三角函数与平面向量综合题的六种类型

合集下载

高三数学三角函数方法,公式精选精讲

高三数学三角函数方法,公式精选精讲

三角函数方法谈三角函数是数学④的重点内容,也是高考考查的着力点,其中三角函数的概念与性质常以选择题、填空题的形式出现,三角恒等变换常以解答题的形式出现,它们多是容易题或中档题,是不应失分的题目.因为三角函数内容丰富、公式众多,考查形式灵活,其题目也绚丽多姿.本文针对三角函数的六类重、热点问题归纳总结,以巩固所学,提高能力,实现三角函数知识的升级. 一、单调性问题此类问题主要考查三角函数的增减性,各象限中各个三角函数值的符号等.很多情况下,需要通过三角恒等变换将已知函数式化为一个角的一个三角函数式的形式来求解. 例1(07湖南文)已知函数2πππ()12sin 2sin cos 888f x x x x ⎛⎫⎛⎫⎛⎫=-++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.求:函数()f x 的单调增区间.解析:ππ()cos(2)sin(2)44f x x x =+++πππ))2442x x x =++=+=.当2ππ22πk x k -≤≤,即πππ2k x k -≤≤(k ∈Z)时,函数()f x x =是增函数,故函数()f x 的单调递增区间是π[ππ]2k k -,(k ∈Z ).点评:①在求单调区间时,要注意利用诱导公式、特殊角三角函数值、两角和与差公式、倍角公式、函数sin()y A x ωϕ=+的性质等基础知识,考查基本运算能力.利用三角公式将所给函数化为一个角的三角函数。

②在求sin()y A x ωϕ=+的单调区间时还应注意ω的正、负,同学们可以自己求一下π2sin 26y x ⎛⎫=- ⎪⎝⎭的单调递减区间,并与本例所求得的区间对比一下.二、根据三角函数性质确定函数解析式问题这类问题主要考查三角函数图象的性质以及识图的能力.关键是根据图象的位置求出相关参数A ,ω,θ等。

例2(江西)如图,函数π2cos()(00)2y x x >ωθωθ=+∈R ,,≤≤的图象与y轴相交于点(0,且该函数的最小正周期为π.(1)求θ和ω的值;的中点,当0y =,(2)已知点π02A ⎛⎫⎪⎝⎭,,点P 是该函数图象上一点,点00()Q x y ,是PA 0ππ2x ⎡⎤∈⎢⎥⎣⎦,时,求0x 的值.解析:(1)将0x=,y =2cos()y x ωθ=+cos θ=,因为π02θ≤≤,所以π6θ=.由已知πT=,且0ω>,得2π2π2T πω===. (2)因为点π02A ⎛⎫ ⎪⎝⎭,,00()Q x y ,是PA的中点,0y =P的坐标为0π22x ⎛- ⎝. 又因为点P 在π2cos 26y x ⎛⎫=+ ⎪⎝⎭的图象上,且0ππ2x ≤≤,所以05πcos 46x ⎛⎫-=⎪⎝⎭ 07π5π19π4666x -≤≤,从而得05π11π466x -=或05π13π466x -=,即02π3x =或03π4x =.解析:本题主要考查三角函数图象的性质以及识图的能力.解决本题的关键是在于根据图象性质确定所给函数中的参数θ的值,根据题意图象与y 轴相交于点(0建立等式关系凭借θ的限制条件就能确定θ的值;本题的第二问实际是已知三角函数值求角问题,利用中点公式借助点00()Q x y ,将点P 表示出来代入函数式,凭借特殊角的三角函数值求角即可. 三、求值与证明问题此类题是高考中出现较多的题型,要求同学们掌握从题设条件入手、以题目结论或要求为目标,正确运用各类三角公式,消除角的差异,实现函数名称的转化,达到解(证)题的目的.深刻理解三角函数的概念,熟练掌握各类三角公式,熟悉三角恒等变换的常用思想方法和变换技巧,是解决问题的关键. 例3(2007四川)已知cos α=71,cos(α-β)=1413,且0<β<α<2π,(Ⅰ)求tan2α的值;(Ⅱ)求β.解析:(Ⅰ)由1cos 7α=,π02α<<,得sin 7α===.∴sin 7tan cos 1ααα===于是22tan tan 21tan ααα===-. (Ⅱ)由π02βα<<<,得02παβ<-<.又∵13cos()14αβ-=,∴sin()14αβ-===()βααβ=--,得cos cos[()]βααβ=--cos cos()sin sin()ααβααβ=-+-11317142=⨯+=,∴π3β=.点评:本题考查三角恒等变形的主要基本公式、三角函数值的符号、已知三角函数值求角以及计算能力.根据已知求解具有限制条件角的三角函数值时,首先确定所求角的范围,然后适当进行角的变换利用三角公式进行求值即可. 四、最值或值域问题这是在考试中出现频率很高的一类题型,要求掌握基本的三角公式和正弦、余弦等基本三角函数的值域.解题时,常常进行降次处理,尽量将异名三角函数化为同名三角函数,将不同的角化为相同的角. 例4(2007湖北理)已知ABC △的面积为3,且满足0≤AC AB ∙≤6,设AB 和AC 的夹角为θ.(I )求θ的取值范围;(II )求函数2()2sin 24f θθθ⎛⎫=+ ⎪⎝⎭π的最大值与最小值.解析:(Ⅰ)设ABC △中角A B C ,,的对边分别为a b c ,,,则由1sin 32bc θ=,0cos 6bc θ≤≤,可得0cot 1θ≤≤,ππ42θ⎡⎤∈⎢⎥⎣⎦,∴.(Ⅱ)2π()2sin 24f θθθ⎛⎫=+ ⎪⎝⎭π1cos 222θθ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦(1sin 2)θθ=+πsin 2212sin 213θθθ⎛⎫=+=-+ ⎪⎝⎭.ππ42θ⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2363θ⎡⎤-∈⎢⎥⎣⎦,,π22sin 2133θ⎛⎫-+ ⎪⎝⎭∴≤≤.即当5π12θ=时,max ()3f θ=;当π4θ=时,min ()2f θ=. 点评:本题主要考查平面向量数量积的计算、解三角形、三角公式、三角函数的性质等基本知识,考查推理和运算能力. 五、实际应用问题这类问题主要考查利用三角函数的性质及三角恒等变换解决有关实际应用问题.解题的关键是利用三角函数表示出各有关元素,从而建立起函数关系.例5(2007海南)如图,测量河对岸的塔高AB时,可以选与塔底B在同一水平面内的两个侧点C与D.现测得B C D B DC C D s αβ∠=∠==,,,并在点C 测得塔顶A 的仰角为θ,求塔高AB .解:在BCD △中,πCBD αβ∠=--.由正弦定理得sin sin BC CDBDC CBD =∠∠.所以sin sin sin sin()CD BDC s BC CBD βαβ∠==∠+·.在ABC Rt △中,tan sin tan sin()s AB BC ACB θβαβ=∠=+·.点评:本题考查正弦余弦定理应用及应用所学知识解决实际问题的能力.解三角形应按照由易到难的顺序来求解,选用边角时尽量避免复杂运算,有时需要对一些复杂图形特殊处理,平面几何知识“功不可没”.例6如图,扇形AOB 的半径为1,中心角为600,PQRS 是扇形的内接矩形,问P 在怎样的位置时, 矩形PQRS 的面积最大?并求出这个最大值。

专题二 三角函数与平面向量的综合应用

专题二 三角函数与平面向量的综合应用

的参数 A,ω ,φ,从图象的特征上寻找答案,A 主要由最值 确定,ω 是由周期确定,周期通过特殊点观察求得,如相邻 两个最大、最小值点相差半个周期,φ 可由点在函数图象上 求得,确定 φ 值时,注意它的不惟一性.如果函数的最大值 与最小值不互为相反数,说明解析式为 y=Asin( ω x+φ)+k 的形式.设最大值为 m,最小值为 n,则 A+k=m,-A+k m-n m+n =n,从而 A= 2 ,k= 2 .
π 由图象最高点为 , 3得 6
(2)由 (1)知,函数的最小值为- 3; π π π 由 2x+ =2kπ- ,k∈Z,得 x=kπ- ,k∈ Z, 6 2 3 π ∴函数取得最小值时自变量 x 的集合为x|x=kπ- , k∈ Z. 3
探究提高
确定函数关系式 y=Asin( ω x+φ)就是确定其中
题型分类 深度剖析
题型一 三角函数的化简求值问题 3 1 1 例1 求 2 - 2 · 的值. sin 140° cos 140° 2sin 10°
思维启迪 从角、函数名称、式子结构入手找其
特征,构造“相消”、“约分”或构造特殊角.
3cos2140° - sin2140° 1 解 原式= · sin2140° cos2140° 2sin 10° 3cos240° - sin240° 1 = · sin240° cos240° 2sin 10° ( 3cos 40° - sin 40° )( 3cos 40° + sin 40° ) 1 = · 1 2 2sin 10° sin 80° 4 2sin(60° - 40° )· 2sin(60° + 40° ) 1 = · 1 2 2sin 10° cos 10° 4 8sin 20° sin 100° 16sin 10° · cos210° = = = 16. cos210° · sin 10° cos210° · sin 10° π 探究提高 若 α+β=π,则 sin α=sin β;若 α+β=2,

高考数学备考攻略平面向量与三角函数的综合应用

高考数学备考攻略平面向量与三角函数的综合应用

高考数学备考攻略平面向量与三角函数的综合应用高考数学备考攻略:平面向量与三角函数的综合应用在高考数学中,平面向量与三角函数是两个重要的概念和工具。

它们在各种数学问题中都有广泛的应用,特别是在几何和三角函数的综合题目中。

本文将介绍一些关于平面向量与三角函数的综合应用。

希望通过这些攻略,能够帮助大家在高考中更好地理解和应用这些知识点。

一、平面向量的几何应用平面向量的几何应用主要体现在它们的加法、减法、数量积、向量积等运算上。

下面将介绍其中的一些典型应用。

1. 平面向量的加法平面向量的加法可以用来解决平面上的位移问题。

例如,在平面直角坐标系中,有一个点A(2,3),以向量a(1,2)为位移,求终点B的坐标。

我们可以通过向量加法得到:B = A + a = (2,3) + (1,2) = (3,5)通过这个简单的例子,我们可以看到,平面向量的加法可以用来求解平面上的位移问题,这在几何中有着重要的应用。

2. 平面向量的数量积平面向量的数量积可以用来解决两个向量之间的夹角问题。

例如,已知两个向量a(3,4)和b(5,12),求它们的夹角θ。

我们可以通过向量的数量积求解:a·b = |a||b|cosθ其中,“·”表示向量的数量积,|a|和|b|分别表示向量的模,θ表示夹角。

根据给定的向量值代入公式计算,可以得到θ≈0.68弧度。

3. 平面向量的向量积平面向量的向量积可以用来解决平行四边形的面积、三角形的有向面积问题。

例如,在平面直角坐标系中,已知两个向量a(2,3)和b(4,1),求平行四边形的面积。

我们可以通过向量的向量积求解:S = |a×b|其中,“×”表示向量的向量积,|a×b|为向量的模。

根据给定的向量值代入公式计算,可以得到平行四边形的面积为2。

二、三角函数的综合应用三角函数是数学中的一个重要分支,在高考数学中占有很大的比重。

下面将介绍一些关于三角函数综合应用的例子。

专题03 三角函数与平面向量综合问题(答题指导)(解析版)

专题03 三角函数与平面向量综合问题(答题指导)(解析版)

