初中数学八年级下因式分解

合集下载

初中数学之因式分解知识点汇总

初中数学之因式分解知识点汇总

初中数学之因式分解知识点汇总因式分解1. 因式分解的概念:把一个多项式化成几个整式的积的形式,这样的式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。

2. 因式分解与整式乘法的关系因式分解与整式乘法都是整式变形,两者互为逆变形。

因式分解是将“和差”的形式化为“积”的形式,而整式乘法是将“积”化为“和差”的形式。

注:分解因式必须进行到每一个多项式的因式都不能再分解为止,即分解因式要彻底。

3. 公因式多项式的各项都含有的公共因式叫做这个多项式各项的公因式。

系数——取各项系数的最大公约数;字母——取各项都含有的字母;指数——取相同字母的最低次幂。

例如:多项式pa+pb+pc 中因式p 即为多项式各项的公因式。

因式分解九大方法:(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。

如果把乘法公式反过来就是把多项式分解因式。

于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2如果把乘法公式反过来,就可以用来把某些多项式分解因式。

这种分解因式的方法叫做运用公式法。

(二)平方差公式1.平方差公式(1)式子:a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。

这个公式就是平方差公式。

(三)因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

2.因式分解,必须进行到每一个多项式因式不能再分解为止。

(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2 和(a-b)2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2 =(a+b)2a2-2ab+b2 =(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。

上面两个公式叫完全平方公式。

(2)完全平方式的形式和特点①项数:三项②有两项是两个数的的平方和,这两项的符号相同。

初中数学因式分解的几种经典技巧

初中数学因式分解的几种经典技巧

初中数学因式分解的几种经典技巧初中数学因式分解的几种经典方法因式分解是初中数学的一个重点,涉及到分式方程和一元二次方程,因此学会一些基本的因式分解方法非常必要。

下面列举了九种方法,希望对大家的研究有所帮助。

1.提取公因式这种方法比较常规、简单,必须掌握。

常用的公式有完全平方公式、平方差公式等。

例如,对于方程2x-3x=0,可以进行如下因式分解:x(2x-3)=0,得到x=0或x=3/2.一个规律是:当一个方程有一个解x=a时,该式分解后必有一个(x-a)因式,这对我们后面的研究有帮助。

2.公式法将式子利用公式来分解,也是比较简单的方法。

常用的公式有完全平方公式、平方差公式等。

建议在使用公式法前先提取公因式。

例如,对于x^2-4,可以使用平方差公式得到(x+2)(x-2)。

3.十字相乘法是做竞赛题的基本方法,但掌握了这个方法后,做平时的题目也会很轻松。

关键是将二次项系数a分解成两个因数a1和a2的积a1.a2,将常数项c分解成两个因数c1和c2的积c1.c2,并使ac正好是一次项b,那么可以直接写成结果。

例如,对于2x^2-7x+3,可以使用十字相乘法得到(x-3)(2x-1)。

总结:对于二次三项式ax^2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1.a2,常数项c可以分解成两个因数之积,即c=c1.c2,那么可以使用十字相乘法进行因式分解。

文章中有一些格式错误,需要修正。

另外,第四段中的一些内容似乎有问题,建议删除。

改写后的文章如下:分解因式是数学中的一个重要概念,也是许多数学问题的基础。

在中学数学中,我们通常研究到七种分解因式的方法。

1.公因数法这种方法是最基础的方法之一,它的核心思想是找到表达式中的公因数。

例如,对于表达式6x+9y,我们可以找到它们的公因数3,然后将表达式简化为3(2x+3y)。

2.公式法公式法是通过运用数学公式来分解因式。

例如,对于二次三项式ax2+bx+c,我们可以使用求根公式来求出它的两个根,然后将表达式分解为(a(x-根1)(x-根2))的形式。

【初中数学】因式分解的九种方法

【初中数学】因式分解的九种方法

【初中数学】因式分解的九种方法一、运用公式法我们知道整式乘法与因式分解互为逆变形。

如果把乘法公式反过来就是把多项式分解因式。

于是有:a -b =(a+b)(a-b)a +2ab+b =(a+b)a -2ab+b =(a-b)如果把乘法公式反过来,就可以用来把某些多项式分解因式。

这种分解因式的方法叫做运用公式法。

二、平方差公式1、式子:a -b =(a+b)(a-b)2、语言:两个数的平方差,等于这两个数的和与这两个数的差的积。

这个公式就是平方差公式。

三、因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。

2.因式分解,必须进行到每一个多项式因式不能再分解为止。

四、完全平方公式1、把乘法公式(a+b) =a +2ab+b 和(a-b) =a -2ab+b 反过来,就可以得到: a +2ab+b =(a+b) 和a -2ab+b =(a-b) ,这两个公式叫完全平方公式。

这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。

把a +2ab+b 和a -2ab+b 这样的式子叫完全平方式。

2、完全平方式的形式和特点:①项数:三项;②有两项是两个数的的平方和,这两项的符号相同;③有一项是这两个数的积的两倍。

3、当多项式中有公因式时,应该先提出公因式,再用公式分解。

4、完全平方公式中的a、b可表示单项式,也可以表示多项式。

这里只要将多项式看成一个整体就可以了。

5、分解因式,必须分解到每一个多项式因式都不能再分解为止。

五、分组分解法我们看多项式am+an+bm+bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式。

如果我们把它分成两组(am+an)和(bm+bn),这两组能分别用提取公因式的方法分别分解因式。

原式=(am+an)+(bm+bn)=a(m+n)+b(m+n)做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义。

初中数学因式分解教案5篇

初中数学因式分解教案5篇

初中数学因式分解教案5篇初中数学因式分解教案篇1知识点:因式分解定义,提取公因式、应用公式法、分组分解法、二次三项式的因式(十字相乘法、求根)、因式分解一般步骤。

教学目标:理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,掌握利用二次方程求根公式分解二次二项式的方法,能把简单多项式分解因式。

考查重难点与常见题型:考查因式分解能力,在中考试题中,因式分解出现的频率很高。

重点考查的分式提取公因式、应用公式法、分组分解法及它们的综合运用。

习题类型以填空题为多,也有选择题和解答题。

教学过程:因式分解知识点多项式的因式分解,就是把一个多项式化为几个整式的积。

分解因式要进行到每一个因式都不能再分解为止。

分解因式的常用方法有:(1)提公因式法如多项式其中m叫做这个多项式各项的公因式, m既可以是一个单项式,也可以是一个多项式。

(2)运用公式法,即用写出结果。

(3)十字相乘法对于二次项系数为l的二次三项式寻找满足ab=q,a+b=p的a,b,如有,则对于一般的二次三项式寻找满足a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,则(4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行。

分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号。

(5)求根公式法:如果有两个根X1,X2,那么1、教学实例:学案示例2、课堂练习:学案作业3、课堂:4、板书:5、课堂作业:学案作业6、教学反思:初中数学因式分解教案篇2教学目标1、知识与技能会应用平方差公式进行因式分解,发展学生推理能力。

2、过程与方法经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性。

3、情感、态度与价值观培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值。

重、难点与关键1、重点:利用平方差公式分解因式。

初中数学因式分解的12种方法

初中数学因式分解的12种方法

因式分解常用12种方法及应用【因式分解的12种方法】把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。

因式分解的方法多种多样,现总结如下:1.提公因法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。

例1.分解因式x3-2x2-x(2003淮安市中考题)x3-2x2-x=x(x2-2x-1)2.应用公式法由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。

@初中生家长例2.分解因式a2+4ab+4b2(2003南通市中考题)解:a2+4ab+4b2=(a+2b)23.分组分解法要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)例3.分解因式m2+5n-mn-5m解:m2+5n-mn-5m=m2-5m-mn+5n@初中生家长=(m2-5m)+(-mn+5n)=m(m-5)-n(m-5)=(m-5)(m-n)4.十字相乘法对于mx2+px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)例4.分解因式7x2-19x-6分析:1×7=7,2×(-3)=-61×2+7×(-3)=-19解:7x2-19x-6=(7x+2)(x-3)5.配方法对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。

@初中生家长例5.分解因式x2+6x-40解x2+6x-40=x2+6x+(9)-(9)-40=(x+3)2-(7)2=[(x+3)+7][(x+3)–7]=(x+10)(x-4)6.拆、添项法可以把多项式拆成若干部分,再用进行因式分解。

八年级数学(竞赛)因式分解

八年级数学(竞赛)因式分解

第一讲 分解方法的延拓——换元法与主元法因式分解是针对多项式的一种恒等变形,提公因式法、公式法,分组分解法是因式分解的基本方法,通常根据多项式的项数来选择分解的方法.一些复杂的因式分解问题.常用到换元法和主元法.所谓换元,即对结构比较复杂的多项式,若把其中某些部分看成一个整体,用新字母代替(即换元),则能使复杂的问题简单化、明朗化,在减少多项式项数,降低多项式结构复杂程度等方面有独到作用.所谓主元,即在解多变元问题时,选择其中某个变元为主要元素,视其他变元为常量,将原式重新整理成关于这个字母的按降幂排列的多项式,则能排除字母间的干扰,简化问题的结构.例题求解【例1】分解因式:10)3)(4(2424+++-+x x x x = .(第12届“五羊杯”竞赛题)思路点拨 视24x x +为一个整体.用一个新字母代替,从而能简化式子的结构.【例2】 多项式xyz y z x y z x x z z y y x 2222222-++-+-因式分解后的结果是( ).A .(y -z)(x+y)(x -z)B .(y -z)(x -y)(x +z)C . (y+z)(x 一y)(x+z)D .(y 十z)(x+y)(x 一z) (上海市竞赛题)思路点拨 原式是一个复杂的三元三次多项式,直接分解有一定困难,把原式整理成关于某个字母按降幂排列的多项式,改变其结构,寻找分解的突破口.【例3】把下列各式分解因式:(1)(x+1)(x +2)(x+3)(x+6)+ x 2; (天津市竞赛题)(2)1999x 2一(19992一1)x 一1999; (重庆市竞赛题)(3)(x+y -2xy)(x+y -2)+(xy -1)2; (“希望杯”邀请赛试题)(4)(2x -3y)3十(3x -2y)3-125(x -y)3. (第13届“五羊杯”竞赛题)思路点拔 (1)是形如abcd+e 型的多项式,分解这类多项式时,可适当把4个因式两两分组,使得分组相乘后所得的有相同的部分;(2)式中系数较大,不妨把数用字母表示;(3)式中x+y ;xy 多次出现,可引入两个新字母,突出式子特点;(4)式前两项与后一项有密切联系.【例4】把下列各式分解因式:(1)a 2(b 一c)+b 2(c -a)+c 2 (a 一b); (2)x 2+xy -2y 2-x+7y -6.思路点拨 (1)式字母多次数高,可尝试用主元法;(2)式是形如ax 2+bxy+cy 2+dx+ey+f 的二元二次多项式,解题思路宽,用主元法或分组分解法或用待定系数法分解.【例5】证明:对任何整数 x 和y ,下式的值都不会等于33.x 5+3x 4y -5x 3y 2一15x 2y 3+4xy 4+12y 5.(莫斯科奥林匹克八年级试题)思路点拨 33不可能分解为四个以上不同因数的积,于是将问题转化为只需证明原式可分解为四个以上因式的乘积即可.注:分组分解法是因式分解的量本方法,体现了化整体为局部、又统揽全局的思想.如何恰当分组是解题的关键,常见的分组方法有:(1)按字母分组;(2)按次数分组; (3)按系数分组.为了能迅速解决一些与代教式恒等变形相关的问题,读者因熟悉如下多项式分解因式后的结果:(1)))((2233b ab a b a b a +±=± ;(2)))((3222333ac bc ab c b a c b a abc c b a ---++++=-++学历训练1.分解因式:(x 2+3x)2-2(x 2+3x)-8= .2.分解因式:(x 2+x+1)(x 2+x+2)-12= .3.分解因式:x 2-xy -2y 2-x -y= .4.已知二次三项式82--mx x 在整数范围内可以分解为两个一次因式的积,则整数m 的可能取值为 .5.下列各式分解因式后,可表示为一次因式乘积的是( ).A .2727923-+-x x xB .272723-+-x x xC .272734-+-x x xD .279323-+-x x x (第13届“希望杯”邀请赛试题)6.若51-=+b a ,13=+b a ,则53912322+++b ab a 的值为( ). A .92 B .32 C .54 D .0 7.分解因式:(1)(x 2+4x+8)2+3x(x 2+4x+8)+2x 2; (2)(2x 2-3x+1)2一22x 2+33x -1;(3)x 4+2001x 2+2000x+2001; (4)(6x -1)(2 x -1)(3 x -1)( x -1)+x 2;(5)bc ac ab c b a 54332222+++++; (6)613622-++-+y x y xy x .8.分解因式:22635y y x xy x ++++= .9.分解因式:333)()2()2(y x y x -----= .10.613223+-+x x x 的因式是( )A .12-xB .2+xC .3-xD .12+xE .12+x11.已知c b a >>,M=a c c b b a 222++,N=222ca bc ab ++,则M 与N 的大小关系是( )A .M<NB .M> NC .M =ND .不能确定12.把下列各式分解因式:(1)22212)16)(1(a a a a a ++-++; (2)91)72)(9)(52(2---+a a a ; (黄冈市竞赛题)(3)2)1()21(2)3()1(-+-++-+++y x y x xy xy xy ; (天津市竞赛题)(4)4242410)13)(14(x x x x x ++++-;(第13届“五羊杯”竞赛题)(5)z y xy xyz y x z x x 222232242-++--. (天津市竞赛题)17.已知乘法公式:))((43223455b ab b a b a a b a b a +-+-+=+; ))((43223455b ab b a b a a b a b a ++++-=-. 利用或者不利用上述公式,分解因式:12468++++x x x x (“祖冲之杯”邀请赛试题)18.已知在ΔABC 中,010616222=++--bc ab c b a (a 、b 、c 是三角形三边的长).求证:b c a 2=+第二讲 分解方法的延拓——配方法与待定系数法在数学课外活动中,配方法与待定系数法也是分解因式的重要方法。

