铁磁材料基本特性的测量与研究

合集下载

铁磁材料的磁滞回线和基本磁化曲线实验报告

铁磁材料的磁滞回线和基本磁化曲线实验报告

铁磁材料的磁滞回线和基本磁化曲线实验报告一、实验目的1、认识铁磁物质的磁化规律,加深对铁磁材料磁滞回线和基本磁化曲线概念的理解。

2、学会使用示波器观察并测绘铁磁材料的磁滞回线和基本磁化曲线。

3、测定样品的一些基本磁化参数,如饱和磁感应强度 Bs、剩磁感应强度 Br、矫顽力 Hc 等。

二、实验原理1、铁磁材料的磁化特性铁磁物质具有很强的磁化能力,其磁导率远大于非铁磁物质。

铁磁材料的磁化过程是不可逆的,存在磁滞现象。

2、磁滞回线当磁场强度 H 从零开始逐渐增加时,磁感应强度 B 随之增加。

当H 增大到一定值时,B 不再增加,达到饱和值 Bs。

随后逐渐减小 H,B 并不沿原曲线减小,而是滞后于 H 的变化。

当 H 减小到零时,B 不为零,而是保留一定的值 Br,称为剩磁感应强度。

要使 B 减为零,必须加反向磁场,当反向磁场达到一定值 Hc 时,B 才为零,Hc 称为矫顽力。

继续增大反向磁场,B 达到反向饱和值Bs,再逐渐增大正向磁场,B 又沿原来的曲线变化,形成一个闭合的曲线,称为磁滞回线。

3、基本磁化曲线将一系列不同幅值的正弦交变磁场依次作用于铁磁材料样品,可得到一系列大小不同的磁滞回线。

连接各磁滞回线顶点的曲线称为基本磁化曲线。

三、实验仪器示波器、实验变压器、电阻箱、标准互感器、待测铁磁材料环形样品等。

四、实验步骤1、按实验电路图连接好线路,检查无误后接通电源。

2、调节示波器,使其能清晰显示磁滞回线。

3、逐渐增大交流电压,使磁场强度 H 逐渐增加,观察示波器上磁滞回线的变化,直至达到饱和。

4、逐点记录磁滞回线顶点的坐标(H,B)。

5、减小交流电压,重复上述步骤,测量多组数据。

6、根据测量数据绘制磁滞回线和基本磁化曲线。

五、实验数据记录与处理1、实验数据记录表|交流电压(V)|磁场强度 H(A/m)|磁感应强度 B(T)|||||||||2、根据实验数据,在坐标纸上绘制磁滞回线。

3、连接磁滞回线的顶点,得到基本磁化曲线。

铁磁材料的磁化曲线和磁滞回线的 测量

铁磁材料的磁化曲线和磁滞回线的 测量

铁磁材料的磁化曲线和磁滞回线的测量磁化曲线和磁滞回线是铁磁材料的两个基本磁性特性,可以通过实验测量来获得。

磁化曲线反映了铁磁材料在外加磁场下的磁化过程,磁滞回线则是描述铁磁材料在磁场变化时磁化状态的变化过程。

在这篇文章中,我们将详细介绍铁磁材料磁化曲线和磁滞回线的测量方法。

一、磁化曲线的测量1、实验原理铁磁材料在外磁场作用下会被磁化,磁化过程可以被描述为一个磁化曲线。

实验中,我们可以通过应用不同大小的磁场来测量铁磁材料的磁化曲线,并在相应的磁场值处记录样品磁化强度。

2、实验步骤(1)选择适当的铁磁材料。

铁磁材料应该具有较高的磁滞回线,磁化曲线应平滑连续。

(2)制备样品。

将铁磁材料制成条状或薄片状,并尽可能保持样品尺寸一致。

(3)将制备好的铁磁材料打磨并清洗干净。

(4)准备实验装置。

将样品放置于磁感应计中间,并将磁感应计连接到电压表或电流表。

(5)应用不同大小的外磁场,并记录磁化强度。

使用恒流源或电压源,应用不同大小的电流或电压,同时记录磁感应计测得的磁感应强度,以得到磁化曲线。

重复多次实验,取平均值或绘制不同曲线来验证测量结果的准确性。

3、注意事项(1)要保持样品尺寸一致,以避免磁滞回线太宽或太窄。

(2)应避免外界干扰和温度变化对实验结果的影响。

(3)在应用不同磁场时,应注意不要让磁场过强以至于将样品磁化到饱和,否则曲线终止于饱和点。

(1)选择适当的铁磁材料。

(4)以一个磁场方向开始,应用不同大小的磁场,并记录磁化强度,记录下磁化曲线,此时磁滞回线仍未形成完整闭合环形。

(5)随着外磁场方向变化,记录相应的磁化曲线和磁滞回线,直到一整个闭合环形的曲线测得。

(6)重复多次实验,取平均值或绘制不同曲线来验证测量结果的准确性。

(1)测量时应注意保持外部环境的稳定,避免温度、震动等因素对实验结果的影响。

(2)应避免将试样磁滞回线的心磁化带磁化到饱和,否则将不能获得完整的磁滞回线。

(3)应避免在试样磁滞回线完成闭合之前改变外加磁场的方向,否则将失去呈环形的磁化曲线。

铁磁材料磁滞回线及基本磁化曲线的测量

铁磁材料磁滞回线及基本磁化曲线的测量

实验26 铁磁材料磁滞回线和基本磁化曲线的测量铁磁性材料分为硬磁材料和软磁材料。

软磁材料的矫顽力小于100A/m ,常用于电机、电力变压器的铁芯和电子仪器中各种频率小型变压器的铁芯。

铁磁材料的磁化过程和退磁过程中磁感应强度和磁场强度是非线性变化的,磁滞回线和基本磁化曲线是反映软磁材料磁性的重要特性曲线。

矫顽力、饱和磁感应强度、剩余磁感应强度、初始磁导率、最大磁导率、磁滞损耗等参数均可以从磁滞回线和基本磁化曲线上获得,这些参数是磁性材料研制、生产和应用的总要依据。

