCB=∠DCF,再由平行线的性质得∠BDE=∠DBC,∠CDF=∠DCB,则∠DBE=∠BDE,∠CDF=∠DCF,证出BE=DE,CF=DF,进而得出结论;(2)同(1)证出AE=AB,AF=AC,进而得出结论;(3)同(1)证出DE=BE,DF=CF,进而得出结论.【解答】解:(1)EF=BE+CF,理由如下:如图②,∵∠ABC和∠ACB的平分线相交于点D,∴∠DBC=∠DBE,∠DCB=∠DCF,∵EF∥BC,∴∠BDE=∠DBC,∠CDF=∠DCB,∴∠DBE=∠BDE,∠CDF=∠DCF,∴BE=DE,CF=DF,∴DE+DF=BE+CF,即EF=BE+CF;(2)EF=7;理由如下:如图③,∵∠ABC和∠ACB的平分线相交于点D,∴∠EBC=∠ABE,∠FCB=∠ACF,∵EF∥BC,∴∠AEB=∠EBC,∠FCB=∠AFC,∴∠ABE=∠AEB,∠ACF=∠AFC,∴AE=AB,AF=AC,∵AB=4,AC=3,∴EF=AE+AF=4+3=7;(3)EF=BE﹣CF,理由如下:如图④,∵∠ABC的平分线BD与∠ACG的平分线CD交于点D,∴∠DBC=∠ABD,∠ACD=∠DCG,∵DE∥BC,∴∠DBC=∠BDE,∠CDF=∠DCG,∴∠ABD=∠BDE,∠ACD=∠CDF,∴DE=BE,DF=CF,∵EF=DE﹣DF,∴EF=BE﹣CF.【点评】本题是三角形综合题,考查了等腰三角形的判定、角平分线定义、平行线的性质等知识;本题综合性强,熟练掌握平行线的性质和角平分线定义,证明三角形为等腰三角形是解题的关键,属于中考常考题型.24.(10分)如图,在长方形ABCD中,DC=3cm,AD=6cm,延长BC至点E,使CE=4cm,连接DE.点P从点A出发,沿AD方向匀速运动,速度为1cm/s;同时,点Q从点C出发,沿CB方向匀速运动,速度为2cm/s;连接PQ,DQ.当点Q停止运动时,点P也停止运动.设运动时间为t(s)(0<t≤3),解答下列问题:(1)当t为何值时,使点Q在∠PDC的平分线上?(2)当t为何值时,△DQE为等腰三角形?(3)设四边形PQED的面积为y(cm2),求y与t之间的关系式及四边形PQED面积的最大值.【分析】(1)由题意得:AP=t cm,CQ=2t cm,利用平行线的性质,角平分线的定义和等腰三角形的判定定理解答即可;(2)利用分类讨论的思想方法解答,分三种情形,利用等腰三角形的性质列出关于t的方程,解方程即可求得结论;(3)利用t的代数式表示出线段PD,EQ,利用图形的面积公式解答即可得出y与t之间的关系式,再利用一次函数的性质解答即可得出结论.【解答】解:(1)由题意得:AP=t cm,CQ=2t cm.∵点Q在∠PDC的平分线上,∴∠ADQ=∠CDQ,∵四边形ABCD为矩形,∴AD∥BC,∴∠ADQ=∠CQD,∴∠CQD=∠CDQ,∴CQ=CD,∴2t=3,∴t=.∴当t为s时,使点Q在∠PDC的平分线上.(2)①当ED=EQ时,如图,∵DC=3cm,CE=4cm,DC⊥CE,∴DE==5(cm),∴EQ=ED=5cm∴CQ=1cm.∴2t=1,∴t=.②当ED=DQ时,如图,∵ED=DQ,DC⊥CE,∴CQ=CE=4 cm,∴2t=4,∴t=2.③由于点Q在线段BC上,不存在QD=QE的情形.综上,当t为s或2s时,△DQE为等腰三角形.(3)由题意得:AP=t cm,CQ=2t cm,∴PD=AD﹣AP=(6﹣t)cm,QE=CQ+CE=(4+2t)cm,∴y=(PD+QE)•CD=3(6﹣t+4+2t)=t+15.∵>0,∴y随t的增大而增大,∵0<t≤3,∴当t=3时,y的最大值=3+15=19.5(cm2).【点评】本题主要考查了矩形的性质,角平分线的定义,平行线的性质,等腰三角形的性质,分类讨论的思想方法,梯形的面积,熟练掌握矩形的性质和应用分类讨论的思想方法解得是解题的关键.。

【人教版】数学八年级下学期《期中考试试题》(附答案解析)

【人教版】数学八年级下学期《期中考试试题》(附答案解析)

