正交试验法及实例分析
正交试验设计实例分析
会任职、课题文章、医德医风、考核等级、荣誉奖惩,其他如差错、献血、各类捐献等。
建立个人档案能有效归集专业任职的相关资料,全面记录员工的德能勤绩和各项表现,对员工进行全面、客观、公正的评价,有利于对员工的任用和工作团队的组建,以及岗位工作的开展。
医院药剂科人员管理是医院药事管理的重要课题,其政策性强,涉及面广,关系到员工的切身利益以及药学工作的正常开展和可持续发展。
搞好药剂科人员管理既要掌握原则,又要体现灵活和对员工的关心,积极引导员工发挥主观能动性,以病人为中心,努力提高药事管理质量和药学服务水平[2]。
[参考文献][1] 吴永佩,张 钧.医院管理学.药事管理分册[M ].北京:人民卫生出版社,2003:198.[2] 何洪静.药师下临床工作的实践和体会[J ].药学服务与研究,2005,5(3):2862288.[收稿日期] 2007208228[修回日期] 2007212228[本文编辑] 阳凌燕 姚春芳・技术和方法・正交试验设计实例分析滕海英,祝国强3,黄 平,刘 沛(第二军医大学基础医学部数理教研室,上海200433)[关键词] 正交试验设计;直观分析法;方差分析法;正交表;姜黄素;提取法[中图分类号] R 911.2,R 284.2 [文献标识码] B [文章编号] 167122838(2008)0120075202[作者简介] 滕海英(19732),女(汉族),讲师.E 2mail :jt hy 21973@3通讯作者,E 2mail :zhu 2guoqiang @ 正交试验设计是使用正交表来安排多因素、多水平试验,并采用统计学方法分析实验结果的一种实验设计方法[1]。
对于多因素、多水平的问题,人们一般希望通过若干次的实验找出各因素的主次关系和最优搭配条件,用正交表合理地安排实验,可以省时、省力、省钱,同时又能得到基本满意的实验效果。
因此,这种方法在改进产品质量、优化工艺条件及研发新产品等诸多方面广泛应用。
正交试验设计实例
显著性
A
618
B
114
C
234
e
18
S
984
2 309 2 57 2 117 29 8
34.3
**
6.333 ×
13
*
F0.90 (2,2) 9.0 F0.95 (2,2) 19.0 F0.99 (2,2) 99.0
最佳水平组合是A3B2C2 ,考虑B为不显著因素,取经济方案
A3B1C2 。
171
153 T=450
T3
183
144
144
153
T1
41
47
45
48
T2
48
55
57
51 Y = 50
T3
61
48
48
51
R
20
8
12
3
S
618
114
234
18 ST=984
数据分析: 1、直观法:第9方案 y=64 ,最佳方案为:A3B3C2 2、极差法:A>C>B
方差分析计算表
来源 平方和S 自由度f 水平
A温度(℃) B时间 (m) C用碱量(%)
1
80
2
85
3
90
90
5
120
6
150
7
(1)计算数据
1
2
3
4
y
1
1
1
1
1
31
2
1
2
2
2
54
3
1
3
3
3
38
4
2
1
2
3
正交试验设计法简介
正交试验设计法简介一、本文概述正交试验设计法是一种高效、系统的试验设计方法,广泛应用于科学研究、工程实践以及日常生产中的优化问题。
本文将对正交试验设计法的基本概念、原理、应用及其优势进行详细介绍,旨在帮助读者更好地理解和应用这一实用的试验设计方法。
正交试验设计法基于数理统计和正交表的理论,通过合理安排试验因素与水平,以较少的试验次数获得丰富的试验信息。
该方法的核心在于利用正交表的正交性,使得各试验因素之间互不干扰,从而能够准确地评估各因素对试验结果的影响程度。
本文将从正交试验设计法的基本原理出发,阐述其在实际应用中的操作步骤和方法。
通过具体案例的分析,展示正交试验设计法在解决实际问题中的优势和应用价值。
本文还将对正交试验设计法的局限性和改进方向进行探讨,以期为读者提供更为全面、深入的了解。
二、正交试验设计法的基本原理正交试验设计法是一种以数理统计和正交性原理为基础的高效试验设计方法。
其基本原理在于,通过选择一组具有代表性的试验点,即正交表中的行,来全面、均衡地考察多个因素在不同水平下的试验效果。
这种方法能够在保证试验全面性的大大减少试验次数,提高试验效率。
正交试验设计法主要基于两个核心原理:正交性原理和代表性原理。
正交性原理指的是在试验设计中,各因素之间应相互独立,互不影响,从而确保试验结果的准确性和可靠性。
代表性原理则是指在选择试验点时,应确保每个试验点都能代表一定的因素水平组合,以便全面考察各因素对试验结果的影响。
正交表是正交试验设计法的核心工具,它是一种具有特定结构的表格,用于安排试验因素和水平。
正交表具有均衡分散和整齐可比的特点,能够确保每个试验点都具有一定的代表性,并且各因素之间保持正交性。
通过正交表,可以方便地安排试验,并对试验结果进行分析和比较。
正交试验设计法的应用范围广泛,适用于多因素、多水平的试验场景。
它不仅可以用于新产品的开发和优化,还可以用于工艺改进、质量控制等领域。
通过正交试验设计法,可以更加高效地找出最优的参数组合,提高产品的性能和质量,降低生产成本,为企业带来更大的经济效益。
正交试验设计及结果分析
2.1 试验方案设计 (1) 明确试验目的,确定试验指标