采用直流励磁电流产生磁化场对材料样品反复磁化测出的磁滞回线称为静态磁滞回线;采用交变励磁电流产生磁化场对材料样品反复磁化测出的磁滞回线称为动态磁滞回线。

本实验利用交变励磁电流产生磁场对不同性能的铁磁材料进行磁化,测绘基本磁化曲线和动态磁滞回线。

【实验目的】①了解用示波器显示和观察动态磁滞回线的原理和方法。

②掌握测绘铁磁材料动态磁滞回线和基本磁化曲线的原理和方法,加深对铁磁材料磁化规律的理解。

③学会根据磁滞回线确定矫顽力 、剩余磁感应强度 、饱和磁感应强度 、磁滞损耗等磁化参数。

【实验仪器与用具】FB310型动态磁滞回线实验仪,双踪示波器,导线。

【实验原理】1.磁性材料的磁化特性及磁滞回线研究磁性材料的磁化规律时,一般是通过测量磁化场的磁场强度H 与磁感应强度B 之间的关系来进行的。

铁磁性材料磁化时,它的磁感应强度B 要随磁场强度H 变化而变化。

但是B 与H 之间的函数关系是非常复杂的。

主要特点如下:(1)当磁性材料从未磁化状态(H =0且B =0)开始磁化时,B 随H 的增加而非线性增加由此画出的H B 曲线称为起始磁化曲线,如图3.26.1(O-a )段曲线。

起始磁化曲线大致分为三个阶段,第一阶段曲线平缓,第二阶段曲线较陡,第三阶段曲线又趋于平缓。

最后当H 增大到一定值m H 后,B 增加十分缓慢或基本不再增加,这时磁化达到饱和状态,称为磁饱和。

铁磁材料的研究与应用

铁磁材料的研究与应用

铁磁材料的研究与应用铁磁材料是指具有铁磁性质的材料,是目前材料物理学和材料科学的研究热点之一。

铁磁材料具有磁饱和强度高、磁导率大、磁滞回线窄、磁耦合系数大、良好的磁导性和电导性等特点,广泛应用于磁头、磁盘、电机、变压器和磁耦合器等领域。

一、铁磁材料的基本特性铁磁材料的基本特性是通过材料的物化特性来描述的。

首先,铁磁材料的饱和磁场强度高,即当外加磁场强度增大到一定程度时,材料的磁化强度将达到磁饱和,此时材料将不能再被磁化。

其次,铁磁材料的磁滞回线窄,即当外加磁场强度加大或减小时,磁性材料的磁化强度也将随之增大或减小,并呈现出一定的滞后性,这种滞后效应所对应的曲线就称为磁滞回线。

铁磁材料的磁滞回线窄,意味着材料具有更为稳定的磁性能。

除此之外,铁磁材料的磁导率大,即材料在外加磁场的作用下,所呈现出的磁场强度与磁化强度之间的比值大,这种比值所决定的参数就是材料的磁导率。

铁磁材料的磁导率大,可以更好地应用于电感器、磁头、磁盘等领域。

二、铁磁材料的制备技术铁磁材料的制备技术是关系到铁磁材料性质和应用的一个重要方面。

目前工业上生产的铁磁材料主要是硅钢板和铁氧体材料。

硅钢板是利用钢材的磁带轧制工艺和热处理工艺制备而成的,它的主要成分是铁、硅、碳和少量杂质,因为硅元素的加入使得铁磁材料的磁导率大大提高,同时由于在制备过程中对硅钢板的表面进行绝缘处理能够降低铁磁材料的涡流损耗。

而铁氧体则是材料科学研究中相对较新的制备技术,其通过利用磁性离子、氧元素和非磁性离子间的相互作用所形成的具有良好铁磁性能的复合材料,铁氧体材料的制备工艺因为要求材料形貌规整、纯度高、结晶致密,所以需要较高的生产技术和生产工艺设备。

三、铁磁材料的应用现状与展望铁磁材料目前应用领域十分广泛,主要涉及到电磁、电力、电子、计算机、通信、医疗等领域。

电磁领域中,铁磁材料主要应用于制作电动机、磁耦合器、变压器、发电机、电子继电器等电力设备,这些设备的重要部件均选用了具有铁磁性能的材料,用以提高设备的工作效率和稳定性。

铁磁材料的磁化特性的研究(精)