人教版八年级下学期期中测试数 学 试 卷学校________ 班级________ 姓名________ 成绩________一.选择题(共6小题)1. 在式子 3.14π-,22a b +,5a +,23y -,21m +,||ab 中,是二次根式的有( )A. 3个B. 4个C. 5个D. 6个 2. 下列三角形中,不是直角三角形的是( )A. △ABC 中,∠A=∠B-∠CB. △ABC 中,a:b:c=1:2:3C. △ABC 中,a 2=c 2-b 2D. △ABC 中,三边的长分别为m 2+n 2,m 2-n 2,2mn(m>n>0) 3. 如图,在矩形ABCD 中无重叠放入面积为16和12的两张正方形纸片,则图中空白部分的面积为( ) A . 1683-B. 1283-+C. 843-D. 423- 4. 实数a b 、在数轴上对应点的位置如图所示,化简()2a a b --的结果是( )A. 2a b -+B. 2a b -C. b -D. b5. 如图,已知正方形ABCD 的对角线长为22,将正方形ABCD 沿直线EF 折叠,则图中阴影部分的周长为( )A. 2B. 2C. 8D. 66. 甲、乙在一段长2000米的直线公路上进行跑步练习,起跑时甲在起点,乙在甲的前面,若甲、乙同时起跑至甲到达终点的过程中,甲乙之间的距离y (米)与 时间x (秒)之间的函数关系如图所示.有下列说法:①甲的速度为5米/秒;②100秒时甲追上乙;③经过50秒时甲乙相距50米;④甲到终点时,乙距离终点300米.其中正确的说法有( )A. 4个B. 3个C. 2个D. 1个二.填空题(共6小题)7. 如果正比例函数(21)y k x =-的图像经过原点和第一、第三象限,那么k 的取值范围是___________. 8. 若二次根式25x +与3能合并,则x 可取的最小正整数是_________.9. 如图,已知在Rt △ABC 中,∠ACB =90°,AB =4,分别以AC ,BC直径作半圆,面积分别记为S 1,S 2,则S 1+S 2等_________.10. 如图,一只蚂蚁从长为2cm ,宽为2cm ,高为3cm 的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线长是_____cm.11. 如图,在菱形ABCD 中,点E 为AB 上一点,DE =AD ,连接EC .若∠ADE =36°,则∠BCE 的度数为_____.12. 如图,在菱形ABCD中,对角线AC,BD相交于点O,AC=6,BD=8,E为AD中点,点P在x轴上移动.若△POE为等腰三角形,请写出所有符合要求的点P的坐标________________.三.解答题(共11小题)13. 计算:(1)1 21231263+-⨯(2)8123|265|2-÷+--14. 已知y﹣3与2x﹣1成正比例,且当x=1时,y=6.(1)求y与x之间的函数解析式.(2)当x=2时,求y的值.(3)若点A(x1,y1),B(x2,y2)都在该函数的图象上,且y1>y2,试判断x1,x2的大小关系.15. 如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:四边形ADCF菱形;(3)若AC=6,AB=8,求菱形ADCF的面积.16. 甲、乙两车同时同时出发从A地前往B地,乙行驶途中有一次停车修理,修好后乙车的行驶速度是原来的2倍.两车距离A地的路程(千米)与行驶时间(时)的函数图象如图所示.(1)求甲车距离A地的路程(千米)与行驶时间(时)之间的函数关系式;(2)当x=2.8时,甲、乙两车之间的距离是千米;乙车到达B地所用的时间a的值为;(3)行驶过程中,两车出发多长时间首次后相遇?17. 请用无刻度的直尺作图.(1)在图1中,已知点E是正方形ABCD边AB的中点,画出CD的中点F;(2)图2是正方形ABCD,E是对角线BD上任意一点(BE>DE),以AE为边画一个菱形.18. 如图,四边形ABCD中,AB∥CD,AB≠CD,AC=DB.(1)求证:AD=BC;(2)若E,F,G,H分别是AB,CD,AC,BD的中点,求证:线段EF与线段GH互相平分.19. 阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:322)2,善于思考的小明进行了以下探索:设2)2(其中a、b、m、n均为整数),则有2=m2+2n22.∴a=m2+2n2,b=2mn.这样小明就找到了一种把部分a+b2的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b3=(m+n3)2,用含m、n的式子分别表示a、b,得a= ,b=;(2)试着把7+43化成一个完全平方式.(3)若a是216的立方根,b是16的平方根,试计算:2.a b20. 如图,▱ABCD中,点E,F在直线AC上(点E在F左侧),BE∥DF.(1)求证:四边形BEDF是平行四边形;(2)若AB⊥AC,AB=4,BC=2,当四边形BEDF为矩形时,求线段AE的长.21. 已知动点P以每秒1cm的速度沿图甲的边框按从B⇒C⇒D⇒E⇒F⇒A的路径移动,相应的△ABP的面积S与时间t之间的关系如图乙中的图象表示.若AB=3cm,试回答下列问题(1)图甲中的BC长是多少?(2)图乙中的a是多少?(3)图甲中的图形面积是多少?(4)图乙中的b是多少?22. 如图,已知四边形ABCD是平行四边形,AC为对角线,∠DAC=30°,∠ACD=90°,AD=8,点M为AC的中点,动点E从点C出发以每秒1个单位的速度运动到点B停止,连接EM并延长交AD于点F,设点E的运动时间为t秒.(1)求四边形ABCD的面积;(2)当∠EMC=90°时,判断四边形DCEF形状,并说明理由;(3)连接BM,点E在运动过程中是否能使△BEM为等腰三角形?如果能,求出t;如果不能,请说明理由.23. 在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.答案与解析一.选择题(共6小题)1. 在式子 3.14π-,22a b +,5a +,23y -,21m +,||ab 中,是二次根式的有( )A. 3个B. 4个C. 5个D. 6个【答案】B【解析】【分析】根据二次根式的定义形如a (a ≥0)的式子叫做二次根式,对被开方数的符号进行判断即可得.【详解】解:在所列式子中是二次根式的有 3.14π-,22a b +,21m +,||ab 这4个, 故选:B .【点睛】本题主要考查二次根式的定义.准确记忆二次根式的定义是解题的关键2. 下列三角形中,不是直角三角形的是( )A. △ABC 中,∠A=∠B-∠CB. △ABC 中,a:b:c=1:2:3C. △ABC 中,a 2=c 2-b 2D. △ABC 中,三边的长分别为m 2+n 2,m 2-n 2,2mn(m>n>0) 【答案】B【解析】【分析】 对于直角三角形的判定我们可以从角的方面去判断,也可以利用勾股定理的逆定理来进行判断.【详解】解: A 、∠A+∠C=∠B ,则∠B=90°,则为直角三角形;B 、当三边比值为1:2:3时,则无法构成三角形;C 、根据题意可知:222+=a b c ,满足勾股定理的逆定理,则这个三角形就是直角三角形;D 、根据题意可知()()()22222222mn m n m n -+=+,满足勾股定理的逆定理,则这个三角形就是直角三角形.3. 如图,在矩形ABCD 中无重叠放入面积为16和12的两张正方形纸片,则图中空白部分的面积为( )A. 1683-B. 1283-+C. 843-D. 423-【答案】B【解析】【分析】 分别表示出空白矩形的长和宽,列式计算即可.【详解】解:空白矩形的长为12=23,宽为1612423-=-,∴面积=()23423=83-12-故选:B .【点睛】本题考查了二次根式的计算,根据题意表示出空白矩形的边长是解题关键.4. 实数a b 、在数轴上对应点的位置如图所示,化简()2a a b --的结果是( )A. 2a b -+B. 2a b -C. b -D. b 【答案】C【解析】【分析】根据实数在数轴上对应点的位置,判断a ,a-b 的正负,再根据绝对值的意义、二次根式的性质进行化简即可得.【详解】由数轴上点的位置知,a<0<b ,则a-b <0,∴原式=-a+a-b=-b .故选C .【点睛】本题考查了实数与数轴,二次根式的化简等,准确识图,熟练掌握和灵活运用相关性质是解题的关键.5. 如图,已知正方形ABCD 的对角线长为22,将正方形ABCD 沿直线EF 折叠,则图中阴影部分的周长为( )A. 82B. 42C. 8D. 6【答案】C【解析】【分析】首先由正方形ABCD的对角线长为22,即可求得其边长为2,然后由折叠的性质,可得A′M=AM,D′N=DN,A′D′=AD,则可得图中阴影部分的周长为:A′M+BM+BC+CN+D′N+A′D′=AM+BM+BC+CN+DN+AD=AB+BC+CD+AD,继而求得答案.【详解】解:∵正方形ABCD的对角线长为22,即2,∠A=90°,AB=AD,∠ABD=45°,∴AB=BD•cos∠2×22=2,∴AB=BC=CD=AD=2,由折叠的性质:A′M=AM,D′N=DN,A′D′=AD,∴图中阴影部分的周长为:A′M+BM+BC+CN+D′N+A′D′=AM+BM+BC+CN+DN+AD=AB+BC+CD+AD=2+2+2+2=8.故选C.【点睛】此题考查了折叠的性质与正方形的性质.此题难度适中,注意数形结合思想与整体思想的应用.6. 甲、乙在一段长2000米的直线公路上进行跑步练习,起跑时甲在起点,乙在甲的前面,若甲、乙同时起跑至甲到达终点的过程中,甲乙之间的距离y(米)与时间x(秒)之间的函数关系如图所示.有下列说法:①甲的速度为5米/秒;②100秒时甲追上乙;③经过50秒时甲乙相距50米;④甲到终点时,乙距离终点300米.其中正确的说法有( )A. 4个B. 3个C. 2个D. 1个【答案】A【解析】 【详解】在100秒时甲,乙的距离是0,则起跑后100秒甲追上乙,故②说法正确;甲每100秒比乙多跑100m ,所以经过50秒时甲乙相距50米,故③说法正确;甲每100秒比乙多跑100m ,则在400秒时,相距300米,④说法正确;甲的速度为2000÷400=5m/s ,故可以得出甲的速度为5m/s ,故①正确. 故选A .【点睛】主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.二.填空题(共6小题)7. 如果正比例函数(21)y k x =-的图像经过原点和第一、第三象限,那么k 的取值范围是___________.【答案】k>12. 【解析】【分析】根据正比例函数的图像和性质进行解答即可.【详解】解:∵正比例函数(21)y k x =-的图像经过原点和第一、第三象限,∴2k-1>0,∴k>12. 故答案为: k>12. 