试验设计前必须明确试验目的,即本次试验要解决什么 问题。试验目的确定后,对试验结果如何衡量,即需要确 定出试验指标。试验指标可为定量指标,也可为定性指标。
3
上一张 下一张 主 页
1.3.2.3 综合可比性 (1)任一列的各水平出现的次数相等; (2)任两列间所有水平组合出现次数相等,使得任一因素
各水平的试验条件相同。这就保证了在每列因素各水平的效 果中,最大限度地排除了其他因素的干扰。从而可以综合比 较该因素不同水平对试验指标的影响情况。
根据以上特性,我们用正交表安排的试验,具有均衡分 散和整齐可比的特点。
3
上一张 下一张 主 页
在这9个水平组合中,A因素各水平下包括了B、C因素 的3个水平,虽然搭配方式不同,但B、C皆处于同等地位, 当比较A因素不同水平时,B因素不同水平的效应相互抵 消,C因素不同水平的效应也相互抵消。所以A因素3个水 平间具有综合可比性。同样,B、C因素3个水平间亦具有 综合可比性。
3
上一张 下一张 主 页 退 出
如对于上述3因素3水平试验,若不考虑交互作用,可
利用正交表L9(34)安排,试验方案仅包含9个水平组合,就
能反映试验方案包含27个水平组合的全面试验的情况,找 出最佳的生产条件。
1.2 正交试验设计的基本原理
3
上一张 下一张 主 页
正交设计就是从选优区全面试验点(水平组合)中挑3ຫໍສະໝຸດ 上一张 下一张 主 页 退 出
1 正交试验设计的概念及原理
正交实验法
四个因素,每个因素取三个水平
指标:拉脱力 F>900Kg
因素 : 柱塞头外径 : φD 柱塞头高度 : L 柱塞头倒角 : K×β 收口油压 : P
L P
φD
K ×β
2、根据因素数、水平数确定正交表
水平 水平1 水平2 15.3 11.7 水平3 14.8 11.8
因素
柱塞头外径:φD 15.1 11.6
指标(%)
1 4 2 3
1(800) 2 (820) 1(800) 2(820)
1 (6 ) 2(8) 2 (8) 1 (6)
1(400) 1 (400) 2(500) 2 (500)
90 70 85 45
加热温度℃
保温时间h
出炉温度℃
指标(%)
1 4 2 3
1(800) 2 (820) 1(800) 2(820)
二、安排实验
利用正交表安排实验
根据Lx(23)确定水平表
L4(23)正交表
2、安排实验
决定列数 水平数
L4(23)正交表
序号 实验号
因素
1
2
3
1 2 3 4
4次实验
1 1 2 2
1 2 1 2
1 2 2 1
因素 水平一 水平二
加热温度℃ (1) 800 (2) 820
保温时间h (1) 6 (2) 8
保温时间h
(1) 6 (2) 8
出炉温度℃
400 500
因素对指标的影响 1、 加热温度℃ 保温时间 出炉温度℃
2、 因素影响指标的主次: 加热温度℃ 保温时间 出炉温度℃ 8 400
3、 因素的最佳搭配 800 其中最佳搭配不在实验组内
测试用例设计方法--正交试验法详解
测试用例设计方法--正交试验法详解正交试验法介绍正交试验法是研究多因素、多水平的一种试验法,它是利用正交表来对试验进行设计,通过少数的试验替代全面试验,根据正交表的正交性从全面试验中挑选适量的、有代表性的点进行试验,这些有代表性的点具备了“均匀分散,整齐可比”的特点。
正交表是一种特制的表格,一般用L n (m k)表示,L 代表是正交表,n 代表试验次数或正交表的行数,k 代表最多可安排影响指标因素的个数或正交表的列数,m 表示每个因素水平数,且有n=k*(m-1)+1。
正交表的特点正交表具有以下两个特点。
正交表必须满足这两个特点,有一条不满足,就不是正交表。
每列中不同数字出现的次数相等。
这一特点表明每个因素的每个水平与其它因素的每个水平参与试验的几率是完全相同的,从而保证了在各个水平中最大限度地排除了其它因素水平的干扰,能有效地比较试验结果并找出最优的试验条件。
在任意2列其横向组成的数字对中,每种数字对出现的次数相等。
这个特点保证了试验点均匀地分散在因素与水平的完全组合之中,因此具有很强的代表性。
使用正交试验法的原因对于单因素或两因素试验,因其因素少,试验的设计、实施与分析都比较简单。
但在实际工作中,常常需要同时考察3个或3个以上的试验因素,若进行全面试验,试验的规模很大,由于时间和成本的限制我们不可能进行全面试验,但是具体挑其中的哪些测试用例进行测试我们心里拿不准,总担心不做不挑选的那些测试用例会遗漏一些严重缺陷。
为了有效的、合理地减少测试的工时与费用,我们利用正交试验法来设计测试用例。
正交试验法就是安排多因素试验、寻求最优水平组合的一种高效率的试验设计方法。
我们用测试实例来进行说明使用正交试验法设计测试用例的好处。
测试需求:某所大学通信系共2个班级,刚考完某一门课程,想通过“性别”、“班级”和“成绩”这三个查询条件对通信系这门课程的成绩分布,男女比例或班级比例进行人员查询: 根据“性别”=“男,女”进行查询 根据“班级”=“1班,2班”查询 根据“成绩”=“及格,不及格”查询按照传统设计——全部测试分析上述测试需求,有3个被测元素,被测元素我们称为因素,每个因素有两个取值,我们称之为水平值,所以全部测试用例个数是2*2*2=8,参见下表利用正交表设计测试用例,我们得到的测试用例个数是n=3*(2-1)+1=4,对于三因素两水平的刚好有L4(23)的正交表可以套用,于是用正交表试验法得出4个测试用例如下:根据实际需要可以在用正交试验法设计用例的基础上补充一些测试用例。