铁磁材料的磁化特性的研究(精)
式表示
2

d2 dt
n d dt
2 是线圈n中产生的感应电动势
2 n 次级线圈中的磁通链数
当I2R2 Q / C2 时, 2 I 2 R2
电容C两端的电压:
I2

dQ dt

C2
dU y dt
2

C2 R2
dU y dt
Uy

nS C2 R2
B
该式表明示波器垂直偏转板上的电压,即电容两端的电 压Uy是正比例于磁感应强度B的。
3 磁滞现象:
铁磁材料的磁化过程是不可逆的。
当铁磁质达到饱和
a
后,减小H,B沿图 ab下降;当H=0时B
Br b
=Br,称为剩磁。 当H=Hc时,B=0,
c
f
bc段是退磁曲线
-Hc
Hc称为矫顽力;反
-Br e
向继续增大H,铁 磁质反向沿cd段达
d
到饱和;
反向减小H到0,则B沿de到-Br。H按原方向增加经ef到Hc; 继续增大H,则B沿fa回到原来饱和状态。
不同的铁磁质具有不同形状的磁滞回线,按矫顽力 的大小,铁磁材料可分为: 软磁材料:矫顽磁力很小 ,适合于做变压器、
电机中的铁芯等。 硬磁材料:矫顽磁力很大,常用做永磁体。
常用在电表、收音机、扬声器中。 矩磁材料:它的磁滞回线接近于矩形,可以用做
“记忆”元件。 如电子计算机中存储 器的磁芯.
实验仪器介绍
CH2通道
X-Y控制键 X-Y触发

ε
量 仪


饱和磁感应强度
初始磁化曲线 当电流从0逐渐增加,线圈中的磁场强度H也随之增加, 这样就可以测出若干组B,H值。以H为横坐标,B为纵坐标, 画出B随H的变化曲线,这条曲线称为初始磁化曲线。当H 增大到某一值后,B几乎不再变化,这时铁磁材料的磁化状 态为磁饱和状态。此时的磁感应强度Bs叫做饱和磁感应强度。

磁特性实验报告

磁特性实验报告

一、实验目的1. 学习并掌握磁特性实验的基本原理和操作方法。

2. 通过实验,了解铁磁材料的磁滞回线、矫顽力、剩磁等磁特性参数。

3. 熟悉磁化原理,并学会运用实验数据进行分析。

二、实验原理铁磁材料在磁场作用下,其磁化强度B与磁场强度H之间的关系是非线性的。

在磁化过程中,铁磁材料会表现出磁滞现象,即磁化强度B与磁场强度H的关系不是一一对应的。

磁滞回线可以描述铁磁材料的磁化过程。

矫顽力Hc表示铁磁材料从磁饱和状态退磁至零磁化强度所需的最小磁场强度。

剩磁Br表示铁磁材料在磁场强度为零时的磁化强度。

三、实验仪器与设备1. 磁化设备:用于产生磁场,对铁磁材料进行磁化。

2. 磁感应强度计:用于测量铁磁材料的磁感应强度B。

3. 磁场强度计:用于测量磁场强度H。

4. 电流表:用于测量磁化过程中的电流。

5. 电压表:用于测量磁化过程中的电压。

6. 记录仪:用于记录实验数据。

四、实验步骤1. 将铁磁材料放置在磁化设备中,接通电源,使磁场强度H从零逐渐增大。

2. 在磁化过程中,实时测量并记录铁磁材料的磁感应强度B和磁场强度H。

3. 绘制磁滞回线,分析铁磁材料的磁滞特性。

4. 计算矫顽力Hc和剩磁Br。

5. 改变磁化电流,重复实验步骤,观察铁磁材料磁特性的变化。

五、实验数据及结果分析1. 磁滞回线根据实验数据,绘制磁滞回线如图1所示。

从图中可以看出,铁磁材料的磁化过程是非线性的,且存在磁滞现象。

2. 矫顽力Hc和剩磁Br根据磁滞回线,计算矫顽力Hc和剩磁Br,结果如下:矫顽力Hc = 8.5 kA/m剩磁Br = 0.4 T3. 磁化电流变化对磁特性的影响通过改变磁化电流,观察铁磁材料磁特性的变化。

实验结果表明,随着磁化电流的增加,矫顽力Hc和剩磁Br均有所增加,但增加幅度逐渐减小。

六、实验结论1. 通过实验,掌握了磁特性实验的基本原理和操作方法。

2. 了解铁磁材料的磁滞回线、矫顽力、剩磁等磁特性参数,为实际应用提供理论依据。

科学实验教案:探索磁性材料的特性和应用

科学实验教案:探索磁性材料的特性和应用

科学实验教案:探索磁性材料的特性和应用1. 引言1.1 概述本文旨在介绍一个科学实验教案,探索磁性材料的特性和应用。

磁性材料是一类具有吸引铁、镍等金属或其他物质的能力的材料。

对于学生来说,了解磁性材料的基本特性以及掌握相关应用是很重要的。

通过开展多种有趣的科学实验,学生可以亲身体验磁力的产生与变化规律,观察磁性材料对铁粉的吸引现象,并探索电流在磁场中受力情况与生成规律。

1.2 文章结构本文将按以下结构进行组织:首先,在第二部分中将介绍磁性材料的基本特性,包括磁性概念与原理、不同种类磁性材料以及磁场对磁性材料的影响和测量方法。

接下来,在第三部分中将重点讨论磁性材料在科学实验中的应用,包括研究磁力产生与变化规律、观察磁铁吸引铁粉现象解释以及探索电流在磁场中的受力情况与生成规律。

第四部分将提供科学实验设计和教学活动的具体安排,包括实验设备和材料清单、实验步骤和操作指导以及预期结果与讨论指导。

最后,在第五部分中,我们将对实验结果进行总结与分析,并从磁性材料特性及应用角度展开思考,并探讨科学实验教育的重要性和可持续发展性。

1.3 目的本文的目的是通过介绍一个科学实验教案,引发读者对于磁性材料特性及其应用的兴趣,并提供了一套完整的实践方案,帮助教师在教学中更好地引导学生进行有趣且富有启发性的科学实验。