【点睛】本题考查正比例函数的性质,解题关键是掌握正比例函数的图像经过第一、第三象限时,比例系数k>0的性质.8. 25x +3x 可取的最小正整数是_________.【分析】根据题意,它们化简后的被开方数相同,列出方程求解即可【详解】∵二次根式25x +与3能合并,∴253x +=,解得–1x = (舍去),2512x +=,解得 3.5x = (舍去),2527x +=,解得11x =.即当x 取最小正整数11时,二次根式25x +与3能合并.【点睛】本题考查的是同类二次根式的概念,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.9. 如图,已知在Rt △ABC 中,∠ACB =90°,AB =4,分别以AC ,BC 为直径作半圆,面积分别记为S 1,S 2,则S 1+S 2等_________.【答案】2π【解析】试题解析:2222121111ππππ228228AC BC S AC S BC ⎛⎫⎛⎫=⋅==⋅= ⎪ ⎪⎝⎭⎝⎭,, 所以()22212111πππ162π888S S AC BC AB +=+==⨯=. 故答案为2π.10. 如图,一只蚂蚁从长为2cm ,宽为2cm ,高为3cm 的长方体纸箱的A 点沿纸箱爬到B 点,那么它所行的最短路线长是_____cm.【分析】先将图形展开,再根据两点之间线段最短,再由勾股定理求解,【详解】如图所示:AB=22+=.345故答案是:5.【点睛】考查了立体图形的侧面展开图,利用勾股定理求出斜边的长是解题的关键,而两点之间线段最短是解题的依据.11. 如图,在菱形ABCD中,点E为AB上一点,DE=AD,连接EC.若∠ADE=36°,则∠BCE的度数为_____.【答案】18°.【解析】【分析】由菱形的性质可得AD=CD,∠A=∠BCD,CD∥AB,由等腰三角形的性质可得∠DAE=∠DEA=72°,∠DCE=54°,即可求解.【详解】解:∵四边形ABCD是菱形∴AD=CD,∠A=∠BCD,CD∥AB∵DE=AD,∠ADE=36°,∴∠DAE=∠DEA=72°∵CD∥AB∴∠CDE =∠DEA =72°,且DE =DC =DA∴∠DCE =54°∵∠DCB =∠DAE =72°∴∠BCE =∠DCB ﹣∠DCE =18°故答案为:18°【点睛】本题考查了菱形的性质,等腰三角形的性质.熟练掌握菱形边及对角线的性质,等腰三角形的性质是解题的关键.12. 如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,AC=6,BD=8,E 为AD 中点,点P 在x 轴上移动.若△POE 为等腰三角形,请写出所有符合要求的点P 的坐标________________.【答案】(2.5,0)或(-2.5,0)或(4,0)或(2516,0). 【解析】【分析】 根据菱形的对角线互相垂直平分求出OA 、OD ,再利用勾股定理列式求出AD ,然后根据直角三角形斜边上的中线等于斜边的一半求出OE ,然后分①OE=OP 时,求出点P 的坐标,②OE=PE 时点P 和点D 重合,③OP=OE 时,点P 在OE 的垂直平分线上,求出OP 的长度,然后写出点P 的坐标即可.【详解】解:∵在菱形ABCD 中对角线AC=6,BD=8,∴OA=3,OD=4,∴22OA OD +22345+=,∵E 为AD 中点,∴OE=12AD=12×5=2.5, ①OE=OP 时,OP=2.5,∴点P的坐标为(2.5,0)或(-2.5,0),②OE=PE时点P和点D重合,P(4,0),③③如图,当OP=EP时,过点E作EK⊥BD于K,作OE的垂直平分线PF,交OE于点F,交x轴于点P,∴EK∥OA,∴EK:OA=ED:AD=1:2,∴EK=12OA=32,∴OK=2,∵∠PFO=∠EKO=90°,∠POF=∠EOK,∴△POF∽△EOK,∴OP:OE=OF:OK,即OP:52=54:2,解得:OP=25 16,∴点P(2516,0),综上所述,点P的坐标为(2.5,0)或(-2.5,0)或(4,0)或(2516,0).故答案为:(2.5,0)或(-2.5,0)或(4,0)或(2516,0).【点睛】本题考查了菱形的性质,主要利用了菱形的对角线互相垂直平分的性质,等腰三角形的性质,难点在于要分情况讨论.三.解答题(共11小题)13. 计算:(1)1 21231263(28123|2652-【答案】(1)(22+【解析】【分析】(1)先化简二次根式,进行乘法计算,再进行减法计算;(2)先根据二次根式和绝对值进行化简得到22(2+-,再去括号进行有理数的加减计算即可得到答案.【详解】(1)=3==(2|2-=22(2-=222+-+=2【点睛】本题考查二次根式的化简、有理数的四则运算和绝对值,解题的关键是掌握二次根式的化简、有理数的四则运算和求绝对值.14. 已知y ﹣3与2x ﹣1成正比例,且当x =1时,y =6.(1)求y 与x 之间的函数解析式.(2)当x =2时,求y 的值.(3)若点A (x 1,y 1),B (x 2,y 2)都在该函数的图象上,且y 1>y 2,试判断x 1,x 2的大小关系.【答案】(1)y =6x ;(2)12;(3)12x x >.【解析】【分析】(1)利用正比例函数的定义得到y ﹣3=k (2x ﹣1),然后把已知的对应值代入求出k ,从而得到y 与x 之间的函数解析式;(2)把x =2代入(1)中的解析式中计算出对应的函数值;(3)利用61x >62x ,可得到1x ,2x 的大小关系.【详解】解:(1)设y ﹣3=k (2x ﹣1),把x =1,y =6代入得6﹣3=k (2×1﹣1),解得k =3,则y ﹣3=3(2x ﹣1), 所以y 与x 之间的函数解析式为y =6x ;(2)由(1)知,y =6x∴当x =2x 时,y =62⨯=12;(3)∵11226,6y x y x ==,而12y y >,∴1266x x >∴12x x >【点睛】本题综合考查了一次函数的性质、待定系数法求一次函数的解析式、一次函数图象上点的坐标特征等知识,一次函数图象上的点的坐标都满足该函数的解析式15. 如图,在Rt △ABC 中,∠BAC =90°,D 是BC 的中点,E 是AD 的中点,过点A 作AF ∥BC 交BE 的延长线于点F .(1)求证:四边形ADCF 是菱形;(3)若AC =6,AB =8,求菱形ADCF 的面积.【答案】(1)详见解析;(2)24【解析】【分析】(1)可先证得△AEF ≌△DEB ,可求得AF=DB ,可证得四边形ADCF 为平行四边形,再利用直角三角形的性质可求得AD=CD ,可证得结论;(2)将菱形ADCF 的面积转换成△ABC 的面积,再用S △ABC 的面积=12AB•AC ,结合条件可求得答案. 【详解】(1)证明:∵E 是AD 的中点∴AE=DE∵AF∥BC∴∠AFE=∠DBE在△AEF和△DEB中AFE DBEDEB AEF AE DE∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AEF≌△DEB(AAS)∴AF=DB∵D是BC的中点∴BD=CD=AF∴四边形ADCF是平行四边形∵∠BAC=90°,∴AD=CD=12BC∴四边形ADCF是菱形;(2)解:设AF到CD的距离为h,∵AF∥BC,AF=BD=CD,∠BAC=90°,AC=6,AB=8∴S菱形ADCF=CD•h=12BC•h=S△ABC=12AB•A C=168242⨯⨯=.【点睛】本题主要考查菱形的判定和性质,全等三角形的判定与性质及直角三角形的性质,掌握菱形的判定方法是解题的关键.16. 甲、乙两车同时同时出发从A地前往B地,乙行驶途中有一次停车修理,修好后乙车的行驶速度是原来的2倍.两车距离A地的路程(千米)与行驶时间(时)的函数图象如图所示.(1)求甲车距离A 地的路程(千米)与行驶时间(时)之间的函数关系式;(2)当x=2.8时,甲、乙两车之间的距离是 千米;乙车到达B 地所用的时间a 的值为 ; (3)行驶过程中,两车出发多长时间首次后相遇?【答案】(1)60y x =;(2)68,5.4;(3)4.5小时【解析】 试题分析:(1)由题意设函数关系式为,根据待定系数法即可求得结果;(2)把x=2.8代入(1)中的函数关系式即可得到甲车的路程,从而得到甲、乙两车之间的距离;先求出乙车开始的行驶速度,即可得到修好后乙车的行驶速度,从而得到a 的值;(3)设修好后乙车距离A 地的路程(千米)与行驶时间(时)的函数关系式为,根据待定系数法求得函数关系式后,再与(1)中的函数关系式组成方程组求解即可.(1)设函数关系式为 ∵图象过点(6,360) ∴,∴甲车距离A 地的路程(千米)与行驶时间(时)之间的函数关系式为60y x =;(2)在60y x =中,当x=2.8时,千米;则甲、乙两车之间的距离由图可得乙车开始的行驶速度为千米/时则修好后乙车的行驶速度为千米/时所以;(3)设修好后乙车距离A地的路程(千米)与行驶时间(时)的函数关系式为∵图象过点(2.8,100),(5.4,360)∴,解得∴函数关系式为由题意得,解得答:行驶过程中,两车出发4.5小时时间首次后相遇.考点:一次函数的应用点评:一次函数是常用的解答实际问题的数学模型,本题即是利用一次函数的有关知识解答实际应用题,是中考的常见题型.17. 请用无刻度的直尺作图.(1)在图1中,已知点E是正方形ABCD边AB的中点,画出CD的中点F;(2)图2是正方形ABCD,E是对角线BD上任意一点(BE>DE),以AE为边画一个菱形.【答案】(1)详见解析;(2)详见解析.【解析】【分析】(1)连接AC,BD交于点O,连接EO并延长交CD于点F,则点F即为所求;(2)连接AC,交BD于点O,延长AE交CD于点G,连接GO并延长交AB于点H,连接HC交BD于点F,则四边形AFCE即为所画的菱形.【详解】解:(1)如图,点F即为所求;(2)如图,四边形AFCE即为所画的菱形.【点睛】本题主要考查无刻度直尺作图,掌握正方形的性质和菱形的判定方法是解题的关键.18. 如图,四边形ABCD中,AB∥CD,AB≠CD,AC=DB.(1)求证:AD=BC;(2)若E,F,G,H分别是AB,CD,AC,BD的中点,求证:线段EF与线段GH互相平分.【答案】(1)详见解析;(2)详见解析.【解析】【分析】(1)由平行四边形的性质易得AC=BM=BD,∠BDC=∠M=∠ACD,由全等三角形判定定理及性质得出结论;(2)连接EH,HF,FG,GE,E,F,G,H分别是AB,CD,AC,BD的中点,易得四边形HFGE为平行四边形,由平行四边形的性质及(1)结论得▱HFGE 为菱形,易得EF 与GH 互相垂直平分.【详解】证明:(1)过点B 作BM ∥AC 交DC 的延长线于点M ,如图1,∵AB ∥CD∴四边形ABMC 为平行四边形.∴AC =BM =BD ,∠BDC =∠M =∠ACD .