正交实验法就是利用排列整齐的表
正交实验法就是利用排列整齐的表-正交表来对试验进行整体设计、综合比较、统计分析,实现通过少数的实验次数找到较好的生产条件,以达到最高生产工艺效果。
正交表能够在因素变化范围内均衡抽样,使每次试验都具有较强的代表性,由于正交表具备均衡分散的特点,保证了全面实验的某些要求,这些试验往往能够较好或更好的达到实验的目的。
正交实验设计包括两部分内容:第一,是怎样安排实验;第二,是怎样分析实验结果。
目录试验方法正交实验法举例编辑本段试验方法我们知道如果有很多的因素变化制约着一个事件的变化,那么为了弄明白哪些因素重要,哪些不重要,什么样的因素搭配会产生极值,必须通过做实验验证(仿真也可以说是实验,只不过试验设备是计算机),如果因素很多,而且每种因素又有多种变化(专业称法是:水平),那么实验量会非常的大,显然是不可能每一个实验都做的。
能够大幅度减少试验次数而且并不会降低试验可行度的方法就是使用正交试验法。
首先需要选择一张和你的实验因素水平相对应的正交表,已经有数学家制好了很多相应的表,你只需找到对应你需要的就可以了。
所谓正交表,也就是一套经过周密计算得出的现成的实验方案,他告诉你每次实验时,用那几个水平互相匹配进行实验,这套方案的总实验次数是远小于每种情况都考虑后的实验次数的。
比如3水平4因素表就只有9行,远小于遍历试验的81次;我们同理可推算出如果因素水平越多,试验的精简程度会越高。
建立好实验表后,根据表格做实验,然后就是数据处理了。
由于试验次数大大减少,使得试验数据处理非常重要。
首先可以从所有的实验数据中找到最优的一个数据,当然,这个数据肯定不是最佳匹配数据,但是肯定是最接近最佳的了。
这是你能得到一组因素,这是最直观的一组最佳因素。
接下来将各个因素当中同水平的实验值加和(注:正交表的一个特点就是每个水平在整个实验中出现的次数是相同的),就得到了各个水平的实验结果表,从这个表当中又可以得到一组最优的因素,通过比较前一个因素,可以获得因素变化的趋势,指导更进一步的试验。
正交试验设计及其结果的直观分析(单指标 双指标)
综合平衡法
综合平衡法是,先对每个指标分别进行单指标的直观分析,得到 每个指标的影响因素主次顺序和最佳水平组合,然后根据理论知 识和实际经验,对各指标的分析结果进行综合比较和分析,得出 较优方案。
例 在用乙醇溶液提取葛根中有效成分的试验中,为了提高葛根 中有效成分的提取率,对提取工艺进行优化试验,需要考察三向 指标:提取物得率(为提取物质量与葛根质量之比)、提取物中 葛根总黄酮含量、总黄酮中葛根素含量,三个指标都是越大越好, 根据前期探索性试验,决定选取3个相对重要的因素:乙醇浓度、 液固比(乙醇溶液与葛根质量之比)和提取剂回流次数进行正交 试验,它们各有3个水平,具体数据如表6-9所示,不考虑因素间 的交互作用,是进行分析,找出较好的提取工艺条件。
综合评分法
综合评分法是根据各个指标的重要程度,对得出的实验结果进行分 析,给每一个实验评出一个分数,作为这个实验的总指标,然后根 据这个总指标(分数),利用单指标试验结果的直观分析法作进一 步的分析,确定较好的实验方案,显然,这个方法的关键是如何评 分,下面介绍几种评分方法:
1.对每好实验结果的各个指标统一权衡,综合评价,直接给出每一号 试验结果的综合分数(依靠试验者或专家的理论知识和实践经验)
度
隶属度
1
1 1 1 1 2.96 65.70
1.00
1
1.00
2
1 2 2 2 2.18 40.36
0
0
0
3
1 3 3 3 2.45 54.31
0.35
0.55 0.47
4
2 1 2 3 2.70 41,09
0.67
0.03 0.29
5
2 2 3 1 2.49 56.29
正交实验设计及结果分析报告
正交实验设计及结果分析报告(二)引言概述:正交实验设计是一种重要的统计方法,用于系统地研究多个因素对实验结果的影响。
本报告旨在继续探讨正交实验设计,并通过对结果的分析来进一步验证实验设计的有效性和可行性。
本报告将分为五个大点进行阐述,包括实验设计的优势、正交设计的基本原理、正交设计中的参数设定、模型建立与分析、以及结果的解释与验证。
正文内容:1.实验设计的优势1.1提高实验效率:正交实验设计可以将多个因素同时考虑,并将因素的组合设计为试验方案,从而减少试验次数,提高实验效率。
1.2确定关键因素:正交实验设计通过系统地考虑多个因素及其组合方式,可以帮助研究人员确定对实验结果最为关键的因素。
1.3提高可靠性:正交实验设计具有统计学严谨的基础,能够提高实验结果的可靠性和可重复性。
2.正交设计的基本原理2.1正交表的构造:正交表是正交实验设计的基础工具,通过构造正交表,可以实现各个因素水平的均衡分布,从而减少误差的影响。
2.2剔除交互作用:正交设计通过设置正交表中的交互作用项为0,将多个因素的相互作用剔除,使得试验结果更加直接和可解释。
2.3方差分析原理:正交设计采用方差分析方法对结果进行分析,通过检验因素的显著性和误差的可接受程度,得出结果是否具有统计学意义。
3.正交设计中的参数设定3.1因素的选择:根据实验目的和已知因素,选择对结果影响较大的因素作为试验因素,并确定其水平个数。