这些实验旨在培养学生的观察力、思考能力和解决问题的能力,同时强调科学知识与现实生活之间的联系。

通过完成这些实验,学生可以深入了解磁性材料并增加他们对科学方法以及科学探索过程的理解。

2. 磁性材料的基本特性:2.1 磁性概念与原理:磁性是物质表现出吸引或排斥其他物质的能力。

磁性源于物质中微观磁偶极子的排列和相互作用。

磁偶极子由带电粒子(如原子和电子)的自旋和轨道运动产生。

磁性可分为三种类型:顺磁性、铁磁性和抗磁性。

顺磁性物质受外部磁场影响时产生弱的吸引力,而铁磁性物质则在外部磁场中形成强大的吸引力,抗磁性物质则被外部磁场所排斥。

铁磁材料特性实验报告

铁磁材料特性实验报告

铁磁材料特性实验报告铁磁材料特性实验报告引言:铁磁材料是一类在磁场作用下表现出明显磁性的材料,它们在现代科技中具有广泛的应用。

为了深入了解铁磁材料的特性,我们进行了一系列实验,以研究其磁性、磁滞回线以及磁导率等方面的特性。

实验一:磁性测量我们首先使用霍尔效应测量了不同铁磁材料的磁性。

实验中,我们选取了铁、钴和镍作为样品,通过在磁场中测量它们的霍尔电压来确定其磁性。

结果显示,铁磁材料在磁场中会产生明显的霍尔电压,而非铁磁材料则没有这样的现象。

这表明铁磁材料具有磁性,而非铁磁材料则不具备。

实验二:磁滞回线测量接下来,我们进行了磁滞回线的测量。

磁滞回线是描述铁磁材料磁化特性的重要参数之一。

实验中,我们使用霍尔效应测量了铁磁材料在不同磁场下的霍尔电压,并绘制了磁滞回线图。

通过观察磁滞回线的形状和面积,我们可以得出以下结论:首先,铁磁材料的磁滞回线呈现出明显的非线性特性。

在磁场增大的过程中,霍尔电压先是迅速增加,然后逐渐趋于饱和。

当磁场减小时,霍尔电压也会逐渐减小,直至回到初始状态。

这种非线性特性可以用来描述铁磁材料的磁化和去磁化过程。

其次,磁滞回线的形状和面积与铁磁材料的磁性能有关。

铁磁材料的磁滞回线越宽,说明其磁化和去磁化过程中的能量损耗越大,磁化能力越强。

而磁滞回线的面积则反映了材料的磁滞损耗,面积越大,说明材料的磁滞损耗越大。

实验三:磁导率测量最后,我们进行了磁导率的测量。

磁导率是描述铁磁材料对磁场响应能力的重要参数。

实验中,我们通过在交变磁场中测量铁磁材料的霍尔电压,然后利用电磁感应定律计算出材料的磁导率。

实验结果显示,铁磁材料的磁导率随着频率的增加而逐渐减小。

这是因为在高频磁场中,材料分子磁矩的翻转速率增加,导致磁化过程受到更多的能量损耗。

结论:通过以上实验,我们对铁磁材料的特性有了更深入的了解。

铁磁材料具有明显的磁性,其磁滞回线呈现出非线性特性,且磁滞回线的形状和面积与磁性能相关。

此外,铁磁材料的磁导率随着频率的增加而减小。

物理实验报告 铁磁材料的磁滞回线和基本磁化曲线

物理实验报告 铁磁材料的磁滞回线和基本磁化曲线

物理实验报告铁磁材料的磁滞回线和基本磁化曲线一、实验原理铁磁材料在磁场的作用下会发生磁化现象,而磁化程度随着磁场强度的变化而发生变化。

在一定的磁场范围内,铁磁材料的磁化程度与磁场的强度之间存在着一种函数关系,成为基本磁化曲线。

而铁磁材料在外磁场作用下,它的磁化状态会发生变化,在磁场强度逐渐增大时,磁矩也逐渐变大,这种变化的过程称为磁滞回线。

本实验旨在通过使用霍尔效应仪器和实验方法,实现对铁磁材料磁滞回线和基本磁化曲线的测定,探讨磁滞回线和基本磁化曲线之间的关系,并对实验结果进行分析和讨论。

二、实验装置实验仪器主要包括霍尔效应电路、锁相放大器、磁力计、线圈等实验器材。

三、实验步骤1、首先将磁力计放置在霍尔效应电路的输出端,然后将电路连接好。

2、在运行实验之前,需要先将霍尔效应电路进行调零操作,以保证实验的精度。

3、在调零之后,需要将待测物品即铁磁材料放置在磁力计的测量端。

4、接下来,可以利用锁相放大器对磁力计的输出信号进行检测,并进行相应的数据采集和处理。

5、在不同磁场强度下,可以对待测物品的磁化状态进行测量和记录,并记录相应的数据。

6、最终,可以将所得数据绘制成磁滞回线和基本磁化曲线图形,并对实验结果进行分析和讨论。

四、实验结果通过对铁磁材料的实验测量和数据处理,可以得到所得到的磁滞回线和基本磁化曲线图形如下:[图1] 铁磁材料的磁滞回线根据实验结果可知,铁磁材料的磁滞回线和基本磁化曲线之间存在着一定的关系,当外磁场逐渐增大时,铁磁材料的磁矩也逐渐增大,并随着磁场的逐渐增大而逐渐达到饱和状态。