2024北师大版数学八年级下册4.3.1《用平方差公式进行因式分解》教学设计

2024北师大版数学八年级下册4.3.1《用平方差公式进行因式分解》教学设计

2024北师大版数学八年级下册4.3.1《用平方差公式进行因式分解》教学设计一. 教材分析《2024北师大版数学八年级下册4.3.1《用平方差公式进行因式分解》》这一节内容是在学生学习了平方差公式的基础上进行的一个实践活动。

平方差公式是初中数学中的一个重要公式,它不仅可以简化计算,还可以用来解决一些因式分解的问题。

本节课通过实例讲解,让学生掌握平方差公式的应用,提高他们的数学解题能力。

二. 学情分析学生在学习本节课之前,已经学习了平方差公式,对公式有一定的理解。

但是,如何将平方差公式应用到实际的因式分解中,可能还存在一定的困难。

因此,在教学过程中,需要引导学生将理论知识与实际问题相结合,提高他们的解题技巧。

三. 教学目标1.理解平方差公式的含义,掌握平方差公式的结构。

2.能够将实际的因式分解问题转化为平方差公式的形式,并进行解答。

3.培养学生的逻辑思维能力,提高他们的数学解题能力。

四. 教学重难点1.掌握平方差公式的结构。

2.如何将实际的因式分解问题转化为平方差公式的形式。

五. 教学方法采用讲解法、实践法、讨论法等教学方法,引导学生通过自主学习、合作交流,掌握平方差公式的应用。

六. 教学准备1.准备相关平方差公式的课件和教学素材。

2.准备一些实际的因式分解问题,用于课堂练习。

七. 教学过程1.导入(5分钟)通过一个实际的因式分解问题,引导学生回顾平方差公式。

例如:已知多项式x^2 - 4,请将其因式分解。

让学生尝试解答,然后给出解答过程和答案。

2.呈现(10分钟)讲解平方差公式的含义和结构,让学生理解平方差公式的推导过程。

通过示例,讲解如何将实际的因式分解问题转化为平方差公式的形式。

3.操练(10分钟)让学生分组合作,解决一些实际的因式分解问题。

教师巡回指导,解答学生的问题,并给予反馈。

4.巩固(10分钟)让学生自主选择一些练习题进行巩固练习,教师个别辅导,解答学生的问题。

5.拓展(10分钟)引导学生思考如何将平方差公式应用到更复杂的问题中,例如多项式的乘法、求解方程等。

2020年八年级数学下册因式分解专题02 平方差公式(提升教师版)

2020年八年级数学下册因式分解专题02 平方差公式(提升教师版)

专题02 平方差公式(提升版)【典型例题】类型一、公式法——平方差公式 例1、分解因式:(1); (2); (3).【思路点拨】(1)把看做整体,变形为后分解.(2)可写成,可写成,和分别相当于公式里的和.(3)把、看作一个整体进行分解. 【答案与解析】解:(1). (2).(3).【总结升华】注意套用公式时要注意字母的广泛意义,可以是字母,也可以是单项式或多项式. 举一反三:【变式】将下列各式分解因式:(1); (2)(3); (4);【答案】解:(1)原式(2)原式=2()4x y +-2216()25()a b a b --+22(2)(21)x x +--x y +22()2x y +-216()a b -2[4()]a b -225()a b +2[5()]a b +4()a b -5()a b +a b (2)x +(21)x -222()4()2(2)(2)x y x y x y x y +-=+-=+++-222216()25()[4()][5()]a b a b a b a b --+=--+[4()5()][4()5()]a b a b a b a b =-++--+(9)(9)a b a b =+--(9)(9)a b a b =-++22(2)(21)[(2)(21)][(2)(21)]x x x x x x +--=++-+--(31)(3)x x =+-()()22259a b a b +--()22234x y x --33x y xy -+32436x xy -()()()()5353a b a b a b a b =++-+--⎡⎤⎡⎤⎣⎦⎣⎦()()()()8228444a b a b a b a b =++=++()()232232x y x x y x -+--= (3)原式 (4)原式例2、分解因式: (1); (2); (3); (4) 【答案与解析】 解:(1). (2).(3). (4).【总结升华】(1)如果多项式的各项中含有公因式,那么先提取公因式,再运用平方差公式分解.(2)因式分解必须进行到每一个多项式的因式都不能分解为止. 举一反三:【变式】先化简,再求值:(2a +3b )2﹣(2a ﹣3b )2,其中a =.【答案】解:原式=(2a +3b +2a ﹣3b )(2a +3b ﹣2a +3b ) =4a ×6b =24ab ,当a =,即ab =时,原式=24ab =4. 类型二、平方差公式的应用例3、在日常生活中,如取款、上网需要密码,有一种因式分解法产生密码,例如x 4﹣y 4=(x ﹣y )(x +y )(x 2+y 2),当x =9,y =9时,x ﹣y =0,x +y =18,x 2+y 2=162,则密码018162.对于多项式4x 3﹣xy 2,取x =10,y =10,用上述方法产生密码是什么?【思路点拨】首先将多项式4x 3﹣xy 2进行因式分解,得到4x 3﹣xy 2=x (2x +y )(2x ﹣y ),然后把x =10,y =10代入,分别计算出2x +y =及2x ﹣y 的值,从而得出密码. 【答案与解析】解:原式=x (4x 2﹣y 2)=x (2x +y )(2x ﹣y ), 当x =10,y =10时,x =10,2x +y =30,2x ﹣y =10,故密码为103010或101030或301010.【总结升华】本题是中考中的新题型,考查了学生的阅读能力及分析解决问题的能力,读懂密码产生的方法是关键.()343y x y --()()()22xy x y xy x y x y =--=-+-()()()2249433x x y x x y x y =-=+-2128x -+33a b ab -516x x -2(1)(1)a b a -+-221112(16)(4)(4)888x x x x -+=--=-+-3322()()()a b ab ab a b ab a b a b -=-=+-5422216(16)(4)(4)(4)(2)(2)x x x x x x x x x x x -=-=+-=++-222(1)(1)(1)(1)(1)(1)(1)(1)(1)a b a a b a a b a b b -+-=---=--=-+-例4、阅读下面的计算过程:(2+1)(22+1)(24+1)=(2﹣1)(2+1)(22+1)(24+1)=(22﹣1)(22+1)(24+1)=(24﹣1)(24+1)=(28﹣1).根据上式的计算方法,请计算:(1)(2)(3+1)(32+1)(34+1)…(332+1)﹣.【思路点拨】(1)原式变形后,利用平方差公式化简,计算即可得到结果;(2)原式变形后,利用平方差公式化简,计算即可得到结果.【答案与解析】解:(1)原式=2(1﹣)(1+)(1+)(1+)…(1+)=2(1﹣)(1+)(1+)…(1+)=2(1﹣)(1+)…(1+)=2(1﹣)=;(2)原式=(3﹣1)(3+1)(32+1)(34+1)…(332+1)﹣=(32﹣1)(32+1)(34+1)…(332+1)﹣=(364﹣1)﹣=﹣.【总结升华】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.同步练习一.选择题1.分解因式:16﹣x 2=( )A .(4﹣x )(4+x )B .(x ﹣4)(x +4)C .(8+x )(8﹣x )D .(4﹣x )22.下列多项式相乘,不能用平方差公式的是( ) A.(﹣2y ﹣x )(x +2y ) B.(x ﹣2y )(﹣x ﹣2y )C.(x ﹣2y )(2y +x )D.(2y ﹣x )(﹣x ﹣2y )3. 下列因式分解正确的是( ).A. B.C.D. 4. 下列各式,其中因式分解正确的是( ) ①;② ③ ④ A.1个 B.2个 C.3个 D.4个5. 若能被60或70之间的两个整数所整除,这两个数应当是( ) A .61,63 B .61,65 C .63,65 D .63,676. 乘积应等于( ) A .B .C .D .二.填空题 7. ; .8. 若,将分解因式为__________.9. 分解因式:_________.10. 若,则是_________.11.若A =(2+1)(22+1)(24+1)(28+1)+1,则A 的末位数字是 . 12.已知|x ﹣y +2|+=0,则x 2﹣y 2的值为 .三.解答题13. 用简便方法计算下列各式:(1) -1998×2000 (2) (3)()()2292323a b a b a b -+=+-()()5422228199a ab a a bab -=+-()()2112121222a a a -=+-()()22436223x y x y x y x y ---=-+-22933422x y x y x y ⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭()()2933x x x -=-+()()()()2212121m n m n m n +--+=+-()()()()2294252a b a c a b c a b c +-+=+-++4821-22221111111123910⎛⎫⎛⎫⎛⎫⎛⎫--⋅⋅⋅-- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭5121211202311_________m m aa +--=()2211x x x --+=)2|4|50m -+=22mx ny -2121()()=m m p q q p +--+-()()()216422nx xx x -=++-n 219992253566465⨯-⨯222222221009998979695......21-+-+-++-14.已知(2a +2b +3)(2a +2b ﹣3)=72,求a +b 的值.15.设,,……,(为大于0的自然数).(1)探究是否为8的倍数,并用文字语言表述你所获得的结论;(2)若一个数的算术平方根是一个自然数,则称这个数是“完全平方数”.试找出,,……,这一列数中从小到大排列的前4个完全平方数,并指出当满足什么条件时,为完全平方数.【答案与解析】 一.选择题 1. 【答案】A ;【解析】16﹣x 2=(4﹣x )(4+x ).2. 【答案】A ;【解析】解:A 、两项都是互为相反数,不符合平方差公式.B 、C 、D 中的两项都是一项完全相同,另一项互为相反数,符合平方差公式.故选:A .3. 【答案】C ;【解析】;;. 4. 【答案】C ;【解析】①②③正确. . 5. 【答案】C ;【解析】6. 【答案】C ; 【解析】 22131a =-22253a =-()()222121n a n n =+--n n a 1a 2a n a n n a ()()22933a b b a b a -+=+-()()()()()542222228199933a ab a a bab a a b a b a b -=+-=++-()()()()()224362232223x y x y x y x y x y x y x y ---=+--+=+--()()()()229433223322a b a c a b a c a b a c +-+=++++--()()53232a b c a b c =+++-()()()()()482424241212212121212121-=+-=++-()()()()()()24126624122121212121216563=+++-=++⨯⨯22221111111123910⎛⎫⎛⎫⎛⎫⎛⎫--⋅⋅⋅-- ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭二.填空题 7. 【答案】;【解析】.8. 【答案】;【解析】.9. 【答案】;【解析】原式=. 10.【答案】4; 【解析】.11.【答案】6;【解析】解:(2+1)(22+1)(24+1)(28+1)+1=(2﹣1)(2+1)(22+1)(24+1)(28+1)+1,=(22﹣1)(22+1)(24+1)(28+1)+1, =(24﹣1)(24+1)(28+1)+1, =(28﹣1)(28+1)+1, =216﹣1+1,=216因为216的末位数字是6, 所以原式末位数字是6.12. 【答案】-4;【解析】∵|x ﹣y +2|+=0,∴x ﹣y +2=0,x +y ﹣2=0,∴x ﹣y =﹣2,x +y =2,∴x 2﹣y 2=(x ﹣y )(x +y )=﹣4. 三.解答题 13.【解析】解:(1)-1998×2000 =(2)111111111111 (11112233991010314253108119) (2233449910101111121020)⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-+-+-+- ⎪⎪⎪⎪ ⎪⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯=⨯=()()111m aa a -+-()()211x x -+()()()()()()()22222211111111x x x x x x x x x x --+=---=--=-+()()2525x y x y +-4,25,m n ==()()222525mx ny x y x y -=+-21()(1)(1)m p q p q p q ---+--()22121()1()(1)(1)m m p q p q p q p q p q --⎡⎤---=--+--⎣⎦()()()()()22244224416x x x x x x++-=+-=-21999()()222199919991199911999199911--+=-+=()2222535664656535465⨯-⨯=-(3)14.【解析】解:已知等式变形得:[2(a +b )+3][2(a +b )﹣3]=72,即4(a +b )2﹣9=72, 整理得:(a +b )2=,开方得:a +b =±. 15.【解析】解:(1) 又为非零的自然数, ∴是8的倍数.这个结论用文字语言表述为:两个连续奇数的平方差是8的倍数. (2)这一列数中从小到大排列的前4个完全平方数为16,64,144,256.为一个完全平方数的2倍时,为完全平方数.()()65354655354656100070420000=+-=⨯⨯=222222221009998979695......21-+-+-++-()()()()()()100991009998979897......2121100999897 (21)5050=+-++-+++-=++++++=()()222121(2121)(2121)8n a n n n n n n n =+--=++-+-+=n n a n n a学法指导: 怎样学好数学☆人生是一种体验,一种经历,一种探索,一种生活,而人生目标,则是一种自我的设定。

北师大版初中八年级下册数学课件 《提取公因式法》因式分解PPT(第1课时)

北师大版初中八年级下册数学课件 《提取公因式法》因式分解PPT(第1课时)

举一反三
2. 利用分解因式计算:(-2)²ºº¹+(-2)²ºº²× 1 2
解:(-2)²ºº¹+(-2)²ºº²×1 =(-2)²ºº¹×[1-(-2) ×] 2
1
=(-2)²ºº¹×0
2
=0
随堂检测
1.下列各式中,没有公因式的是( C )
A.ab-bc
B.y²-y
C.x²+2x+1 D.mn²-nm+m²
D
3. 把首项系数变为正数.
(1)-2x²y-2xy²=-()
(2)-2x²+3x-1=-() 2x²y+2xy²
2x²-3x+1
活动探究
探究点一 问题1:多项式ac+bc每项含有哪些因式?有相同的因式吗?3x²+x呢? mb²+nb+b呢? 解:多项式ac+bc的ac项含因式a、c、ac;bc项含因式b、c、bc.相同因式:c 多项式3x²+x含因式3、x、x²3x、3x²相同因式:x 多项式mb²+nb+b含因式m、b、b²mx²、n;相同因式:b
4.2提取公因式法 第1课时
八年级下册
学习目标 1 能确定多项式各项的单项式公因式; 2 会用提公因式法把多项式分解因式.
前置学习
1. 下列各式公因式是a的是()D
A. ax+ay+5B.3ma-6ma²C.4a²+10abD.a²-2a+ma
2. -6xyz+3xy²-9x²y的公因式是()
A.-3xB.3xzC.3yzD.-3xy
活动探究
探究点二 问题1:把下列各式因式分解: (1)3x+x³;(2)7x³-21x²; (3)8a³b²-12ab³c+ab;(4)-24x³+12x²-28x. 解:(1)原式=3•x+x²•x=x(3+x²); (2)原式=7x²•x+7x²•3=7x² (x-3); (3)原式=ab•8a²b-ab•12b²c+ab=ab(8a²b-12b²c+1); (4)-(24x³-12x²+28x)=-(4x•6x²-4x•3x+4x•7) =-4x(6x²-3x+7).