3.2正交表的选择:根据因素的个数和水平个数,选择合适的正交表进行试验设计,确保每个水平均匀分布。
3.3重复次数的确定:根据实验结果的稳定性和误差容忍度,确定试验的重复次数,以提高结果的可靠性。
4.模型建立与分析4.1建立线性模型:根据试验数据,建立线性回归模型,将各个因素的水平值与结果进行关联,用于后续的参数估计和显著性检验。
4.2参数估计与显著性检验:通过最小二乘法估计模型参数,并进行显著性检验,判断因素是否对结果产生显著影响。
正交实验举例
回首页正交试验设计法正交试验设计法的基本思想正交表正交表试验方案的设计试验数据的直观分析正交试验的方差分析常用正交表1.正交试验设计法的基本思想正交试验设计法,就是使用已经造好了的表格--正交表--来安排试验并进行数据分析的一种方法。
它简单易行,计算表格化,使用者能够迅速掌握。
下边通过一个例子来说明正交试验设计法的基本想法。
[例1]为提高某化工产品的转化率,选择了三个有关因素进行条件试验,反应温度(A),反应时间(B),用碱量(C),并确定了它们的试验范围:A: 80-90 EB: 90-150 分钟C: 5-7 %试验目的是搞清楚因子A、B C对转化率有什么影响,哪些是主要的,哪些是次要的,从而确定最适生产条件,即温度、时间及用碱量各为多少才能使转化率高。
试制定试验方案。
这里,对因子A,在试验范围内选了三个水平;因子B和C也都取三个水平:A: Al = 80°C,A2= 85°C,A3=90CB: Bl = 90 分,B2= 120 分,B3=150分C: Cl = 5%,C2= 6% C3= 7%当然,在正交试验设计中,因子可以是定量的,也可以是定性的。
而定量因子各水平间的距离可以相等,也可以不相等。
这个三因子三水平的条件试验,通常有两种试验进行方法:(I )取三因子所有水平之间的组合,即AIBIC1,A1BIC2, A1B2C1 ……,A3B3C3共有33=27次试验。
用图表示就是图1立方体的27个节点。
这种试验法叫做全面试验法。
全面试验对各因子与指标间的关系剖析得比较清楚。
但试验次数太多。
特别是当因子数目多,每个因子的水平数目也多时。
试验量大得惊人。
如选六个因子,每个因子取五个水平时,如欲做全面试验,则需56二15625次试验,这实际上是不可能实现的。
如果应用正交实验法,只做25次试验就行了。
而且在某种意义上讲,这25次试验代表了15625次试验。
图1全面试验法取点........ (n )简单对比法,即变化一个因素而固定其他因素,如首先固定B C于Bl、Cl,使A变化之:/ A1B1C1 —A2\ A3 (好结果)如得出结果A3最好,贝U固定A于A3, C还是Cl,使B变化之:/ B1A3C1 —B2 (好结果)\ B3得出结果以B2为最好,则固定B于B2, A于A3,使C变化之:/ C1A3B3C2 (好结果)\ C3试验结果以C2最好。
正交试验设计(内容详尽)
用于探索最佳的药物剂量、治疗方案等。
农业科学研究
用于研究不同肥料、农药、种植方式等对农 作物产量的影响。
化学工业
用于研究不同反应条件对化学反应的影响, 提高产物的收率和质量。
正交试验设计的原则
1 2
均衡分布原则
确保每个因素每个水平的试验条件都有机会出现, 避免结果的片面性。
整齐可比原则
保证试验结果的可比性,以便进行数理统计分析。
案例二:化学反应中的正交试验设计
在化学反应中,正交试验设计用于研究不同反应条件 对产物收率和纯度的影响。
例如,在合成某种药物中间体的过程中,通过正交试 验设计来探究温度、压力、催化剂种类和浓度对产物
收率和纯度的影响。
通过优化反应条件,可以提高产物的收率和纯度,降 低生产成本并提高生产效率。
案例三:生物医学研究中的正交试验设计
安排试验计划
总结词:计划性
详细描述:根据正交表,安排详细的 试验计划。这一步骤包括确定试验的 各个水平、组合方式以及试验的顺序 等。合理的试验计划有助于提高试验 的效率和准确性。
实验结果分析
总结词:分析性
VS
详细描述:在完成试验后,对试验结 果进行统计分析。这一步骤包括数据 的整理、处理、分析和解释等。通过 结果分析,可以得出关于试验因素对 试验结果影响的结论,并据此优化试 验方案或进行进一步的研究。
正交试验设计案例分
05
析
案例一:材料科学中的正交试验设计
材料科学中,正交试验设计常用于研究不同材 料成分和工艺参数对材料性能的影响。
例如,在钢铁冶炼过程中,通过正交试验设计 来探究不同温度、压力、时间和合金元素对钢 材强度、韧性和耐腐蚀性的影响。
通过对试验结果的分析,可以确定最佳的工艺 参数组合,从而提高产品质量和降低生产成本。
正交试验法(含案例)
正交试验设计法一、定义:正交试验设计法就是利用正交表来合理安排多因素试验的一种方法。
二、常用术语1、指标:指标就是试验要考察的效果。
常用X、Y、Z……来表示。
▼定量指标:能够用数量来表示的试验指标,如重量、尺寸、温度。
▼定性指标:不能用数量来表示的试验指标,如颜色、味道、外观。
●定性指标量化:可用打分法、分等法。
2、因素:因素是指对试验指标可能产生影响的原因。
因素是在试验中应当加以考察的重点内容。
一般用大写字母A、B、C……来表示。
3、水平(位级):位级是指因素在试验中所处的状态或条件。
常用阿拉伯数字1、2、3……来表示。
如: A1、A2、A3、B1、B2、B3。