在△ACD 和△BDC 中,===AC BD ACD BDC CD DC ⎧⎪∠∠⎨⎪⎩,∴△ACD ≌△BDC (SAS ),∴AD =BC ;(2)连接EH ,HF ,FG ,GE ,如图2,∵E ,F ,G ,H 分别是AB ,CD ,AC ,BD 的中点,∴HE ∥AD ,且HE =12AD ,FG ∥AD ,且FG =12, ∴四边形HFGE 为平行四边形,由(1)知,AD =BC ,∴HE =EG ,∴▱HFGE 为菱形,∴EF 与GH 互相垂直平分.【点睛】此题考查中点四边形和三角形中位线定理,平行四边形的性质及判定,全等三角形的性质与判定,菱形的判定及性质,综合运用平行四边形的性质及判定,全等三角形的性质与判定是解题的关键.19. 阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如:3)2,善于思考的小明进行了以下探索:设)2(其中a、b、m、n均为整数),则有=m2+2n2.∴a=m2+2n2,b=2mn.这样小明就找到了一种把部分的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若)2,用含m、n的式子分别表示a、b,得a= ,b=;(2)试着把7(3)若a是216的立方根,b是16【答案】(1)m2+3n2;2mn;(2)7+)2;(3)2.【解析】【分析】(1)根据完全平方公式展开,根据题意寻找恒等对应关系;(2)根据完全平方公式,从积的2倍入手,将看成2⨯,从而确定“首平方”底数和“尾平方”底数;(3)先求出a、b的值,再代入求值.【详解】解:(1)2am+=+(,22332a b m n+=++2232.a m nb mn∴=+=,(2)22272222+=++⨯=+(;(3)21616a b是的立方根,是的平方根,64a b∴==±,,2===±【点睛】本题考查了平方根、立方根、完全平方公式、算术平方根等知识点,能灵活运用完全平方公式进行变形是解此题的关键.20. 如图,▱ABCD中,点E,F在直线AC上(点E在F左侧),BE∥DF.(1)求证:四边形BEDF是平行四边形;(2)若AB⊥AC,AB=4,BC=2,当四边形BEDF为矩形时,求线段AE的长.【答案】(1)证明见解析;(2)2【解析】试题分析:(1)由△BEC≌△DFA得到BE=DF,则结合已知条件证得结论;(2)根据矩形的性质计算即可.试题解析:(1)∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠DAF=∠BCE.又∵BE∥DF,∴∠BEC=∠DFA.在△BE C与△DFA中,∵∠BEC=∠DFA,∠BCE=∠DAF,BC=AD,∴△BEC≌△DFA(AAS),∴BE=DF.又∵BE∥DF,∴四边形BEDF为平行四边形;(2)连接BD,BD与AC相交于点O,如图,∵AB⊥AC,AB=4,BC=213,∴AC=6,∴AO=3,∴Rt△BAO 中,BO=5,∵四边形BEDF是矩形,∴OE=OB=5,∴点E在OA的延长线上,且AE=2.考点:1.平行四边形的判定与性质;2.全等三角形的判定与性质;3.矩形的性质.21. 已知动点P以每秒1cm的速度沿图甲的边框按从B⇒C⇒D⇒E⇒F⇒A的路径移动,相应的△ABP的面积S与时间t之间的关系如图乙中的图象表示.若AB=3cm,试回答下列问题(1)图甲中的BC长是多少?(2)图乙中的a是多少?(3)图甲中的图形面积是多少?(4)图乙中的b是多少?【答案】(1)4cm;(2)6cm2;(3)15cm2;(4)17秒【解析】【分析】(1)根据题意得:动点P在BC上运动的时间是4秒,又由动点的速度,可得BC的长;(2)由(1)可得BC的长,又由AB=3cm,可以计算出△ABP的面积,即可得到a的值;(3)分析图形可得,甲中的图形面积等于AB×AF﹣CD×DE,根据图象求出CD,DE,AF的长,代入数据计算可得答案;(4)计算BC+CD+DE+EF+F A的长度,又由P的速度,计算可得b的值.【详解】解:(1)动点P在BC上运动时,对应的时间为0到4秒,易得:BC=1cm/秒×4秒=4cm;故图甲中的BC长是4cm.(2)由(1)可得,BC=4cm,则:a=12×BC×AB=6cm2;图乙中的a是6cm2.(3)由图可得:CD=2×1=2cm,DE=1×3=3cm,则AF=BC+DE=7cm,又由AB=3cm,则甲图的面积为AB×AF﹣CD×DE=3×7﹣2×3=15cm2,图甲中的图形面积为15cm2.(4)根据题意,动点P共运动了BC+CD+DE+EF+F A=4+2+3+1+7=17cm,其速度是1cm/秒,则b=171=17秒,图乙中的b是17秒.【点睛】本题主要考查动点问题的函数图象,能够从图象中获取信息是解题的关键.22. 如图,已知四边形ABCD是平行四边形,AC为对角线,∠DAC=30°,∠ACD=90°,AD=8,点M为AC的中点,动点E从点C出发以每秒1个单位的速度运动到点B停止,连接EM并延长交AD于点F,设点E的运动时间为t秒.(1)求四边形ABCD的面积;(2)当∠EMC=90°时,判断四边形DCEF的形状,并说明理由;(3)连接BM,点E在运动过程中是否能使△BEM为等腰三角形?如果能,求出t;如果不能,请说明理由.【答案】(1)32)菱形,理由见解析(3)t=5.2或t=7时,△BEM为等腰三角形【解析】【分析】(1)利用直角三角形中30°角所对的直角边等于斜边的一半求得平行四边形的定和高,再利用底乘以高计算面积;(2)结合∠EMC=90°以及平行四边形的性质,可证明四边形DCEF是平行四边形,再通过计算得到平行四边形CDFE的一组邻边相等即可证得结论;(3)探究△BEM为等腰三角形,要分三种情况进行讨论:EB=EM,EB=BM,EM=BM.通过相应的计算表示出BE,EM,BM,然后利用边相等建立方程进行求解.【详解】(1)∵∠DAC=30°,∠ACD=90°,AD=8,∴CD=4,AC223AD CD又∵四边形ABCD为平行四边形,∴四边形ABCD的面积为4×33(2)如图1,当∠EMC=90°时,四边形DCEF是菱形.∵∠EMC=∠ACD=90°,∴DC∥EF.∵BC∥AD,∴四边形DCEF是平行四边形,∠BCA=∠DAC.由(1)可知:CD=4,AC=43.∵点M为AC的中点,∴CM=23.在Rt△EMC中,∠CME=90°,∠BCA=30°.∴CE=2ME,可得ME2+(23)2=(2ME)2,解得:ME=2.∴CE=2ME=4.∴CE=DC.又∵四边形DCEF是平行四边形,∴四边形DCEF是菱形.(3)点E在运动过程中能使△BEM为等腰三角形.理由:如图2,过点B作BG⊥AD与点G,过点E作EH⊥AD于点H,连接DM.∵DC∥AB,∠ACD=90°,∴∠CAB=90°.∴∠BAG=180°−30°−90°=60°.∴∠ABG =30°.∴AG =12AB =2,BG. ∵点E 的运动速度为每秒1个单位,运动时间为t 秒,∴CE =t ,BE =8−t .在△CEM 和△AFM 中BCM MAF MC AMCME AMF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△CEM ≌△AFM .∴ME =MF ,CE =AF =t .∴HF =HG−AF−AG =BE−AF−AG =8−t−2−t =6−2t .∵EH =BG =∴在Rt △EHF 中,ME =12EF =1212∵M 为平行四边形ABCD 对角线AC 的中点,∴D ,M ,B 共线,且DM =BM .∵在Rt △DBG 中,DG =AD +AG =10,BG =∴=故BM =12×= 要使△BEM 为等腰三角形,应分以下三种情况:当EB =EM 时,有(8−t)2=14[12+(6−2t)2], 解得:t =5.2.当EB =BM 时,有8−t=,解得:t =.当EM =BM 时,由题意可知点E 与点B 重合,此时点B 、E 、M 不构成三角形.综上所述,当t =5.2或t =时,△BEM 为等腰三角形.【点睛】本题主要考查的是平行四边形的性质、菱形的性质和判定、全等三角形的性质和判定、含30度直角三角形的性质、等腰三角形的性质、勾股定理的应用,分三种情况EB =EM ,EB =BM ,EM =BM 讨论是解题的关键.23. 在正方形ABCD 中,点E ,F 分别在边BC ,CD 上,且∠EAF=∠CEF=45°. (1)将△ADF 绕着点A 顺时针旋转90°,得到△ABG(如图①),求证:△AEG ≌△AEF ;(2)若直线EF 与AB ,AD 的延长线分别交于点M ,N(如图②),求证:EF 2=ME 2+NF 2;(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF ,BE ,DF 之间的数量关系.【答案】(1)证明见解析;(2)证明见解析;(3)EF 2=2BE 2+2DF 2.【解析】试题分析:(1)根据旋转的性质可知AF=AG ,∠EAF=∠GAE=45°,故可证△AEG≌△AEF ;(2)将△ADF 绕着点A 顺时针旋转90°,得到△ABG ,连结GM .由(1)知△AEG≌△AEF ,则EG=EF .再由△BME 、△DNF 、△CEF 均为等腰直角三角形,得出CE=CF ,BE=BM ,2DF ,然后证明∠GME=90°,MG=NF ,利用勾股定理得出EG 2=ME 2+MG 2,等量代换即可证明EF 2=ME 2+NF 2;(3)将△ADF 绕着点A 顺时针旋转90°,得到△ABG ,根据旋转的性质可以得到△ADF≌△ABG ,则DF=BG ,再证明△AEG≌△AEF ,得出EG=EF ,由EG=BG+BE ,等量代换得到EF=BE+DF .试题解析:(1)∵△ADF 绕着点A 顺时针旋转90°,得到△ABG ,∴AF=AG ,∠FAG=90°,∵∠EAF=45°,∴∠GAE=45°,在△AGE 与△AFE 中,{45AG AFGAE FAE AE AE=∠===,∴△AGE≌△AFE (SAS);(2)设正方形ABCD的边长为a.将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.则△ADF≌△ABG,DF=BG.由(1)知△AEG≌△AEF,∴EG=EF.∵∠CEF=45°,∴△BME、△DNF、△CEF均为等腰直角三角形,∴CE=CF,BE=BM,2,∴a﹣BE=a﹣DF,∴BE=DF,∴BE=BM=DF=BG,∴∠BMG=45°,∴∠GME=45°+45°=90°,∴EG2=ME2+MG2,∵EG=EF,22,∴EF2=ME2+NF2;(3)EF2=2BE2+2DF2.如图所示,延长EF交AB延长线于M点,交AD延长线于N点,将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.由(1)知△AEH≌△AEF,则由勾股定理有(GH+BE)2+BG2=EH2,即(GH+BE)2+(BM﹣GM)2=EH2又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2考点:四边形综合题。