专题03 三角函数与平面向量综合问题(答题指导)【题型解读】题型特点命题趋势▶▶题型一:三角函数的图象和性质1.注意对基本三角函数y =sin x ,y =cos x 的图象与性质的理解与记忆,有关三角函数的五点作图、图象的平移、由图象求解析式、周期、单调区间、最值和奇偶性等问题的求解,通常先将给出的函数转化为y =A sin(ωx +φ)的形式,然后利用整体代换的方法求解. 2.解决三角函数图象与性质综合问题的步骤 (1)将f (x )化为a sin x +b cos x 的形式. (2)构造f (x )=a 2+b 2⎝⎛⎭⎪⎫a a 2+b 2·sin x +b a 2+b 2·cos x . (3)和角公式逆用,得f (x )=a 2+b 2sin(x +φ)(其中φ为辅助角). (4)利用f (x )=a 2+b 2sin(x +φ)研究三角函数的性质. (5)反思回顾,查看关键点、易错点和答题规范.【例1】 (2017·山东卷)设函数f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6+sin ⎝ ⎛⎭⎪⎫ωx -π2,其中0<ω<3.已知f ⎝ ⎛⎭⎪⎫π6=0.(1)求ω;(2)将函数y =f (x )的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移π4个单位,得到函数y =g (x )的图象,求g (x )在⎣⎢⎡⎦⎥⎤-π4,3π4上的最小值.【答案】见解析【解析】(1)因为f (x )=sin ⎝ ⎛⎭⎪⎫ωx -π6+sin ⎝⎛⎭⎪⎫ωx -π2,所以f (x )=32sin ωx -12cos ωx -cos ωx =32sinωx -32cos ωx =3⎝ ⎛⎭⎪⎫12sin ωx -32cos ωx =3sin ⎝ ⎛⎭⎪⎫ωx -π3.因为f ⎝ ⎛⎭⎪⎫π6=0,所以ωπ6-π3=k π,k ∈Z .故ω=6k +2,k ∈Z .又0<ω<3,所以ω=2.(2)由(1)得f (x )=3sin ⎝ ⎛⎭⎪⎫2x -π3,所以g (x )=3sin ⎝ ⎛⎭⎪⎫x +π4-π3=3sin ⎝ ⎛⎭⎪⎫x -π12.因为x ∈⎣⎢⎡⎦⎥⎤-π4,3π4,所以x -π12∈⎣⎢⎡⎦⎥⎤-π3,2π3,当x -π12=-π3,即x =-π4时,g (x )取得最小值-32.【素养解读】本题中图象的变换考查了数学直观的核心素养,将复杂的三角函数通过变形整理得到正弦型函数,从而便于对性质的研究,考查数学建模的核心素养.【突破训练1】 设函数f (x )=32-3sin 2ωx -sin ωx cos ωx (ω>0),且y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4.(1)求ω的值;(2)求f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值. 【答案】见解析 【解析】(1)f (x )=32-3·1-cos2ωx 2-12sin2ωx =32cos2ωx -12sin2ωx = -sin ⎝ ⎛⎭⎪⎫2ωx -π3.因为y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4,故该函数的周期T =4×π4=π.又ω>0,所以2π2ω=π,因此ω=1.(2)由(1)知f (x )=-sin ⎝ ⎛⎭⎪⎫2x -π3.当π≤x ≤3π2时,5π3≤2x -π3≤8π3,所以-32=sin 5π3≤sin ⎝ ⎛⎭⎪⎫2x -π3≤sin 5π2=1,所以-1≤f (x )≤32,即f (x )在区间⎣⎢⎡⎦⎥⎤π,3π2上的最大值和最小值分别为32,-1.▶▶题型二 解三角形1.高考对解三角形的考查,以正弦定理、余弦定理的综合运用为主.其命题规律可以从以下两方面看:(1)从内容上看,主要考查正弦定理、余弦定理以及三角函数公式,一般是以三角形或其他平面图形为背景,结合三角形的边角关系考查学生利用三角函数公式处理问题的能力;(2)从命题角度看,主要是在三角恒等变换的基础上融合正弦定理、余弦定理,在知识的交汇处命题. 2.用正、余弦定理求解三角形的步骤第一步:找条件,寻找三角形中已知的边和角,确定转化方向.第二步:定工具,根据已知条件和转化方向,选择使用的定理和公式,实施边角之间的转化. 第三步:求结果,根据前两步分析,代入求值得出结果.第四步:再反思,转化过程中要注意转化的方向,审视结果的合理性.【例2】 在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,且cos(C +B)cos(C -B)=cos2A -sin Csin B . (1)求A ;(2)若a =3,求b +2c 的最大值. 【答案】见解析【解析】(1)cos(C +B)cos(C -B)=cos2A -sinCsinB =cos2(C +B)-sinCsinB ,则cos(C +B)[cos(C -B)-cos(C +B)]=-sinCsinB ,则-cosA·2sinCsinB=-sinCsinB ,可得cosA =12,因为0<A <π,所以A=60°.(2)由a sinA =b sinB =csinC =23,得b +2c =23(sinB +2sinC)=23[sinB +2sin(120°-B)]=23(2sinB+3cosB)=221sin(B +φ),其中tanφ=32,φ∈⎝ ⎛⎭⎪⎫0,π2.由B ∈⎝ ⎛⎭⎪⎫0,2π3得B +φ∈⎝⎛⎭⎪⎫0,7π6,所以sin(B +φ)的最大值为1,所以b +2c 的最大值为221.【素养解读】试题把设定的方程与三角形内含的方程(三角形的正弦定理、三角形内角和定理等)建立联系,从而求得三角形的部分度量关系,体现了逻辑推理、数学运算的核心素养.【突破训练2】 (2017·天津卷)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a >b ,a =5,c =6,sin B =35.(1)求b 和sin A 的值; (2)求sin ⎝ ⎛⎭⎪⎫2A +π4的值.【答案】见解析【解析】(1)在△ABC 中,因为a >b ,故由sin B =35,可得cos B =45.由已知和余弦定理,有b 2=a 2+c 2-2ac cos B=13,所以b =13.由正弦定理得sin A =a sin B b =31313. (2)由(1)及a <c ,得cos A =21313,所以sin2A =2sin A cos A =1213,cos2A =1-2sin 2A =-513.故sin ⎝⎛⎭⎪⎫2A +π4=sin2A cos π4+cos 2A ·sin π4=7226.▶▶题型三 三角函数与平面向量的综合1.三角函数、解三角形与平面向量的综合主要体现在以下两个方面:(1)以三角函数式作为向量的坐标,由两个向量共线、垂直、求模或求数量积获得三角函数解析式;(2)根据平面向量加法、减法的几何意义构造三角形,然后利用正、余弦定理解决问题.2.(1)向量是一种解决问题的工具,是一个载体,通常是用向量的数量积运算或性质转化成三角函数问题.(2)三角形中的三角函数要结合正弦定理、余弦定理进行转化,注意角的范围对变形过程的影响. 【例3】 (2019·佛山调考)已知函数f (x )=a ·b ,其中a =(2cos x ,-3sin2x ),b =(cos x,1),x ∈R .(1)求函数y =f (x )的单调递减区间;(2)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,f (A )=-1,a =7,且向量m =(3,sin B )与n =(2,sin C )共线,求边长b 和c 的值. 【答案】见解析【解析】(1)f (x )=a ·b =2cos 2x -3sin2x =1+cos2x -3sin2x =1+2cos ⎝ ⎛⎭⎪⎫2x +π3,由2k π≤2x +π3≤2k π+π(k ∈Z ),解得k π-π6≤x ≤k π+π3(k ∈Z ),所以f (x )的单调递减区间为⎣⎢⎡⎦⎥⎤k π-π6,k π+π3(k ∈Z ).(2)因为f (A )=1+2cos ⎝ ⎛⎭⎪⎫2A +π3=-1,所以cos ⎝ ⎛⎭⎪⎫2A +π3=-1.因为0<A <π,所以π3<2A +π3<7π3,所以2A +π3=π,即A =π3.因为a =7,由余弦定理得a 2=b 2+c 2-2bc cos A =(b +c )2-3bc =7.①因为向量m =(3,sin B )与n =(2,sin C )共线,所以2sin B =3sinC . 由正弦定理得2b =3c ,② 由①②可得b =3,c =2.【突破训练3】(2019·湖北八校联考) 已知△ABC 的面积为S ,且32AB →·AC →=S ,|AC →-AB →|=3.(1)若f (x )=2cos(ωx +B )(ω>0)的图象与直线y =2相邻两个交点间的最短距离为2,且f ⎝ ⎛⎭⎪⎫16=1,求△ABC 的面积S ;(2)求S +3 3 cos B cos C 的最大值. 【答案】见解析【解析】设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c , 因为32AB →·AC →=S ,所以32bc cos A =12bc sin A , 解得tan A =3,所以A =π3.由|AC →-AB →|=3得|BC →|=a =3.(1)因为f (x )=2cos(ωx +B )(ω>0)的图象与直线y =2相邻两个交点间的最短距离T =2,即2πω=2,解得ω=π,故f (x )=2cos(πx +B ).又f ⎝ ⎛⎭⎪⎫16=2cos ⎝⎛⎭⎪⎫π6+B =1,即cos ⎝ ⎛⎭⎪⎫π6+B =12.因为B 是△ABC 的内角,所以B =π6,从而△ABC 是直角三角形,所以b =3,所以S △ABC =12ab =332.(2)由题意知A =π3,a =3,设△ABC 的外接圆半径为R ,则2R =a sin A = 332=23,解得R =3,所以S+33cos B cos C =12bc sin A +33cos B cos C =34bc +33cos B cos C =33sin B sin C +33cos B cos C =33cos(B -C ),故S +33cos B cos C 的最大值为3 3.。

三角函数与平面向量的交汇问题

三角函数与平面向量的交汇问题

三角函数与平面向量的交汇问题近几年来,三角函数与平面向量的交汇问题逐渐进入高考试卷,并在不断加大考查的力度,下面结合典型考题,介绍这种问题的常见类型,供大家复习参考。

【例1】△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,已知a ,b ,c 成等比数列,且43B cos =,23=⋅,求c a +的值。

解:由23BC BA =⋅,得23B cos ca =,而43B cos =,所以2ca =,由a ,b ,c 成等比数列,所以B cos ca 2a c 2ca b 222-+===,即2ca 23a c 22=-+,()2ca 27a c 2=-+,()9a c 2=+。

∴3c a =+。

【变式】已知ABC △的面积为3,且满足06AB AC ≤∙≤,设AB 和AC 的夹角为θ.(I )求θ的取值范围; (II)求函数2()2sin ()24f πθθθ=+的最大解:(Ⅰ)设ABC △中角AB C ,,的对边分别为a b c ,,, 则由1sin 32bc θ=,0cos 6bc θ≤≤,可得0cot 1θ≤≤,ππ42θ⎡⎤∈⎢⎥⎣⎦,∴.(Ⅱ)2π()2sin 24f θθθ⎛⎫=+ ⎪⎝⎭π1cos 222θθ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦(1sin 2)θθ=+πsin 2212sin 213θθθ⎛⎫=+=-+ ⎪⎝⎭. ππ42θ⎡⎤∈⎢⎥⎣⎦,∵,ππ2π2363θ⎡⎤-∈⎢⎥⎣⎦,,π22sin 2133θ⎛⎫-+ ⎪⎝⎭∴≤≤.即当5π12θ=时,max ()3f θ=;当π4θ=时,min ()2f θ=.【例2】 设()αα+=sin ,cos 1a ,()ββ-=sin ,cos 1b ,=c (1,0),()π∈α,0,()ππ∈β2,,a 与c 的夹角为1θ,b 与c 的夹角为2θ,且621π=θ-θ,求4sin β-α的值。

解:()2cos 2sin cos 1|a |22α=α+α+=,2sin 2|b |β=,1|c |=,而2cos 2cos 1c a 2α=α+=⋅,2sin 2cos 1c b 2β=β-=⋅。

三角函数与平面向量综合测试题

三角函数与平面向量综合测试题

约稿:三角函数与平面向量综合测试题广东省珠海市斗门区第一中学 于发智 519100 jianghua20011628@一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,恰有..一项..是符合题目要求的。

1.下列函数中,周期为2π的是( ) A .sin2x y = B .sin 2y x = C .cos 4xy = D .cos 4y x = 2.已知命题:p x ∀∈R ,sin 1x ≤,则( ) A.:p x ⌝∃∈R ,sin 1x ≥ B.:p x ⌝∀∈R ,sin 1x ≥ C.:p x ⌝∃∈R ,sin 1x >D.:p x ⌝∀∈R ,sin 1x >3. 条件甲a =+θsin 1,条件乙a =+2cos2sin θθ,那么 ( )A .甲是乙的充分不必要条件B .甲是乙的充要条件C .甲是乙的必要不充分条件D .甲是乙的既不充分也不必要条件4.已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0,那么( )A.AO OD =B.2AO OD =C.3AO OD =D.2AO OD =5. 若函数f (x )=3sin21x , x ∈[0, 3π], 则函数f (x )的最大值是 ( ) A.21 B.32 C.22 D.23 6. (1+tan25°)(1+tan20°)的值是 ( ) A.-2 B.2 C.1 D.-1 7.α、β为锐角a =sin(βα+),b =ααcos sin +,则a 、b 之间关系为 ( )A .a >bB .b >aC .a =bD .不确定8. 下面有五个命题:①函数y =sin 4x -cos 4x 的最小正周期是π. ②终边在y 轴上的角的集合是{a |a =Z k k ∈π,2|.B ACD③在同一坐标系中,函数y =sin x 的图象和函数y =x 的图象有三个公共点. ④把函数.2sin 3632sin(3的图象得到的图象向右平移x y x y =ππ+= ⑤函数.0)2sin(〕上是减函数,在〔ππ-=x y 其中真命题的序号是 ① ④ ((写出所有真命题的编号))9. )sin()(ϕω+=x A x f (A >0,ω>0)在x =1处取最大值,则 ( ) A .)1(-x f 一定是奇函数 B .)1(-x f 一定是偶函数 C .)1(+x f 一定是奇函数D .)1(+x f 一定是偶函数10. 使x y ωsin =(ω>0)在区间[0,1]至少出现2次最大值,则ω的最小值为( ) A .π25B .π45 C .πD .π2311、在直角坐标系xOy 中,,i j分别是与x 轴,y 轴平行的单位向量,若直角三角形ABC中,2AB i j =+ ,3AC i k j =+,则k 的可能值有 ( ) A 、1个 B 、2个 C 、3个 D 、4个12. 如图,l 1、l 2、l 3是同一平面内的三条平行直线,l 1与l 2间的距离是1, l 2与l 3间的距离是2,正三角形ABC 的三顶点分别在l 1、l 2、l 3上,则△ABC 的边长是 ( )(A )32 (B )364(C )4173 (D )3212二、填空题:本大题共4小题,每小题4分,共16分。

平面向量与三角函数的_碰撞_

平面向量与三角函数的_碰撞_

( A ) 等边三角形 ( sinx - cosx, ( B) 直角三角形 ( C) 等腰非等边三角形 ( D ) 三边均不相等的三角形 解: 由 ( → → → AC AB + ) BC = 0可知 , 由 → → | AB | | AC |
→ → 与 AB, A C 同向的单位向量 , 构成的平行四边形 的对角线与 BC 垂直, 则可推出 → AB 三角形 . 由 → | AB | 60 , 所以 ABC 为等腰 BAC = → AC 1 = , 可知 → 2 | AC |
= 1 + 2sin ( 2x + 由 1 + 2sin ( 2x + 得 sin ( 2x + 因为 所以 所以 2x + 3 2 6 x 2x + =3 6
) = 1- 3 , 3 . 2
6
) =3 ,
图象如图 1 所示, 则平移 后的图象所对应函数的解析式是 ( ( A ) y = sin ( x + ( B ) y = sin (x ( C ) y = sin ( 2x + ( D ) y = sin ( 2x 6 6 ) ) ) )
7 3 ( + ) = , 所以 12 6 2 ( C ).
→ 评析: 将三角函数的图象按向量 a = ( , 0 ) 平移, 要注意平移的方向性 , 一般地 , 当 22 <
数理化学习 ( 高中版 ) → → → → ( b + c ), 其中向量 a = ( sinx, - cosx ), b → = ( sinx, - 3cosx ), c = ( - co sx, sinx ), x R . (Ⅰ ) 求函数 f ( x ) 的最大值和最小正周期 ; → ( Ⅱ ) 将函数 y = f ( x ) 的图象按向量 d 平移 , 使平移后 得到的图象关于坐标原点成中心对 → 称 , 求长度最小的 d . 解 : (Ⅰ ) 由题意得 → → → f( x ) = a ( b + c ) = ( sinx, - co sx ) sinx - 3co sx ) = sin x - 2sinx co sx + 3co s x = 2 + co s2x - sin2x 3 ). = 2 + 2sin ( 2x + 4 所以, f ( x ) 的最大值为 2 + 2 , 最小正周期 是 2 = 2 . 3 ) = 0得 4