三、正交表 (已设计好的标准化表格,是进行正试验法的基本工具)1、日本型正交表:由日本质量管理专家田口玄一博士创立。
该正交试验设计法,除需试验的因素外,还要研究分析因素与因素之间的交互作用,一起上列,对试验结果的分析用方差分析等方法,过程较复杂。
2、中国型正交表是由以我国张千里教授为首的中国专家所创立。
它不考虑因素之间的交互作用,而将其交互作用融于试验之中,对试验结果的分析采用极差分析法,简单的用“看一看”与“算一算”相结合的分析、简单、易行、同样能得到满意的结论,是一种实用的试验方法,很适合现场应用。
四、正交表的特点:1、均衡分散性:每一列中各种字码出现的次数相同,保证试验条件均衡地分散在配合完全的位级组合之中,因而代表性强,容易出现好条件。
2、整齐可比性:任意两列中全部有序数字对出现次数都是相同的。
保证了在各个位级的效果之中,最大限度地排除了其他因素的干扰,能最有效地进行比较,作出展望。
五、用中国型正交表安排试验的步骤 1、明确试验目的 2、确定考察指标 3、挑因素、选位级,制定因素位级表 ①挑因素的原则: ▼分析影响指标的各种因素,排除: 不可控因素 对指标影响不大的因素 已掌握得好的因素(让其固定在适当位置上) ▼选对指标可能影响大,又无把握的因素。
正交试验法
直观分析法简单,可以确定各因素的主次, 也可以确定最佳水平组合。
优点简单明了,便于推广。
缺点是,不能估计试验中必然存在的误差的 大小,因而不能区分某因子各水平所对应的 试验结果间的差异究竟是真正由因子水平不 同所引起的,还是由试验误差所引起的,因 此不能知道分析的精度。
对于单指标的可以直接分析计算。
该表最多能考察的因素数 (列数) b表示因素可取的水平数
2. 常用正交表 如L4 (23)、 L8(27)、L16(215)、 L9(34)、L27(313)、 L16(45)、L25(56)等 例如:正交表 L9(34) 表示该函数最多能 考察4个因素,每个因素可取3个水平, 共需作9次试验,具体见下表。
正交试验法
(一)正交试验的特点:
正交试验(正交设计法、多因素优选法),能
合理地、科学地安排试验、分析试验结果,运 用统计分析,寻找各因素多水平间的最佳组合, 确定最优或较优试验方案。 试验设计可以借助一种规格化的“正交表” 正交试验特点: “整体设计,统计分析,综合 比较” 。
具体:
1. 可以大量压缩试验次数,节省时间、经费。 例:2 因素2个水平试验,要全面考察, A1B1;A1B2;A2B1;A2B2 ;22=4 次 3 因素2个水平试验,要全面考察, 23=8 次,而用正交设计只要4次就行。 同理: 10 因素3个水平试验, 要 310=59049 次,每天做10个试验,要16.1年,而正交 设计只要27次就行。每天做10个试验,3天
2、挑因素、选水平、制定因素水平表
主要根据试验目的查找的有关资料、试 验人员的实践经验和试验的具体条件, 确定参试因素。一般≯4个因素为好。
正交实验设计
正交试验设计法正交试验设计法的基本思想正交表正交表试验方案的设计试验数据的直观分析正交试验的方差分析补充内容1.正交试验设计法的基本思想正交试验设计法,就是使用已经造好了的表格--正交表--来安排试验并进行数据分析的一种方法。
它简单易行,计算表格化,使用者能够迅速掌握。
下边通过一个例子来说明正交试验设计法的基本想法。
[例1]为提高某化工产品的转化率,选择了三个有关因素进行条件试验,反应温度(A),反应时间(B),用碱量(C),并确定了它们的试验范围:A:80-90℃B:90-150分钟C:5-7%试验目的是搞清楚因子A、B、C对转化率有什么影响,哪些是主要的,哪些是次要的,从而确定最适生产条件,即温度、时间及用碱量各为多少才能使转化率高。
试制定试验方案。
这里,对因子A,在试验范围内选了三个水平;因子B和C也都取三个水平:A:Al=80℃,A2=85℃,A3=90℃B:Bl=90分,B2=120分,B3=150分C:Cl=5%,C2=6%,C3=7%当然,在正交试验设计中,因子可以是定量的,也可以是定性的。
而定量因子各水平间的距离可以相等,也可以不相等。
这个三因子三水平的条件试验,通常有两种试验进行方法:(Ⅰ)取三因子所有水平之间的组合,即AlBlC1,A1BlC2,A1B2C1,……,A3B3C3,共有33=27次试验。
用图表示就是图1 立方体的27个节点。
这种试验法叫做全面试验法。
全面试验对各因子与指标间的关系剖析得比较清楚。
但试验次数太多。
特别是当因子数目多,每个因子的水平数目也多时。
试验量大得惊人。
如选六个因子,每个因子取五个水平时,如欲做全面试验,则需56=15625次试验,这实际上是不可能实现的。
如果应用正交实验法,只做25次试验就行了。
而且在某种意义上讲,这25次试验代表了15625次试验。
图1 全面试验法取点..........(Ⅱ)简单对比法,即变化一个因素而固定其他因素,如首先固定B、C于Bl、Cl,使A变化之:↗A1B1C1 →A2↘A3 (好结果)如得出结果A3最好,则固定A于A3,C还是Cl,使B变化之:↗B1A3C1 →B2 (好结果)↘B3得出结果以B2为最好,则固定B于B2,A于A3,使C变化之:↗C1A3B2→C2 (好结果)↘C3试验结果以C2最好。
正交试验设计及数据分析