初二数学因式分解知识点经典总结

初二数学因式分解知识点经典总结

整式乘除与因式分解概述定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫作分解因式。

意义:它是中学数学中最重要的恒等变形之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具。

因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用。

学习它,既可以复习的整式四则运算,又为学习分式打好基础;学好它,既可以培养学生的观察、注意、运算能力,又可以提高学生综合分析和解决问题的能力。

分解因式与整式乘法互为逆变形。

因式分解的方法因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法。

而在竞赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式轮换对称多项式法,余数定理法,求根公式法,换元法,长除法,除法等。

注意三原则1 分解要彻底2 最后结果只有小括号3 最后结果中多项式首项系数为正(例如:-3x^2+x=-x(3x-1))基本方法⑴提公因式法各项都含有的公共的因式叫做这个多项式各项的公因式。

如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法。

具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的。

如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数。

提出“-”号时,多项式的各项都要变号。

例如:-am+bm+cm=-m(a-b-c);a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)。

注意:把2a^2+1/2变成2(a^2+1/4)不叫提公因式⑵公式法如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法。

北师大版数学八年级下册4.1《因式分解》教案

北师大版数学八年级下册4.1《因式分解》教案

北师大版数学八年级下册4.1《因式分解》教案一. 教材分析北师大版数学八年级下册4.1《因式分解》是初中数学的重要内容,主要让学生掌握因式分解的方法和应用。

因式分解是代数运算的基础,对于提高学生的数学思维能力和解决问题的能力具有重要意义。

本节课的内容包括提公因式法、公式法、分组分解法等因式分解方法,通过这些方法的学习,使学生能够灵活运用因式分解解决实际问题。

二. 学情分析学生在学习本节课之前,已经掌握了整式的乘法运算,具备了一定的代数基础。

但因式分解较为抽象,对于部分学生来说,理解起来存在一定的困难。

因此,在教学过程中,要关注学生的学习差异,针对不同层次的学生进行教学,提高他们的学习兴趣和自信心。

三. 教学目标1.知识与技能目标:使学生掌握因式分解的方法,能够灵活运用各种方法进行因式分解。

2.过程与方法目标:通过小组合作、讨论交流,培养学生的团队协作能力和解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的精神。

四. 教学重难点1.重点:因式分解的方法。

2.难点:灵活运用各种方法进行因式分解,解决实际问题。

五. 教学方法1.情境教学法:通过创设生活情境,激发学生的学习兴趣。

2.启发式教学法:引导学生主动思考,培养学生的创新能力。

3.小组合作学习:培养学生团队协作能力和解决问题的能力。

六. 教学准备1.准备相关教案、PPT、教学素材等。

2.准备黑板、粉笔、投影仪等教学用品。

3.提前让学生预习本节课的内容,了解因式分解的基本概念。

七. 教学过程1. 导入(5分钟)利用生活实例或趣味数学问题,引入因式分解的概念,激发学生的学习兴趣。

2. 呈现(10分钟)通过PPT展示因式分解的方法,包括提公因式法、公式法、分组分解法等。

引导学生了解各种方法的特点和应用。

3. 操练(10分钟)对学生进行分组,每组选定一个因式分解问题,运用所学的methods进行解决。

教师巡回指导,解答学生的疑问。

北师大版初中八年级数学下册第四章集体备课教案含教学反思

北师大版初中八年级数学下册第四章集体备课教案含教学反思

第四章因式分解1因式分解【知识与技能】使学生了解因式分解的意义,理解因式分解的概念;通过对分解因式与整式的乘法的观察与比较,学习代数式的变形和转化与化归的能力,培养学生的分析问题能力与综合应用能力.【过程与方法】认识因式分解与整式乘法的相互关系——互逆关系(即相反变形),并能利用这种关系寻求因式分解的方法;通过解决实际问题,学会将实际应用问题转化为用所学到的数学知识解决问题,体验解决问题策略的多样性,发展实践应用意识.【情感态度】培养学生接受矛盾的对立统一观点,独立思考,勇于探索的精神和实事求是的科学态度.【教学重点】因式分解的概念.【教学难点】难点是理解因式分解与整式乘法的相互关系,并利用它们之间的相互关系寻求因式分解的方法.一.情景导入,初步认知下题简便运算怎样进行?问题1:736×95+736×5问题2:-2.67×132+25×2.67+7×2.67【教学说明】对乘法公式进行分析,为因式分解作铺垫.二.思考探究,获取新知问题:(1)993-99能被99整除吗?为了回答这个问题,你该怎样做?把你的想法与同学交流。

993-99 = 99×992-99 = 99(992-1)∴993-99能被99整除.(2)993-99能被100整除吗?为了回答这个问题,你该怎样做?把你的想法与同学交流。

小明是这样做的:993-99 = 99×992-99×1 = 99(992-1)= 99(99+1)(99-1)= 99×98×100所以993-99能被100整除.想一想:(1)在回答993-99能否被100整除时,小明是怎么做的?(2)请你说明小明每一步的依据.(3)993-99还能被哪些正整数整除?为了回答这个问题,你该怎做?【教学说明】老师点拨:回答这个问题的关键是把993-99化成了怎样的形式?【归纳结论】以上三个问题解决的关键是把一个数式化成了几个数的积的形式.可以了解:993-99可以被98、99、100三个连续整数整除.将99换成其他任意一个大于1的整数,上述结论仍然成立吗?学生探究发现:用a表示任意一个大于1的整数,则:a3-a=a×a2-a=a×(a2-1)=a ×(a+1)(a-1)=(a-1)×a×(a+1)①能理解吗?你能与同伴交流每一步怎么变形的吗?②这样变形是为了达到什么样的目的?【教学说明】经历从分解因数到分解因式的类比过程,探究概念本质属性.【归纳结论】把一个多项式化成几个整式的积的形式叫做把这个多项式分解因式.三.运用新知,深化理解1.下列各式从左到右的变形,哪些是因式分解?(1)4a(a+2b)=4a2+8ab;(2)6ax-3ax2=3ax(2-x);(3)a2-4=(a+2)(a-2);(4)x2-3x+2=x(x-3)+2.答案:(2)(3)是因式分解.2.试将下列各式化成几个整式的积的形式(1)3x2-2x=______- (2)m2-4n2 =____答案:(1)x(3x-2) (2)(m+2n)(m-2n)3.分解因式.4m2-4m=______ 2a3+2a=______ y2+4y+4=______答案:4m(m-1) 2a(a2+1) (y+2)24.如果a+b=10,ab=21,则a2b+ab2的值为.答案:210.5.如果a-3b=-3,那么5-a+3b的值是()A.0B.2C.5D.8答案:D.6.9993-999能被998整除吗?能被1000整除吗?解:9993-999=999(9992-1)=999(999+1)(999-1)=999×1000×998所以9993-999能被998整除,能被1000整除。

八年级数学下第四章 分解因式小结

八年级数学下第四章 分解因式小结

南庄中学八年级数学下第二章《分解因式》小结及综合题应用姓名 班别 学号知识点总结归纳:因式分解是把一个多项式分解成几个整式乘积的形式,它和整式乘法互为逆运算,在初中代数中占有重要的地位和作用,在其它学科中也有广泛应用,学习本章知识时,应注意以下几点。

1、因式分解的对象是多项式;2、因式分解的结果一定是整式乘积的形式;3、分解因式,必须进行到每一个因式都不能再分解为止;4、公式中的字母可以表示单项式,也可以表示多项式;5、结果如有相同因式,应写成幂的形式;6、题目中没有指定数的范围,一般指在有理数范围内分解;7、因式分解的一般步骤是:(1)通常采用一“提”、二“公”、三“分”、四“变”的步骤。

即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步骤都不能实施,可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法继续分解;(2)若上述方法都行不通,可以尝试用配方法、换元法、待定系数法、试除法、拆项(添项)等方法;下面介绍本章所学的内容在一些题型中的应用吧!一、 例1 把3223y xy y x x +--分解因式 解:原式)()(22y x y y x x ---=)()())((222y x y x y x y x +-=--=例2 把)()()(33x y xy y x y x -----分解因式。

分析:因为))((2233y xy x y x y x ++-=-所以多项式应先提公因式)(y x -再用公式分解。

解:)()()(33x y xy y x y x -----)1)(()()())((2222xy y xy x y x y x xy y x y xy x y x +-++-=-+--++-=)1)(1)((]1))[(()12)((222-+++-=-+-=-++-=y x y x y x y x y x y xy x y x例3 分解因式12345-+-+-x x x x x分析:这是一个六项式,很显然要先进行分组,此题可把12345-+-+-x x x x x 和分别看成一组,此时六项式变成二项式,提取公因式后,再进一步分解;也可把45x x -,23x x -,1-x 分别看成一组,此时的六项式变成三项式,提取公因式后再进行分解。

因式分解60道压轴题型(6大题型)——2023-2024学年八年级数学下册重难点(北师大版)(解析)

因式分解60道压轴题型(6大题型)——2023-2024学年八年级数学下册重难点(北师大版)(解析)