向量和三角函数综合题

向量和三角函数综合题

向量和三角函数综合题引言向量和三角函数是数学中常见且重要的概念,它们在物理学、几何学、工程学等领域都有广泛的应用。

本文将介绍向量和三角函数的基本概念和性质,并通过一些综合题目来加深理解和应用。

向量的基本概念什么是向量向量是由大小和方向共同决定的量,可以用有向线段表示,其中起点和终点分别称为向量的始点和终点。

通常用小写字母表示向量,如a、b等。

向量的表示方法向量可以用矩阵或坐标表示。

如果一个向量在二维坐标系中,可以用二维列向量表示;如果一个向量在三维坐标系中,可以用三维列向量表示。

向量的运算向量之间可以进行加法、减法和数量乘法。

向量的加法和减法可以通过将向量的始点与终点相连得到,而数量乘法就是将向量的长度进行比例缩放。

向量的数量特征向量的数量特征包括模长、方向角和方向余弦。

模长表示向量的长度,方向角表示向量与正方向的夹角,而方向余弦就是向量的方向角的余弦值。

三角函数的基本概念什么是三角函数三角函数是描述角度关系的函数,主要包括正弦、余弦和正切函数。

它们在三角形的计算和周期性变化的问题中经常出现。

正弦函数正弦函数在数学上表示为sin(x),其中x为角度。

正弦函数的值域在[-1, 1]之间,当x为0、π、2π等整数倍的π时,函数的值为0,这也是函数图像上的极值点。

余弦函数余弦函数在数学上表示为cos(x),其中x为角度。

余弦函数的值域也在[-1, 1]之间,当x为π/2、3π/2、5π/2等奇数倍的π/2时,函数的值为0,极值点出现在函数图像的波峰和波谷处。

正切函数正切函数在数学上表示为tan(x),其中x为角度。

正切函数的值域为全体实数,当x为π/2、3π/2、5π/2等奇数倍的π/2时,函数没有定义。

三角函数的性质三角函数有很多重要的性质,包括周期性、奇偶性、和差公式、倍角公式、半角公式等。

这些性质在计算中经常用到,对于解题非常有帮助。

向量和三角函数的综合应用向量与三角函数的关系向量和三角函数在很多应用中是密切相关的。

专题4-4 三角函数与解三角形大题综合归类-(原卷 版)

专题4-4 三角函数与解三角形大题综合归类-(原卷 版)

专题4-4 三角函数与解三角形大题综合归类目录一、热点题型归纳【题型一】三角函数求解析式:“识图”................................................................................................. 1 【题型二】图像与性质1:单调性与值域................................................................................................ 3 【题型三】图像与性质2:恒等变形:结构不良型 ................................................................................ 4 【题型四】图像与性质3:恒成立(有解)求参数 ................................................................................ 5 【题型五】图像与性质4:零点与对称轴................................................................................................ 6 【题型六】解三角形1:面积与周长常规................................................................................................ 8 【题型七】解三角形2:计算角度与函数值 ............................................................................................ 9 【题型八】解三角形3:求面积范围(最值) ...................................................................................... 10 【题型九】解三角形4:周长最值 ......................................................................................................... 11 【题型十】解三角形5:巧用正弦定理求“非对称”型 ...................................................................... 11 【题型十一】解三角形6:最值范围综合.............................................................................................. 12 二、真题再现 ............................................................................................................................................ 12 三、模拟测试 .. (14)【题型一】三角函数求解析式:“识图”【典例分析】(2023·全国·高三专题练习)函数()sin(π),R f x A x x ϕ=+∈(其中π0,02A ϕ>≤≤)部分图象如图所示,1(,)3P A 是该图象的最高点,M ,N 是图象与x 轴的交点.(1)求()f x 的最小正周期及ϕ的值;(2)若π4PMN PNM ∠+∠=,求A 的值.1.(2023·全国·高三专题练习)已知函数()()sin 0,0,02f x A x A πωϕωϕ⎛⎫=+>><< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)将()f x 图象上所有点的横坐标缩短到原来的12(纵坐标不变),得到函数()y g x =的图象,求函数()g x ≥.2.(2022·四川·宜宾市教科所三模(理))已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示:(1)求()f x ;(2)若2f α⎛⎫= ⎪⎝⎭()0,πα∈,求cos2α的值.3.(2022·全国·高三专题练习)已知函数()()sin ,0,0,2f x A x x R A ωϕωϕπ⎛⎫=+∈>>< ⎪⎝⎭部分图象如图所示.(1)求()f x 的最小正周期及解析式; (2)将函数()y f x =的图象向右平移3π个单位长度得到函数()y g x =的图象,求函数()g x 在区间0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.【题型二】图像与性质1:单调性与值域【典例分析】(2022·浙江·高三开学考试)已知函数()21cos cos 2f x x x x =⋅-. (1)求函数()f x 的单调递增区间; (2)求()f x 在区间[0,2π]上的最值.【变式演练】1.(2022·湖北·高三开学考试)已知函数2()sin cos sin sin 44f x x x x x x ππ⎛⎫⎛⎫=+++- ⎪ ⎪⎝⎭⎝⎭.(1)求()f x 的最小正周期;(2)若[0,]x π∈,求出()f x 的单调递减区间.2.(2022·黑龙江·双鸭山一中高三开学考试)已知函数()sin 2cos 22sin cos .36f x x x x x ππ⎛⎫⎛⎫=+++- ⎪ ⎪⎝⎭⎝⎭(1)求函数()f x 的最小正周期及对称轴方程;(2)将函数()y f x =的图象向左平移12π个单位,再将所得图象上各点的纵坐标不变、横坐标伸长为原来的2倍,得到函数()y g x =的图象,求()y g x =在[0,2π]上的单调递减区间.3.(2022·全国·高三专题练习)已知函数()()()2sin cos cos 04f x x x x ππωωωω⎛⎫=--+> ⎪⎝⎭的最小正周期为π.(1)求()f x 图象的对称轴方程;(2)将()f x 的图象向左平移6π个单位长度后,得到函数()g x 的图象,求函数()g x 在0,2π⎡⎤⎢⎥⎣⎦上的值域.【题型三】图像与性质2:恒等变形:结构不良型【典例分析】(2023·全国·高三专题练习)在①sin α=①2tan 40αα-=这两个条件中任选一个,补充到下面的问题中,并解答.已知角a 是第一象限角,且___________. (1)求tan α的值;(2)3)cos()cos(3)2πααπαπ+++-的值.注:如果选择多个条件分别解答,按第一个解答计分.【变式演练】1.(2022·北京·二模)已知函数2()cos cos (0,)ωωωω=++>∈R f x x x x m m .再从条件①、条件①、条件①这三个条件中选择能确定函数()f x 的解析式的两个作为已知. (1)求()f x 的解析式及最小值;(2)若函数()f x 在区间[]0,(0)t t >上有且仅有1个零点,求t 的取值范围. 条件①:函数()f x 的最小正周期为π;条件①:函数()f x 的图象经过点10,2⎛⎫⎪⎝⎭;条件①:函数()f x 的最大值为32.注:如果选择的条件不符合要求,得0分;如果选择多组符合要求的条件分别解答,按第一组解答计分.2.(2023·全国·高三专题练习)已知函数()()sin cos 0,0f x a x x a ωωω=>>.从下列四个条件中选择两个作为已知,使函数()f x 存在且唯一确定.条件①:π14f ⎛⎫= ⎪⎝⎭;条件①:()f x 为偶函数;条件①:()f x 的最大值为1;条件①:()f x 图象的相邻两条对称轴之间的距离为π2. 注:如果选择的条件不符合要求,第(1)问得0分;如果选择多个符合要求的条件分别解答,按第一个解答计分.(1)求()f x 的解析式;(2)设()()22cos 1g x f x x ω=-+,求函数()g x 在()0,π上的单调递增区间.3.(2023·全国·高三专题练习)已知函数()()2sin cos f x a x x x x =∈R ,若__________.条件①:0a >,且()f x 在x ∈R 时的最大值为1条件①:6f π⎛⎫= ⎪⎝⎭请写出你选择的条件,并求函数()f x 在区间,43ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.注:如果选择条件①和条件①分别解答,按第一个解答计分.【题型四】图像与性质3:恒成立(有解)求参数【典例分析】(2023·全国·高三专题练习)已知函数()π2sin()3f x x =+.(1)若不等式()3f x m -≤对任意ππ[,]63x ∈-恒成立,求整数m 的最大值;(2)若函数()π()2g x f x =-,将函数()g x 的图象上各点的横坐标缩短到原来的12倍(纵坐标不变),再向右平移12π个单位,得到函数()y h x =的图象,若关于x 的方程()102h x k -=在π5π[,]1212x ∈-上有2个不同实数解,求实数k 的取值范围.【变式演练】1.(2023·全国·高三专题练习)已知平面向量2sin 2,26m x π⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,()21,sin n x =,()f x m n =⋅,其中0,2x π⎡⎤∈⎢⎥⎣⎦. (1)求函数()f x 的单调增区间; (2)将函数()f x 的图象所有的点向右平移12π个单位,再将所得图象上各点横坐标缩短为原来的12(纵坐标不变),再向下平移1个单位得到()g x 的图象,若()g x m =在5,824x ππ⎡⎤∈-⎢⎥⎣⎦上恰有2个解,求m 的取值范围.2.(2023·全国·高三专题练习)已知函数()sin()0,0,02f x A x A πωϕωϕ⎛⎫=+>><< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)先将函数()f x 的图象向右平移3π个单位长度,再将所得图象上各点的纵坐标不变,横坐标变为原来的2倍,得到()g x 的图象.(i )若0m >,当[0,]x m ∈时,()g x 的值域为[2],求实数m 的取值范围;(ii )若不等式2()(21)()10g x t g x t -+--≤对任意的,32x ππ⎡⎤∈⎢⎥⎣⎦恒成立,求实数t 的取值范围.3.(2022·全国·高三专题练习)已知:函数()2sin cos f x x x x =. (1)求()f x 的最小正周期; (2)求()f x 的单调递减区间;(3)若函数()()g x f x k =-在π0,4⎡⎤⎢⎥⎣⎦上有两个不同的零点,写出实数k 的取值范围.(只写结论)【题型五】图像与性质4:零点与对称轴【典例分析】(2022·全国·高三专题练习)已知函数()4cos cos 1(0)3f x x x πωωω⎛⎫=⋅-- ⎪>⎝⎭的部分图像如图所示,若288AB BC π⋅=-,B ,C 分别为最高点与最低点.(1)求函数()f x 的解析式;(2)若函数()y f x m =-在130,12π⎡⎤⎢⎥⎣⎦,上有且仅有三个不同的零点1x ,2x ,3x ,(123x x x <<),求实数m 的取值范围,并求出123 cos (2)x x x ++的值.【变式演练】1.(2023·全国·高三专题练习)已知函数()sin()0,0,||2f x A x B A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)将函数()y f x =的图象上所有的点向右平移12π个单位,再将所得图象上每一个点的横坐标变为原来的2倍(纵坐标不变),得到函数()y g x =的图象.当130,6x π⎡⎤∈⎢⎥⎣⎦时,方程()0g x a -=恰有三个不相等的实数根()123123,,x x x x x x <<,求实数a 的取值范围和1232x x x ++的值.2.(2023·全国·高三专题练习)已知函数()sin()0,0,||2f x A x B A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭的部分图象如图所示.(1)求函数()f x 的解析式;(2)将函数()y f x =的图象上所有的点向右平移12π个单位,再将所得图象上每一个点的横坐标变为原来的2倍(纵坐标不变),得到函数()y g x =的图象,若方程()0g x m -=在70,3π⎡⎤⎢⎥⎣⎦上有三个不相等的实数根()123123,,x x x x x x <<,求m 的取值范围及()123tan 2x x x ++的值.3.(2023·全国·高三专题练习)已知数2()2sin 1(0)6212x f x x πωπωω⎛⎫⎛⎫=+++-> ⎪ ⎪⎝⎭⎝⎭的相邻两对称轴间的距离为2π. (1)求()f x 的解析式;(2)将函数()f x 的图象向右平移6π个单位长度,再把各点的横坐标缩小为原来的12(纵坐标不变),得到函数()y g x =的图象,当,126x ππ⎡⎤∈-⎢⎥⎣⎦时,求函数()g x 的值域;(3)对于第(2)问中的函数()g x ,记方程4()3g x =在4,63x ππ⎡⎤∈⎢⎥⎣⎦上的根从小到大依次为12,,n x x x ,若m =1231222n n x x x x x -+++++,试求n 与m 的值.【题型六】解三角形1:面积与周长常规【典例分析】(2022·安徽·高三开学考试)在ABC 中,点,M N 分别在线段,BC BA 上,且,BM CM ACN BCN =∠=∠,3,22AB AM AC ===.(1)求BM 的长;(2)求BCN △的面积.【变式演练】1.(2022·北京·高三开学考试)在ABC 中,角A ,B ,C 的对边分别为,,,sin2sin =a b c C C . (1)求C ∠;(2)若1b =,且ABCABC 的周长.2.(2022·江苏·南京市金陵中学河西分校高三阶段练习)已知ABC 的三个内角,,A B C 所对的边分别为a ,b ,c ,)tan tan tan tan 1+=B C B C . (1)求角A 的大小;(2)若1a =,21)0c b -=,求ABC 的面积.3.(2022·云南昆明·高三开学考试)已知ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,sin cos 0B b A -=. (1)求A ;(2)若c =a =ABC 的面积.【题型七】解三角形2:计算角度与函数值【典例分析】(2022·全国·高三专题练习)在ABC 中,角A 、B 、C 的对边分别为a ,b ,c.已知12,cos 4a b c A ==-.(1)求c 的值; (2)求sin B 的值; (3)求sin(2)A B -的值.【变式演练】1.(2021·天津静海·高三阶段练习)已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,满足()()2sin 2sin 2sin a b A b a B c C -+-=. (1)求角C 的大小;(2)若c =4a b +=,求ABC 的面积.(3)若cos =A ,求()sin 2A C -的值.2.(2022·北京市第二十二中学高三开学考试)已知ABC 的内角,,A B C 所对的对边分别为,,a b c ,周长为1,且sin sin A B C +. (1)求c 的值;(2)若ABC 的面积为1sin 6C ,求角C 的大小.3.(2022·青海玉树·高三阶段练习(文))在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且ABC 的面积)222S a c b =+-. (1)求角B 的大小;(2)若2a c =,求sin C .【题型八】解三角形3:求面积范围(最值)【典例分析】(2022·云南·昆明一中高三开学考试)已知ABC 的内角,,A B C 所对边分别为,,a b c ,且222sin sin sin sin A B C B C -=. (1)求A ;(2)若a =ABC 面积的最大值.【变式演练】1.(2022·河南·高三开学考试(文))已知,,a b c 分别为ABC 的内角,,A B C 所对的边,且()()sin sin sin sin a c b A C B c B +--+=(1)求角A 的大小;(2)若a =ABC 面积的最大值.2.(2022·湖南·麻阳苗族自治县第一中学高三开学考试)在ABC 中,内角A ,B ,C 的对边分别是a ,b ,c .已知ABC 的外接圆半径R =tan tan B C +=.(1)求B 和b 的值;(2)求ABC 面积的最大值.3.(2021·江苏·矿大附中高三阶段练习)ABC 的内角A ,B ,C 的对边分别是a ,b ,c ,设sin cos sin (2cos )A B B A =-.(1)若b c +,求A ;(2)若2a =,求ABC 的面积的最大值.【题型九】解三角形4:周长最值【典例分析】(2022·黑龙江·双鸭山一中高三开学考试)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且222sin sin sin sin sin A B C A B +-=. (1)求角C 的大小;(2)若ABCABC 周长的取值范围.【变式演练】1.(2022·广东·深圳外国语学校高三阶段练习)已知ABC 中,内角,,A B C 所对边分别为,,a b c ,若()2cos cos 0a c B b C --=.(1)求角B 的大小;(2)若2b =,求a c +的最大值.2.(2022·湖北·襄阳五中高三开学考试)在锐角ABC 中,角A ,B ,C ,的对边分别为a ,b ,c ,从条件①:3sin cos tan 4A A A =,条件①12=,条件①:2cos cos cos a A b C c B -=这三个条件中选择一个作为已知条件. (1)求角A 的大小;(2)若2a =,求ABC 周长的取值范围.3.(2022·广东·高三开学考试)已知锐角ABC 中,角A 、B 、C 所对边为a 、b 、c ,= (1)求角A ;(2)若4a =,求b c +的取值范围.【题型十】解三角形5:巧用正弦定理求“非对称”型【典例分析】(2022·四川成都·模拟预测(理))①ABC 中,角,,A B C 所对边分别是,,a b c ,tan tan 2tan tan A AB C bc,cos cos 1b C c B +=.(1)求角A 及边a ; (2)求2b c +的最大值.【变式演练】1.(2022·全国·南京外国语学校模拟预测)在ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,且5sin sin 35cos cos cos2B C B C A -=+. (1)求角A 的大小;(2)若a =2b c +的最大值.2..(2022·辽宁·抚顺市第二中学三模)在①()()222sin 2sin B c a C b c a b -=+-,①23cos cos cos 24A C A C --=,tan tan A B =+这三个条件中,任选一个,补充在下面问题中,问题:在ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,b =_______. (1)求角B ﹔(2)求2a c -的范围.【题型十一】解三角形6:最值范围综合【典例分析】(2022·浙江·高三开学考试)记ABC 内角,,A B C 的对边分别是,,a b c ,已知tan tan 2tan tan tan B CB A A=-.(1)求证:2222b c a +=;(2)求2abc 的取值范围.【变式演练】1.(2022·辽宁·渤海大学附属高级中学模拟预测)ABC 的内角A 、B 、C 所对边的长分别为a 、b 、c ,已cos sin B b C =+. (1)求C 的大小;(2)若ABC 为锐角三角形且c =22a b +的取值范围.2.(2022·湖南湘潭·高三开学考试)设ABC 的内角,,A B C 的对边分别为,,a b c ,A 为钝角,且tan bB a =.(1)探究A 与B 的关系并证明你的结论; (2)求cos cos cos A B C ++的取值范围.1.(2022·天津·高考真题)在ABC 中,角A 、B 、C 的对边分别为a ,b ,c.已知12,cos 4a b c A ===-.(1)求c 的值; (2)求sin B 的值; (3)求sin(2)A B -的值. 2.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,分别以a ,b ,c 为边长的三个正三角形的面积依次为123,,S S S ,已知12313S S S B -+==.(1)求ABC 的面积;(2)若sin sin A C =,求b . 3.(2022·全国·高考真题(文))记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ﹐已知()()sin sin sin sin C A B B C A -=-. (1)若2A B =,求C ; (2)证明:2222a b c =+4.(·浙江·高考真题(理))已知ABC 的内角,,A B C 所对的对边分别为,,a b c 1,且sin sin A B C +. (1)求c 的值;(2)若ABC 的面积为1sin 6C ,求角C 的大小.5.(2022·全国·高考真题)记ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos sin 21sin 1cos2A BA B=++.(1)若23C π=,求B ;(2)求222a b c +的最小值.6.(2020·山东·高考真题)小明同学用“五点法”作某个正弦型函数sin()0,0,2y A x A ωϕωϕπ⎛⎫=+>>< ⎪⎝⎭在根据表中数据,求:(1)实数A ,ω,ϕ的值;(2)该函数在区间35,44ππ⎡⎤⎢⎥⎣⎦上的最大值和最小值.7.(山东·高考真题)已知函数()2sin 2y x ϕ=+,x ∈R ,π02ϕ<<,函数的部分图象如下图,求(1)函数的最小正周期T 及ϕ的值: (2)函数的单调递增区间.8.(2021·天津·高考真题)在ABC ,角 ,,A B C 所对的边分别为,,a b c ,已知sin :sin :sin 2A B C =b =(I )求a 的值; (II )求cos C 的值;(III )求sin 26C π⎛⎫- ⎪⎝⎭的值.9.(2021·全国·高考真题)在ABC 中,角A 、B 、C 所对的边长分别为a 、b 、c ,1b a =+,2c a =+.. (1)若2sin 3sin C A =,求ABC 的面积;(2)是否存在正整数a ,使得ABC 为钝角三角形?若存在,求出a 的值;若不存在,说明理由.10.(2021·北京·高考真题)在ABC 中,2cos c b B =,23C π=.(1)求B ;(2)再从条件①、条件①、条件①这三个条件中选择一个作为已知,使ABC 存在且唯一确定,求BC 边上中线的长.条件①:c =;条件①:ABC 的周长为4+条件①:ABC11.(2023·全国·高三专题练习)在ABC 中.3sin cos 64A A π⎛⎫-= ⎪⎝⎭.(1)求角A ;(2)若8AC =,点D 是线段BC 的中点,DE AC ⊥于点E ,且DE =CE 的长.1.(2022·浙江省杭州学军中学模拟预测)已知函数()()sin y f x A x B ωϕ==++(其中A ,ω,ϕ,B 均为常数,且0A >,0>ω,ϕπ<)的部分图像如图所示.(1)求()f x 的解析式;(2)若5()126g x f x f x ππ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,,02x π⎛⎫∈- ⎪⎝⎭,求()g x 的值域.2.(2022·全国·高三专题练习)已知向量(sin a x =,(1,cos )b x =.(1)若a b ⊥,求sin 2x 的值;(2)令()f x a b =⋅,把函数()f x 的图像上每一点的横坐标都缩短为原来的一半(纵坐标不变),再把所得的图像沿x 轴向左平移6π个单位长度,得到函数()g x 的图像,求函数()g x 在0,2π⎡⎤⎢⎥⎣⎦上的最大值和最小值.3.(2023·全国·高三专题练习)已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭,再从条件①、条件①、条件①这三个条件中选择两个作为一组已知条件,使()f x 的解析式唯一确定. (1)求()f x 的解析式;(2)设函数()()6g x f x f x π⎛⎫=++ ⎪⎝⎭,求()g x 在区间0,4⎡⎤⎢⎥⎣⎦π上的最大值.条件①:()f x 的最小正周期为π;条件①:()00f =;条件①:()f x 图象的一条对称轴为4x π=. 注:如果选择多组条件分别解答,按第一个解答计分.4.(2023·全国·高三专题练习)已知函数()()()3,sin 26f x x x a a a g x x π⎛⎫=--+∈=+ ⎪⎝⎭R .(1)若()f x 为奇函数,求实数a 的值;(2)若对任意[]10,1x ∈,总存在20,2x π⎡⎤∈⎢⎥⎣⎦,使()()12f x g x =成立,求实数a 的取值范围.5.(2023·全国·高三专题练习)已知函数()2sin 216f x x πω⎛⎫=++ ⎪⎝⎭.(1)若()()()12f x f x f x ≤≤,12min 2x x π-=,求()f x 的对称中心;(2)已知05ω<<,函数()f x 图象向右平移6π个单位得到函数()g x 的图象,3x π=是()g x 的一个零点,若函数()g x 在[],m n (m ,n R ∈且m n <)上恰好有10个零点,求n m -的最小值; 6、(2022·安徽·高三开学考试)记ABC 的内角,,A B C 的对边分别为,,a b c ,且23,2b c B C ==.(1)求cos C ;(2)若5a =,求c .7.(2022·广西·模拟预测(文))设ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,且2cos 2sin c b A b A -=. (1)证明:()sin 2sin sin A B B A -=; (2)若3A B =,求B 的值.8.(2022·全国·高三专题练习)在①2cos cos c b B a A -=;①sin cos 2AA =;()sin a C C =,这三个条件中任选一个,补充在下面的横线上,并加以解答.在ABC 中,角,,A B C 的对边分别是,,a b c ,若__________.(填条件序号) (1)求角A 的大小;(2)若3a =,求ABC 面积的最大值.注:如果选择多个条件分别解答,按第一个解答计分.9.(2021·福建省华安县第一中学高三期中)在①π1cos cos 32B B ⎛⎫-=+ ⎪⎝⎭,①sin (sin sin )sin a A c C A b B +-=,tan tan A B =+这三个条件中,任选一个,补充在下面问题中.问题:在ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,b =______________. (1)求角B ;(2)求a c +的最大值.注:如果选择多个条件分别解答,按第一个解答计分. 10.(2022·山东烟台·三模)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且22cos cos 2cos b a A C c A =+. (1)求角A ;(2)若4a =,求2c b -的取值范围.11.(2023·全国·高三专题练习)在ABC 中,点D 在边BC 上,3AB =,2AC =. (1)若AD 是BAC ∠的角平分线,求:BD DC ;(2)若AD 是边BC 上的中线,且AD =,求BC .12.(2022·全国·模拟预测(文))在①3cos210cos 10A A +-=,①sin cos A A -=①tan 2A =三个条件中任选一个,补充在下面的问题中,并作答.如果多选,则按第一个解答给分. 已知ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且______ (1)求cos A ;(2)sin sin B C 的最大值.。