通过对比各试验结果,直接观察各因素对试验指标的影响。
详细描述
根据正交试验结果,将各因素不同水平下的试验结果进行对比,直接观察各因素对试验指标的影响, 判断哪些因素对试验指标有显著影响。
方差分析法
总结词
通过比较各因素不同水平下的方差,判 断各因素对试验指标的影响程度。
VS
详细描述
利用方差分析法,比较各因素不同水平下 的方差,判断各因素对试验指标的影响程 度,确定哪些因素对试验指标有显著影响 。
验效率。
特点
均匀设计具有试验点均匀分散、 试验次数少、信息量丰富等优点, 适用于多因素、多水平的试验设
计。
应用
在化学、物理、工程等领域中, 均匀设计常用于多因素多水平试 验,以寻找最优的工艺参数或配
方。
拉丁方设计
定义
拉丁方设计是一种试验设计方法,其目的是通过合理地安排试验点,使得每个因素在每 个水平上只出现一次,从而消除顺序效应和边缘效应的影响。
在生产过程中,企业可以使用正交试验设计来优化生产工 艺参数,从而提高产品质量、降低生产成本、减少废品率 。例如,在注塑生产中,通过正交试验确定最佳的注射温 度、压力和冷却时间,以获得最佳的产品质量和产量。
案例二:正交试验在农业种植中的应用
总结词
利用正交试验优化农业种植技术,提高作物产量和品质 。
详细描述
03
利用正交试验设计,研究农作物在不同环境条件下的抗逆性表
现,为抗逆育种提供依据。
医药研究
01
药物筛选
临床试验
02
Байду номын сангаас03
毒理学研究
利用正交试验设计,筛选出具有 最佳疗效的药物成分和剂量组合。
通过正交试验,优化临床试验方 案,提高试验效率和数据可靠性。
测试用例设计方案技巧正交试验法详解
测试用例设计方法--正交实验法详解正交实验法介绍正交实验法是研究多因素、多水平的一种实验法,它是利用正交表来对实验进行设计,通过少数的实验替代全面试验,根据正交表的正交性从全面实验中挑选适量的、有代表性的点进行实验,这些有代表性的点具备了“均匀分散,整齐可比”的特点。
正交表是一种特制的表格,一般用L n (m k)表示,L 代表是正交表,n 代表实验次数或正交表的行数,k 代表最多可安排影响指标因素的个数或正交表的列数,m 表示每个因素水平数,且有n=k*(m-1)+1。
正交表的特点正交表具有以下两个特点。
正交表必须满足这两个特点,有一条不满足,就不是正交表。
每列中不同数字出现的次数相等。
这一特点表明每个因素的每个水平与其它因素的每个水平参与实验的几率是完全相同的,从而保证了在各个水平中最大限度地排除了其它因素水平的干扰,能有效地比较实验结果并找出最优的实验条件。
在任意2列其横向组成的数字对中,每种数字对出现的次数相等。
这个特点保证了实验点均匀地分散在因素与水平的完全组合之中,因此具有很强的代表性。
使用正交实验法的原因对于单因素或两因素实验,因其因素少,实验的设计、实施与分析都比较简单。
但在实际工作中,常常需要同时考察3个或3个以上的实验因素,若进行全面实验,实验的规模很大,由于时间和成本的限制我们不可能进行全面实验,但是具体挑其中的哪些测试用例进行测试我们心里拿不准,总担心不做不挑选的那些测试用例会遗漏一些严重缺陷。
为了有效的、合理地减少测试的工时与费用,我们利用正交实验法来设计测试用例。
正交实验法就是安排多因素实验、寻求最优水平组合的一种高效率的实验设计方法。
我们用测试实例来进行说明使用正交实验法设计测试用例的好处。
测试需求:某所大学通信系共2个班级,刚考完某一门课程,想通过“性别”、“班级”和“成绩”这三个查询条件对通信系这门课程的成绩分布,男女比例或班级比例进行人员查询: 根据“性别”=“男,女”进行查询 根据“班级”=“1班,2班”查询 根据“成绩”=“及格,不及格”查询按照传统设计——全部测试分析上述测试需求,有3个被测元素,被测元素我们称为因素,每个因素有两个取值,我们称之为水平值,所以全部测试用例个数是2*2*2=8,参见下表利用正交表设计测试用例,我们得到的测试用例个数是n=3*(2-1)+1=4,对于三因素两水平的刚好有L4(23)的正交表可以套用,于是用正交表实验法得出4个测试用例如下:根据实际需要可以在用正交实验法设计用例的基础上补充一些测试用例。
正交试验设计案例分析
正交实验设计案例分析45120611戴杰摘要:正交实验设计法在工业生产中具有广阔的应用领域,但由于推广不够,在实践少有应用,除了观念上的影响外,对操作方法的疑惑和不熟悉,也是重要因素。
我们小组选取了两个典型案例,对正交实验设计法的操作方法和步骤进行了介绍。
正交实验设计法在工业生产中具有广阔的应用领域。
作为一种科学的实验方法,它以投资少、易操作见效快的特点而为人们所关注,在已经试点过的单位都不同程度地取得了明显效果,受到企业的普遍欢迎。
正交实验设计法虽然已经取得了骄人的业绩,但它的推广并不普遍。
原因主要是许多企业科学意识差,对正交法缺乏正确认识,不懂操作程序,甚至怕麻烦。
鉴于此,我们选择了两个典型案例,对正交法的应用程序和方法做出了说明。
一、双氰胺生产工艺的优化研究1.1 立项背景山西省双氰胺厂。
1989年引进技术,设计能力为年产双氰胺500t,1990年投产,1991年全年生产双氰胺300t。
虽然当时双氰胺出厂价为15000元/t,市场供不应求,但由于该企业产量达不到设计能力,成本很高,年亏损30多万元,企业处于非常困难的境地。