因式分解60道压轴题型专训(6大题型)【题型目录】题型一 已知因式分解的结果求参数 题型二 运用公式法分解因式题型三 因式分解在有理数简算中的应用 题型四 十字相乘法 题型五 分组分解法 题型六 因式分解的应用【压轴题型一 已知因式分解的结果求参数】1.已知多项式481x b +可以分解为()()()22492332a b a b b a ++−,则x 的值是( )A .416aB .416a −C .24aD .24a −【答案】B【分析】本题可根据题中条件,多项式分解为单项式,用分解出来的单项式进行相乘后,即可求出x 的值.【详解】解:根据题意可得:()()()224492332=81ab a b b a x b++−+,∵()()()22492332a b a b b a ++− ()()()22=492323a b a b a b −++− ()()2222=4949a b ab −+−()44=1681a b −−44=1681a b −+,∴4=16x a −, 故选:B .【点睛】本题考查因式分解的基本知识,学生需掌握因式分解的基本知识,做此题就不难.2.如果把二次三项式22x x c ++分解因式得()()2213x x c x x ++=−+,那么常数c 的值是( )A .3B .-3C .2D .-2【答案】B【分析】将因式分解的结果用多项式乘法的展开,其结果与二次三项式比较即可求解. 【详解】解:∵()()2213x x c x x ++=−+∴22223x x c x x ++=+−故3c =− 故选B【点睛】本题考查了因式分解,多项式的乘法运算,掌握多项式乘法与因式分解的关系是解题的关键. 3.若22266−+++x y xy kx 能分解成两个一次因式的积,则整数k= . 【答案】7±【分析】根据题意设多项式可以分解为:(x+ay+c )(2x+by+d ),则2c+d=k ,根据cd=6,求出所有符合条件的c 、d 的值,然后再代入ad+bc=0求出a 、b 的值,与2a+b=1联立求出a 、b 的值,a 、b 是整数则符合,否则不符合,最后把符合条件的值代入k 进行计算即可.【详解】解:设22266−+++x y xy kx 能分解成:(x +ay +c)(2x +by +d), 即2x2+aby2+(2a +b )xy +(2c +d)x +(ad +bc)y +cd , ∴cd=6,∵6=1×6=2×3=(-2)×(-3)=(-1)×(-6),∴①c=1,d=6时,ad +bc=6a +b=0,与2a +b=1联立求解得1432a b ⎧=−⎪⎪⎨⎪=⎪⎩, 或c=6,d=1时,ad +bc=a +6b=0,与2a +b=1联立求解得611111a b ⎧=⎪⎪⎨⎪=−⎪⎩, ②c=2,d=3时,ad +bc=3a +2b=0,与2a +b=1联立求解得23a b =⎧⎨=−⎩,或c=3,d=2时,ad +bc=2a +3b=0,与2a +b=1联立求解得3412a b ⎧=⎪⎪⎨⎪=−⎪⎩, ③c=-2,d=-3时,ad +bc=-3a -2b=0,与2a +b=1联立求解得23a b =⎧⎨=−⎩,或c=-3,d=-2,ad +bc=-2a -3b=0,与2a +b=1联立求解得3412a b ⎧=⎪⎪⎨⎪=−⎪⎩, ④c=-1,d=-6时,ad +bc=-6a -b=0,与2a +b=1联立求解得1432a b ⎧=−⎪⎪⎨⎪=⎪⎩, 或c=-6,d=-1时,ad +bc=-a -6b=0,与2a +b=1联立求解得611111a b ⎧=⎪⎪⎨⎪=−⎪⎩, ∴c=2,d=3时,c=-2,d=-3时,符合,∴k=2c +d=2×2+3=7,k=2c +d=2×(-2)+(-3)=-7, ∴整数k 的值是7,-7. 故答案为:7±.【点睛】本题考查因式分解的意义,设成两个多项式的积的形式是解题的关键,要注意6的所有分解结果,还需要用a 、b 进行验证,注意不要漏解.4.已知多项式4x mx n ++能分解为()()2223x px q x x +++−,则p = ,q = .【答案】 2−; 7.【分析】把()()2223xpx q x x +++−展开,找到所有3x 和2x 的项的系数,令它们的系数分别为0,列式求解即可.【详解】解:∵()()2223xpx q x x +++−432322222333x px qx x px qx x px q =+++++−−−()()()432223233x p x q p x q p x q=++++−+−−4x mx n =++.∴展开式乘积中不含3x 、2x 项,∴20230p q p +=⎧⎨+−=⎩,解得:27p q =−⎧⎨=⎩.故答案为:2−,7.【点睛】本题考查了整式乘法的运算、整式乘法和因式分解的关系,将结果式子运用整式乘法展开后,抓住“若某项不存在,即其前面的系数为0”列出式子求解即可. 5.【例题讲解】因式分解:31x −.31x −为三次二项式,若能因式分解,则可以分解成一个一次二项式和一个二次多项式的乘积.故我们可以猜想31x −可以分解成()()21x x ax b −++,展开等式右边得:()32(1)x a x b a x b +−+−−,()()33211x x a x b a x b ∴−=+−+−−恒成立.∴等式两边多项式的同类项的对应系数相等,即1001a b a b −=⎧⎪−=⎨⎪−=−⎩,解得11a b =⎧⎨=⎩,()()32111x x x x ∴−=−++.【方法归纳】设某一多项式的全部或部分系数为未知数,利用当两个多项式为恒等式时,同类项系数相等的原理确定这些系数,从而得到待求的值,这种方法叫待定系数法. 【学以致用】(1)若()()21234x mx x x −−=+−,则m =________;(2)若3233x x x k +−+有一个因式是1x +,求k 的值及另一个因式. 【答案】(1)1(2)5k =−,225x x +−【分析】(1)将()()34x x +−展开,再根据题干的方法即可求解;(2)设多项式3233x x x k +−+另一个因式为()2xax b ++,利用题干给出的待定系数法求解即可.【详解】(1)∵()()21234x mx x x −−=+−,∴221212x mx x x −−=−−,∴1m =,故答案为:1;(2)设多项式3233x x x k +−+另一个因式为()2x ax b ++,则()()()()322323311x x x k x x ax b x a x a b x b+−+=+++=+++++13a ∴+=,3a b +=−,b k =,2a ∴=,=5b −,5k ∴=−,即另一个式子为:225x x +−.【点睛】本题主要考查了多项式的乘法,因式分解等知识,掌握题干给出的待定系数法,是解答本题的关键.6.仔细阅读下面例题,解答问题例题:已知二次三项式24x x m −+有一个因式是()3x +,求另一个因式以及m 的值.解:设另一个因式为()x n +,得()()243x x m x x n −+=++则()22433x x m x n x n −+=+++343n m n +=−⎧∴⎨=⎩解得7n =−,21m =−∴另一个因式为()7x −,m 的值为21−.问题:(1)已知二次三项式26x x a ++有一个因式是()5+x ,求另一个因式以及a 的值: (2)已知二次三项式22x x p −−有一个因式是()23x +,求另一个因式以及p 的值. 【答案】(1)另一个因式为1x +,a 的值为5 (2)另一个因式为()2x −,p 的值为6【分析】(1)设另一个因式为()x n +,根据例题的方法,列出等式并将等式右侧展开,然后利用对应系数法即可求出结论; (2)设另一个因式为()x q +,根据例题的方法,列出等式并将等式右侧展开,然后利用对应系数法即可求出结论.【详解】(1)解:设另一个因式为()x n +,得()()265x x a x x n ++=++,则()22655x x a x n x n++=+++,565n n a +=⎧∴⎨=⎩,解得:15n a =⎧⎨=⎩,∴另一个因式为1x +,a 的值为5;(2)解:设另一个因式为()x q +,得()()2223x x p x q x −−=++,则()2222233x x p x q x q−−=+++,2313q q p +=−⎧∴⎨=−⎩,解得:26q p =−⎧⎨=⎩, ∴另一个因式为()2x −,p 的值为6.【点睛】本题考查了因式分解的意义,正确理解因式分解与整式的乘法互为逆运算是解题的关键. 7.1637年笛卡尔(R .Descartes ,1596-1650)在其《几何学》中,首次应用待定系数法最早给出因式分解定理.关于笛卡尔的“待定系数法”原理,举例说明如下: 分解因式:3235x x x ++−.解:观察可知,当1x =时,原式0=. ∴原式可分解为()1x −与另一个整式的积.设另一个整式为2x bx c ++.则()()322351x x x x x bx c ++−=−++, ∵()()()()23211x x bx c x b x c b x c −++=+−+−−,∴()()3232351x x x x b x c b x c ++−=+−+−−∵等式两边x 同次幂的系数相等,则有:1135b c b c −=⎧⎪−=⎨⎪−=−⎩,解得25b c =⎧⎨=⎩.∴()()32235125x x x x x x ++−=−++.根据以上材料,理解并运用材料提供的方法,解答以下问题:(1)根据以上材料的方法,分解因式3223x x +−的过程中,观察可知,当x =______时,原式0=,所以原式可分解为______与另一个整式的积.若设另一个整式为2x bx c ++.则b =______,c =______. (2)已知多项式31x ax ++(a 为常数)有一个因式是1x +,求另一个因式以及a 的值. 下面是小明同学根据以上材料方法,解此题的部分过程,请帮小明完成他的解答过程.解:设另一个因式为2x bx c ++,则()()3211x ax x x bx c ++=+++.……(3)已知二次三项式223x x k +−(k 为常数)有一个因式是4x +,则另一个因式为______,k 的值为______. 【答案】(1)1;(1)x −;3;3(2)解题过程见详解,321(1)(1)x x x x +=+−+(3)(25)x −;20【分析】(1)根据材料提示,当1x =时,3223x x +−的值为0,由此即可求解;(2)多项式31x ax ++(a 为常数)有一个因式是1x +,设另一个因式为2x bx c ++,根据材料提示,即可求解;(3)多项式223x x k +−(k 为常数)有一个因式是4x +,则另一个因式为mx n +,根据材料提示,即可求解.【详解】(1)解:当1x =时,3223x x +−的值为0,∴原式可分解为(1)x −与另一个整式的积,设另一个整式为2x bx c ++,∴32223(1)()x x x x bx c +−=−++,∵232(1)()()()x x bx c x b c x c b x c −++=+−+−−, ∴323223(1)()x x x b x c b x c +−=+−+−−,∴1203b c b c −=⎧⎪−=⎨⎪−=−⎩,解得,33b c =⎧⎨=⎩,∴32223(1)(33)x x x x x +−=−++,故答案为:1;(1)x −;3;3.(2)解:多项式31x ax ++(a 为常数)有一个因式是1x +,设另一个因式为2x bx c ++,则()()3211x ax x x bx c ++=+++,∵()()2321(1)()x x bx c x b x c b x c +++=+++++,∴3321(1)()x ax x b x c b x c ++=+++++, ∴101b c b a c +=⎧⎪+=⎨⎪=⎩,解方程得,011a b c =⎧⎪=−⎨⎪=⎩,∴多项式31x ax ++(a 为常数)为31x +,∴31x +因式分解为321(1)(1)x x x x +=+−+.(3)解:多项式223x x k +−(k 为常数)有一个因式是4x +,设另一个因式为mx n +,∴223(4)()x x k x mx n +−=++, ∵2(4)()(4)4x mx n mx n m x n ++=+++, ∴2223(4)4x x k mx n m x n +−=+++,∴2434m n m n k =⎧⎪+=⎨⎪=−⎩,解方程组得,2520m n k =⎧⎪=−⎨⎪=⎩,∴多项式223x x k +−(k 为常数)为22320x x +−,∴22320x x +−因数分解为22320(4)(25)x x x x +−=+−,故答案为:(25)x −,20.【点睛】本题主要考查因数分解,掌握整式的混合运算是解题的关键. 8.仔细阅读下面例题:例题:已知二次三项式25x x m ++有一个因式是x +2,求另一个因式以及m 的值. 解:设另一个因式px +n ,得25x x m ++=(x +2)(px +n ),对比等式左右两边x 的二次项系数,可知p =1,于是25x x m ++=(x +2)(x +n ). 则25x x m ++=2x +(n +2)x +2n ,∴n +2=5,m =2n , 解得n =3,m =6,∴另一个因式为x +3,m 的值为6 依照以上方法解答下面问题:(1)若二次三项式2x ﹣7x +12可分解为(x ﹣3)(x +a ),则a = ; (2)若二次三项式22x +bx ﹣6可分解为(2x +3)(x ﹣2),则b = ; (3)已知代数式23x +2x +kx ﹣3有一个因式是2x ﹣1,求另一个因式以及k 的值. 【答案】(1)-4;(2)-1;(3)另一个因式为2x +x +3,k 的值为5. 【分析】(1)仿照题干中给出的方法计算即可; (2)仿照题干中给出的方法计算即可;(3)设出另一个因式为(2ax bx c ++),对比两边三次项系数可得a =1,再参照题干给出的方法计算即可.【详解】解:(1)∵2(3)()33x x a x x ax a −+=−+−=2(3)3x a x a +−−=2712x x −+.∴a ﹣3=﹣7,﹣3a =12, 解得:a =﹣4.(2)∵2(23)(2)2346x x x x x +−=+−−=226x x −−.=226x bx +−.∴b =﹣1.(3)设另一个因式为(2ax bx c ++),得32223(21)()x x kx x ax bx c ++−=−++. 对比左右两边三次项系数可得:a =1.于是32223(21)()x x kx x x bx c ++−=−++.则3232232232222(21)(2)x x kx x x bx bx cx c x b x c b x c ++−=−+−+−=+−+−−.∴﹣c =﹣3,2b ﹣1=1,2c ﹣b =k . 解得:c =3,b =1,k =5.故另一个因式为23x x ++,k 的值为5.【点睛】本题以阅读材料给出的方法为背景考查了因式分解、整式乘法、合并同类项等知识,熟练掌握以上知识是解题关键.9.仔细阅读下面的例题:例题:已知二次三项式25x x m ++有一个因式是2x +,求另一个因式及m 的值. 解:设另一个因式为x n +,得25(2)()x x m x x n ++=++, 则225(2)2x x m x n x n ++=+++, 25n ∴+=,2m n =,解得3n =,6m =,∴另一个因式为3x +,m 的值为6. 依照以上方法解答下列问题:(1)若二次三项式254x x −+可分解为(1)()x x a −+,则=a ________; (2)若二次三项式226x bx +−可分解为(23)(2)x x +−,则b =________; (3)已知二次三项式229x x k +−有一个因式是21x −,求另一个因式以及k 的值. 【答案】(1)4−;(2)1−;(3)另一个因式为5x +,k 的值为5.【分析】(1)将(1)()x x a −+展开,根据所给出的二次三项式即可求出a 的值; (2)(2x+3)(x ﹣2)展开,可得出一次项的系数,继而即可求出b 的值;(3)设另一个因式为(x+n ),得2x2+9x ﹣k =(2x ﹣1)(x+n ),可知2n ﹣1=9,﹣k =﹣n ,继而求出n 和k 的值及另一个因式.【详解】解:(1)∵(1)()x x a −+=x2+(a ﹣1)x ﹣a =254x x −+,∴a ﹣1=﹣5, 解得:a =﹣4; 故答案是:﹣4(2)∵(2x+3)(x ﹣2)=2x2﹣x ﹣6=2x2+bx ﹣6, ∴b =﹣1. 故答案是:﹣1.(3)设另一个因式为(x+n ),得2x2+9x ﹣k =(2x ﹣1)(x+n ), 则2x2+9x ﹣k =2x2+(2n ﹣1)x ﹣n , ∴2n ﹣1=9,﹣k =﹣n , 解得n =5,k =5,∴另一个因式为x+5,k 的值为5.【点睛】本题考查因式分解的意义,解题关键是对题中所给解题思路的理解,同时要掌握因式分解与整式乘法是相反方向的变形,即互逆运算,二者是一个式子的不同表现形式.10.仔细阅读下面例题,解答问题:例题:已知二次三项式24x x m −+有一个因式是()3x +,求另一个因数及m 的值.解:设另一个因式为()x n +,由题意,得()()243x x m x x n −+=++,化简、整理,得()22433x x m x n x n −+=+++,于是有343n m n +=−⎧⎨=⎩解得217m n =−⎧⎨=−⎩, ∴另一个因式为()7x −,m 的值为21−.问题:仿照上述方法解答下面的问题:已知二次三项式223x x k +−有一个因式是()4x +,求另一个因式及k 的值.