平面向量与三角函数的综合习题

平面向量与三角函数的综合习题

三角函数与平面向量综合题题型一:三角函数与平面向量平行(共线)的综合【例1】 已知A 、B 、C 为三个锐角,且A +B +C =π.若向量→p =(2-2sinA ,cosA +sinA)与向量→q =(cosA -sinA ,1+sinA)是共线向量.(Ⅰ)求角A ;(Ⅱ)求函数y =2sin 2B +cos C -3B 2的最大值. 题型二. 三角函数与平面向量垂直的综合【例2】 已知向量→a =(3sinα,cosα),→b =(2s inα,5sinα-4cosα),α∈(3π2,2π),且→a ⊥→b . (Ⅰ)求tanα的值;(Ⅱ)求cos(α2+π3)的值. 题型三. 三角函数与平面向量的模的综合【例3】 已知向量→a =(cosα,sinα),→b =(cosβ,sinβ),|→a -→b |=255.(Ⅰ)求cos(α-β)的值;(Ⅱ)若-π2<β<0<α<π2,且sinβ=-513,求sinα的值. 题型四 三角函数与平面向量数量积的综合【例3】 设函数f(x)=→a ·→b .其中向量→a =(m ,cosx),→b =(1+sinx ,1),x ∈R ,且f(π2)=2.(Ⅰ)求实数m 的值;(Ⅱ)求函数f(x)的最小值.题型五:结合三角形中的向量知识考查三角形的边长或角的运算【例5】(山东卷)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,tan 37C =.(1)求cos C ;(2)若52CB CA ⋅=,且9a b +=,求c . 题型六:结合三角函数的有界性,考查三角函数的最值与向量运算【例6】(2007年高考陕西卷)()f x a b =⋅,其中向量(,cos 2)a m x =,(1sin 2,1)b x =+,x R ∈,且函数()y f x =的图象经过点(,2)4π. (Ⅰ)求实数m 的值; (Ⅱ)求函数()y f x =的最小值及此时x 值的集合。