当外磁场逐渐减小时,铁磁材料的磁矩也逐渐减小,并在磁场降低到一定程度时达到磁剩余状态。

五、实验分析此外,铁磁材料的基本磁化曲线也具有一定的特点,即其呈现S形曲线,表明在一定的磁场强度范围内,铁磁材料的磁化程度与磁场强度之间呈现一定的正比关系,但随着磁场强度的逐渐增大,铁磁材料的磁化程度将达到饱和状态,磁化度不再增大。

铁磁材料的磁滞回线和基本磁化曲线实验报告

铁磁材料的磁滞回线和基本磁化曲线实验报告

铁磁材料的磁滞回线和基本磁化曲线实验报告一、实验目的1、认识铁磁物质的磁化规律,比较两种典型的铁磁物质的动态磁化特性。

2、测定样品的基本磁化曲线,作μ-H 曲线。

3、测定样品的 Hc、Br、Bm 和(Hm,Bm)等参数。

4、了解磁滞回线的概念以及如何用示波器观察磁滞回线。

二、实验原理1、铁磁材料的磁化特性铁磁物质是一种性能特异,用途广泛的材料。

铁、钴、镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质。

其特征是在外磁场作用下能被强烈磁化,故磁导率μ很高。

另一特征是磁滞,即磁化场作用停止后,铁磁质仍保留磁化状态,图 1 为铁磁物质的磁感应强度B 与磁化场强度 H 之间的关系曲线。

图 1 铁磁质 B H 曲线铁磁材料的磁化过程为:其未被磁化时的状态称为去磁状态,这时若在铁磁材料上加一个由小到大的磁化场 H,则铁磁材料内部的磁场强度 B 随 H 的增加而增加,开始时 B 的增加较慢,而后随着 H 的增加,B 的增加变快,再继续增加 H 时,B 的增加又变慢,当 H 增加到 Hm 时,B 达到饱和值Bm 。

从图中可以看出,B 和H 的关系不是线性的,而是非线性的。

2、磁滞回线当 H 从 Hm 逐渐减小至零,B 并不沿起始磁化曲线恢复到“0”点,而是沿另一条新的曲线 SR 下降,比较线段 OS 和 SR 可知,H 减小 B也减小,但 B 的变化滞后于 H 的变化,这一现象称为磁滞。

当 H = 0 时,B = Br,Br 称为剩余磁感应强度。

要使 B 减到 0,必须加一反向磁场 Hc,Hc 称为矫顽力。

若再使反向磁场逐渐增加到 Hm,B 就沿图 1 中 S'R'C'变化,继而在 Hm 到 0 时,B 又沿 S'C 变化。

当 H 在 0 和 Hm 之间反复变化时,就得到一系列闭合的 B H 曲线,称为磁滞回线。

3、基本磁化曲线对于同一铁磁材料,选择不同的最大磁化电流 I,可得到不同的磁滞回线,将各条磁滞回线的顶点连接起来,所得到的曲线称为基本磁化曲线。

铁磁材料动态磁滞回线的观测和研究的实验报告

铁磁材料动态磁滞回线的观测和研究的实验报告

铁磁材料动态磁滞回线的观测和研究的实验报告铁磁材料的磁滞回线和基本磁化曲线【实验目的】1认识铁磁物质的磁化规律比较两种典型的铁磁物质的动态磁化特性。

2测定样品的基本磁化曲线作H 曲线。

3测定样品的Hc、Br、Bm和Hm�6�1Bm等参数。

4测绘样品的磁滞回线。

【实验原理】1起始磁化曲线和磁滞回线铁磁物质是一种性能特异用途广泛的材料。

铁、钴、镍及其众多合金以及含铁的氧化物铁氧体均属铁磁物质。

其特征是在外磁场作用下能被强烈磁化故磁导率很高。

另一特征是磁滞即磁化场作用停止后铁磁质仍保留磁化状态图2-1为铁磁物质的磁感应强度B与磁化场强度H之间的关系曲线。

图2-1 铁磁质起始磁化曲线和磁滞回线图2-2 同一铁磁材料的一簇磁滞回线图中的原点O表示磁化之前铁磁物质处于磁中性状态即BH0当磁场H从零开始增加时磁感应强度B随之缓慢上升如线段Oa所示继之B随H迅速增长如ab所示其后B的增长又趋缓慢并当H增至Hm时B到达饱和值BmOabs称为起始磁化曲线。

图2-1表明当磁场从Hm逐渐减小至零磁感应强度B并不沿起始磁化曲线恢复到“O”点而是沿另一条新的曲线SR下降比较线段OS和SR可知H减少B相应也减小但B 的变化滞后于H的变化这现象称为磁滞磁滞的明显特征是当H0时B 不为零而保留剩磁Br。

当磁场反向从0逐渐变至Hc时磁感应强度B消失说明要消除剩磁必须施加反向磁场Hc称为矫顽力它的大小反映铁磁材料保持剩磁状态的能力线段RD称为退磁曲线。

图2-1还表示当磁场按Hm→0→Hc→-Hm→0→Hc→Hm次序变化相应的磁感应强度B则沿闭合曲线SRDS’R’D’S变化这闭合曲线称为磁滞回线。

所以当铁磁材料处于交变磁场中时如变压器中的铁心将沿磁滞回线反复被磁化→去磁→反向磁化→反向去磁。

在此过程中要消耗额外的能量并以热的形式从铁磁材料中释放这种损耗称为磁滞损耗可以证明磁滞损耗与磁滞回线所围面积成正比。

2基本磁化曲线应该说明当初始态为HB0的铁磁材料在交变磁场强度由弱到强依次进行磁化可以得到面积由小到大向外扩张的一簇磁滞回线如图2-2所示这些磁滞回线顶点A1、A2、A3、…的连线为铁磁材料的基本磁化曲线由此可近似确定其磁导率因B与H非线性故铁磁材料的不是常数而是随H而变化如图2-3所示。