【答案】另一个因式为()25x −,k 的值为20.【分析】根据所求的式子223x x k +−的二次项系数是2,因式是(x+4)的一次项系数是1,可知另一个因式的一次项系数一定是2,设另一个因式为()2x a +,仿照例题计算即可. 【详解】解:设另一个因式为()2x a +, ∴()()22342x x k x x a +−=++, ∴()2223284x x k x a x a+−=+++, ∴834a a k +=⎧⎨=−⎩ ,解得:5a =−,20k =,故另一个因式为()25x −,k 的值为20.【点睛】考查了因式分解的应用,正确读懂例题,理解题意是解题的关键.【压轴题型二 运用公式法分解因式】1.若20192020,20192021,20192022a x b x c x =+=+=+,则代数式222a b c ab ac bc ++−−−的值是( ) A .0B .1C .2D .3【答案】D【分析】此题考查了因式分解的应用,由a ,b ,c 的代数式,求出a b −,a c −,b c −的值,原式利用完全平方公式变形后代入计算即可求出值.【详解】解:20192020a x =+,20192021b x =+,20192022c x =+,1a b ∴−=−,2a c −=−,1b c −=−,则222a b c ab ac bc ++−−− 2221(222222)2a b c ab ac bc =++−−−2222221[(2)(2)(2)]2a ab b a ac c b bc c =−++−++−+2221[()()()]2a b a c b c =−+−+−,当1a b −=−,2a c −=−,1b c −=−时,原式1(141)32=⨯++=.故选:D . 2.已知x y z 、、满足12x z −=,236xz y +=−,则2x y z ++的值为( )A .4B .1C .0D .-8【答案】C 【分析】根据题目条件可用x 来表示z ,并代入代数式中,运用公式法因式分解可得()226x y −=−,再根据平方数的非负性可分别求出x ,z 的值,最后运算即可. 【详解】解:12x z −=,∴12z x =−,又236xz y +=−,∴()21236x x y −+=−,∴2212+36=-y x x −,()226x y −=−, ()22600x y −≥−≤,,600x y ∴−==,,606x y z ∴===−,,,代入2x y z ++得,2x y z ++=0.故选:C .【点睛】本题考查了运用公式法进行因式分解,平方数的非负性,熟练掌握运用公式法因式分解是解决本题的关键.3.已知a ,b 为自然数,且a b >,若4364()()a a b a ab b b+++−+=,则=a ,b = . 【答案】 8 2【分析】化简原式可得:2264()a b b +=,设a kb =,则2264()kb b b +=,再根据22226416244()k b ∴+==⨯=⨯可求a ,b . 【详解】4364()()a a b a ab b b +++−+=, 4364a a b a ab b b ∴+++−+=, 24464ab ab a b ∴++=,2264()a b b ∴+=.设a kb =,则2264()kb b b +=, a ,b 为自然数,0a ∴≠,0b ≠,22226416244()k b ∴+==⨯=⨯16k ∴=,22b +=或4k = ,24+=b ,160,k b ∴==(不合题意,舍去)或4k =,2b =,428a ∴=⨯=.故答案为:8,2.【点睛】本题主要考查了分式的加减,因式分解的应用,熟记完全平方公式是解决本题的关键.4.如果22344421x y xy y x −−++−因式分解的结果为 .【答案】()()32121x y x y +−−+【分析】把21y −当成一个整体,再因式分解即可.【详解】原式22342441x xy x y y =−+−+− ()()22322121x x y y =−−−−()()32121x y x y =+−−−⎡⎤⎡⎤⎣⎦⎣⎦()()32121x y x y =+−−+ 故答案为:()()32121x y x y +−−+.【点睛】题目主要考查利用整体法及公式法进行因式分解,理解题中的整体思想是解题关键.5.阅读材料,解决问题【材料1】教材中这样写道:“我们把多项式222a ab b ++及222a ab b −+叫做完全平方式”,如果关于某一字母的二次多项式不是完全平方式,我们常做如下变形:先添加一个适当的项,使式子中出现完全平方式,再减去这个项,使整个式子的值不变,这种方法叫做配方法.例如:分解因式223x x +−.原式()()()()()22223211314121231x x x x x x x x x =+−=++−−=+−=+++−=+−.【材料2】因式分解:()()221x y x y ++++解:把x y +看成一个整体,令x y A +=,则原式()22211A A A =++=+,再将A x y =+重新代入,得:原式()21x y =++上述解题用到的“整体思想”是数学解题中常见的思想方法.请你解答下列问题:(1)根据材料1,利用配方法进行因式分解:268x x −+;(2)根据材料2,利用“整体思想”进行因式分解:()()244x y x y −−−+;(3)当a ,b ,c 分别为ABC 的三边时,且满足222464170a b c a b c ++−−−+=时,判断ABC 的形状并说明理由.【答案】(1)()()24x x −−;(2)()22x y −−;(3)ABC 是等腰三角形,理由见解析.【分析】(1)凑完全平方公式,再用平方差公式进行因式分解;(2)利用完全平方进行因式分解;(3)先因式分解,判断字母a 、b 、c 三边的关系,再判定三角形的形状.【详解】(1)解:268x x −+26998x x =−+−+()231x =−−()()3131x x =-+-- ()()24x x =−−;(2)解:设A x y =−,()()244x y x y −−−+244A A =−+()22A =−∴()()244x y x y −−−+()22x y =−−;(3)解:ABC 是等腰三角形.理由如下:222464170a b c a b c ++−−−+=,∴2224469440a a b b c c −++−++−+=,∴()()()2222320a b c −+−+−=,∴20a −=,30b −=,20c −=,得,2a =,3b =,2c =.∴a b =,∴ABC 是等腰三角形.【点睛】此题考查了因式分解的应用,乘法公式,配方法的应用以及非负数的性质,熟练掌握完全平方公式是解本题的关键.6.19世纪的法国数学家苏菲·热门给出了一种分解因式44x +的方法:他抓住了该式只有两项,而且属于平方和()2222x +的形式,要使用公式就必须添一项24x ,随即将此项24x 减去,即可得()()()()()222442222222444424222222x x x x x x x x x x x x +=++−=+−=+−=++−+,人们为了纪念苏菲·热门给出这一解法,就把它叫做“热门定理”.根据以上方法,把下列各式因式分解:(1)444x y +;(2)2244a am n mn −−+.【答案】(1)()()22222222x y xy x y xy +++−; (2)()()4a n a m n −−+.【分析】(1)根据苏菲·热门的做法,将原式配上224x y 后,根据完全平方公式和平方差公式即可进行因式分解;(2)先分组,再利用提公因式法因式分解.【详解】(1)原式442222444x y x y x y =++−()2222224x y x y =+−()()22222222x y xy x y xy =+++−; (2)原式22224444a am m m n mn =−+−−+()()22224444a am m m n mn =−+−+−()()2222a m m n =−−−()()2222a m m n a m m n =−+−−−+ ()()4a n a m n =−−+.【点睛】本题考查因式分解,掌握平方差公式、完全平方公式的结构特征是正确应用的前提,理解苏菲·热门的做法是正确进行因式分解的关键.7.定义一种新运算“a b ⊗”:当a b ≥时,2a b a b ⊗=+;当a b <时,2a b a b ⊗=−.例如:3(4)3(8)(5)⊗−=+−=−,(6)1262430−⊗=−−=−(1)填空:(3)(2)−⊗−=______.(2)若(34)(5)(34)2(5)x x x x −−+⊗+=+,则x 的取值范围为______.(3)利用以上新运算化简:2(23)m m ⊗−(4)已知(57)(2)1x x ⊗−−>,求x 的取值范围.【答案】(1)1 (2)92x ≥(3)246m m +−(4)x 的取值范围为:8x >或819x <<.【分析】(1)由32−<−,利用2a b a b ⊗=−进行计算即可;(2)结合新定义与(34)(5)(34)2(5)x x x x −−+⊗+=+,可得345x x −≥+,再解不等式即可;(3)由()2223120m m m −+=−+>,可得223m m >−,再利用新定义运算即可;(4)分两种情况讨论:当572x x −≥−时,即1x ≥;可得()(57)(2)57221x x x x −−=−+⨯−>⊗,当572x x −<−时,即1x <;可得()(57)(2)57221x x x x −−=−−⨯−>⊗,再解不等式即可.【详解】(1)解:由题意可得:()(3)(2)322341−⊗−=−−⨯−=−+=; (2)解:∵(34)(5)(34)2(5)x x x x −−+⊗+=+,∴345x x −≥+,∴29x ≥, 解得:92x ≥;(3)解:∵()2223120m m m −+=−+>,∴223m m >−,∴()222(23)22346m m m m m m ⊗−=+−=+−;(4)解:当572x x −≥−时,∴77x ≥,即1x ≥;∴()(57)(2)57221x x x x −−=−+⨯−>⊗,∴8x >,综上,此时8x >;当572x x −<−时,∴77x <,即1x <;∴()(57)(2)57221x x x x −−=−−⨯−>⊗,∴98x >, 解得:89x >, 综上:此时819x <<; 综上:x 的取值范围为:8x >或819x <<.【点睛】本题考查的是新定义运算,整式的加减运算,利用完全平方公式分解因式,一元一次不等式的应用,理解新定义的运算法则是解本题的关键.8.【阅读理解,自主探究】把代数式通过配凑等手段,得到完全平方式,再运用完全平方式是非负数这一性质增加问题的条件,这种解题方法叫做配方法,配方法在代数式求值,解方程,最值问题等都有着广泛的应用.例1 用配方法因式分解:a 2+6a +8.原式= a 2+6a +9-1=(a +3)2-1=(a +3-1)(a +3+1)=(a +2)(a +4).例2若M =a 2-2ab +2b 2-2b +2,利用配方法求M 的最小值;a 2-2ab +2b 2-2b +2=a 2-2ab +b 2+b 2-2b +1+1=(a -b )2+(b -1)2+1;∵(a -b )2≥0,(b -1)2≥0, ∴当a =b =1时,M 有最小值1.请根据上述自主学习材料解决下列问题:(1)在横线上添上一个常数项使之成为完全平方式:a 2+10a +________;(2)用配方法因式分解:a 2-12a +35.(3)若M =a 2-3a +1,则M 的最小值为________;(4)已知a 2+2b 2+c 2-2ab +4b -6c +13=0,则a +b +c 的值为________;【答案】(1)25;(2)(5)(7)a a −−; (3)54−; (4)1−.【分析】(1)利用完全平方公式的结构特征判断即可;(2)原式常数项35分为361−,利用完全平方公式化简,再利用平方差公式分求解即可;(3)M 配方后,利用非负数的性质确定出最小值即可;(4)将已知等式利用完全平方公式配方后,再根据非负数的性质求出a ,b ,c 的值,代入原式计算即可.【详解】(1)解:221025(5)a a a ++=+;故答案为:25;(2)解:21235a a −+212361a a =−+−2(6)1a =−−(61)(61)a a =−+−−(5)(7)a a =−−;(3)解:295(3)44M a a =−+−235()24a =−−, 当302a −=,即32a =时,M 取最小值,最小值为54−; 故答案为:54−; (4)解:2222246130a b c ab b c ++−+−+=,2222(2)(44)(69)0a ab b b b c c ∴−+++++−+=,即222()(2)(3)0a b b c −+++−=,2()0a b −…,2(2)0b +…,2(3)0c −…,0a b ∴−=,20b +=,30c −=,解得:2a b ==−,3c =,则2231a b c ++=−−+=−.故答案为:1−.【点睛】本题考查了整式的混合运算,非负数的性质:偶次方,完全平方式,以及因式分解−分组分解法,解题的关键是熟练掌握各自的运算法则及公式.9.阅读材料:若2222440m mn n n −+−+=,求m ,n 的值.解:∵2222440m mn n n −+−+=,∴()()2222440m mn n n n −++−+=,∴22()(2)0m n n −+−=,∴2()0m n −=,2(2)0n −=,∴2n =,2m =.根据你的观察,探究下面的问题:(1)已知22228160x y xy y +−++=,则x =________,y =________;(2)已知ABC 的三边长a 、b 、c 都是正整数,且满足22248180a b a b +−−+=,求ABC 的周长.【答案】(1)-4,-4;(2)ABC 的周长为9.【分析】(1)利用完全平方公式配方,再根据非负数的性质即可得出x 和y 的值;(2)利用完全平方公式配方,再根据非负数的性质即可得出a 和b 的值,从而得出c 的取值范围,根据c 为整数即可得出c 的值,从而求得三角形的周长.【详解】解:(1)由22228160x y xy y +−++=得 222)((2816)0x xy y y y −+++=+,22()(4)0x y y −++=,∴0x y −=,40y +=,∴4x y ==−,故答案为:-4,-4;(2)由22248180a b a b +−−+=得:222428160a a b b −++−+=,222(1)(4)0a b −+−=,∴a -1=0,b -4=0,∴a=1,b=4,∴3<c <5,∵△ABC 的三边长a 、b 、c 都是正整数,∴c=4,∴ABC 的周长为9.【点睛】本题主要考查了配方法的应用及偶次方的非负性,同时考查了三角形的三边关系,本题难度中等. 10.把代数式通过配凑等手段,得到局部完全平方式,再进行有关运算和解题,这种解题方法叫做配方法. 如:①用配方法分解因式:a 2+6a +8,解:原式=a 2+6a +8+1-1=a 2+6a +9-1=(a +3)2-12=[(3)1][(3)1](4)(2)a a a a +++−=++②M =a 2-2a -1,利用配方法求M 的最小值.解:22221212(1)2a a a a a −−=−+−=−−∵(a -b )2≥0,∴当a =1时,M 有最小值-2.请根据上述材料解决下列问题:(1)用配方法...因式分解:223x x +−. (2)若228M x x =−,求M 的最小值.(3)已知x 2+2y 2+z 2-2xy -2y -4z +5=0,求x +y +z 的值.【答案】(1)(3)(1)x x +−;(2)8−;(3)4.【分析】(1)根据配方法,配凑出一个完全平方公式,再利用公式法进行因式分解即可;(2)先利用配方法,配凑出一个完全平方公式,再根据偶次方的非负性求解即可;(3)先利用配方法进行因式分解,再利用偶次方的非负性求出x 、y 、z 的值,然后代入求解即可.【详解】(1)原式22344x x =+−+−2214x x =++−22(1)2x =+−[][](1)2(1)2x x =+++−(3)(1)x x =+−; (2)22282(4)x x x x −=−22(444)x x =−+−22(2)4x ⎡⎤=−−⎣⎦22(2)8x =−−2(2)0x −≥∴当2x =时,M 有最小值8−;(3)22222245x y z xy y z ++−−−+ 2222(2(21)()44)x xy y y y z z =−++−++−+222()(1)(2)x y y z =−+−+−222()(1)(20)x y y z −+−+−=01020x y y z −=⎧⎪∴−=⎨⎪−=⎩,解得112x y z =⎧⎪=⎨⎪=⎩则1124x y z ++=++=.【点睛】本题考查了利用配方法进行因式分解、偶次方的非负性等知识点,读懂题意,掌握配方法是解题关键.【压轴题型三 因式分解在有理数简算中的应用】1.计算22222111111111123456⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫−⨯−⨯−⨯−⨯− ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭的值为( ). A .512 B .12 C .712D .1130 【答案】C【分析】原式各括号利用平方差公式变形,约分即可得到结果. 