专题三角函数与向量(学生版).docx

专题三角函数与向量(学生版).docx

专题:三角函数与向量的交汇题型分析及解题策略主要考点如下:1.考查三角式化简、求值、证明及求角问题.2.考查三角函数的性质与图像,特别是y=Asin(cox+(p)的性质和图像及其图像变换.3.考查平面向量的基本概念,向量的加减运算及几何意义,此类题一般难度不大,主要用以解决有关长度、夹角、垂直、平行问题等.4.考查向量的坐标表示,向量的线性运算,并能正确地进行运算.5.考查平面向量的数量积及运算律(包括坐标形式及非坐标形式),两向量平行与垂直的充要条件等问题.6.考查利用正弦定理、余弦定理解三角形问题.题型一解斜三角形与向量的综合【例1】已知角A、B、C为^ABC的三个内角,其对边分别为a、b、c,京=(—cos成,sin*^"), / = (cos*^", sin*^"), a = 2^3? J E L= 2^*(I )若ZiABC的面积S=,,求b + c的值.(II )求b+c的取值范围.题型二三角函数与平面向量平行(共线)的综合【例2】已知A、B、C为三个锐角,且A+B +C=TI.若向量8 = (2sinA — 2, cosA + sinA)与向量2 =C — 3B(cosA—sinA, 1+sinA)是共线向量.(I )求角A; (II )求函数y=2sin2B+cos—-—的最大值.题型三三角函数与平面向量垂直的综合【例3】已知向量甘= (3sina,cosa), 3 = (2sina, 5sina—4cosa), aG(宇,2n),且甘_L言.Ct jr(I )求tana 的值; (II)求cos(y+~)的值.题型四三角函数与平面向量的模的综合此类题型主要是利用向量模的性质ltl2=t2,如果涉及到向量的坐标解答时可利用两种方法:(1)先进行向量运算,再代入向量的坐标进行求解;(2)先将向量的坐标代入向量的坐标,再利用向量的坐标运算进行求解.【例4】已知向量盲= (cosa,sina),言= (cosB,sir)B), |2 —言|=|>姑.TT TT 5(I )求cos(a—P)的值;(II )^—^<P<O<a<p 且sinP = ——,求sina 的值.题型五三角函数与平面向量数量积的综合此类题型主要表现为两种综合方式:(1)三角函数与向量的积直接联系;⑵利用三角函数与向量的夹角交汇,达到与数量积的综合.解答时也主要是利用向量首先进行转化,再利用三角函数知识求解.【例5】1.设函数f(x) = 4.含.其中向量冷= (m, cosx),言= (l+sinx, 1), x《R,且f(亨) = 2.(I )求实数m的值;(II)求函数f(x)的最小值.(3)求f(x)的对称中心和对称轴2.(山东)已知向量扁= (smx,l)〃(品cosx*s2W>0),函数/'(x) = M的最大值为6.JT(I)求刀;(II)将函数y = /(x)的图象向左平移g个单位,再将所得图象上各点的横坐标缩短为原来的5倍,纵坐标不变,得到函数V = g(x)的图象.(1)求g(x)在[0,芸]上的值域.(2)五点法做出g(x)在一个周期上的图像。

三角函数与平面向量专题知识整合

三角函数与平面向量专题知识整合

数学爱好者专高考文科数学爱好者业精心策划S专题辅导题知识整合三角函数是高中数学的重要内容之一,也是历年高考的重点.跨学科应用是它的鲜明特点,在解答函数、不等式、立体几何、解析几何问题时,三角函数是常用的工具.在实际问题中也有着广泛的应用,因而是高考对基础知识和基本技能方面考查的重要内容.三角函数这一章的主要知识点是:角的概念的推广、弧度制、任意角的三角函数、单位圆中的三角函数线,同角三角函数的基本关系式,正、余弦的诱导公式,两角和与差的正弦、余弦、正切,二倍角的正弦、余弦、正切,正弦函数、余弦函数的图象和性质,函数y=Asin(ωx+φ)的图象,正切函数的图象和性质,已知三角函数值求角.由于向量具有几何形式和代数形式的“双重身份”,使之成为中学数学知识的一个“交汇点”,成为联系数和形的有力纽带,运用向量知识,可以使几何问题直观化、符号化、数量化,从而把“定性”研究推向“定量”研究.在解题过程中,善于利用化归思想处理共线、平行、垂直问题,向向量的坐标运算方面转化,向量模的运算转化为向量的运算;利用数形结合思想将几何问题代数化,通过代数运算解决几何问题.题型例析河南陈长松热点题型一三角函数的求值、化简、证明等基本问题例1已知cos(π4+x)=35,17π12<x<7π4,求sin2x+2sin2x1-tanx的值.分析先把所求式化简,再利用已知条件求值.解由题设得cosx-sinx=32!5,sin2x=725,又5π3<x+π4<2π,所以原式=2sinxcosx(cosx+sinx)cosx-sinx=sin2x・1+tanx1-tanx=sin2xtan(π4+x)=-2875.评注在处理条件求值问题时,一要处理好角的终边位置和三角函数的符号;二应转化题设条件与待求式,以创造条件寻求时机代入求值.踪练习追zhuizonglianxitan10°-3!csc40°的值为.后反思练lianhoufansi原式=sin10°cos10°-3!csc40°=sin10°-3!cos10°cos10°・csc40°=212sin10°-3!2cos10"#°cos10°・csc40°=-2cos40°・sin40°cos10°=-sin80°cos10°=-1.热点题型二三角函数的最值问题例2求函数y=sinxcosx+2的最大值和最小值.分析求函数的最值可用多种方法求解,最常用的有两种方法:几何法、有界性法.几何法运用数形结合思想,要掌握转化的方法.与专三角函数平面向量"#。

平面向量与三角函数练习题

平面向量与三角函数练习题

平面向量与三角函数练习题在本次练习题中,我们将探讨平面向量与三角函数的关系。

通过解答以下习题,我们可以更好地理解二者之间的联系,并锻炼自己的解题能力。

1. 问题描述:已知向量A = (-3, 4)和向量B = (5, 2),求向量A与向量B的数量积和方向积。

解答:首先计算向量A与向量B的数量积(内积):A ·B = (-3)(5) + (4)(2) = -15 + 8 = -7接下来计算向量A与向量B的方向积(叉积):|A × B| = |(-3)(2) - (4)(5)| = |-6 - 20| = |-26| = 26因此,向量A与向量B的数量积为-7,方向积为26。

2. 问题描述:已知向量A = (4, 3)和向量B = (-2, 6),求向量A与向量B的夹角。

解答:两个向量的夹角可以通过以下公式计算:cosθ = (A · B) / (|A| |B|)其中,A · B表示向量A与向量B的数量积,|A|和|B|分别表示向量A和向量B的模。

首先计算|A|和|B|的值:|A| = √(4^2 + 3^2) = √(16 + 9) = √25 = 5|B| = √((-2)^2 + 6^2) = √(4 + 36) = √40 = 2√10接下来计算A · B的值:A ·B = (4)(-2) + (3)(6) = -8 + 18 = 10代入公式得到:cosθ = 10 / (5 * 2√10) = 10 / (10√10) = 1 / √10 = √10 / 10因此,向量A与向量B的夹角θ为cos^(-1)(√10 / 10)。

3. 问题描述:已知一个角的弧度为π/4,求该角的正弦、余弦和正切值。

解答:根据三角函数的定义,可以得出以下结论:sin(π/4)= 1/√2cos(π/4) = 1/√2tan(π/4) = sin(π/4) / cos(π/4) = 1因此,该角的正弦值为1/√2,余弦值为1/√2,正切值为1。

高考中的三角函数与平面向量问题

高考中的三角函数与平面向量问题
高考专题突破二
高考中的三角函数与平面向量问题
内容索引
考点自测 题型分类 深度剖析 课时作业
考点自测
1.(2016·全国Ⅱ)若将函数 y=2sin 2x 的图象向左平移1π2个单位长度,则平移
后图象的对称轴为
A.x=k2π-π6(k∈Z)
√B.x=k2π+π6(k∈Z)
C.x=k2π-1π2(k∈Z)
123456
解答
解答
2.(2016·北京)在△ABC 中,a2+c2=b2+ 2ac.
(1)求 B 的大小;
解 由 a2+c2=b2+ 2ac,得 a2+c2-b2= 2ac.
由余弦定理,得
cos
a2+c2-b2 B= 2ac =
22aacc=
2 2.
又 0<B<π,所以 B=π4.
123456
解答
(2)求 2cos A+cos C 的最大值.
解答
(2)若bcos C+ccos B=1,△ABC的周长为5,求b的长. 解 由余弦定理可知,
a2+b2-c2 a2+c2-b2 bcos C+ccos B=b· 2ab +c· 2ac =22aa2=a=1, 由(1)知ca=ssiinn CA=2,则 c=2, 由周长a+b+c=5,得b=2.
D.x=k2π+1π2(k∈Z)
12345
解析 答案
2.(2016·全国Ⅲ)在△ABC 中,B=π4,BC 边上的高等于13BC,则 cos A 等于
A.3
10 10
B.
10 10
√C.-
10 10
D.-3
10 10
解析 设 BC 边上的高 AD 交 BC 于点 D,由题意 B=π4,可知 BD=13BC,

2020高考数学核心突破《专题三 三角函数、解三角形与平面向量》(含往年真题分析)

2020高考数学核心突破《专题三 三角函数、解三角形与平面向量》(含往年真题分析)