铁磁材料的磁滞回线及基本磁化曲线_实验报告

铁磁材料的磁滞回线及基本磁化曲线_实验报告

铁磁材料的磁滞回线及基本磁化曲线_实验报告摘要:本实验旨在从实验结果中观察到铁磁材料的磁滞回线及基本磁化曲线的特性。

根据实验观察,铁磁材料的磁滞回线及基本磁化曲线有一定的特性:当磁感应强度B在某一特定值Ming之后,磁滞回线开始放大;在磁滞回线和磁化曲线处,在较低的磁感应强度B下,磁通密度H值是较为均匀的,当磁感应强度B增大时,磁通密度H增大。

从实验结果看,随着磁感应强度的改变,磁通密度也随之变化。

关键词:铁磁材料;磁滞回线;磁化曲线1、实验目的本实验旨在探究铁磁材料的磁滞回线及基本磁化曲线,主要探究磁化曲线和磁滞回线特性,揭示铁磁材料磁性特性和应用基础。

2、实验原理铁磁性材料在一定范围内,随着外加磁场的强弱,由于内在磁介质的存在,响应磁场的强弱而产生的磁效应,可用磁化曲线来描述,磁化曲线横坐标为外加磁场B,纵坐标为磁通密度H,绘制磁化曲线时,可得到磁滞回线区和磁化曲线区,按假设,若满足磁滞回线的条件,虚部磁化曲线低于实部磁化曲线,磁通密度H随外加磁场B的增强而减弱。

3、实验材料(1)各类铁磁材料;(2)阳极小电流表;(3)变压器;(4)钳形线圈;(5)可调晶闸管及其他电路控制元件;(6)电子计算表等。

4、实验流程(1)实验电路图设计:根据实验要求,绘制实验电路图,电路中包括可调晶闸管、比较示波器和磁电路。

(2)测量磁滞回线:将晶闸管设置为半导体导通阶段,阳极小电流表与变压器连接,在钳形线圈中绕入样品,并加入磁电路及相关电路控制元件,应用变压设备,根据电路控制调节磁感应强度,测量磁滞回线的特性,进而得到磁滞回线参数。

(3)测量磁化曲线:将可调晶闸管设置为完全打开或全关闭,将变压器的输出电压稳定,调节比较示波器的控制参数,进而得到磁化曲线数据,从而得到铁磁材料的磁滞回线和磁化曲线参数。

5、实验结果分析通过上述实验,本实验求出了铁磁材料的磁滞回线及基本磁化曲线参数。

实验研究发现,当磁感应强度B增大时,磁通密度H增大,且随着磁感应强度的改变,磁通密度也随之变化。

铁磁材料的特性

铁磁材料的特性

铁磁材料的特性
首先,铁磁材料的磁化曲线是描述其磁化特性的重要参数之一。

磁化曲线可以
分为磁化过程和退磁过程两个部分。

在磁化过程中,铁磁材料在外加磁场的作用下,磁化强度随着外加磁场的增大而增大,直到达到饱和状态。

而在退磁过程中,铁磁材料在去除外加磁场的情况下,磁化强度并不完全回到零,而是有一定的残留磁化强度。

这种现象称为磁滞,是铁磁材料特有的特性之一。

其次,铁磁材料的饱和磁感应强度是衡量其磁化能力的重要参数。

饱和磁感应
强度是指在外加磁场作用下,铁磁材料磁化强度达到最大值时的磁感应强度。

不同类型的铁磁材料具有不同的饱和磁感应强度,这直接影响着其在实际应用中的性能表现。

通常情况下,饱和磁感应强度越大的铁磁材料,其磁化能力越强,适用于更高要求的应用场景。

此外,铁磁材料的磁导率也是其重要特性之一。

磁导率是描述材料在外加磁场
下磁化能力的物理量,它是磁感应强度与磁场强度的比值。

磁导率高的铁磁材料在外加磁场下会表现出更强的磁化能力,对于电磁器件的性能有着重要的影响。

因此,磁导率是评价铁磁材料性能优劣的重要指标之一。

总的来说,铁磁材料具有特殊的磁化特性,其磁化曲线、饱和磁感应强度和磁
导率等特性参数直接影响着其在电磁器件中的应用性能。

在实际应用中,我们需要根据具体的场景和要求选择合适的铁磁材料,以发挥其最佳的性能。

随着科学技术的不断发展,铁磁材料的研究和应用将会更加广泛和深入,为各行各业带来更多的创新和发展。

磁铁的磁性实验报告

磁铁的磁性实验报告

一、实验目的1. 了解磁铁的基本特性,如磁性、磁极、磁感应等。

2. 探究磁铁磁性的影响因素,如磁铁的形状、磁极间的距离、磁铁的材料等。

3. 通过实验验证磁铁的磁性规律,为实际应用提供理论依据。

二、实验原理磁铁是一种具有磁性的物质,其磁性主要由磁铁的内部微观结构决定。

磁铁的磁性可以通过磁极、磁感应等现象表现出来。

磁铁的磁性大小与磁铁的形状、磁极间的距离、磁铁的材料等因素有关。

三、实验器材1. 磁铁(不同形状、不同材料)2. 磁性测试仪3. 磁极4. 磁感应线圈5. 导线6. 电流表7. 开关8. 电源9. 记录纸、笔四、实验步骤1. 磁铁基本特性测试(1)观察磁铁的形状,记录磁铁的形状参数。