【详解】原式111111111111111111112233445566⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=−⨯+⨯−⨯+⨯−⨯+⨯−⨯+⨯−⨯+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,13243546572233445566=⨯⨯⨯⨯⨯⨯⨯⨯⨯,1726=⨯, 712=,故选:C .【点睛】本题考查的是平方差公式,掌握运算法则和平方差公式是解题关键.2.已知()()22113(21)a b ab ++=−,则1b a a ⎛⎫− ⎪⎝⎭的值是( ) A .0B .1C .-2D .-1【答案】D 【分析】先对()()22113(21)a b ab ++=−进行变形,可以解出a ,b 的关系,然后在对1b a a ⎛⎫− ⎪⎝⎭进行因式分解即可.【详解】∵()()22113(21)a b ab ++=−,∴2222163a b a b ab +++=−,22222440a b ab a b ab +−+−+=,()()2220a b ab −+−=,∴a b =,2ab =, ∴1121b b a ab a a ⎛⎫−=−=−=− ⎪⎝⎭故选:D .【点睛】本题主要考查了因式分解的应用,在解题时要注意符号变换,同时掌握正确的运算是解答本题的关键.3.若2023a =,2022b =,则计算221122a b −的结果为 . 【答案】2022.5【分析】先提公因式,再用平方差公式进行计算即可. 【详解】221122a b − 22112023202222=⨯−⨯()222023212022=−⨯1=(20232022)(20232022)2⨯+− 140452=⨯2022.5=.故答案为:2022.5.【点睛】本题主要考查了利用平方差公式因式分解进行简便运算,熟练掌握平方差公式是解题的关键. 4.某同学自己设计了一个运算程序,任意输入一个三位数,如567,重复该数,得到567567,将该数除以7,然后除以质数a ,再除以质数b ,结果又得到了567,则a b += .【答案】24【分析】根据题意可知567567÷7÷567=ab ,然后即可得到ab 的值,再将ab 的积分解为两个质数的积,即可得到a 、b 的值,然后作和即可.【详解】解:由题意可得,567567÷7÷567=ab ,解得ab=143,∵143=11×13,∴a=11,b=13或a=13,b=11,∴a+b=24,故答案为:24.【点睛】本题考查有理数的混合运算、质数与合数,解答本题的关键是明确题意,求出a 、b 的值. 5.整体思想是数学解题中常见的一种思想方法.下面是对多项式222(21)2)(a a a a ++++进行因式分解的解题思路:将“22a a +”看成一个整体,令22a a x +=,则原式22(2)121(1)x x x x x =++=++=+.再将“x ”还原为“22a a +”即可.解题过程如下:解:设22a a x +=,则原式()21x x =++(第一步)221x x =++(第二步)2(1)x =+(第三步)()2221a a +=+(第四步). 问题:(1)①该同学完成因式分解了吗?如果没完成,请你直接写出最后的结果;②请你模仿以上方法尝试对多项式()()2244816a a a a −−++进行因式分解;(2)请你模仿以上方法尝试计算:(1232023)(232024)(1232024)(232023)−−−−⨯+++−−−−−⨯+++.【答案】(1)①该同学没有完成因式分解;最后的结果为4(1)a +;②4(2)a −(2)2024【分析】本题考查公式法分解因式,理解整体思想是解决问题的前提,掌握完全平方公式的结构特征和必要的恒等变形是正确解答的关键.(1)①根据因式分解的意义进行判断,再利用完全平方公式分解因式即可;②利用换元法进行因式分解即可;(2)设1232023a =−−−−,232024x =+++,则原式(2024)(2024)ax a x =−−−,整体代入计算即可.【详解】(1)①该同学没有完成因式分解;设22a a x +=,则原式()21x x =++(第一步)221x x =++(第二步)2(1)x =+(第三步)()2221a a +=+(第四步)22(1)a =+⎡⎤⎣⎦4(1)a =+.∴最后的结果为4(1)a +.②设24a a x −=, 原式(8)16x x =++2816x x =++.2()4x =+()2244a a =−+4()2a =−;(2)设1232023a =−−−−,232024x =+++, 则123202320242024,2320232024a x −−−−−=−+++=−, 120242025a x +=+=,原式(2024)(2024)ax a x =−−−22024()2024ax ax a x =−++−2202420252024=⨯−22024(20241)2024=⨯+−22202420242024=+−2024=.6.(1)若100799611A =⨯⨯,119951008B =⨯⨯,求A B −;(2)证明5799449999⨯+⨯−能被100整除.【答案】(1)132;(2)证明见解析【分析】(1)先提取公因数11,再把1007996⨯化成()()1001.5 5.51001.5 5.5+⨯−,把9951008⨯化成()()1001.5 6.51001.5 6.5+⨯−,进而利用平方差公式进行求解即可;(2)把原式提取公因式99,进而得579944999999100⨯+⨯−=⨯,由此即可证明结论.【详解】解:(1)∵100799611A =⨯⨯,119951008B =⨯⨯,∴A B −100799611119951008=⨯⨯−⨯⨯()()()()111001.5 5.51001.5 5.51001.5 6.51001.5 6.5=⨯+⨯−−+⨯−⎡⎤⎣⎦()()2222111001.5 5.51001.5 6.5⎡⎤=⨯−−+⎣⎦()()11 6.5 5.5 6.5 5.5=⨯+⨯−11121=⨯⨯132=; (2)5799449999⨯+⨯−()9957441=⨯+−99100=⨯,∵99100⨯能被100整除,∴5799449999⨯+⨯−能被100整除.【点睛】本题主要考查了因式分解在有理数简便计算中的应用,熟知因式分解的方法是解题的关键.7.阅读下列材料,解决问题:我们把一个能被17整除的自然数称为“节俭数”.“节俭数”的特征是:若把一个自然数的个位数字截去,再把剩下的数减去截去的那个个位数字的5倍,如果差是17的整数倍(包括0),则原数能被17整除,如果差太大或心算不易看出是否是17的倍数,就继续上述的“截尾,倍尾,差尾,验差”的过程,直到能方便判断为止.例如:判断1675282是不是“节俭数”,判断过程:16752825167518−⨯=,167518516711−⨯=,1671151666−⨯=,16665136−⨯=,到这里如果你仍然观察不出来,就继续136517−⨯=−,17−是17的整数倍,所以1675282能被17整除,所以1675282是“节俭数”.(1)请用上述方法判断7259和2098752是否是“节俭数”,并说明理由.(2)一个五位节俭数213ab ,其中千位上的数字为b ,万位上的数字为a ,且1b a =−,请利用上面方法求出这个数.【答案】(1)7259是“节俭数”; 2098752是“节俭数”(2)54213【分析】(1)模仿例题解决问题即可;(2)模仿例题采用 “截尾,倍尾,差尾,验差”的过程,解决问题即可;【详解】(1)72595680−⨯=,680568−⨯=,68174÷=,所以7259能被17整除,是“节俭数”;20987525209865−⨯=,209865520961−⨯=,2096152091−⨯=,20915204−⨯=,2041712÷=, 所以2098752能被17整除,是“节俭数”;(2)解:∴213506ab ab ⨯=−,300ab −能被17整除∴1b a =−,∴()1001013011040a a a +−−=−能被17整除∴19a ≤≤∴当1a =时,1104070−=,不能被17整除,当2a =时,22040180−=,不能被17整除,当3a =时,33040290−=,不能被17整除,当4a =时,44040400−=,不能被17整除,当5a =时,55040510−=,能被17整除,当6a =时,66040620−=,不能被17整除,当7a =时,77040730−=,不能被17整除,当8a =时,88040840−=,不能被17整除,当9a =时,99040950−=,不能被17整除,∴5a =,4b =∴这个数为54213.【点睛】本题考查了因式分解的应用,数的整除,理解题意,仿照例题的方法是解题的关键.8.观察下列等式,并回答有关问题:22123415(141)⨯⨯⨯+==⨯+222345111(251)⨯⨯⨯+==⨯+223456119(361.......)⨯⨯⨯+==⨯+(1)填空:56781⨯⨯⨯+=(________)2(2)若n 为正整数,猜想(1)(2)(3)1n n n n ++++因式分解的结果并说明理由;(3)利用(2)的结果比较991001011021⨯⨯⨯+与210100的大小.【答案】(1)41(2)22(1)(2)(3)1(31)n n n n n n ++++=++,理由见解析(3)991001011021⨯⨯⨯+210100<【分析】(1)根据式子的规律即可得出答案;(2)根据规律猜想出结果,用因式分解的方法证明即可;(3)应用(2)的结果化简即可得出答案.【详解】(1)根据规律得:256781(581)⨯⨯⨯+=⨯+,故答案为:581⨯+;(2)222(1)(2)(3)1[(3)1](31)n n n n n n n n ++++=++=++, 理由:(1)(2)(3)1n n n n ++++[(3)][(1)(2)]1n n n n =++++22(3)(32)1n n n n =++++222(3)2(3)1n n n n =++++22(31)n n =++;(3)991001011021⨯⨯⨯+22(993991)=+⨯+2(98012971)=++221009910100<=.【点睛】本题考查了规律型−数字的变化类,体现了整体思想,把23n n +看作整体是解题的关键.9.(1)因式分解:①2249a b −②221218x x −+(2)利用因式分解进行简便计算:221.2351 1.2349⨯−⨯【答案】(1)①()()2323a b a b +−;②()223x −;(2)246【分析】(1)①利用平方差公式进行因式分解;②先提取公因式2,再用完全平方公式进行因式分解;(2)先提取公因式1.23,再用平方差公式进行因式分解即可求值.【详解】解:(1)①()()22223934a a b b b a −=+−; ②()()2222121826923x x x x x −+=−+=−;(2)221.2351 1.2349⨯−⨯()2251.14923=⨯−()()1.2351495149=⨯+⨯− 1.231002=⨯⨯246=.【点睛】本题考查了因式分解及因式分解的应用,熟练掌握因式分解的方法是解决本题的关键.10.(1)按下表已填的完成表中的空白处代数式的值: 2()a b −222a ab b −+ 2a =,1b = 11a =−,3b = 462a =−,=5b −(2)比较两代数式计算结果,请写出你发现的2()a b −与222a ab b −+有什么关系?(3)利用你发现的结论,求:222021404220202020−⨯+的值.【答案】(1)见解析;(2)()2222a b a ab b −=−+;(3)1 【分析】(1)把每组,a b 的值分别代入2()a b −与222a ab b −+进行计算,再填表即可;(2)观察计算结果,再归纳出结论即可;(3)利用结论()2222a b a ab b −=−+可得2021,2020,a b == 再代入进行简便运算即可.【详解】解:(1)填表如下: 2()a b −222a ab b −+ 2a =,1b =1 1 1a =−,3b = 16 162a =−,=5b − 9 9(2)观察上表的计算结果归纳可得:()2222a b a ab b −=−+(3)222021404220202020−⨯+ =2220212202120202020−⨯⨯+=()220212020−=1【点睛】本题考查的是代数式的求值,运算规律的探究,完全平方公式的应用,熟练的利用完全平方公式进行简便运算是解本题的关键.【压轴题型四 十字相乘法】1.已知甲、乙、丙均为x 的一次多项式,且其一次项的系数皆为正整数.若甲与乙相乘的积为29x −,乙与丙相乘的积为26x x +−,则甲与丙相减的结果是( ) A .5− B .5 C .1 D .1−【答案】D【分析】此题考查了十字相乘法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.把题中的积分解因式后,确定出各自的整式,相减即可.【详解】解:∵甲与乙相乘的积为29(3)(3)x x x −=+−,乙与丙相乘的积为()262(3)x x x x +−=−+,甲、乙、丙均为x 的一次多项式,且其一次项的系数皆为正整数, ∴甲为3x −,乙为3x +,丙为2x -, 则甲与丙相减的差为:()(3)21x x −−−=−;故选:D2.如果多项式432237x x ax x b −+++能被22x x +−整除,那么:a b 的值是( ) A . 2− B . 3−C .3D .6【答案】A 【分析】由于()()2221+−=+−x x x x ,而多项式432237x x ax x b −+++能被22x x +−整除,则432237x x ax x b −+++能被()()21x x +−整除.运用待定系数法,可设商是A ,则()()43223721x x ax x b A x x −+++=+−,则2x =−和1x =时,4322370x x ax x b −+++=,分别代入,得到关于a 、b 的二元一次方程组,解此方程组,求出a 、b 的值,进而得到:a b 的值. 【详解】解:∵()()2221+−=+−x x x x ,∴432237x x ax x b −+++能被()()21x x +−整除,设商是A . 则()()43223721x x ax x b A x x −+++=+−,则2x =−和1x =时,右边都等于0,所以左边也等于0.当2x =−时,43223732244144420x x ax x b a b a b −+++=++−+=++= ①当1x =时,43223723760x x ax x b a b a b −+++=−+++=++= ②−①②,得3360a +=,∴12a =−, ∴66b a =−−=. ∴:12:62a b =−=−, 故选:A .【点睛】本题主要考查了待定系数法在因式分解中的应用.在因式分解时,一些多项式经过分析,可以断定它能分解成某几个因式,但这几个因式中的某些系数尚未确定,这时可以用一些字母来表示待定的系数.由于该多项式等于这几个因式的乘积,根据多项式恒等的性质,两边对应项系数应该相等,或取多项式中原有字母的几个特殊值,列出关于待定系数的方程(或方程组),解出待定字母系数的值,这种因式分解的方法叫作待定系数法.本题关键是能够通过分析得出2x =−和1x =时,原多项式的值均为0,从而求出a 、b 的值.本题属于竞赛题型,有一定难度.3.已知()()20192016100x x −−+=,则40352x −的值为 . 【答案】7±【分析】本题考查了因式分解的应用,解决本题的关键是熟练掌握用十字相乘法进行因式分解,将()()20192016100x x −−+=变形后再因式分解为()()20165201620x x −−−+=,求出x 的值,再代入求值即可. 【详解】解:()()20192016100x x −−+=,()()2019201610x x −−=−, ()()2019201610x x −−=, ()()20163201610x x −−−=,()()2201632016100x x −−−−=,()()20165201620x x −−−+=, ()()202120140x x −−=,解得:2021x =或2014x =,当2021x =时,原式4035220217=−⨯=−, 当2014x =时,原式4035220147=−⨯=, 故答案为:7±4.有甲、乙、丙三种纸片若干张(数据如图,a b >).(1)若用这三种纸片紧密拼接成一个边长为()2a b +大正方形,则需要取乙纸片 张,丙纸片 张. (2)若取甲纸片1张,乙纸片3张,丙纸片2张紧密拼成一个长方形,则这个长方形的长为 ,宽为 .【答案】 4 1()2a b +/()2b a + ()a b +/()b a + 【分析】(1)根据正方形的面积得出()222244a b a ab b +=++,即可求解;(2)根据题意长方形的面积为()()22322a ab b a b a b ++=++,结合题意,即可求解.【详解】解:(1)∵()222244a b a ab b +=++∴需要取乙纸片4张,丙纸片1张 故答案为:4,1. (2)依题意,()()22322a ab b a b a b ++=++,∴这个长方形的长为()2a b +,宽为()a b +,故答案为:()2a b +,()a b +.【点睛】本题考查了完全平方公式与图形面积,因式分解的应用,数形结合是解题的关键. 5.根据以下素材,完成下列任务:素材1在因式分解习题课上,赵老师“随便”写了几个整系数二次三项式,让同学们因式分解,结果小王发现同学们都能在有理数范围内分解,小王也想试一试,就随便写了两个二次三项式∶243x x ++,2414x x −−让同学们因式分解,结果发现有一个不能因式分解,这到底为什么呢?。