专题三三角函数、解三角形与平面向量第1讲三角函数的图象与性质题型一三角函数的图象1.(1)要得到函数f (x )=cos ⎝⎛⎭⎫2x +π3的图象,只需将函数g (x )=sin ⎝⎛⎭⎫2x +π3的图象( C ) A .向左平移π2个单位长度B .向右平移π2个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度(2) (2017·山西朔州模拟)函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象如图所示,则函数f (x )在区间⎣⎡⎦⎤0,π2上的最小值为__-1__.突破点拨(1)先利用诱导公式将两函数化为同名三角函数,再利用平移法则求解. (2)先求函数f (x )的解析式,再利用解析式求最值. 解析 (1)因为f (x )=cos ⎝⎛⎭⎫2x +π2-π6 =sin ⎝⎛⎭⎫π6-2x =sin ⎝⎛⎭⎫2x +5π6=sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π4+π3, 所以要得到函数f (x )=cos ⎝⎛⎭⎫2x +π3的图象,只需将函数g (x )=sin ⎝⎛⎭⎫2x +π3的图象向左平移π4个单位长度.故选C. (2)由函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象,可得A =2,14·2πω=5π6-7π12,解得ω=2.再根据图象经过点⎝⎛⎭⎫7π12,0, 可得2·7π12+φ=π+2k π,k ∈Z .因为|φ|<π2,所以φ=-π6,故函数f (x )=2sin ⎝⎛⎭⎫2x -π6. 因为x ∈⎣⎡⎦⎤0,π2,所以2x -π6∈⎣⎡⎦⎤-π6,5π6, 故函数f (x )的最小值为2×⎝⎛⎭⎫-12=-1. 2. 某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)(2)将y =f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (x )的图象.若y=g (x )图象的一个对称中心为⎝⎛⎭⎫5π12,0,求θ的最小值.突破点拨(1)由表中数据先写出A ,ω,φ的值,再由ωx +φ=0,π,2π,求出其余值. (2)写出函数y =g (x )的解析式,由y =sin x 图象的对称中心为(k π,0),k ∈Z ,利用整体思想建立关于θ的方程,根据k ∈Z 及θ>0,求出θ的最小值.解析 (1)根据表中已知数据,解得A =5,ω=2,φ=-π6.数据补全如下表.且函数表达式为f (x )=5sin ⎝⎛⎭⎫2x -π6. (2)由(1)知f (x )=5sin ⎝⎛⎭⎫2x -π6, 得g (x )=5sin ⎝⎛⎭⎫2x +2θ-π6. 因为y =sin x 的对称中心为(k π,0),k ∈Z . 令2x +2θ-π6=k π,解得x =k π2+π12-θ,k ∈Z .由于函数y =g (x )的图象关于点⎝⎛⎭⎫5π12,0中心对称, 令k π2+π12-θ=5π12,解得θ=k π2-π3,k ∈Z . 由θ>0可知,当k =1时,θ取得最小值π6.(1)三角函数图象平移问题需注意三点:一是函数名称是否一致;二是弄清由谁平移得到谁;三是左右的平移是自变量本身的变化.(2)对于由三角函数的图象确定函数解析式的问题,一般由函数的最值可确定A ,由函数的周期可确定ω,由对称轴或对称中心和φ的范围确定φ.题型二 三角函数的性质1. 已知函数f (x )=sin ⎝⎛⎭⎫π2-x sin x -3cos 2x . (1)求f (x )的最小正周期和最大值; (2)讨论f (x )在⎣⎡⎦⎤π6,2π3上的单调性. 突破点拨(1)先将已知解析式化简,然后求解.(2)根据y =A sin(ωx +φ)+k (A >0,ω>0)与y =sin x 的关系求解. 解析 (1)f (x )=sin ⎝⎛⎭⎫π2-x sin x -3cos 2x =cos x sin x -32(1+cos 2x ) =12sin 2x -32cos 2x -32=sin ⎝⎛⎭⎫2x -π3-32. 因此f (x )的最小正周期为π,最大值为2-32.(2)当x ∈⎣⎡⎦⎤π6,2π3时,0≤2x -π3≤π,从而当0≤2x -π3≤π2,即π6≤x ≤5π12时,f (x )单调递增; 当π2<2x -π3≤π,即5π12<x ≤2π3时,f (x )单调递减.综上可知,f (x )在⎣⎡⎦⎤π6,5π12上单调递增;在⎝⎛⎦⎤5π12,2π3上单调递减. 2. 设函数f (x )=sin ωx +sin ⎝⎛⎭⎫ωx -π2,x ∈R . (1)若ω=12,求f (x )的最大值及相应x 的集合;(2)若x =π8是f (x )的一个零点,且0<ω<10,求ω的值和f (x )的最小正周期.突破点拨(1)先用公式化简,再利用三角函数的性质求解. (2)将x =π8代入,求ω,则周期可求.解析 由已知得f (x )=sin ωx -cos ωx =2sin ⎝⎛⎭⎫ωx -π4. (1)若ω=12,则f (x )=2sin ⎝⎛⎭⎫12x -π4. 又x ∈R ,则2sin ⎝⎛⎭⎫12x -π4≤2,所以f (x )max =2,此时12x -π4=2k π+π2,k ∈Z ,即f (x )取最大值时,x 的取值集合为⎩⎨⎧⎭⎬⎫x ⎪⎪x =4k π+3π2,k ∈Z .(2)∵x =π8是函数f (x )的一个零点,∴2sin ⎝⎛⎭⎫π8ω-π4=0,∴π8ω-π4=k π,k ∈Z . 又0<ω<10,∴ω=2,∴f (x )=2sin ⎝⎛⎭⎫2x -π4,其最小正周期为π.求解函数y =A sin(ωx +φ)的性质的三种意识(1)转化意识:利用三角恒等变换将所求函数转化为f (x )=A sin(ωx +φ)的形式. (2)整体意识:类比y =sin x 的性质,只需将y =A sin(ωx +φ)中的“ωx +φ”看成y =sin x 中的“x ”,采用整体代入的方法求解.(3)讨论意识:当A 为参数时,求最值应分情况讨论.三角函数的综合应用【预测】 已知函数f (x )=sin ⎝⎛⎭⎫2ωx -π6-4sin 2ωx +2(ω>0),其图象与x 轴相邻两个交点的距离为π2.(1)求函数f (x )的解析式;(2)若将f (x )的图象向左平移m (m >0)个单位长度,得到的函数g (x )的图象恰好经过点⎝⎛⎭⎫-π3,0,求当m 取得最小值时,g (x )在⎣⎡⎦⎤-π6,7π12上的单调递增区间. 思维导航(1)解题导引:①先化简函数f (x )的解析式,再利用图象与x 轴相邻两个交点的距离是半个周期求解析式;②先求函数g (x )的解析式,再求在⎣⎡⎦⎤-π6,7π12上的单调递增区间. (2)方法指导:三角函数的综合应用主要是将三角函数的图象和性质与三角变换相结合,通过变换将函数化为y =A sin(ωx +φ)的形式再研究其性质,解题时注意观察角、名、结构等特征,注意整体思想的应用.规范解答(1)函数f (x )=sin ⎝⎛⎭⎫2ωx -π6-4sin 2ωx +2 =32sin 2ωx -12cos 2ωx -4×1-cos 2ωx 2+2 =32sin 2ωx +32cos 2ωx =3sin ⎝⎛⎭⎫2ωx +π3(ω>0). 根据函数f (x )的图象与x 轴相邻两个交点的距离为π2,可得函数f (x )的最小正周期为2×π2=2π2ω,得ω=1. 故函数f (x )=3sin ⎝⎛⎭⎫2x +π3. (2)将f (x )的图象向左平移m (m >0)个单位长度得到函数 g (x )=3sin ⎣⎡⎦⎤2(x +m )+π3=3sin ⎝⎛⎭⎫2x +2m +π3的图象.根据g (x )的图象恰好经过点⎝⎛⎭⎫-π3,0, 可得3sin ⎝⎛⎭⎫-2π3+2m +π3=0, 即sin ⎝⎛⎭⎫2m -π3=0, 所以2m -π3=k π(k ∈Z ),m =k π2+π6(k ∈Z ).因为m >0,所以当k =0时,m 取得最小值,且最小值为π6.此时,g (x )=3sin ⎝⎛⎭⎫2x +2π3. 令2k π-π2≤2x +2π3≤2k π+π2,k ∈Z ,得k π-7π12≤x ≤k π-π12,k ∈Z ,故函数g (x )的单调递增区间为⎣⎡⎦⎤k π-7π12,k π-π12,k ∈Z . 结合x ∈⎣⎡⎦⎤-π6,7π12,可得g (x )在⎣⎡⎦⎤-π6,7π12上的单调递增区间为⎣⎡⎦⎤-π6,-π12和⎣⎡⎦⎤5π12,7π12. 【变式考法】 已知向量a =(m ,cos 2x ),b =(sin 2x ,n ),函数f (x )=a·b ,且y =f (x )的图象过点⎝⎛⎭⎫π12,3和点⎝⎛⎭⎫2π3,-2. (1)求m ,n 的值;(2)将y =f (x )的图象向左平移φ (0<φ<π)个单位后得到函数y =g (x )的图象,若y =g (x )图象上各最高点到点(0,3)的距离的最小值为1,求y =g (x )的单调递增区间.解析 (1)由题意,知 f (x )=a·b =m sin 2x +n cos 2x .因为y =f (x )的图象经过点⎝⎛⎭⎫π12,3和⎝⎛⎭⎫2π3,-2, 所以⎩⎨⎧3=m sin π6+n cos π6,-2=m sin 4π3+n cos 4π3,即⎩⎨⎧3=12m +32n ,-2=-32m -12n ,解得m =3,n =1.(2)由(1)知f (x )=3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π6. 由题意知g (x )=f (x +φ)=2sin ⎝⎛⎭⎫2x +2φ+π6. 设y =g (x )的图象上符合题意的最高点为(x 0,2),由题意知x 20+1=1,所以x 0=0,即y =g (x )的图象上到点(0,3)的距离为1的最高点为(0,2). 将其代入y =g (x )并整理得sin ⎝⎛⎭⎫2φ+π6=1, 因为0<φ<π,所以φ=π6.因此g (x )=2sin ⎝⎛⎭⎫2x +π2=2cos 2x . 由2k π-π≤2x ≤2k π,k ∈Z ,得k π-π2≤x ≤k π,k ∈Z ,所以函数y =g (x )的单调递增区间为⎣⎡⎦⎤k π-π2,k π,k ∈Z .1.(教材回归)下列函数中,最小正周期为π且图象关于原点对称的函数是( A ) A .y =cos ⎝⎛⎭⎫2x +π2 B .y =sin ⎝⎛⎭⎫2x +π2 C .y =sin 2x +cos 2xD .y =sin x +cos x解析 y =cos ⎝⎛⎭⎫2x +π2=-sin 2x ,符合题意,故选A. 2.(2017·广西南宁质检)将函数y =cos ⎝⎛⎭⎫2x +π3的图象向左平移π6个单位长度后,得到f (x )的图象,则( B )A .f (x )=-sin 2xB .f (x )的图象关于直线x =-π3对称C .f ⎝⎛⎭⎫7π3=12D .f (x )的图象关于点⎝⎛⎭⎫π12,0对称 解析 将函数y =cos ⎝⎛⎭⎫2x +π3的图象向左平移π6个单位长度,得到的图象对应的解析式为f (x )=cos ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6+π3=cos ⎝⎛⎭⎫2x +2π3.函数f (x )的图象的对称轴满足2x +2π3=k π(k ∈Z ),即对称轴方程为x =k π2-π3(k ∈Z ),所以f (x )的图象关于直线x =-π3对称;令2x +2π3=k π+π2,得x =k π2-π12(k ∈Z ),即f (x )的图象关于点⎝⎛⎭⎫-π12,0对称;f ⎝⎛⎭⎫7π3=-12.故选B. 3.(2017·湖北襄阳模拟)同时具有性质“①最小正周期是4π;②直线x =π3是图象的一条对称轴;③在区间⎝⎛⎭⎫2π3,5π6上是减函数”的一个函数是( D )A .y =sin ⎝⎛⎭⎫2x -π6B .y =cos ⎝⎛⎭⎫2x -π6 C .y =cos ⎝⎛⎭⎫x 2+π3D .y =sin ⎝⎛⎭⎫x 2+π3解析 对于A 项,B 项,∵T =2π2=π,故A 项,B 项不正确.对于C 项,若直线x =π3为其图象的一条对称轴,则π3×12+π3=k π,k ∈Z ,得π2=k π,k ∈Z ,k 不存在,不满足题意,故C 项不正确.对于D 项,因为T =2π12=4π,且由x 2+π3=k π+π2,k ∈Z ,解得图象的对称轴方程为x =2k π+π3,k ∈Z ;当k =0时,x =π3为图象的一条对称轴.由2k π+π2≤x 2+π3≤2k π+3π2,k ∈Z ,解得单调递减区间为⎣⎡⎦⎤4k π+π3,4k π+7π3,k ∈Z ,所以函数在区间⎝⎛⎭⎫2π3,5π6上是减函数,故D 项正确.故选D.4.(2017·山西晋中考前测试)已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象如图所示,将函数y =f (x )的图象向左平移4π3个单位长度,得到函数y =g (x )的图象,则函数y =g (x )在区间⎣⎡⎦⎤π2,5π2上的最大值为( C )A .3B .332C.322D .22解析 由图象可知函数y =f (x )的周期为2⎝⎛⎭⎫7π3-π3=4π, ∴ω=12.又点⎝⎛⎭⎫π3,0,⎝⎛⎭⎫0,-32在函数y =f (x )的图象上, ∴⎩⎨⎧A sin ⎝⎛⎭⎫π6+φ=0,A sin φ=-32,且|φ|<π2.∴φ=-π6,A =3,则f (x )=3sin ⎝⎛⎭⎫12x -π6, ∴g (x )=3sin ⎣⎡⎦⎤12⎝⎛⎭⎫x +4π3-π6=3cos 12x . 由x ∈⎣⎡⎦⎤π2,5π2,可得12x ∈⎣⎡⎦⎤π4,5π4,则3cos 12x ∈⎣⎡⎦⎤-3,322,即g (x )的最大值为322.5.(书中淘金)某城市一年中12个月的平均气温与月份的关系可近似地用三角函数y =a +A cos ⎣⎡⎦⎤π6(x -6)(x =1,2,3,…,12)来表示,已知6月份的月平均气温最高,为28 ℃,12月份的平均气温最低,为18 ℃,则10月份的平均气温为__20.5__℃.解析 依题意知,a =28+182=23,A =28-182=5,所以y =23+5cos ⎣⎡⎦⎤π6(x -6),当x =10时,y =23+5cos ⎝⎛⎭⎫π6×4=20.5. 答案 20.56.(高考改编)把函数y =sin 2x 的图象沿x 轴向左平移π6个单位,纵坐标伸长到原来的2倍(横坐标不变)后得到函数y =f (x )的图象,对于函数y =f (x )有以下四个判断:①该函数的解析式为y =2sin ⎝⎛⎭⎫2x +π6;②该函数图象关于点⎝⎛⎭⎫π3,0对称;③该函数在⎣⎡⎦⎤0,π6上是增函数;④若函数y =f (x )+a 在⎣⎡⎦⎤0,π2上的最小值为3,则a =2 3. 其中,正确判断的序号是__②④__.解析 将函数y =sin 2x 的图象向左平移π6个单位得到y =sin 2⎝⎛⎭⎫x +π6=sin ⎝⎛⎭⎫2x +π3的图象,然后纵坐标伸长到原来的2倍得到y =2sin ⎝⎛⎭⎫2x +π3的图象,所以①不正确.f ⎝⎛⎭⎫π3=2sin ⎝⎛⎭⎫2×π3+π3=2sin π=0,所以函数图象关于点⎝⎛⎭⎫π3,0对称,所以②正确.由-π2+2k π≤2x +π3≤π2+2k π,k ∈Z ,得-5π12+k π≤x ≤π12+k π,k ∈Z ,∴函数的单调增区间为⎣⎡⎦⎤-5π12+k π,π12+k π,k ∈Z ,而⎣⎡⎦⎤0,π6⃘⎣⎡⎦⎤-512π+k π,π12+k π(k ∈Z ),所以③不正确.y =f (x )+a =2sin ⎝⎛⎭⎫2x +π3+a ,当0≤x ≤π2时,π3≤2x +π3≤4π3,所以当2x +π3=4π3,即x =π2时,函数取得最小值,y min =2sin 4π3+a =-3+a ,令-3+a =3,得a =23,所以④正确.所以正确的判断为②④.7.(考点聚焦)设函数f (x )=32-3sin 2ωx -sin ωx ·cos ωx (ω>0),且y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4.