1.2 经诊断发现的问题(1)双氰胺的主要原材料质量差,有效含氮量低。
调查结果:石灰氮最好是一级品占一半,其余为二级品以下。
石灰氮产品的行业标准(有效含氮量)是:优级品>=20%,一级品>18%,二级品>17%,次品<17%。
经过对比,该厂石灰氮有效含氮量低,是双氰胺消耗高、成本高、产量低的主要原因。
(2)石灰窑CO2气体浓度太低且很不稳定,是制约双氰胺生产的关键因素。
经调查发现,CO2气体浓度一般在17%以下,有时12%左右,致使双氰胺车间第一道工序(即水解工序)脱钙速度慢、时间长,是制约双氰胺产量的关键。
(3)双氰胺的生产工艺影响因素多,优化潜力大。
经分析认为:水解投料量、水解pH 值、聚合工序的聚合温度、聚合pH值、结晶温度等因素,均对产品质量和消耗有影响。
《基于正交试验法的对旋轴流风机CFD数值模拟分析》范文
《基于正交试验法的对旋轴流风机CFD数值模拟分析》篇一一、引言随着计算流体动力学(CFD)技术的不断发展,其在风机设计、优化及性能预测等领域的应用日益广泛。
对旋轴流风机作为一种重要的通风和排烟设备,其性能的准确预测和优化对于提高设备的能效、降低能耗具有重要意义。
本文基于正交试验法,利用CFD数值模拟技术对某型号对旋轴流风机进行性能分析,旨在为风机的优化设计提供理论依据。
二、正交试验法原理正交试验法是一种多因素优化的试验设计方法,通过合理安排少量试验,能够全面反映各因素对试验结果的影响。
该方法能够在较短时间内获得多组数据,并对各因素进行显著性分析,为寻找最优组合提供依据。
本文将正交试验法应用于对旋轴流风机的CFD数值模拟中,以探究各参数对风机性能的影响。
三、CFD数值模拟方法CFD数值模拟是通过对流体流动进行数值计算,以获得流场中各物理量的分布和变化规律。
本文采用ANSYS Fluent软件进行CFD模拟,通过对风机进行三维建模、网格划分、边界条件设定、求解及后处理等步骤,实现对旋轴流风机内部流场的模拟和分析。
四、正交试验设计及模拟过程根据对旋轴流风机的结构特点和性能要求,选取叶片安装角、叶片数、转速等参数作为正交试验的因素。
针对每个因素设计若干水平,利用正交表安排试验。
在ANSYS Fluent中进行CFD模拟,获取各组试验下的风机性能参数,如风量、风压、效率等。
五、结果分析1. 数据分析:将CFD模拟结果整理成表格形式,包括各因素的水平、对应的风机性能参数等。
通过极差分析、方差分析等方法,探究各因素对风机性能的影响程度。
2. 显著性分析:根据方差分析结果,判断各因素对风机性能的显著性。
显著性较高的因素对风机性能影响较大,应优先考虑在优化设计中进行调整。
3. 优化方案设计:根据正交试验结果,确定各因素的较优水平组合,提出对旋轴流风机的优化设计方案。
同时,结合CFD模拟结果,验证优化方案的可行性。
正交试验设计原理及实例
正交表表示方法
L9(34)
正交表列数 一列中出现的数字个数 正交表行数 正交表的代号
②正交表中1列可以安排1个因素,因此它可安排的 因素数可以小于或等于q,但不能大于q。
因为正交性,使部分试验点必然均衡
地分布后全面试验的试验点中。所谓均衡 分散,是指用正交表挑选出来的各因素水 平组合在全部水平组合中的分布是均匀 的 。 由 图11-2可以看出,在立方体中 , 任一平面内都包含 3 个“(·)”, 任一直线 上都包含1个“(·)” ,因此 ,这些点代表 性强 ,能够较好地反映全面试验的情况。
③括号内的tq表示q个因素、每个因素t个水平全面试 验的水平组合数(即处理数)。因为安排因素个数不 能大于q,所以n /tq为最小部分实施。
显然,L4(23)是最简单的正交表,有4列3行用它 最多能安排3个2水平因素的试验。部分试验为4次,全 面试验为8次,最小部分实施为1/2,即用它安排试验 可比全面试验少做1/2。所以,当试验因素数q及每个 因素的水平数t增加时n /tq则下降,节省试验次数的效 果更明显。
在这99个水平组合中aa因素各水平下包括了bbcc因素的33个水平虽然搭配方式不同但bbcc皆处于同等地位当比较aa因素不同水平时bb因素不同水平的效应相互抵消cc因素不同水平的效应也相互抵消
1 正交试验设计的意义 正交试验属于试验设计方法的一种。简单
地讲,试验设计是研究如何科学安排试验,以 较少的人力物力消耗而取得较多较全面的信息。
若试验的主要目的是 寻 求 最 优水 Nhomakorabea组合 , 则 可利用正交 设计来安排试验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、试验方案设计
试验目的与要求 试验指标 选因素
确定水平
选择合适正交表
表头设计
列试验方案
试验结果分析
2、试验结果分析
(1)直接比较。从直观上比较所有实验工况下的实验结果,选取最好的 一项实验工况作为优化选择。 (2)优水平组合,提出预测优处理。即把所有的正交实验结果进行简单 计算,得出各个因子对参考量的影响程度,从而进行优化组合,为后 续的研究工作提供参考。 (3)极差分析。求出各个水平的平均值,选取最大值减去最小值,得出 极差。极差大说明此因子在不同水平的作用下产生的差异大,属于重 要因子,极差小说明此因子在不同水平的作用下对实验结果影响不大, 属于次要因子。再根据优水平进行组,提出预测的优化处理。
2、试验指标