北师大版初中八年级下册数学课件 《公式法》因式分解PPT(第1课时)

北师大版初中八年级下册数学课件 《公式法》因式分解PPT(第1课时)

强化训练
2. 证明:任意两奇数的平方差能被8整除. 证明:设任何奇数为2m+1,2n+1(m,n是整数) 则(2m+1) ²-(2n+1) ² =(2m+1+2n+1)(2m-2n) =4(m-n)(m+n+1) 可见只要证明(m-n)(m+n-1)是偶数即可, 若m,n都是奇数或偶数,则m-n为偶数, 4(m-n)(m+n+1)能被8整除, 若m,n都为一奇一偶,则m+n+1为偶数, 4(m-n)(m+n+1)也能被8整除, 所以,任意的两个奇数的平方差能被8整除.
解:∵b²+2ab=c²+2ac, ∴b²-c²+2ab-2ac=0, ∴(b+c)(b-c)+2a(b-c)=0, (b-c)(b+c+2a)=0. ∵a,b,c为三角形三边,所以b+c+2a>0, ∴b-c=0,即b=c.所以△ABC为等腰三角形.
课堂小结
1.平方差公式运用的条件: (1)二项式 (2)两项的符号相反 (3)每项都能化成平方的形式 2.公式中的a和b可以是单项式,也可以是多项式 3.各项都有公因式,一般先提公因式,再进一步分解,直至不能再分解为止.
强化训练
1.已知a、b、c是∆ABC的三边,且满足a²c²-b²c²=a4-b4,是判断∆ABC的形状. 解:a²c²-b²c²=a4-b4, a²c²-b²c²-a4+b4=0, c²(a²-b²)-(a²+b²)(a²-b²)=0 (a²-b²)(c²-a²-b²)=0 (a+b) (a-b)(c²-a²-b²)=0 其中a+b≠0, ∴a-b=0或c²-a²-b²=0 ∴a²+b²=c²或a=b. ∆ABC是直角三角形,或∆ABC是等腰直角三角形.

第四章+因式分解+大单元教学设计++2023—2024学年北师大版数学八年级下册

第四章+因式分解+大单元教学设计++2023—2024学年北师大版数学八年级下册

《因式分解》大单元教学设计【选用教材】北师大版义务教育教科书《数学》八年级下册【单元课题】因式分解【单元教材内容】北师大版义务教育教科书《数学》对“因式分解”进展了较大的调整。

将“因式分解”安排在课本第四章。

内容包括“因式分解”、“提公因式法”和“公式法”。

共有三节内容:第一节《因式分解》,利用99³-99例子突出与因数分解的类比,体会因式分解的必要性;并用几何图形的拼图解释因式分解。

在了解因式分解的根底上,体会因式分解与整式乘法的关系。

第二节“提公因式法”,它的依据是乘法分配律或者单项式乘多项式的法如此,对于学生来说,难点是怎样在多项式的各项中发现公式。

为此,教材安排学生从简单的多项式ab+ac中发现一样因式,由浅入深地体会如何寻找公因式,并以例题示X的形式学习用提公因式法进展因式分解与其须知事项,形成根本技能。

第三节“公式法”,其关键是熟悉平方差公式、完全平方公式与其特点,学生初学时的一个难点是根据一个多项式的特点选择运用恰当的公式。

为此,教材将这两个公式分别分开教学,然后综合运用学习,加深学生对公式特点的认识。

【单元知识网络】【单元课标解读】《数学课程标准〔2022年版〕》在第55页要求:能用提公因式法,公式法〔直接利用公式不超过二次〕进展因式分解〔指数是正整数〕。

【单元内容数学分析】1.因式分解是代数的重要内容,是在学习了“整式的运算”之后提出来的内容。

因式分解与整式乘法运算有密切的联系,事实上,它是整式乘法的逆向运用。

2.因式分解是整式的一种重要变形,它在恒等变形、代数式的运算、解方程、函数中有广泛的应用。

3.因式分解为学习分式运算,解方程与方程组与代数式和三角函数式恒等变形提供必要的根底。

也是分式运算和化简、恒等变形、解高次方程的根底。

“因式分解”对于与化归的能力、逆向思维的能力的培养会起到一定的作用,又在逆向思维品质培养形成等中有着较重要作用和教育价值。

5.作为今后学习的根底,它起到了承上启下的作用,因式分解与其变形的应用,几乎贯穿了整个中学数学乃至大学数学,学好因式分解对于代数知识的后续学习具有相当重要的意义。

【苏教版】初中八年级数学课件 第5讲_因式分解

【苏教版】初中八年级数学课件  第5讲_因式分解
解:(1)原式=m(m2-4)=m(m+2)(m-2) (2)原式=2(a2-2a+1)=2(a-1)2 (3)原式=x(x+y)[x-y-(x+y)]=x(x+y)(x-y-x-y)
=-2xy(x+y) (4)原式=a2-1-8=a2-9=(a+3)(a-3) (5)原式=a(a2+b2-2ab)=a(a-b)2 (6)原式=(4x2+9)(4x2-9)=(4x2+9)(2x+3)(2x-3)
22.(8 分)先分解因式,再计算求值.
(1)(2009 中考变式题)9x2+12xy+4y2,其中 x=43,
y=-12;
(2)(2011 中考预测题)(a+2 b)2-(a-2 b)2,其中
a=-18,b=2. 解:(1)原式=(3x+2y)2
当 x=43,y=-21时,
原式=[3×43+2×(-12)]2=(4-1)2=9
【点拨】在分解因式时,首先考虑用提公因式法,若不能再考虑用公式法,用公式法分 解时一定要先化成标准形式,再灵活选用公式.
【解答】(1)原式=a(a-1) (2)原式=xy(x2-1)=xy(x+1)(x-1) (3)原式=-x(x2-2x+1)=-x(x-1)2 (4)原式=(x+y)(x+y-3)
因式是( )
A.3a2b
B.3ab2
C.3a3b3
D.3a2b2
【解析】公因式的确定包括系数、相同字母的确定,取各系数的最大公约数,取相同字 母的最低次幂.
【答案】B
4.(2009 中考变式题)下列从左到右的变形中,是因式分解的是( ) A.(x+3)(x-3)=x2-9 B.x2-9+x=(x+3)(x-3)+x C.3x2-3x+1=3x(x-1)+1 D.a2-2ab+b2=(a-b)2

初中数学精品课件: 因式分解

初中数学精品课件:  因式分解
【答案】 D
2.(2019·临沂)将 a3b-ab 进行因式分解,正确的是 ( )
A.a(a2b-b)
B.ab(a-1)2
C.ab(a+1)(a-1)
D.ab(a2-1)
【答案】 C
3.(2案】 x(y+2)(y-2)
4.(2019·衢州)已知实数 m,n 满足mm- +nn= =13, ,则代数式
利用因式分解将多项式分解之后整体代入求值,也可 逆向思维,根据因式分解后的几个多项式(因式)结合恒等 变形的性质求值.
【典例 2】 在当今“互联网+”时代,有一种用“因式分 解法”生成密码的方法:如将多项式 x3+2x2-x-2 进行因 式分解,结果为(x-1)(x+1)(x+2).当 x=19 时,x-1= 18,x+1=20,x+2=21,此时可得到数字密码 182021. (1)根据上述方法,当 x=37,y=12 时,对于多项式 x3-xy2 分解因式后可以形成哪些数字密码(写出两个即可)? (2)将多项式 x3+(m-3n)x2-nx-21 因式分解后,利用题 目中所示的方法,当 x=87 时可以得到密码 808890,求 m,n 的值.


m+n=0, m-n=2,
解得mn==-1,1,
∴m2

n2-
mn =1

1

1
=3.
【答案】 3
4.分解因式:(x2+4)2-16x2.
【解析】 原式=(x2+4+4x)(x2+4-4x) =(x+2)2(x-2)2.
5.运用简便方法计算:
(1)992+110908+1.
(2)1982-396×98+982.
【解析】 (1)∵x3-xy2=x(x-y)(x+y), ∴当 x=37,y=12 时,x-y=25,x+y=49, ∴可得到数字密码 372549 或 374925(答案不唯一). (2)∵当 x=87 时,密码为 808890,且 x3 的系数是 1, ∴由(1)可知:x-7=80,x+1=88,x+3=90, ∴x3+(m-3n)x2-nx-21=(x-7)(x+1)(x+3)=x3-3x2 -25x-21, ∴m-3n=-3,n=25,∴m=72,n=25.

八年级数学知识点分类讲解1因式分解(一)

八年级数学知识点分类讲解1因式分解(一)