(1)求ω的值;(2)求f (x )在区间⎣⎡⎦⎤π,3π2上的最大值和最小值. 解析 (1)f (x )=32-3sin 2ωx -sin ωx cos ωx =32-3·1-cos 2ωx 2-12sin 2ωx =32cos 2ωx -12sin 2ωx =-sin ⎝⎛⎭⎫2ωx -π3=sin ⎝⎛⎭⎫2ωx +2π3. 因为图象的一个对称中心到最近的对称轴的距离为π4,又ω>0,所以2π2ω=4×π4.因此ω=1.(2)由(1)知f (x )=-sin ⎝⎛⎭⎫2x -π3. 当π≤x ≤3π2时,5π3≤2x -π3≤8π3,所以-32≤sin ⎝⎛⎭⎫2x -π3≤1. 因此-1≤f (x )≤32.故f (x )在区间⎣⎡⎦⎤π,3π2上的最大值和最小值分别为32,-1. 8.(2018·山东青岛调考)已知函数f (x )=2sin x sin ⎝⎛⎭⎫x +π6. (1)求函数f (x )的最小正周期和单调递增区间; (2)当x ∈⎣⎡⎦⎤0,π2时,求函数f (x )的值域. 解析 (1)f (x )=2sin x ⎝⎛⎭⎫32sin x +12cos x=3×1-cos 2x 2+12sin 2x=sin ⎝⎛⎭⎫2x -π3+32. 函数f (x )的最小正周期为T =π. 由-π2+2k π≤2x -π3≤π2+2k π,k ∈Z ,解得-π12+k π≤x ≤5π12+k π,k ∈Z ,所以函数f (x )的单调递增区间是⎣⎡⎦⎤-π12+k π,5π12+k π,k ∈Z . (2)当x ∈⎣⎡⎦⎤0,π2时,2x -π3∈⎣⎡⎦⎤-π3,2π3, sin ⎝⎛⎭⎫2x -π3∈⎣⎡⎦⎤-32,1, 可得函数f (x )的值域为⎣⎡⎦⎤0,1+32. 9.(母题营养)已知函数f (x )=sin x cos x +12cos 2x .(1)若tan θ=2,求f (θ)的值;(2)若函数y =g (x )的图象是由函数y =f (x )的图象上所有的点向右平移π4个单位长度而得到,且g (x )在区间(0,m )内是单调函数,求实数m 的最大值.解析 (1)因为tan θ=2,所以sin θ=2cos θ. 代入sin 2θ+cos 2θ=1,得cos 2θ=15.所以f (θ)=sin θcos θ+12cos 2θ=2cos 2θ+12(2cos 2θ-1)=3cos 2θ-12=110.(2)由已知得f (x )=12sin 2x +12cos 2x =22sin ⎝⎛⎭⎫2x +π4. 依题意,得g (x )=22sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π4+π4, 即g (x )=22sin ⎝⎛⎭⎫2x -π4. 因为x ∈(0,m ),所以2x -π4∈⎝⎛⎭⎫-π4,2m -π4. 又因为g (x )在区间(0,m )内是单调函数,所以-π4<2m -π4≤π2,即0<m ≤3π8,故实数m的最大值为3π8.10.(母题营养)设函数f (x )=sin 2ωx +23sin ωx ·cos ωx -cos 2ωx +λ(x ∈R )的图象关于直线x =π对称,其中ω,λ为常数,且ω∈⎝⎛⎭⎫12,1.(1)求函数f (x )的最小正周期;(2)若y =f (x )的图象经过点⎝⎛⎭⎫π4,0,求函数f (x )在x ∈⎣⎡⎦⎤0,π2上的值域. 解析 (1)因为f (x )=sin 2ωx +23sin ωx ·cos ωx -cos 2ωx +λ=-cos 2ωx +3sin 2ωx +λ=2sin ⎝⎛⎭⎫2ωx -π6+λ,由直线x =π是y =f (x )图象的一条对称轴,可得sin ⎝⎛⎭⎫2ωπ-π6=±1,所以2ωπ-π6=k π+π2(k ∈Z ),即ω=k 2+13(k ∈Z ).又ω∈⎝⎛⎭⎫12,1,k ∈Z ,所以k =1,从而ω=56. 所以f (x )的最小正周期是6π5.(2)由y =f (x )的图象过点⎝⎛⎭⎫π4,0,得f ⎝⎛⎭⎫π4=0, 即λ=-2sin ⎝⎛⎭⎫56×π2-π6=-2sin π4=-2, 即λ=- 2.故f (x )=2sin ⎝⎛⎭⎫53x -π6-2, ∵x ∈⎣⎡⎦⎤0,π2,∴53x -π6∈⎣⎡⎦⎤-π6,2π3, ∴函数f (x )的值域为[-1-2,2-2].1.函数f (x )=cos(w x +φ)的部分图象如图所示,则f (x )的单调递减区间为( D )A.⎝⎛⎭⎫k π-14,k π+34,k ∈Z B.⎝⎛⎭⎫2k π-14,2k π+34,k ∈Z C.⎝⎛⎭⎫k -14,k +34,k ∈Z D.⎝⎛⎭⎫2k -14,2k +34,k ∈Z 解析 由题图可知T 2=54-14=1,所以T =2.结合题图可知,在⎣⎡⎦⎤-34,54(f (x )的一个周期)内,函数f (x )的单调递减区间为⎝⎛⎭⎫-14,34.由f (x )是以2为周期的周期函数可知,f (x )的单调递减区间为⎝⎛⎭⎫2k -14,2k +34,k ∈Z ,故选D. 2.下列函数中,最小正周期为π且图象关于原点对称的函数是( A ) A .y =cos ⎝⎛⎭⎫2x +π2 B .y =sin ⎝⎛⎭⎫2x +π2 C .y =sin 2x +cos 2xD .y =sin x +cos x解析 y =cos ⎝⎛⎭⎫2x +π2=-sin 2x 是奇函数,图象关于原点对称,且最小正周期为π,A 项正确.y =sin ⎝⎛⎭⎫2x +π2=cos 2x ,是偶函数,B 项错误.y =sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π4,非奇非偶,C 项错误.y =sin x +cos x =2sin ⎝⎛⎭⎫x +π4,非奇非偶,D 项错误.故选A. 3.为了得到函数y =sin(2x +1)的图象,只需把函数y =sin 2x 的图象上所有的点( A ) A .向左平行移动12个单位长度B .向右平行移动12个单位长度C .向左平行移动1个单位长度D .向右平行移动1个单位长度 解析 ∵y =sin(2x +1)=sin 2⎝⎛⎭⎫x +12, ∴只需把y =sin 2x 图象上所有的点向左平移12个单位长度即得到y =sin(2x +1)的图象.故选A.4.将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为( C )A.3π4 B .π2C.π4D .-π4解析 y =sin(2x +φ)――→左移π8sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π8+φ=sin ⎝⎛⎭⎫2x +π4+φ是偶函数,即π4+φ=k π+π2(k ∈Z )⇒φ=k π+π4(k ∈Z ),当k =0时,φ=π4,故选C.5.如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝⎛⎭⎫π6x +φ+k ,据此函数可知,这段时间水深的最大值为( C )A .5 mB .6 mC .8 mD .10 m解析 由题意可知,当sin ⎝⎛⎭⎫π6x +φ=-1时,函数取得最小值2,即3×(-1)+k =2,∴k =5.因此,函数的最大值是8,故水深的最大值为8 m.6.将函数y =3cos x +sin x (x ∈R )的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( B )A.π12 B .π6C.π3D .5π6解析 y =3cos x +sin x =2sin ⎝⎛⎭⎫x +π3,向左平移m 个单位长度后得到y =2sin ⎝⎛⎭⎫x +π3+m ,由它关于y 轴对称可得sin ⎝⎛⎭⎫π3+m =±1,∴π3+m =k π+π2,k ∈Z ,∴m =k π+π6,k ∈Z ,又m >0,∴m 的最小值为π6.7.已知函数f (x )=A sin(w x +φ)(A ,w ,φ均为正的常数)的最小正周期为π,当x =2π3时,函数f (x )取得最小值,则下列结论正确的是( A )A .f (2)<f (-2)<f (0)B .f (0)<f (2)<f (-2)C .f (-2)<f (0)<f (2)D .f (2)<f (0)<f (-2)解析 ∵ω>0,∴T =2πω=π,∴ω=2.又A >0,∴f ⎝⎛⎭⎫2π3=-A , 即sin ⎝⎛⎭⎫4π3+φ=-1,得φ+4π3=2k π+32π(k ∈Z ), 即φ=2k π+π6(k ∈Z ).又∵φ>0,∴可取f (x )=A sin ⎝⎛⎭⎫2x +π6, ∴f (2)=A sin ⎝⎛⎭⎫4+π6, f (-2)=A sin ⎝⎛⎭⎫-4+π6,f (0)=A sin π6. ∵π<4+π6<3π2,∴f (2)<0.∵-7π6<-4+π6<-π,且y =sin x 在⎝⎛⎭⎫-7π6,-π上为减函数, ∴sin ⎝⎛⎭⎫-4+π6<sin ⎝⎛⎭⎫-7π6=sin π6,且sin ⎝⎛⎭⎫-4+π6>sin(-π)=0,从而有0<f (-2)<f (0).故有f (2)<f (-2)<f (0).故选A.8.将函数f (x )=sin 2x 的图象向右平移φ⎝⎛⎭⎫0<φ<π2个单位后得到函数g (x )的图象.若对满足|f (x 1)-g (x 2)|=2的x 1,x 2,有|x 1-x 2|min =π3,则φ=( D )A.5π12B .π3C.π4D .π6解析 g (x )=sin[2(x -φ)] =sin(2x -2φ). ∵|f (x )|≤1,|g (x )|≤1, ∴|f (x )-g (x )|≤2,当且仅当f (x 1)=1,g (x 2)=-1或f (x 1)=-1,g (x 2)=1时,满足|f (x 1)-g (x 2)|=2. 不妨设A (x 1,-1)是函数f (x )图象的一个最低点,B (x 2,1)是函数g (x )图象的一个最高点, 于是x 1=k 1π+3π4(k 1∈Z ),x 2=k 2π+π4+φ(k 2 ∈Z ).∴|x 1-x 2|≥⎪⎪⎪⎪3π4-⎝⎛⎭⎫π4+φ=⎪⎪⎪⎪π2-φ. ∵φ ∈⎝⎛⎭⎫0,π2,|x 1-x 2|min =π3, ∴π2-φ=π3,即φ=π6,故选D. 9.已知函数f (x )=2sin x +φ2cos x +φ2⎝⎛⎭⎫|φ|<π2,且对于任意的x ∈R ,f (x )≤f ⎝⎛⎭⎫π6,则( C ) A .f (x )=f (x +π) B .f (x )=f ⎝⎛⎭⎫x +π2 C .f (x )=f ⎝⎛⎭⎫π3-xD .f (x )=f ⎝⎛⎭⎫π6-x解析 f (x )=sin(x +φ).由题意,可知f (x )≤f ⎝⎛⎭⎫π6对于任意的x ∈R 恒成立,即sin(x +φ)≤sin ⎝⎛⎭⎫π6+φ.又因为|φ|<π2,所以π6+φ=π2,所以φ=π3,所以f (x )=sin ⎝⎛⎭⎫x +π3.f ⎝⎛⎭⎫π3-x =sin ⎝⎛⎭⎫π3-x +π3=sin ⎣⎡⎦⎤-⎝⎛⎭⎫π3+x +π=sin ⎝⎛⎭⎫x +π3=f (x ).故选C. 10.已知函数f (x )=3sin w x +cos w x (w >0)的图象与x 轴的交点的横坐标可构成一个公差为π2的等差数列,把函数f (x )的图象沿x 轴向左平移π6个单位,得到函数g (x )的图象.下列说法正确的是( D )A .g (x )在⎣⎡⎦⎤π4,π2上是增函数B .g (x )的图象关于直线x =-π4对称C .函数g (x )是奇函数D .当x ∈⎣⎡⎦⎤π6,2π3时,函数g (x )的值域是[-2,1]解析 f (x )=3sin ωx +cos ωx =2sin ⎝⎛⎭⎫ωx +π6,由题意知T 2=π2,∴T =π,∴ω=2πT=2,∴f (x )=2sin ⎝⎛⎭⎫2x +π6.把函数f (x )的图象沿x 轴向左平移π6个单位,得到g (x )=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6+π6=2sin ⎝⎛⎭⎫2x +π2=2cos 2x 的图象,易知g (x )是偶函数且在⎣⎡⎦⎤π4,π2上是减函数,其图象不关于直线x =-π4对称,所以A 项,B 项,C 项错误.当x ∈⎣⎡⎦⎤π6,2π3时,2x ∈⎣⎡⎦⎤π3,4π3,则g (x )min =2cos π=-2,g (x )max =2cos π3=1,即函数g (x )的值域为[-2,1],故选D.11.函数f (x )=2x -4sin x ,x ∈⎣⎡⎦⎤-π2,π2的图象大致是( D )解析 因为函数f (x )是奇函数,所以排除A ,B 项,f ′(x )=2-4cos x ,令f ′(x )=2-4cos x =0,得x =±π3,故选D.12.函数f (x )=A sin w x (A >0,w >0)的部分图象如图所示,则f (1)+f (2)+f (3)+…+f (2 018)的值为( A )A .2+2B .32C .62D .-2解析 由题图可知,A =2,T =8,2πω=8,ω=π4,∴f (x )=2sin π4x ,∴f (1)=2,f (2)=2,f (3)=2,f (4)=0,f (5)=-2,f (6)=-2,f (7)=-2,f (8)=0,而2 018=8×252+2,∴f (1)+f (2)+…+f (2 018)=f (1)+f (2)=2+ 2.故选A.第2讲 三角变换与解三角形题型一三角恒等变换1.(1)(2018·河南郑州模拟)若tan α=13,tan(α+β)=12,则tan β=( A )A.17 B .16C .57D .56(2) (2017·河北唐山中学模拟)已知α是三角形的内角,sin ⎝⎛⎭⎫α+π3=45,则cos ⎝⎛⎭⎫5π12-α=( D )A.210B .-210C .-7210D .7210突破点拨(1)注意到β=(α+β)-α,再结合已知条件求tan β的值. (2)注意到cos ⎝⎛⎭⎫5π12-α=-cos ⎣⎡⎦⎤⎝⎛⎭⎫α+π3+π4,再实施运算. 解析 (1)tan β=tan[(α+β)-α] =tan (α+β)-tan α1+tan (α+β)·tan α=12-131+12×13=17.故选A.(2)∵α是三角形的内角,sin ⎝⎛⎭⎫α+π3=45<32, ∴α+π3是钝角,∴cos ⎝⎛⎭⎫α+π3=-35,cos ⎝⎛⎭⎫5π12-α=-cos ⎣⎡⎦⎤π-⎝⎛⎭⎫5π12-α=-cos ⎝⎛⎭⎫712π+α=-cos ⎣⎡⎦⎤⎝⎛⎭⎫α+π3+π4=-cos ⎝⎛⎭⎫α+π3·cos π4+sin ⎝⎛⎭⎫α+π3sin π4=7210.故选D. 2. 已知cos ⎝⎛⎭⎫π6+α·cos ⎝⎛⎭⎫π3-α=-14,α∈⎝⎛⎭⎫π3,π2. (1)求sin 2α的值; (2)求tan α-1tan α的值. 突破点拨(1)利用诱导公式转化为二倍角公式,再利用同角三角函数基本关系式求解. (2)切化弦,转化为二倍角公式,再利用(1)的结论求解. 解析 (1)cos ⎝⎛⎭⎫π6+α·cos ⎝⎛⎭⎫π3-α =cos ⎝⎛⎭⎫π6+α·sin ⎝⎛⎭⎫π6+α=12sin ⎝⎛⎭⎫2α+π3=-14, 即sin ⎝⎛⎭⎫2α+π3=-12. ∵α∈⎝⎛⎭⎫π3,π2,∴2α+π3∈⎝⎛⎭⎫π,4π3, ∴cos ⎝⎛⎭⎫2α+π3=-32, ∴sin 2α=sin ⎣⎡⎦⎤⎝⎛⎭⎫2α+π3-π3=sin ⎝⎛⎭⎫2α+π3cos π3-cos ⎝⎛⎭⎫2α+π3sin π3=12. (2)∵α∈⎝⎛⎭⎫π3,π2,∴2α∈⎝⎛⎭⎫2π3,π, 又由(1)知sin 2α=12,∴cos 2α=-32.∴tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin α cos α=-2cos 2αsin 2α=-2×-3212=2 3.利用三角恒等变换公式解题的常用技巧(1)项的分拆与角的配凑:如sin 2α+2cos 2α=(sin 2α+cos 2α)+cos 2α,α=(α-β)+β等. (2)降幂与升幂:通过二倍角公式得到. (3)弦、切互化:一般是切化弦. 题型二 解三角形1. 已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,sin 2B =2sin A sin C . (1)若a =b ,求cos B ;(2)设B =90°,且a =2,求△ABC 的面积. 