重庆八中2024年八年级下学期期中数学试题+答案

重庆八中2024年八年级下学期期中数学试题+答案

重庆市第八中学2023-2024学年八年级下学期数学期中模拟试卷A 卷一、选择题1.(4分)下列设计的图案中既是中心对称图形又是轴对称图形的是( )A .B .C .D .2.(4分)把多项式322ax ax ax −+分解因式,结果正确的是( )A .()22ax x x −B .()22ax x −C .()()11ax x x +−D .()21ax x − 3.(4分)下列式子的变形正确的是( )A .22b b a a = B .22a b a b a b +=++ C .2422x y x y x x−−= D .22m n n m −=− 4.(4分)下列说法中,错误的是( )A .有一组邻边相等的平行四边形是菱形B .两条对角线互相垂直且平分的四边形是菱形C .对角线相等的平行四边形是矩形D .有一组邻边相等的菱形是正方形5.(4分)如图,正方形ABCD 中,E 为对角线BD 上一点,70BEC ∠=°,那么DAE ∠=( )A .10°B .15°C .25°D .30°6.(4分)估计的值应在( ) A .1和2之间 B .2和3之间C .3和4之间D .4和5之间 7.(4分)2024年中国青少年足球联赛预选赛第一阶段比赛近日在贵州全部结束,重庆一中足球队获得该阶段比赛冠军,以南区第一名的优秀赛绩成为首批晋级全国总决赛的队伍.联赛主办方原计划为参赛队伍准备40箱足球,平均分配给各支队伍作为训练用球,但为了保证比赛期间各支队伍训练不受影响,临时又增加了16箱足球,使得每支队伍比原计划多领取2箱足球,设共有x 支队伍参加本次南区预选赛,根据题意可列方程为( )A .4040162x x +=+B .4040162x x+=− C .4040162x x +=− D .4040162x x +=+ 8.(4分)如图.在ABC △中,60ACB ∠=°,1AC =,D 是边AB 的中点,E 是边BC 上一点.若DE 平分ABC △的周长,则DE 的长为( )A .1BCD .539.(4分)如图,在正方形ABCD 中,E 为BC 边上靠近点B 的三等分点,将线段AB 绕点A 逆时针旋转得到线段AF ,使得BAE FAE ∠=∠,连接EF 和CF ,令BAE α∠=,则FCD ∠为( )A .1203α°−B .3902α°− C .230α+° D .45α+°10.(4分)如图,把矩形ABCD 纸对折,设折痕为MN ,再把B 点叠在折痕上,得到Rt ABE △,EB 延长线交AD 或AD 的延长线于F ,则EAF △是( )A .底边与腰不相等的等腰三角形B .各边均不相等的三角形C .或是各边不相等的三角形,或是底边与腰不相等的等腰三角形D .等边三角形二、填空题11.(4分)如图,已知AC 为正六边形ABCDEF 的一条对角线,则ACB ∠=______.12.(4分)若方程2288x m x x =+−−有增根,则m =______.13.(4分)直线11:l y k x b =+与直线22:l y k x =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式()120k k x b −+>的解集为______.14.(4分)如图,在ABC △中,AC =2BC =,点D 是AB 边的中点,连接CD ,点E 为BC 延长线上一点且2BC CE =,连接DE 交AC 于点F ,连接AE ,且AE BC =,则CEF △的周长为______.三、解答题15.(8分)计算:(1)201(2024π)33− −−−−; (2)2925222a a a a a −− ÷−− −−. 16.(8分)解方程: (1)15121x x =−+; (2)2162142x x x ++=−−. 17.(8分)如图,矩形ABCD 的对角线AC 、BD 交于点O ,AM BD ⊥于M .(1)尺规作图:过点C 作BD 的垂线,垂足为N ,连接AN 、CM (保留作图痕迹,不写作法,不写结论).(2)补全推理过程:在矩形ABCD 中AD BC ∥ ,AD BC =,∴______,AM BD ⊥ ,CN BD ⊥,90AMD ∴∠=°,90CNB ∠=°,即:______,∴______;在ADM △和CBN △中,AMD CNB ADB CBD AD CB ∠=∠ ∠=∠ =ADM CBN ∴≌△△,∴______,∴四边形AMCN 为平行四边形(______). 18.(10分)如图(1),在矩形ABCD 中,4AB =,3BC =,动点P 以每秒1个单位的速度,从点D出发.按D A B C →→→的顺序在边上运动.与点P 同时出发的动点Q 以每秒12个单位的速度,从点D 出发,在射线DC 上运动.当动点P 运动到点C 时,动点P 、Q 都停止运动.连接PC ,设点P 的运动时间为t 秒,在运动过程中,PDC △的面积记为1S ,三角形ADQ 的面积记为2S .(1)直接写出1S 、2S 与t 之间的函数关系式,并写出自变量t 的取值范围;(2)在如图2的平面直角坐标系中,画出为1S 、2S 的函数图象,并根据图象写出函数1S 的一条性质;(3)根据图象直接写出当21S S ≥时t 的取值范围.19.(10分)如图,在直角AEC △中,90AEC ∠=°,B 是边AE 上一点,连接BC ,O 为AC 的中点,过C 作CD AB ∥交BO 延长线于D ,且AC 平分BCD ∠,连接AD .(1)求证:四边形ABCD 是菱形.(2)连接OE 交BC 于F ,27ACD ∠=°,求CFO ∠的度数.B 卷四、选择填空题20.(4分)若实数a 使关于x 的不等式组3132122x x a x x + +≤ +≤+ 至少有4个整数解,且使关于y 的分式方程32111ay y y −−=−−有整数解,则符合条件的所有整数a 的积为( ) A .5 B .6 C .10 D .2521.(4分)有依次排列的3个整式:x ,6x +,2x −,对任意相邻的两个整式,都用右边的整式减去左边的整式,所得之差写在这两个整式之间,可以产生一个新整式串:x ,6,6x +,8−,2x −,则称它为整式串1;将整式串12;以此类推.通过实际操作,得出以下结论:①整式串2为:x ,6x −,6,x ,6x +,14x −−,8−,6x +,2x −;②整式串3共17个整式;③整式串3的所有整式的和比整式串2的所有整式的和小2;④整式串2024的所有整式的和为34046x −;上述四个结论中正确的个数是( )A .1B .2C .3D .422.(4分)如图,正方形ABCD 中,E 为AB 边上一点,过点E 作EF AB ⊥交对角线BD 于点F .连接EC 交BD 于点G ,取DF 的中点H ,并连接AH.若AH =47EG =,则四边形AEFH 的面积为______.23.(4分)如图,矩形ABCD 的边BC 、AD 上有两点E 、F ,沿着直线EF 折叠使得点D 、C 分别落在D ′、C ′,D C ′′交线段AD 于点G ,射线D C ′′恰好经过点B ,作BH 平分ABG ∠交AD 于H ,HG GF =,且H 恰好落在线段EC ′的延长线上,若AB =F 到直线D H ′的距离是______.24.(4分)若一个四位自然数M ,满足个位数字与十位数字之和的平方正好等于M 的千位数字与百位数字组成的两位数,则这个四位数称为“和数”,比如:4952,满足()25249+=;若一个四位自然数N ,满足个位数字与十位数字的平方差正好等于N 的千位数字与百位数字组成的两位数,则这个四位数称为“差数”,比如:7239,满足229372−=;那么最大的“和数”与最小的“差数”之和是______.如果一个“和数”M 与一个“差数”N 的个位数字均为a 、十位数字均为b ,且18228(,)11M N a F M N ++−=,若(),F M N 为整数时,记(,)ab G M N a b=+,则(),G M N 的最大值是______. 五、解答题25.(10分)走洛克之路,赏人间仙境.洛克之路是甘南旅游网红自驾线路,起点为迭部县扎尕那,终点为卓尼县扎古录,全程共105千米.甲、乙两人分别驾车从迭部县扎尕那和卓尼县扎古录出发,沿洛克之路自驾旅游,3小时后两人相遇,相遇后甲、乙继续往目的地行驶并走完全程,乙走完全程所用时间是甲走完全程所用时间的1.5倍.(1)甲、乙两人单独走完全程各需多少小时?(2)风干牦牛肉是甘南特色小吃.甲购买了A 种牦牛肉,乙购买了B 种牦牛肉,甲购买的袋数比乙的2倍少5袋,已知A 种牦牛肉价格为每袋35元,B 种牦牛肉价格为每袋50元,计算发现乙购买牦牛肉花费更多.问乙最多购买了多少袋牦牛肉?26.(10分)如图1,在平面直角坐标系中,直线2:6l y x =−+与1l 交于点()e,4E ,2l 与x 轴,y 轴分别交于C ,D 两点,1l 与x 轴,y 轴分别交于A ,B 两点,且12OB OC =.(1)求直线1l 的解析式;(2)如图2,在射线EC 上有一动点F ,连接AF 、BF ,M 为x 轴上一动点,连接FM 、BM ,当98ABF AEC S S =△△时,求BM FM −的最大值; (3)如图3,在(2)的条件下,将CFM △沿直线2l 平移得到C F M ′′′△,若在平移过程中BC F ′′△是以BF ′为一腰的等腰三角形,请直接写出点C ′的坐标.27.(10分)已知ABC △是等腰直角三角形,AB AC =,D 为平面内一点.(1)如图1,当D 点在AB 的中点时,连接CD ,将CD 绕点D 逆时针旋转90°,得到ED ,若4AB =,求ADE △的周长;(2)如图2,当D 点在ABC △外部时,E 、F 分别是AB 、BC 的中点,连接EF 、DE 、DF ,将DE 绕E 点逆时针旋转90°得到EG ,连接CG 、DG 、FG ,若FDG FGE ∠=∠,请探究FD 、FG 、CG 之间的数量关系并给出证明;(3)如图3,当D 在ABC △内部时,连接AD ,将AD 绕点D 逆时针旋转90°,得到ED ,若ED 经过BC 中点F ,连接AE 、CE ,G 为CE 的中点,连接GF 并延长交AB 于点H ,当AG 最大时,请直接写出的值.重庆市第八中学2023-2024学年八年级下学期数学期中模拟试卷A 卷1-5 BDCDC6-10 BBBDD11.30°12.4 13.1x <− 1415.(1)11−+;(2)33a a +−. 16.(1)2x =;(2)无解.17.(1)见解答;(2)ADB CBD ∠=∠,AMD CNB ∠=∠,AM CN ∥,AM CN =;一组对边平行且相等的四边形为平行四边形. 18.(1)()()()1203637202710t t S t t t <≤ =<≤ −<< ,2()0.75010S t t =<≤;(2)图见解析;当03t <<时,1S 随t 的增大而增大;当37t <<时1S 不变;当710t <<时,1S 随t 增大而减小(答案不唯一,合理即可).(3)801011t ≤<. 19.(1)证明见解析;(2)99°.B 卷20.B21.C 22.2729 2324.9355,78. 25.(1)甲走完全程所需时间为5小时,乙走完全程所需时间为7.5小时;(2)乙最多购买了8袋牦牛肉.26.(1)直线1l 的解析式为:132yx =+; (2(3)点C ′的坐标为或或111,22. 27.(1)ADE △的周长为2+;(2)FD CG =+;(3)ACG AHG S S △△.。