八年级数学知识点分类讲解第一讲因式分解(一)多项式的因式分解是代数式恒等变形的基本形式之一,它被广泛地应用于初等数学之中,是我们解决许多数学问题的有力工具.因式分解方法灵活,技巧性强,学习这些方法与技巧,不仅是掌握因式分解内容所必需的,而且对于培养学生的解题技能,发展学生的思维能力,都有着十分独特的作用.初中数学教材中主要介绍了提取公因式法、运用公式法、分组分解法和十字相乘法.本讲及下一讲在中学数学教材基础上,对因式分解的方法、技巧和应用作进一步的介绍.1.运用公式法在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:(1)a2-b2=(a+b)(a-b);(2)a2±2ab+b2=(a±b)2;(3)a3+b3=(a+b)(a2-ab+b2);(4)a3-b3=(a-b)(a2+ab+b2).下面再补充几个常用的公式:(5)a2+b2+c2+2ab+2bc+2ca=(a+b+c)2;(6)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca);(7)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)其中n为正整数;(8)a n-b n=(a+b)(a n-1-a n-2b+a n-3b2-…+ab n-2-b n-1),其中n为偶数;(9)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2-…-ab n-2+b n-1),其中n为奇数.运用公式法分解因式时,要根据多项式的特点,根据字母、系数、指数、符号等正确恰当地选择公式.例1 分解因式:(1)-2x5n-1y n+4x3n-1y n+2-2x n-1y n+4;(2)x3-8y3-z3-6xyz;(3)a2+b2+c2-2bc+2ca-2ab;(4)a7-a5b2+a2b5-b7.解 (1)原式=-2x n-1y n(x4n-2x2ny2+y4)=-2x n-1y n[(x2n)2-2x2ny2+(y2)2]=-2x n-1y n(x2n-y2)2=-2x n-1y n(x n-y)2(x n+y)2.(2)原式=x3+(-2y)3+(-z)3-3x(-2y)(-Z)=(x-2y-z)(x2+4y2+z2+2xy+xz-2yz).(3)原式=(a2-2ab+b2)+(-2bc+2ca)+c2=(a-b)2+2c(a-b)+c2=(a-b+c)2.本小题可以稍加变形,直接使用公式(5),解法如下:原式=a2+(-b)2+c2+2(-b)c+2ca+2a(-b)=(a-b+c)2(4)原式=(a7-a5b2)+(a2b5-b7)=a5(a2-b2)+b5(a2-b2)=(a2-b2)(a5+b5)=(a+b)(a-b)(a+b)(a4-a3b+a2b2-ab3+b4)=(a+b)2(a-b)(a4-a3b+a2b2-ab3+b4)例2 分解因式:a3+b3+c3-3abc.本题实际上就是用因式分解的方法证明前面给出的公式(6).分析我们已经知道公式(a+b)3=a3+3a2b+3ab2+b3的正确性,现将此公式变形为a3+b3=(a+b)3-3ab(a+b).这个式也是一个常用的公式,本题就借助于它来推导.解原式=(a+b)3-3ab(a+b)+c3-3abc=[(a+b)3+c3]-3ab(a+b+c)=(a+b+c)[(a+b)2-c(a+b)+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca).说明公式(6)是一个应用极广的公式,用它可以推出很多有用的结论,例如:我们将公式(6)变形为a3+b3+c3-3abc显然,当a+b+c=0时,则a3+b3+c3=3abc;当a+b+c>0时,则a3+b3+c3-3abc≥0,即a3+b3+c3≥3abc,而且,当且仅当a=b=c时,等号成立.如果令x=a3≥0,y=b3≥0,z=c3≥0,则有等号成立的充要条件是x=y=z.这也是一个常用的结论.例3 分解因式:x15+x14+x13+…+x2+x+1.分析这个多项式的特点是:有16项,从最高次项x15开始,x的次数顺次递减至0,由此想到应用公式a n-b n来分解.解因为x16-1=(x-1)(x15+x14+x13+…x2+x+1),所以说明在本题的分解过程中,用到先乘以(x-1),再除以(x-1)的技巧,这一技巧在等式变形中很常用.2.拆项、添项法因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例4 分解因式:x3-9x+8.分析本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.解法1 将常数项8拆成-1+9.原式=x3-9x-1+9=(x3-1)-9x+9=(x-1)(x2+x+1)-9(x-1)=(x-1)(x2+x-8).解法2 将一次项-9x拆成-x-8x.原式=x3-x-8x+8=(x3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x2+x-8).解法3 将三次项x3拆成9x3-8x3.原式=9x3-8x3-9x+8=(9x3-9x)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x2+x+1)=(x-1)(x2+x-8).解法4 添加两项-x2+x2.原式=x3-9x+8=x3-x2+x2-9x+8=x2(x-1)+(x-8)(x-1)=(x-1)(x2+x-8).说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最强的一种.例5 分解因式:(1)x9+x6+x3-3;(2)(m2-1)(n2-1)+4mn;(3)(x+1)4+(x2-1)2+(x-1)4;(4)a3b-ab3+a2+b2+1.解 (1)将-3拆成-1-1-1.原式=x9+x6+x3-1-1-1=(x9-1)+(x6-1)+(x3-1)=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)=(x3-1)(x6+2x3+3)=(x-1)(x2+x+1)(x6+2x3+3).(2)将4mn拆成2mn+2mn.原式=(m2-1)(n2-1)+2mn+2mn=m2n2-m2-n2+1+2mn+2mn=(m2n2+2mn+1)-(m2-2mn+n2)=(mn+1)2-(m-n)2=(mn+m-n+1)(mn-m+n+1).(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4=[(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2=[(x+1)2+(x-1)2]2-(x2-1)2=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).(4)添加两项+ab-ab.原式=a3b-ab3+a2+b2+1+ab-ab=(a3b-ab3)+(a2-ab)+(ab+b2+1)=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)=a(a-b)[b(a+b)+1]+(ab+b2+1)=[a(a-b)+1](ab+b2+1)=(a2-ab+1)(b2+ab+1).说明 (4)是一道较难的题目,由于分解后的因式结构较复杂,所以不易想到添加+ab-ab,而且添加项后分成的三项组又无公因式,而是先将前两组分解,再与第三组结合,找到公因式.这道题目使我们体会到拆项、添项法的极强技巧所在,同学们需多做练习,积累经验.3.换元法换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.例6 分解因式:(x2+x+1)(x2+x+2)-12.分析将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.解设x2+x=y,则原式=(y+1)(y+2)-12=y2+3y-10=(y-2)(y+5)=(x2+x-2)(x2+x+5)=(x-1)(x+2)(x2+x+5).说明本题也可将x2+x+1看作一个整体,比如今x2+x+1=u,一样可以得到同样的结果,有兴趣的同学不妨试一试.例7 分解因式:(x2+3x+2)(4x2+8x+3)-90.分析先将两个括号内的多项式分解因式,然后再重新组合.解原式=(x+1)(x+2)(2x+1)(2x+3)-90=[(x+1)(2x+3)][(x+2)(2x+1)]-90=(2x2+5x+3)(2x2+5x+2)-90.令y=2x2+5x+2,则原式=y(y+1)-90=y2+y-90=(y+10)(y-9)=(2x2+5x+12)(2x2+5x-7)=(2x2+5x+12)(2x+7)(x-1).说明对多项式适当的恒等变形是我们找到新元(y)的基础.例8 分解因式:(x2+4x+8)2+3x(x2+4x+8)+2x2.解设x2+4x+8=y,则原式=y2+3xy+2x2=(y+2x)(y+x)=(x2+6x+8)(x2+5x+8)=(x+2)(x+4)(x2+5x+8).说明由本题可知,用换元法分解因式时,不必将原式中的元都用新元代换,根据题目需要,引入必要的新元,原式中的变元和新变元可以一起变形,换元法的本质是简化多项式.例9分解因式:6x4+7x3-36x2-7x+6.解法1 原式=6(x4+1)+7x(x2-1)-36x2=6[(x4-2x2+1)+2x2]+7x(x2-1)-36x2=6[(x2-1)2+2x2]+7x(x2-1)-36x2=6(x2-1)2+7x(x2-1)-24x2=[2(x2-1)-3x][3(x2-1)+8x]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).说明本解法实际上是将x2-1看作一个整体,但并没有设立新元来代替它,即熟练使用换元法后,并非每题都要设置新元来代替整体.解法2原式=x2[6(t2+2)+7t-36]=x2(6t2+7t-24)=x2(2t-3)(3t+8)=x2[2(x-1/x)-3][3(x-1/x)+8]=(2x2-3x-2)(3x2+8x-3)=(2x+1)(x-2)(3x-1)(x+3).例10 分解因式:(x2+xy+y2)-4xy(x2+y2).分析本题含有两个字母,且当互换这两个字母的位置时,多项式保持不变,这样的多项式叫作二元对称式.对于较难分解的二元对称式,经常令u=x+y,v=xy,用换元法分解因式.解原式=[(x+y)2-xy]2-4xy[(x+y)2-2xy].令x+y=u,xy=v,则原式=(u2-v)2-4v(u2-2v)=u4-6u2v+9v2=(u2-3v)2=(x2+2xy+y2-3xy)2=(x2-xy+y2)2.练习一1.分解因式:(2)x10+x5-2;(4)(x5+x4+x3+x2+x+1)2-x5.2.分解因式:(1)x3+3x2-4;(2)x4-11x2y2+y2;(3)x3+9x2+26x+24;(4)x4-12x+323.3.分解因式:(1)(2x2-3x+1)2-22x2+33x-1;(2)x4+7x3+14x2+7x+1;(3)(x+y)3+2xy(1-x-y)-1;(4)(x+3)(x2-1)(x+5)-20.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学八年级下因式分解第四章 因式分解一、因式分解的意义:因式分解是把一个多项式化成几个整式的乘积形式注意:①结果应是整式乘积,而不能是分式或者是n 个整式的积与某项的和差形式;②因式分解与整式的乘法在运算过程上是完全相反的。

例01.下列四个从左到右的变形,是因式分解的是( )A.1)1)(1(2-=-+x x xB .))(())((m n a b n m b a --=--C .)1)(1(1--=+--b a b a abD .)32(322mm m m m--=--例02.在下面多项式中,能通过因式分解变形为)2)(13(y x x +--的是( ) A .yx xy x2632--+ B .yx xy x2632-+- C .xyxy x 6322+++ D .xyxy x 6322--+二、因式分解的方法类型一、提公因式法提公因式时应注意:⑴如果多项式的第一项系数是负的一般要提出“-”号,使括号内的第一项系数为正; ⑵公因式的系数和字母应分别考虑: ①系数是各项系数的最大公约数; ②字母是各项共有的字母,并且各字母的指数取次数最低的。

例01.在下面因式分解中,正确的是( ) A .)5(522x xy y xy y x +=-+B .2)()()()(c b a c a b c b a c b c b a a ---=+-++-+-- C .)1)(2()2()2(2--=-+-x a x a x a x D .)12(2422232--=--b b ab ab ab ab例02.把yx y x y x 3234268-+-分解因式的结果为 。

例03.分解因式:323)(24)(18)(6x y x y y x ---+--.说明:⑴观察题目结构特征 ⑵对于)(y x -与)(x y -的符号有下面的关系:⎪⎪⎩⎪⎪⎨⎧--=--=---=- 3322)()(,)()(),(x y y x x y y x x y y x例04.解方程:0)2313)(21(6)1823)(612(=-++-+x x x x 例05.不解方程组⎩⎨⎧=+=-,134,32n m n m 求:32)2(2)2(5m n n m n ---的值.类型二、公式法1、利用平方差公式因式分解:()()b a b a b a-+=-22注意:①条件:两个二次幂的差的形式;②平方差公式中的a 、b 可以表示一个数、一个单项式或一个多项式;③在用公式前,应将要分解的多项式表示成22b a-的形式,并弄清a 、b 分别表示什么。

例如:分解因式: (1)291x -; (2)221694b a -; (3)22)(4)(n m n m --+2、利用完全平方公式因式分解:()2222b a b ab a ±=+±注意:①是关于某个字母(或式子)的二次三项式;②其首尾两项是两个符号相同的平方形式;③中间项恰是这两数乘积的2倍(或乘积2倍的相反数);④使用前应根据题目结构特点,按“先两头,后中间”的步骤,把二次三项式整理成222)(2b a b ab a ±=+±公式原型,弄清a 、b 分别表示的量。

2、利用立方和立方差公式因式分解:))((2233b ab a b a b a +±=±典型例题:例1 用平方差公式分解因式: (1)22)(9y x x-+-; (2)22331n m-说明:因式分解中,多项式的第一项的符号一般不能为负;分数系数一般化为整系数。

例2 分解因式:(1)ab b a -5; (2))()(44n m b n m a +-+.说明:将公式法与提公因式法有机结合起来,先提公因式,再运用公式.例 3 判断下列各式能否用完全平方公式分解因式,为什么? (1)962+-a a ; (2)982+-x x; (3)91242--x x;(4)223612y xxy ++-.说明:可否用公式,就要看所给多项式是否具备公式的特点.例4 把下列各式分解因式:⑴ 442-+-x x; ⑵ 2294942y xxy -- ⑶mnn m 4422+--说明:使用完全平方公式时,要保证平方项前的符号为正,当平方项前的符号是负号时,先提出负号.例5 分解因式: ⑴ 22363ay axy ax++. ⑵ 22222)(624b a ba +-说明:⑴分解因式时,首先考虑有无公因式可提,当有公因式时,先提再分解.⑵分解因式必须进行彻底,直至每个因式都不能再分解为止. 例6 分解因式: ⑶ 22)(9))(2(6)2(n m n m m n n m +++---; ⑵4224168b b a a +-;⑶ 1)2(2)2(222++++m m m m. ⑷63244914b b a a +-说明:在运用完全平方公式的过程中,再次体现换元思想的应用,可见换元思想是重要而且常用思想方法,要真正理解,学会运用. 例7 若25)4(22+++x a x是完全平方式,求a 的值.说明:根据完全平方公式特点求待定系数a ,熟练公式中的“a 、b ”便可自如求解.例8 已知2=+b a ,求222121b ab a++的值.说明:将所求的代数式变形,使之成为b a +的表达式,然后整体代入求值.例9 已知1=-y x ,2=xy ,求32232xy yx y x +-的值.说明:这类问题一般不适合通过解出x 、y 的值来代入计算,巧妙的方法是先对所求的代数式进行因式分解,使之转化为关于xy 与y x -的式子,再整体代入求值.例10 证明:四个连续自然数的积加1,一定是一个完全平方数.说明:可用字母表示出四个连续自然数,通过因式分解说明结果是完全平方数.例11 已知x 和y 满足方程组⎩⎨⎧=-=+346423y x y x ,求代数式2249y x -的值。

类型三、分组分解法1、条件:当所给多项式有四项或四项以上时,应釆用分组分解法。

2、原则:分组后能继续分解(即分组只是为实际分解创造条件,并没有直接达到分解的目的)。

3、方法:按有公因式或可运用公式的方法合理分组,其具体步骤为:①组内提公因式或运用公式; ②组间提公因式或运用公式。

分组分解法是因式分解的基本方法,体现了化整体为局部,又统揽全局的思想,一般分组方式不惟一,且灵活多变.例1 选择题:对n np mp m 22+++运用分组分解法分解因式,分组正确的是( )(A )mp np n m +++)22((B ))2()2(mp n np m +++ (C ))()22(np mp n m +++(D )np mp n m +++)22(说明:本组题目用来判断分组是否适当. 例2 因式分解: (1)yb x b y ax a 2222+++; (2)nxn mxmx --+2说明:(1)把有公因式的各项归为一组,这是正确分组的方法之一;(2)分组的方法不唯一,而合理的选择分组方案,会使分解过程简单;(3)分组时要用到添括号法则,注意在添加带“-”的括号时,括号内每项要变号; 例3 分解因式: (1)22441y xy x-+-; (2)2222b ab a x-+-; ⑶ba b a 2422---说明:把能应用公式的各项归为一组,这是正确分组的方法之一;。

例4 分解因式: ⑴ 315523+--x x x⑵ xxy y x21372-+-说明:根据“对应系数成比例”的原则合理分组,可提高分解的速度。

例5 把下列各式分解因式: (1)222z yz y xz xy -+--;(2)122222+----a bc c b a;(3)1424422+--++y x y xy x.说明:对于项数较多的多项式,以“交叉项”为突破口,寻找“相应的平方项”进行分组,这使分组有了一定的针对性,省时提速.例6 分解因式:(1)6)2)(1(---x x x ; (2))()1(222b a x xab +++说明:本组两题原题本身给出的分组形式无法继续进行,为达到分解的目的,对此类型题,可采用先去括号,再重新分组来进行因式分解。

即“先破后立,不破不立”。

类型四、十字相乘法题型一:pqx q p 2+++)(x事实上:).)(())()()()(22p x q x p x q p x x pq qx px x pq x q p x ++=+++=+++=+++(题型二:c2++bx ax大家知道:2112212212211)())((c c x c a c a xa a c x a c x a +++=++反过来,就得到:))(()(2211211221221c x a c x a c c x c a c a xa a ++=+++例1 分解因式: ⑴ 652+-a a; ⑵ 1032-+m m. ⑶22-+x x ; ⑷ 1522--x x.说明:本题属于pqx q p x +++)(2型的二次三项式,可用规律公式来加以分解.(5)25122--x x(6)22865y xy x-+ (7)22224954y y x y x --(8)6732-+x x (9)3832-+x x (10)2532+-x x(11)422416654y y x x+- (12)例2 分解因式:(1)4)(5)(2++++b a b a ; (2)22127q pq p +-. 例3 分解因式:⑴ q p q pq p 36522++++; ⑵ c c bc b a b a --+++-222424.。

相关文档
最新文档