采用正交试验设计的方法,研究在各个因素作用下中庭 空间排风量的大小,从而得到对混合通风影响最大的因素。
3、选因素
热源非对称性集中分布时,由于此时中庭内部的风速及温度 分布存在偏移,且相对于热源对称分布时中庭内部的气流分布不 是很理想,因此,在各个热源分布形式的情况下,分别考虑在中 庭顶部出口和热源层加上风机。热源层加上风机的窗口为住户和 中庭空间连接的内窗口,安装于此的风机定义为内窗风机。此外, 在热源层上加入风机时还必须考虑所放风机的位置。 因此共有4个因素,热源分布形式、顶部风机风量、内窗风 机风量以及内窗风机位置。
②任两列之间各种不同水平的所有可能组合都出现,且对出现 的次数相等
2、基本特点
① 整齐可比性:是指每一个因素的各水平间具有可比性。
② 均匀分散:是指用正交表挑选出来的各因素水平组合在全 部水平组合中的分布是均匀的 。
③ 简单易行
3、正交表的分类
三、正交试验设计的基本程序
正交试验设计的基本程序包括试验方案设计及试验结果分析两部分。
(4)画出趋势图进行直观分析。求出各因子各水平的平均值,依此 画出此实验所有因子的趋势图。趋势图越陡说明因子越重要,趋势 图越平坦说明该因子的影响不大。 (5)方差分析。对于均方很小的因子,可将它作为误差项而进行F检 验。
四、混合通风下中庭内气流特性的模拟
图2 物理模型的平面图、剖面图和立面图
图3 顶部加风机示意图
• 水平:各个因子的取值
• 处理数:在实验中需要完成的不同因子的不同水平的组合,简单来 说,即在实验中需要进行操作的实验工况的数目。
例如: 喷水压力p、空气质量流速v、喷嘴孔径d、喷嘴间距δ 这4个因素对 喷水室热交换效率的影响较为显著。这是一个4因素3水平的试验, 全面试验要做81次。
表1 影响因素及水平取值
正交试验设计及实例分析
目录
1
2 3 4
正交试验设计 正交表 正交试验设计的基本程序 混合通风下中庭内气流特性的模拟
一、正交试验设计 1、基本概念
正交试验设计是使用正交表来安排多因素 、多水平试验 , 并采用统计学方法分析实验结果的一种实验设计方法。
• 因子:在进行实验时,挑选中的安排实验的因素
2、基本特点
用部分试验来代替全面试验,通过对部分试验结果的分 析,了解全面试验的情况。 正因为正交试验是用部分试验来代替全面试验的,它不可 能像全面试验那样对各因素效应、交互作用一一分析;当交互 作用存在时,有可能出现交互作用的混杂。虽然正交试验设计 有上述不足,但它能通过部分试验找到最优水平组合 ,因而 很受实际工作者青睐。
4、水平的确定
Байду номын сангаас
②所放风机的位置可选择三个水平,分别为位于建筑的低层、中层、上层。但考 虑到横向气流对中庭内部垂直气流的阻断作用,在建筑低层加上风机意义不大, 因此,只考虑两个高度水平,即建筑的中层和上层,分别定在建筑的第五层和第 九层。
③热源分布形式如表3,根据热压 通风时高层住宅建筑中庭空间内 部气流及温度场,case6和case9、 case8和case10的中庭内部温度及 气流分布相类似,可简化混合通 风所需要的模拟工况。且case6及 cases时中庭内部温度较低,可不 考虑再加风机而更加降低中庭内 部温度。因此,可去掉case6及 case8的工况,只选择case5、 case7、case9和case10
3、基本原理
正交试验设计主要是根据均衡性的试验设计原理来安排试 验,从选优区全面试验点中挑选出有代表性的部分试验点来进 行试验。 对于A、B、C 3个因素来说,可在27个全面试验点中选择9 个试验点,仅是全面试验的三分之一。
①A1B1C1 ④A2B1C2 ⑦A3B1C3
②A1B2C2 ⑤A2B2C3 ⑧A3B2C1
1、试验目的与要求
通过对热压通风时高层住宅建筑中庭空间内部气流及温度场进行了 数值模拟研究,可知,当热源呈对称性分布时,中庭内部的风速和温度 场都有很好的分布特性。而当热源非对称分布时,中庭内部的温度场分 布不均,有所偏移,也因此对热源上部住户的热舒适产生影响。为了改 善中庭内部温度场及风场的分布,在热压通风的基础上辅以机械通风, 改变中庭内部风场和温度场的分布特性。 为了研究加上机械通风后中庭内部的气流特性,利用正交试验设计 得到模拟工况,并处理模拟数据,得出对混合通风影响最大的因素。
③A1B3C3 ⑥A2B3C1 ⑨A3B3C2
9个试验点均衡地分布于整个立方体内, 有很强的代表性,能够比较全面地反映选优 区内的基本情况。
图1 三因子、三水平试验坐标图
二、正交表 1、基本性质
正交设计安排试验和分析试验结果都要用正交表,正交表是正 交设计的基础,依据合适的正交表,可合理安排实验,减少重复性, 并可对实验数据进行数学概率统计分析。 ① 任一列中,各水平都出现,且出现的次数相等
表3
热源分布形式
5、设计合适的正交表并列出试验方案
表4
热源非对称集中分布混合通风模拟工况
6、试验结果分析
表5 热源非对称集中分布混合通风模拟计算结果
6、试验结果分析
将各个水平的平均值在趋势图中表示出来,进行分析。
表6 正交分析结果
图6表示的是热源非对称集中分布时正交设计各因子的各个水平平均值的趋势 图。其中,A、B、C、D分别代表工况、顶部风机、内窗风机、内窗风机安装 位置四个因子,从图中可以看出,对混合通风影响最大的是顶部风机,其次 是内窗风机,热源分布次之,而内窗风机安装位置的影响较其他三个因子最 小。