八年级下册期中数学试题附答案

八年级下册期中数学试题附答案

八年级(下)期中数学试卷一、选择题(共8小题,每小题2分,满分16分)1.函数中自变量x的取值范围是()A.x≥﹣2 B.x≥﹣2且x≠1C.x≠1D.x≥﹣2或x≠12.下列二次根式是最简二次根式的是()A.B.C.D.3.以下各式中计算正确的是()A.﹣=﹣6 B.(﹣)2=﹣3 C.=±16D.=a4.如图,直角三角形ABC的周长为24,且AB:BC=5:3,则AC=()A. 6 B. 8 C. 10 D. 125.下列命题中正确的是()A.对角线相等的四边形是矩形B.对角线互相平分且相等的四边形是正方形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是菱形6.如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=10,AE=16,则BE的长度为何?()A. 10 B. 11 C. 12 D. 137.如图,在▱ABCD中,AB=10,AD=8,AC⊥BC,下列计算错误的是()A. BC=8 B. BD=15C. AC=6 D.▱ABCD的面积是488.平行四边形ABCD的对角线交于点O,有五个条件:①AC=BD,②∠ABC=90°,③AB=AC,④AB=BC,⑤AC⊥BD,则下列哪个组合可判别这个四边形是正方形()A.①②B.①③C.①④D.④⑤二、填空题(共8小题,每小题2分,满分16分)9.= .10.计算:= .11.若是整数,则正整数n的最小值是.12.如图,以△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=9,S3=25,当S2= 时∠ACB=90°.13.矩形的两条对角线的夹角是60°,一条对角线与短边的和为15,其对角线长为.14.三角形的三边长为6cm、8cm、10cm,则它的中位线构成的三角形面积是.15.已知,如图,四边形ABCD是正方形,BE=AC,则∠BED=度.16.如图,一张纸片的形状为直角三角形,其中∠C=90°,AC=12cm,BC=16cm,沿直线AD折叠该纸片,使直角边AC与斜边上的AE重合,则CD的长为cm.三、解答题(共2小题,每小题6分,满分12分)17.计算:2﹣+|1﹣|18.计算:﹣÷+(3﹣)(3).四、解答题(共2小题,每小题8分,满分16分)19.已知,a=+1,b=﹣1,求分式的值.20.某天早晨,王老师从家出发,骑摩托车前往学校,途中在路旁一家饭店吃早餐,如图所示的是王老师从家到学校这一过程中行驶路程s(千米)与时间t(分)之间的关系.(1)学校离他家多远?从出发到学校,用了多少时间?(2)王老师吃早餐用了多少时间?(3)王老师吃早餐以前的速度快还是吃完早餐以后的速度快?最快时速达到多少?五、解答题(共4小题,满分40分)21.如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=∠DEF.22.小红同学要测量A、C两地的距离,但A、C之间有一水池,不能直接测量,于是她在A、C同一水平面上选取了一点B,点B可直接到达A、C两地.她测量得到AB=80米,BC=20米,∠ABC=120°.请你帮助小红同学求出A、C两点之间的距离.(参考数据≈4.6)23.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.24.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥A B,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.八年级(下)期中数学试卷参考答案与试题解析一、选择题(共8小题,每小题2分,满分16分)1.函数中自变量x的取值范围是()A.x≥﹣2 B.x≥﹣2且x≠1C.x≠1D.x≥﹣2或x≠1考点:函数自变量的取值范围.专题:函数思想.分析:根据二次根式的性质和分式的意义,被开方数≥0,分母不等于0,就可以求解.解答:解:根据题意得:被开方数x+2≥0,解得x≥﹣2,根据分式有意义的条件,x﹣1≠0,解得x≠1,故x≥﹣2且x≠1.故选:B.点评:考查了函数自变量的取值范围,注意函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.2.下列二次根式是最简二次根式的是()A.B.C.D.考点:最简二次根式.分析:检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.解答:解:A、,被开方数含分母,不是最简二次根式;B、,被开方数含分母,不是最简二次根式;C是最简二次根式;D、=2,被开方数含能开得尽方的因数,不是最简二次根式;故选:C.点评:本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.3.以下各式中计算正确的是()A.﹣=﹣6 B.(﹣)2=﹣3 C.=±16D.=a考点:二次根式的性质与化简.分析:分别利用二次根式的性质化简求出即可.解答:解:A、﹣=﹣=﹣6,故此选项正确;B、(﹣)2=3,故此选项错误;C、=16,故此选项错误;D、=|a|,故此选项错误;故选:A.点评:此题主要考查了二次根式的化简,正确利用二次根式的性质得出是解题关键.4.如图,直角三角形ABC的周长为24,且AB:BC=5:3,则AC=()A. 6 B. 8 C. 10 D. 12考点:勾股定理.分析:可先设AB=5x,BC=3x,在该三角形中,由勾股定理可求出AC关于x的代数式,由于直角三角形ABC的周长=AC+AB+BC=24,据此列出方程求出x的值,代入AC的关于x的代数式中,即可求出AC的值.解答:解:设AB=5x,BC=3x,在Rt△ACB中,由勾股定理得:AC2=AB2﹣BC2,AC===4x,直角三角形ABC的周长为:5x+4x+3x=24,x=2,所以,AC=2×4=8,故选B.点评:本题主要考查了勾股定理的运用,关键在于用含有x的式子分别表示出三边的值,代入周长公式求解,属于常考的考点.5.下列命题中正确的是()A.对角线相等的四边形是矩形B.对角线互相平分且相等的四边形是正方形C.对角线互相垂直的四边形是菱形D.对角线互相垂直平分的四边形是菱形考点:命题与定理.分析:根据矩形的判定方法对A进行判断;根据正方形的判定方法对B进行判断;根据菱形的判定方法对C、D进行判断.解答:解:A、对角线相等的平行四边形是矩形,所以A选项错误;B、对角线互相垂直平分且相等的四边形是正方形,所以B选项错误;C、对角线互相垂直平分的四边形是菱形,所以C选项错误;D、对角线互相垂直平分的四边形是菱形,所以D选项正确.故选D.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.如图,△ABC中,D为AB中点,E在AC上,且BE⊥AC.若DE=10,AE=16,则BE的长度为何?()A. 10 B. 11 C. 12 D. 13考点:勾股定理;直角三角形斜边上的中线.分析:根据在直角三角形中,斜边上的中线等于斜边的一半这一性质可求出AB的长,再根据勾股定理即可求出BE的长.解答:解:∵BE⊥AC,∴△AEB是直角三角形,∵D为AB中点,DE=10,∴AB=20,∵AE=16,∴BE==12,故选C.点评:本题考查了勾股定理的运用、直角三角形的性质:直角三角形中,斜边上的中线等于斜边的一半,题目的综合性很好,难度不大.7.如图,在▱ABCD中,AB=10,AD=8,AC⊥BC,下列计算错误的是()A. BC=8 B. BD=15C. AC=6 D.▱ABCD的面积是48考点:平行四边形的性质.分析:利用平行四边形的性质结合勾股定理和平行四边形的面积求法分别分析得出即可.解答:解:∵四边形ABCD是平行四边形,∴AD=BC=8,∴选项A正确,不合题意;∵AB=10,BC=8,AC⊥BC,∴AC=6,故选项C正确,不合题意,故▱ABCD的面积是:6×8=48,AC与BD相交于点O,∴AO=CO=3,∴BO==,∴BD=2,故选项B错误,符合题意;故选:B.点评:此题主要考查了平行四边形的性质以及勾股定理等知识,利用勾股定理得出AC的长是解题关键.8.平行四边形ABCD的对角线交于点O,有五个条件:①AC=BD,②∠ABC=90°,③AB=AC,④AB=BC,⑤AC⊥BD,则下列哪个组合可判别这个四边形是正方形()A.①②B.①③C.①④D.④⑤考点:正方形的判定;平行四边形的性质.分析:要判定是正方形,则需能判定它既是菱形又是矩形.解答:解:由①得对角线相等的平行四边形是矩形,加上④得,有一组邻边相等的矩形是正方形,故选C.点评:本题考查了正方形的判定方法,是基础知识较简单.二、填空题(共8小题,每小题2分,满分16分)9.= 2.考点:二次根式的乘除法.专题:计算题.分析:根据二次根式的除法法则进行运算,然后将二次根式化为最简即可.解答:解:原式===2.故答案为:2.点评:本题考查了二次根式的除法运算,属于基础题,掌握二次根式的除法法则及二次根式的化简是关键.10.计算:= .考点:分母有理化.专题:计算题.分析:根据﹣1的有理化因式为+1,进行计算即可.解答:解:原式=,=+1,故答案为+1.点评:主要考查二次根式的有理化.根据二次根式的乘除法法则进行二次根式有理化.二次根式有理化主要利用了平方差公式,所以一般二次根式的有理化因式是符合平方差公式的特点的式子.即一项符号和绝对值相同,另一项符号相反绝对值相同.11.若是整数,则正整数n的最小值是 3 .考点:二次根式的定义.分析:首先化简二次根式,进而得出n的最小值.解答:解:原式=5,则正整数n的最小值是3时,原式是整数.故答案为:3.点评:此题主要考查了二次根式的定义,正确化简二次根式得出是解题关键.12.如图,以△ABC的三边为边向外作正方形,其面积分别为S1,S2,S3,且S1=9,S3=25,当S2= 16 时∠ACB=90°.考点:勾股定理的逆定理.分析:先设Rt△ABC的三边分别为a、b、c,再分别用a、b、c表示S1、S2、S3的值,由勾股定理即可得出S2的值.解答:解:设Rt△ABC的三边分别为a、b、c,∴S1=a2=9,S2=b2,S3=c2=25,∵△ABC是直角三角形,∴a2+b2=c2,即S1+S2=S3,∴S2=S3﹣S1=16.故答案为:16.点评:本题考查的是勾股定理的应用及正方形的面积公式,熟知勾股定理是解答此题的关键.13.矩形的两条对角线的夹角是60°,一条对角线与短边的和为15,其对角线长为10 .考点:矩形的性质.分析:根据四边形ABCD是矩形,得到OA=OC,OB=OD,AC=BD,推出OA=OB,再由两条对角线的夹角是60°,得出△OAB是等边三角形,即可求对角线长.解答:解:∵四边形ABCD是矩形,∴OA=OC,OB=OD,AC=BD,∴OA=OB,∵∠AOB=60°,∴△OAB是等边三角形,∴AB=OB=OA=×15=5,∴AC=BD=2×5=10.故答案为:10.点评:本题主要考查对矩形的性质,等边三角形的性质和判定等知识点的理解和掌握,能根据性质得到等边三角形OAB是解此题的关键,题型较好,难度适中.14.三角形的三边长为6cm、8cm、10cm,则它的中位线构成的三角形面积是6cm2.考点:三角形中位线定理;勾股定理的逆定理.分析:可先依据题意作出简单的图形,进而结合图形,由题中数据可得三角形是一直角三角形,进而再由中位线的性质即可求解.解答:解:由题中数据可得三角形是一直角三角形,如图,设BC=6cm,AB=8cm,AC=10cm,∵DE、EF、DF分别是三角形的中位线,∴DE=3cm,EF=4cm,DF=5cm,∵DE2+EF2=DF2,故△DEF是直角三角形,S△DEF=DE×EF=6c m2.故答案为:6cm2.点评:本题主要考查了中位线的性质以及勾股定理的运用,要求同学们熟练掌握中位线的性质及勾股定理的逆定理.15.已知,如图,四边形ABCD是正方形,BE=AC,则∠BED=22.5 度.考点:正方形的性质;等腰三角形的性质.分析:连接BD,根据正方形的对角线平分一组对角可得∠ABD=45°,再根据正方形的对角线相等可得AC=BD,然后求出BD=BE,再根据等边对等角可得∠BDE=∠BED,然后利用三角形的一个外角等于与它不相邻的两个内角的和列式进行计算即可得解.解答:解:如图,连接BD,∵四边形ABCD是正方形,∴∠ABD=45°,AC=BD,∵BE=AC,∴BD=BE,∴∠BDE=∠BED,根据三角形的外角性质,∠ABD=∠BDE+∠BED,∴∠BED=∠ABD=×45°=22.5°.故答案为:22.5.