(2)用磁性测试仪测试磁铁的磁性大小,记录测试数据。

(3)用磁极测试磁铁的磁极位置,记录磁极位置。

2. 磁极间距离对磁性的影响(1)将两个磁铁分别放置在磁性测试仪的两侧,调整磁极间的距离。

(2)记录不同距离下磁性测试仪的读数。

(3)分析磁极间距离对磁性的影响。

3. 磁铁材料对磁性的影响(1)选择不同材料的磁铁,如铁、镍、钴等。

(2)分别测试这些磁铁的磁性大小。

(3)分析磁铁材料对磁性的影响。

4. 磁感应现象实验(1)将磁铁放置在磁感应线圈中,连接电路。

(2)打开开关,观察电流表指针的偏转。

(3)分析磁感应现象,验证法拉第电磁感应定律。

五、实验结果与分析1. 磁铁基本特性测试实验结果显示,不同形状的磁铁具有不同的磁性大小。

磁铁的形状参数与磁性大小存在一定的关系。

2. 磁极间距离对磁性的影响实验结果显示,磁极间距离越小,磁性越强;磁极间距离越大,磁性越弱。

3. 磁铁材料对磁性的影响实验结果显示,不同材料的磁铁具有不同的磁性大小。

铁、镍、钴等材料的磁铁磁性较强。

4. 磁感应现象实验实验结果显示,当磁铁在磁感应线圈中运动时,电流表指针发生偏转,验证了法拉第电磁感应定律。

六、结论1. 磁铁的磁性大小与磁铁的形状、磁极间的距离、磁铁的材料等因素有关。

磁学中的铁磁材料对磁场强度的影响研究

磁学中的铁磁材料对磁场强度的影响研究

磁学中的铁磁材料对磁场强度的影响研究磁学是一门研究磁场及其相互作用的学科,而铁磁材料则是磁学中的重要研究对象之一。

铁磁材料具有特殊的磁性质,对磁场强度有着显著的影响。

本文将探讨铁磁材料对磁场强度的影响,并介绍其中的一些研究成果。

首先,我们需要了解铁磁材料的基本特性。

铁磁材料是指在外加磁场作用下,其磁化强度随磁场的变化而变化的材料。

在没有外加磁场时,铁磁材料的磁化强度为零。

然而,当外加磁场作用于铁磁材料时,其内部的磁矩会重新排列,使材料具有磁性。

这种磁化强度的变化与磁场的强度密切相关。

研究表明,铁磁材料对磁场强度的影响主要体现在磁化曲线上。

磁化曲线是描述铁磁材料在外加磁场作用下磁化强度与磁场强度之间关系的曲线。

根据实验结果,磁化曲线通常呈现出非线性的特征,即铁磁材料的磁化强度随磁场的增加而逐渐饱和。

这是因为在较低的磁场强度下,铁磁材料的磁矩可以相对容易地重新排列,但随着磁场的增加,磁矩的重新排列变得越来越困难,导致磁化强度的增加速度减慢。

此外,铁磁材料对磁场强度的影响还表现在磁滞回线上。

磁滞回线是描述铁磁材料在磁场强度逐渐增加和减小过程中磁化强度变化的曲线。

实验发现,磁滞回线呈现出明显的闭合环形状。

当磁场强度逐渐增加时,铁磁材料的磁化强度也随之增加;而当磁场强度逐渐减小时,磁化强度则不会完全回到初始状态,而是略微偏离。

这是因为铁磁材料具有一定的磁记忆效应,使得磁化强度在磁场强度减小时保持一定的残余磁化强度。

近年来,随着科学技术的不断进步,对铁磁材料对磁场强度的影响进行了更深入的研究。

其中,一些研究成果表明,铁磁材料的磁化强度与其晶体结构、晶格缺陷以及外界温度等因素密切相关。

例如,铁磁材料中的晶格缺陷会导致磁矩的重新排列受到一定的阻碍,从而影响磁化强度的变化。

此外,铁磁材料在不同温度下的磁化强度也会发生变化,这是因为温度的改变会影响磁矩的热激活行为。

综上所述,铁磁材料对磁场强度的影响是磁学中的重要研究课题。

铁磁材料的滞回线和基本磁化曲线实验报告

铁磁材料的滞回线和基本磁化曲线实验报告

铁磁材料的滞回线和基本磁化曲线
实验报告.doc
铁磁材料的滞回线和基本磁化曲线实验报告
一、实验介绍
1.目的:了解铁磁材料的滞回线特性和基本磁化曲线特性。

2.原理:铁磁材料对外加磁场可以产生磁化,当外加磁场大于一定值时,磁化会达到平衡,此时,电流为零。

3.实验装置:实验使用的设备有:铁磁材料及其连接的实验装置,电流表、电压表等。

二、实验步骤
1.准备实验:将铁磁材料放入实验装置中,接上电源,接好电流表、电压表等装置,打开实验装置。

2.测量滞回线:用电流表测量铁磁材料在不同外加磁场下的磁化,记录电流和电压数据,即可得到滞回线的曲线。

3.测量基本磁化曲线:用电压表测量铁磁材料在不同外加磁场下的磁化,记录电流和电压数据,即可得到基本磁化曲线的曲线。

三、实验结果
1.滞回线曲线:
在H=0.2T,I=0mA时,V=1.9V;
在H=0.4T,I=4.8mA时,V=3.6V;
在H=0.6T,I=9.6mA时,V=5.3V;
在H=0.8T,I=14.4mA时,V=7.0V;
2.基本磁化曲线:
在H=0.2T,V=1.9V时,I=0mA;
在H=0.4T,V=3.6V时,I=4.8mA;
在H=0.6T,V=5.3V时,I=9.6mA;
在H=0.8T,V=7.0V时,I=14.4mA。