点评:本题考查了正方形的性质,主要利用了正方形的对角线平分一组对角,正方形的对角线相等的性质,等边对等角的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并作辅助线构造出等腰三角形是解题的关键.16.如图,一张纸片的形状为直角三角形,其中∠C=90°,AC=12cm,BC=16cm,沿直线AD折叠该纸片,使直角边AC与斜边上的AE重合,则CD的长为 6 cm.考点:翻折变换(折叠问题).专题:计算题.分析:在Rt△ABC中根据勾股定理得AB=20,再根据折叠的性质得AE=AC=12,DE=DC,∠AED=∠C=90°,所以BE=AB﹣AE=8,设CD=x,则BD=16﹣x,然后在Rt△BDE中利用勾股定理得到82+x2=(16﹣x)2,再解方程求出x即可.解答:解:在Rt△ABC中,∵AC=12,BC=16,∴AB==20,∵△ACB沿直线AD折叠该纸片,使直角边AC与斜边上的AE重合,∴AE=AC=12,DE=DC,∠AED=∠C=90°,∴BE=AB﹣AE=20﹣12=8,设CD=x,则BD=16﹣x,在Rt△BDE中,∵BE2+DE2=BD2,∴82+x2=(16﹣x)2,解得x=6,即CD的长为6cm.故答案为6.点评:本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了勾股定理.三、解答题(共2小题,每小题6分,满分12分)17.计算:2﹣+|1﹣|考点:二次根式的加减法.分析:先把各根式化为最减二次根式,再合并同类项即可.解答:解:原式=﹣2+﹣1=﹣1.点评:本题考查的是二次根式的加减,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.18.计算:﹣÷+(3﹣)(3).考点:二次根式的混合运算.专题:计算题.分析:先进行二次根式的除法运算,再利用平方差公式进行乘法运算,然后把各二次根式化为最简二次根式后合并即可.解答:解:原式=4﹣+9﹣3=4﹣3+6=+6.点评:本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.四、解答题(共2小题,每小题8分,满分16分)19.已知,a=+1,b=﹣1,求分式的值.考点:分式的化简求值.专题:计算题.分析:由a与b的值,求出a+b与ab的值,原式变形后代入计算即可求出值.解答:解:∵a=+1,b=﹣1,∴a+b=2,ab=1,则原式==.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.某天早晨,王老师从家出发,骑摩托车前往学校,途中在路旁一家饭店吃早餐,如图所示的是王老师从家到学校这一过程中行驶路程s(千米)与时间t(分)之间的关系.(1)学校离他家多远?从出发到学校,用了多少时间?(2)王老师吃早餐用了多少时间?(3)王老师吃早餐以前的速度快还是吃完早餐以后的速度快?最快时速达到多少?考点:函数的图象.分析:(1)由于骑摩托车前往学校,途中在路旁一家饭店吃早餐,那么行驶路程s(千米)与时间t(分)之间的关系图象中有一段平行x轴的线段,然后学校,根据图象可以直接得到结论;(2)根据图象中平行x轴的线段即可确定王老师吃早餐用了多少时间;(3)根据图象可以分别求出吃早餐以前的速度和吃完早餐以后的速度,然后比较即可得到结果.解答:解:(1)依题意得:学校离王老师家有10千米,从出发到学校王老师用了25分钟;(2)依题意得:王老师吃早餐用了10分钟;(3)吃早餐以前的速度为:5÷10=0.5km/分钟,吃完早餐以后的速度为:(10﹣5)÷(25﹣20)=1km/分钟=60km/小时,∴王老师吃完早餐以后速度快,最快时速达到60km/小时.点评:此题是一个信息题目,根据函数图象中的信息找出所需要的数量关系,然后利用数量关系即可解决问题.五、解答题(共4小题,满分40分)21.如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=∠DEF.考点:三角形中位线定理;直角三角形斜边上的中线;平行四边形的判定.专题:证明题;几何综合题.分析:(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥AB,DE∥AC,再根据平行四边形的定义证明即可;(2)根据平行四边形的对角相等可得∠DEF=∠BAC,根据直角三角形斜边上的中线等于斜边的一半可得DH=AD,FH=AF,再根据等边对等角可得∠DAH=∠DHA,∠FAH=∠FHA,然后求出∠DHF=∠BAC,等量代换即可得到∠DHF=∠DEF.解答:证明:(1)∵点D,E,F分别是AB,BC,CA的中点,∴DE、EF都是△ABC的中位线,∴EF∥AB,DE∥AC,∴四边形ADEF是平行四边形;(2)∵四边形ADEF是平行四边形,∴∠DEF=∠BAC,∵D,F分别是AB,CA的中点,AH是边BC上的高,∴DH=AD,FH=AF,∴∠DAH=∠DHA,∠FAH=∠FHA,∵∠DAH+∠FAH=∠BAC,∠DHA+∠FHA=∠DHF,∴∠DHF=∠BAC,∴∠DHF=∠DEF.点评:本题考查了三角形的中位线平行于第三边并且等于第三边的一半,等腰三角形的性质,直角三角形斜边上的中线等于斜边的一半的性质,平行四边形的判定与性质,熟记各性质并准确识图是解题的关键.22.小红同学要测量A、C两地的距离,但A、C之间有一水池,不能直接测量,于是她在A、C同一水平面上选取了一点B,点B可直接到达A、C两地.她测量得到AB=80米,BC=20米,∠ABC=120°.请你帮助小红同学求出A、C两点之间的距离.(参考数据≈4.6)考点:勾股定理的应用.分析:首先过C作CD⊥AB交AB延长线于点D,然后可得∠BCD=30°,再根据直角三角形的性质可得BD=10米,然后利用勾股定理计算出CD长,再次利用勾股定理计算出AC长即可.解答:解:过C作CD⊥AB交AB延长线于点D,∵∠ABC=120°,∴∠CBD=60°,在Rt△BCD中,∠BCD=90°﹣∠CBD=30°,∴BD=BC=×20=10(米),∴CD==10(米),∴AD=AB+BD=80+10=90米,在Rt△ACD中,AC==≈92(米),答:A、C两点之间的距离约为92米.点评:此题主要考查了勾股定理的应用,关键是正确掌握直角三角形中,两直角边的平方和等于斜边的平方.23.如图,在四边形ABCD中,AB=AD,CB=CD,AC与BD相交于O点,OC=OA,若E是CD上任意一点,连接BE交AC于点F,连接DF.(1)证明:△CBF≌△CDF;(2)若AC=2,BD=2,求四边形ABCD的周长;(3)请你添加一个条件,使得∠EFD=∠BAD,并予以证明.考点:全等三角形的判定与性质;勾股定理;菱形的判定与性质.专题:几何综合题;开放型.分析:(1)首先利用SSS定理证明△ABC≌△ADC可得∠BCA=∠DCA即可证明△CBF≌△CDF.(2)由△ABC≌△ADC可知,△ABC与△ADC是轴对称图形,得出OB=OD,∠COB=∠COD=90°,因为OC=OA,所以AC与BD互相垂直平分,即可证得四边形ABCD是菱形,然后根据勾股定理全等AB长,进而求得四边形的面积.(3)首先证明△BCF≌△DCF可得∠CBF=∠CDF,再根据BE⊥CD可得∠BEC=∠DEF=90°,进而得到∠EFD=∠BCD=∠BAD.解答:(1)证明:在△ABC和△ADC中,,∴△ABC≌△ADC(SSS),∴∠BCA=∠DCA,在△CBF和△CDF中,,∴△CBF≌△CDF(SAS),(2)解:∵△ABC≌△ADC,∴△ABC和△ADC是轴对称图形,∴OB=OD,BD⊥AC,∵OA=OC,∴四边形ABCD是菱形,∴AB=BC=CD=DA,∵AC=2,BD=2,∴OA=,OB=1,∴AB===2,∴四边形ABCD的周长=4AB=4×2=8.(3)当EB⊥CD时,即E为过B且和CD垂直时垂线的垂足,∠EFD=∠BCD,理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF,∠BCD=∠BAD,∵△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠BCD+∠CBF=90°,∠EFD+∠CDF=90°,∴∠EFD=∠BAD.点评:此题主要考查了全等三角形的判定与性质,以及菱形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.24.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.考点:正方形的判定;平行四边形的判定与性质;菱形的判定.专题:几何综合题.分析:(1)先求出四边形ADEC是平行四边形,根据平行四边形的性质推出即可;(2)求出四边形BECD是平行四边形,求出CD=BD,根据菱形的判定推出即可;(3)求出∠CDB=90°,再根据正方形的判定推出即可.解答:(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥A B,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由是:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴▱四边形BECD是菱形;(3)当∠A=45°时,四边形BECD是正方形,理由是:解:∵∠ACB=90°,∠A=45°,∴∠ABC=∠A=45°,∴AC=BC,∵D为BA中点,∴CD⊥AB,∴∠CDB=90°,∵四边形BECD是菱形,∴菱形BECD是正方形,即当∠A=45°时,四边形BECD是正方形.点评:本题考查了正方形的判定、平行四边形的性质和判定,菱形的判定,直角三角形的性质的应用,主要考查学生运用定理进行推理的能力.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D
E C
B
A
滨州市滨城区2012学年八年级(下)期中考试
数 学 试 卷
同学们:你们好!一转眼半个学期就过去了,在这半个学期里,我们学到了许多新的数学知识,提高了数学思维能力,现在让我们在这里展示一下自己的真实水平吧!祝大家顺利!
一、精心心选一选,相信你能行(每题3分,共30分)
1、下列各式中,属于分式的是( )
A 、
2
y
x - B 、
y
x +2 C 、
y x +2
1
D 、
2
x 2、 (2011大庆市)使分式
有意义...的的取值范围是( ) A . B .
C .
D .
3、如果把分式
y
x xy
+中的x 和y 都扩大2倍,即分式的值 ( ) A 、扩大4倍; B 、扩大2倍; C 、不变; D 缩小2倍
4、在△ABC 中,∠A=90°,∠A 、∠B 、∠C 的对边长分别为a 、b 、c ,则下列结论错误的是 ( ) A 、 a 2+b 2=c 2 B 、b 2+c 2=a 2 C 、a 2-b 2=c 2 D 、a 2-c 2=b 2
5、对于反比例函数2
y x
=
,下列说法不正确...的是 ( ) A 、点(21)--,在它的图象上
B 、它的图象在第一、三象限
C 、当0x >时,y 随x 的增大而增大
D 、当0x <时,y 随x 的增大而减小
6、若2x-y x+y
= 23 ,则x y =( )
A 、45
B 、1
C 、65
D 、5
4
7、如图,有一块直角三角形纸片,两直角边AC=6cm ,BC=8cm ,现将直角边
AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( ) A 、2m B 、3m C 、4m D 、5m 8、下列命题中不成立是 ( )
A 、三个角的度数之比为1:3:4的三角形是直角三角形
B 、三个角的度数之比为1:3:2的三角形是直角三角形
C 、三边长度之比为1:3:2的三角形是直角三角形
D 、三边长度之比为2:2:
2的三角形是直角三角形 9、在函数x
k
y =
(k >0)的图象上有三点A 1(x 1, y 1 )、A 2(x 2, y 2)、A 3(x 3, y 3 ),已知x 1<x 2<0<x 3,则下列各式中,正确的是( ) A 、y 1<y 2<y 3
B 、y 3<y 2<y 1
C 、 y 2< y 1<y 3
D 、y 3<y 1<y 2
10、如图,函数y =k (x +1)与x
k
y =(k <0)在同一坐标系中,图象只能是下图 的( )
二、细心填一填,可得小心哟(每题2分,计16分)
11、 科学家发现一种病毒的直径为0.000043米,用科学记数法表示为___________米。