四、实验结论
通过实验,我们发现,铁磁材料的滞回线曲线是一条倒U形曲线,而基本磁化曲线是一条正U形曲线,由此可见,铁磁材料对外加磁场的反应有其特定规律。

铁磁材料的磁滞回线和基本磁化曲线测定实验方法

铁磁材料的磁滞回线和基本磁化曲线测定实验方法

155实验十七 铁磁材料的磁滞回线和基本磁化曲线磁性材料应用广泛,从常用的永久磁铁、变压器铁芯到录音、录像、计算机存贮用的磁带、磁盘等都采用磁性材料。

磁滞回线和基本磁化曲线反映了磁性材料的主要特征。

通过实验研究这些性质不仅能掌握用示波器观察磁滞回线以及基本磁化曲线的基本测绘方法,而且能从理论和实际应用上加深对材料磁特性的认识。

【实验目的】1. 认识铁磁物质的磁化规律,比较两种典型的铁磁物质的动态磁化特性。

2. 测绘样品的磁滞回线,比较其磁滞损耗大小。

3. 测定样品的B s 、Hs 、B r 、H D 等参数。

4. 测定样品的基本磁化曲线,作B -H 及μ-H曲线。

【实验仪器】FB310A 磁滞回线实验仪、GOS-620型示波器【实验原理】铁磁物质是一种性能特异、用途广泛的材料。

铁、钴、镍及其众多合金以及含铁的氧化物(铁氧体)均属铁磁物质。

其特征是在外磁场作用下能被强烈磁化,故磁导率μ很高。

另一特征是磁滞,即磁化场作用停止后,铁磁物质仍保留磁化状态,它的图17-1 铁磁质起始磁化曲线和磁滞回线 图17-2 同一铁磁材料的一簇磁滞回线磁感应强度不仅依赖于外磁场强度,而且还依赖于原先的磁化程度。

图17-1为铁磁物质的磁感应强度B与磁化场强度H之间的关系曲线。

图中的原点O表示磁化之前铁磁物质处于磁中性状态,即B=H=0,当磁场H从零开始增加时,磁感应强度B随之缓慢上升,如线段Oa所示,其后B的增长趋于缓慢,并当H增至Hs时,B达到饱和值Bs,OabS称为起始磁化曲线。

如果将磁化场H减小,B并不沿原来的曲线OabS减小,而是沿另一条新的曲线SR下降,比较线段OS和SR知,H减小B也相应减小,但B的变化滞后于H的变化,此现象即称为磁滞。

磁滞的明显特征是当H=0时,B不为零,而保留剩磁Br。

当磁场反向逐渐变至-H D时,磁感应强度B消失,说明要消除剩磁,必须施加反向磁场,H D称为矫顽力,它的大小反映铁磁材料保持剩磁状态的能力,线段RD称为退磁曲线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题四铁磁材料基本特性的测量与研究
一、课题意义
磁性材料在电力、通讯、电子仪器、汽车、计算机和信息存储等领域有着十分广泛的应用.磁滞回线和居里温度是表征磁性材料的两个基本特性.磁滞回线反映磁性材料在外磁场中的磁化特性,而居里温度则是磁性材料由铁磁性转变为顺磁性的相变温度.
本实验通过对软磁铁氧体材料居里温度及动态磁滞回线的测量,加深对这一磁性材料基本特性的理解.
二、参考文献及资料
【1】自编. 普通物理电磁学实验讲义(内部用).
【2】张兆奎.大学物理实验(第二版).高等教育出版社.
【3】马文蔚.物理学教程.高等教育出版社.
【4】网选资料(自选).
三、提供仪器及材料
仪器:数字万用表1块,铂电阻数字温度计1块,加热装置1套,实验接线板,功率函数信号发生器1台,双踪示波器1台等.
材料:实验配件(包括精密电阻、磁性材料样品、短接桥、电容器、电阻、电位器、环型磁性材料样品线圈等);导线若干。

四、开题报告及问题
学生作此课题时,要先查阅文献资料,对以下问题有初步了解,写出简要开题报告交教师审阅合格后,才能做此课题。

1、什么是四臂阻抗电桥?如何用交流电桥测量居里温度?
2、测量铁磁物质的基本磁化曲线和磁滞回线各有什么意义?
3、如何用示波器测量动态磁化曲线和磁滞回线?
4.通过实验后,能否说明在测量基本磁化曲线和磁滞回线必须先退磁的原因?
5、简述研究此课题各子课题的设计方案。

五、课题的内容及要求
根据所给仪器及器件,要求设计实验方案和装置研究测量软磁铁磁性材料基本特性的实验。

1、测量软磁铁材料动态磁滞回线。

2、测量软磁铁氧体材料居里温度。

3、讨论磁性材料的基本特性和一些应用。

六、结题报告及论文
1、写明本课题的研究意义及目的。

2、阐述本课题的研究原理。

3、记录研究全过程的步骤及观察的现象。

4、列表处理数据,对结果进行分析研究。

5、介绍磁性材料在科研中的用途。

6、谈谈对本课题研究的体会及收获。

7、在本课题研究中你是否有创新的见解和方案。

相关文档
最新文档