12、当x = 时,分式2164
x x --的值为零 13、直角三角形的两边长是6和8,则这个三角形的面积是 。

14、如图,反比例函数y=k
x
在第二象限内的图象如图,
点M 是图象上一点,MP ⊥x 轴于点P ,如果S △MOP =2,则k=________.
15、某农场原计划用m 天完成n 公顷的播种任务,如果要提前a 天结束,那么平均每天比原计划
要多播种_________公顷. 16、若51=+
a a ,则=+221
a
a 。

17、甲船以15海里/时的速度离开港口向北航行,乙船同时以20海里/时的速度离开港口向东航行,
则它们离开港口2小时后相距 海里. 18、将23x =
代入反比例函数1
y x
=-中,所得函数记为y 1,又将x =y 1+1代入函数中,所得函数记为y 2,再持x =y 2+1代入函数中,所得函数记为y 3,如此继续下去,则y 2005=_________ 三、解答题(共54分)
_
y _
x _
O _
P _ M
19、(5分)计算 :(x x-y — 2y x-y )·xy x-2y ÷( 1x + 1
y )
20、(5分)解方程:1
412112
-=-++x x x
21、(5分)先化简2
2
11
1x x x -⎛⎫+÷ ⎪⎝⎭
,再求值(其中x 是满足-2<x≤2的整数)
22、(6分)一架秋千当它静止不动时,踏板离地1尺,将它向前推10尺,秋千的踏板就和人一样高,此人身高5尺,如果这时秋千的绳索拉得很直,请问绳索有多长?
23、(6分)如图:已知一次函数y kx b =+(0)k ≠的图象与x 轴、y 轴的交点分别为A 、B
两点。

且与反比例函数(0)m
y m x
=≠的图象在第一象限交于点C ,CD 垂直于x 轴,垂足为D ,若OA=OB=OD=2。

(1)求点A 、B 、D 的坐标。

(3分)
(2)一次函数和反比例函数的解析式。

(3分)
24、(6分)某工程,甲工程队单独做40天完成,若乙工程队单独做30天后,甲、乙两工程队再合作20天完成.
(1)求乙工程队单独做需要多少天完成?(3分)
(2)将工程分两部分,甲做其中一部分用了x 天,乙做另一部分用了y 天,其中x 、y 均为正整数,且x<15,y<70,求x 、y .(3分)
x
y A B C
D
o
25.(6分)如图,在ABC
中,CD⊥AB于D,AC=4, BC=3,
DB=
9
5
,
(1)求CD,AD的值。

(2)
判断△ABC的形状,并说明理由。

26.(8分)
(1)探究新知:如图1,已知△ABC与△ABD的面积相等,试判断AB与CD的位置关系,直接写出结论。

(2分)
(2)结论应用:①如图2,点M,N在反比例函数(k>0)的图象上,过点M作ME⊥y 轴,过点N作NF⊥x轴,垂足分别为E,F.试证明:MN∥EF.(3分)②若①中的其他条件不变,只改变点M,N的位置如图3所示,请判断MN与EF是否平行.并说明理由。

(3分)
C
B
D
27.(7分)如图,直线1y x =-+与x 轴交于点A,与y 轴交于点B,P (),a b 为双曲线()1
02y x x
=>上的一点,PM ⊥x 轴于M,交AB 于E,PN ⊥y 轴于N,交AB 于F.
(1)当点P 的坐标为(3/4,2/3)时,求E 、F 两点的坐标及△EOF 的面积;(3分) (2)用含,a b 的代数式表示E 、F 两点的坐标及△EOF 的面积;(2分) (3)求BE×AF 的值;(2分)
y
x
O
M A
E F
N
B P (),a b
参考答案
一、精心心选一选
1、B
2、D
3、B
4、A
5、C
6、D
7、B
8、B
9、C 10、A 二、细心填一填
11、4.3×10-
5 12、-4 13、24或67 14、-4
15、na/m(m -a) 16、23 17、50 18、1
2
三、解答题 19、
x y
x y
+- 20、无解 21、
1
x
x -值为2 22、14.5尺
23 A (-2,0)B (0,2)D (2,0)y=x+2 y=8x
24、100天 x=13
25、CD=2.4 AD=3.2 直角三角形 26、平行 利用面积相等证明 27、(1)E(
31,44), F(12
,33
) ,S=524
(2)E(a,1-a), F(1-b,b),s=111
222
a b +-。

相关文档
最新文档