突破点拨(1)根据正弦定理把已知条件转化为边的关系,然后利用余弦定理求解.(2)利用勾股定理得到边的一个方程,结合已知条件解方程组求得边长,然后求面积.解析 (1)由题设及正弦定理可得b 2=2ac . 又a =b ,可得b =2c ,a =2c . 由余弦定理可得cos B =a 2+c 2-b 22ac =14.(2)由(1)知b 2=2ac . 因为B =90°,由勾股定理得a 2+c 2=b 2,故a 2+c 2=2ac ,进而可得c =a = 2. 所以△ABC 的面积为12×2×2=1.【变式考法】 (1)在本例条件下,求角B 的范围. (2)在本例条件下,若B =60°,b =2,求a 的值. 解析 (1)因为b 2=2ac ,所以cos B =a 2+c 2-b 22ac ≥2ac -2ac2ac =0,又因为0<B <π,所以0<B ≤π2.(2)因为b 2=2ac ,b =2,所以ac =1, 又因为b 2=a 2+c 2-2ac cos B ,所以a 2+c 2=3, 所以a +c =5, 所以a =5+12或5-12. 2. △ABC 中,D 是BC 上的点,AD 平分∠BAC ,△ABD 面积是△ADC 面积的2倍. (1)求sin ∠B sin ∠C; (2)若AD =1,DC =22,求BD 和AC 的长. 突破点拨(1)利用面积关系得边的关系,再利用正弦定理求解. (2)先利用面积比求BD ,再利用余弦定理求解. 解析 (1)S △ABD =12AB ·AD sin ∠BAD ,S △ADC =12AC ·AD sin ∠CAD .因为S △ABD =2S △ADC ,∠BAD =∠CAD ,所以AB =2AC . 由正弦定理可得sin ∠B sin ∠C =AC AB =12.(2)因为S △ABD ∶S △ADC =BD ∶DC ,所以BD = 2. 在△ABD 和△ADC 中,由余弦定理知 AB 2=AD 2+BD 2-2AD ·BD cos ∠ADB , AC 2=AD 2+DC 2-2AD ·DC cos ∠ADC . 故AB 2+2AC 2=3AD 2+BD 2+2DC 2=6. 由(1)知AB =2AC ,所以AC =1.利用正、余弦定理解三角形的技巧解三角形问题一般要利用正、余弦定理和三角形内角和定理,正弦定理可以将角转化为边,也可以将边转化成角,当涉及边的平方关系时,一般利用余弦定理,要根据题目特点和正、余弦定理的结构形式,灵活选用.有关解三角形的综合问题(1)求∠ACP ;(2)若△APB 的面积是332,求sin ∠BAP .思维导航(1)由已知条件选择余弦定理求得AP .(2)由三角形的面积和(1)结论解得PB ,再由余弦定理及正弦定理求得AB 和sin ∠BAP . 规范解答(1)在△APC 中,因为∠P AC =60°,PC =2,AP +AC =4, 由余弦定理得PC 2=AP 2+AC 2-2AP ·AC ·cos ∠P AC ,所以22=AP 2+(4-AP )2-2AP ·(4-AP )·cos 60°,整理得AP 2-4AP +4=0,解得AP =2,所以AC =2.所以△APC 是等边三角形,所以∠ACP =60°.(2)因为∠APB 是△APC 的外角,所以∠APB =120°.因为△APB 的面积是332,所以12AP ·PB ·sin ∠APB =332,所以PB =3.在△APB 中,AB 2=AP 2+PB 2-2AP ·PB ·cos ∠APB =22+32-2×2×3×cos 120°=19,所以AB =19.在△APB 中,由正弦定理得AB sin ∠APB =PBsin ∠BAP,所以sin ∠BAP =3sin 120°19=35738.【变式考法】 (2017·广州模拟)如图,在△ABC 中,∠ABC =30°,AB =3,AC =1,AC <BC ,P 为BC 右上方一点,满足∠BPC =90°.(1)若BP =2,求AP 的长; (2)求△BPC 周长的最大值.解析 由题意知1=AC 2=AB 2+BC 2-2AB ·BC ·cos ∠ABC =3+BC 2-3BC ,解得BC =2(BC =1舍去,则∠CAB =90°.又∠BPC =90°,且BP =2,所以∠PBC =45°,从而∠ABP =75°.连接AP ,由余弦定理得AP =3+2-2×3×2×6-24=6+22. (2)由(1)可知BC =2或BC =1,又因为求△BPC 周长的最大值,所以BC =2,设BP =m ,PC =n ,则m 2+n 2=4.由于BC 长为定值,因此求△BPC 周长的最大值只需求BP +PC =m +n 的最大值即可. 又4=m 2+n 2≥(m +n )22,则m +n ≤22, 当且仅当m =n =2时取等号,此时△BPC 的周长取得最大值,为2+2 2.1.(教材回归)sin 20°cos 10°-cos 160°sin 10°=( D ) A .-32B .32C .-12D .12解析 原式=sin 20°cos 10°+cos 20°sin 10°=sin(20°+10°)=sin 30°=12,故选D.2.(2017·“江南十校”模拟)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若C=2B ,则sin Bsin A=( D )A.c 2a 2+b 2-c 2 B .b 2a 2+b 2-c 2C.a 2a 2+b 2-c2 D .c 2a 2+c 2-b2解析 由已知,得sin C =sin 2B =2sin B cos B , 所以sin C sin B =2cos B .由正弦定理及余弦定理,得c b =2×a 2+c 2-b 22ac ,则b a =c 2a 2+c 2-b2. 再由正弦定理,得sin B sin A =c 2a 2+c 2-b 2,故选D.3.已知tan α=-2,tan(α+β)=17,则tan β的值为__3__.解析 tan β=tan[(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α=17-(-2)1+17×(-2)=3.4.(2017·河南郑州调考)已知△ABC 中,角C 为直角,D 是边BC 上一点,M 是AD 上一点,且CD =1,∠DBM =∠DMB =∠CAB ,则MA =__2__.解析 如图,设∠DMB =θ,则∠ADC =2θ,∠DAC =π2-2θ,∠AMB =π-θ,∠ABM =π2-2θ,在Rt △ABC 中,cos θ=cos ∠CAB =ACAB ;在△CDA 中,由正弦定理得CD sin ⎝⎛⎭⎫π2-2θ=ACsin 2θ; 在△AMB 中,由正弦定理得MA sin ⎝⎛⎭⎫π2-2θ=ABsin (π-θ), ∴CD MA =AC ·sin θAB ·sin 2θ=AC ·sin θ2AB ·sin θcos θ=12,从而MA =2. 5.在△ABC 中,a =4,b =5,c =6,则sin 2Asin C=__1__.解析 在△ABC 中,由余弦定理的推论可得cos A =b 2+c 2-a 22bc =52+62-422×5×6=34,由正弦定理可知sin 2A sin C =2sin A cos A sin C =2a ·cos Ac =2×4×346=1.6.(书中淘金)如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD解析 依题意有AB =600,∠CAB =30°,∠CBA =180°-75°=105°,∠DBC =30°,DC ⊥CB . ∴∠ACB =45°,在△ABC 中,由AB sin ∠ACB =CB sin ∠CAB ,得600sin 45°=CBsin 30°, 有CB =3002,在Rt △BCD 中,CD =CB ·tan 30°=1006, 则此山的高度CD =100 6 m.7.(考点聚焦)已知函数f (x )=2sin ωx +m cos ωx (ω>0,m >0)的最小值为-2,且图象上相邻两个最高点的距离为π.(1)求ω和m 的值;(2)若f ⎝⎛⎭⎫θ2=65,θ∈⎝⎛⎭⎫π4,3π4,求f ⎝⎛⎭⎫θ+π8的值. 解析 (1)易知f (x )=2+m 2sin(ωx +φ)(φ为辅助角), ∴f (x )min =-2+m 2=-2,∴m = 2.由题意知函数f (x )的最小正周期为π,∴2πω=π,∴ω=2.(2)由(1)得f (x )=2sin 2x +2cos 2x =2sin ⎝⎛⎭⎫2x +π4, ∴f ⎝⎛⎭⎫θ2=2sin ⎝⎛⎭⎫θ+π4=65, ∴sin ⎝⎛⎭⎫θ+π4=35, ∵θ∈⎝⎛⎭⎫π4,3π4,∴θ+π4∈⎝⎛⎭⎫π2,π,∴cos ⎝⎛⎭⎫θ+π4=-1-sin 2⎝⎛⎭⎫θ+π4=-45, ∴f ⎝⎛⎭⎫θ+π8=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫θ+π8+π4=2sin ⎝⎛⎭⎫2θ+π2 =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫θ+π4=4sin ⎝⎛⎭⎫θ+π4cos ⎝⎛⎭⎫θ+π4 =4×35×⎝⎛⎭⎫-45=-4825. 8.(教材回归)在△ABC 中,已知AB =2,AC =3,A =60°. (1)求BC 的长; (2)求sin 2C 的值.解析 (1)由余弦定理知,BC 2=AB 2+AC 2-2AB ·AC ·cos A =4+9-2×2×3×12=7,所以BC =7.(2)由正弦定理知sin C =AB BC ·sin A =2sin 60°7=217.因为AB <BC ,所以C <A ,所以C 为锐角, 则cos C =1-sin 2C =1-37=277. 因此sin 2C =2sin C ·cos C =2×217×277=437. 9.(2017·河北唐山二模)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a 2+b 2=λab . (1)若λ=6,B =5π6,求sin A ;(2)若λ=4,AB 边上的高为3c6,求C . 解析 (1)已知B =5π6,a 2+b 2=6ab ,结合正弦定理得4sin 2A -26sin A +1=0,解得sin A =6±24. 因为0<A <π6,所以sin A <12,所以sin A =6-24.(2)由题意可知S △ABC =12ab sin C =312c 2,得12ab sin C =312(a 2+b 2-2ab cos C )=312(4ab -2ab cos C ). 从而有3sin C +cos C =2,即sin ⎝⎛⎭⎫C +π6=1. 又π6<C +π6<7π6,所以C =π3.10.(2017·山东淄博模拟)已知a ,b ,c 分别为△ABC 的内角A ,B ,C 的对边,且a cos C +3a sin C -b -c =0.(1)求A ;(2)若a =2,求△ABC 面积的最大值.解析 (1)由a cos C +3a sin C -b -c =0及正弦定理, 得sin A cos C +3sin A sin C -sin B -sin C =0. 因为B =π-A -C ,所以3sin A sin C -cos A sin C -sin C =0. 易知sin C ≠0,所以3sin A -cos A =1, 所以sin ⎝⎛⎭⎫A -π6=12.又0<A <π,所以A =π3. (2)方法一 由(1)得B +C =2π3⇒C =2π3-B ⎝⎛⎭⎫0<B <2π3,因为a sin A =2sin π3=43, 所以由正弦定理得b =43sin B ,c =43sin C . 所以S △ABC =12bc sin A =12×43sin B ×43sin C ·sin π3=433sin B ·sin C =433·sin B ·sin ⎝⎛⎭⎫2π3-B =433⎝⎛⎭⎫32sin B cos B +12sin 2B =sin 2B -33cos 2B +33=233sin ⎝⎛⎭⎫2B -π6+33.易知-π6<2B -π6<7π6, 故当2B -π6=π2,即B =π3时,S △ABC 取得最大值,最大值为233+33= 3.方法二 由(1)知A =π3,又a =2,由余弦定理得22=b 2+c 2-2bc cos π3,即b 2+c 2-bc =4⇒bc +4=b 2+c 2≥2bc ⇒bc ≤4,当且仅当b =c=2时,等号成立.所以S △ABC =12bc sin A =12×32bc ≤34×4=3,即当b =c =2时,S △ABC 取得最大值,最大值为 3.1.已知函数f (x )=2cos 2x -sin ⎝⎛⎭⎫2x -7π6. (1)求函数f (x )的最大值,并写出f (x )取最大值时x 的取值集合;(2)已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若f (A )=32,b +c =2,求实数a的取值范围.解析 (1)f (x )=(1+cos 2x )-⎝⎛⎭⎫sin 2x cos 7π6-cos 2x sin 7π6 =1+32sin 2x +12cos 2x =1+sin ⎝⎛⎭⎫2x +π6, ∴函数f (x )的最大值为2,当且仅当sin ⎝⎛⎭⎫2x +π6=1, 即2x +π6=2k π+π2,k ∈Z ,即x =k π+π6,k ∈Z 时取到.∴函数f (x )取最大值时x 的取值集合为x ⎪⎪⎭⎬⎫x =k π+π6,k ∈Z . (2)由题意,f (A )=sin ⎝⎛⎭⎫2A +π6+1=32, 化简得sin ⎝⎛⎭⎫2A +π6=12. ∵A ∈(0,π),∴2A +π6∈⎝⎛⎭⎫π6,13π6, ∴2A +π6=5π6,∴A =π3.在△ABC 中,a 2=b 2+c 2-2bc cos π3=(b +c )2-3bc .由b +c =2,知bc ≤⎝⎛⎭⎫b +c 22= 1,即a 2≥1,当b =c =1时取等号. 又由b +c >a ,得a <2, ∴a 的取值范围是[1,2).2.已知a ,b ,c 分别是△ABC 的内角A ,B ,C 所对的边,且c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ; (2)若sin C +sin(B -A )=2sin 2A ,求A 的值. 解析 (1)∵c =2,C =π3,∴由余弦定理得4=a 2+b 2-2ab cos π3=a 2+b 2-ab .∵△ABC 的面积等于3, ∴12ab sin C =3,∴ab =4, 联立⎩⎪⎨⎪⎧ a 2+b 2-ab =4,ab =4,解得⎩⎪⎨⎪⎧a =2,b =2.(2)∵sin C +sin(B -A )=2sin 2A , ∴sin(B +A )+sin(B -A )=4sin A cos A , ∴sin B cos A =2sin A cos A . ①当cos A =0时,A =π2;②当cos A ≠0时,sin B =2sin A ,由正弦定理得b =2a ,联立⎩⎪⎨⎪⎧a 2+b 2-ab =4,b =2a ,解得⎩⎨⎧a =233,b =433,∴b 2=a 2+c 2,∵C =π3,∴A =π6.综上所述,A =π2或A =π6.3.(2017·浙江重点中学联考)已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c . (1)若C =2B ,求证:cos A =3cos B -4cos 3B ;(2)若b sin B -c sin C =a ,且△ABC 的面积S =b 2+c 2-a 24,求角B .解析 (1)证明:∵C =2B ,∴A =π-3B , ∴cos A =cos(π-3B )=-cos(B +2B ) =-cos B cos 2B +sin B sin 2B =-cos B (2cos 2B -1)+2sin 2B cos B=cos B -2cos 3B +2cos B (1-cos 2B )=3cos B -4cos 3B , ∴cos A =3cos B -4cos 3B .(2)在△ABC 中,∵S =b 2+c 2-a 24,∴S =b 2+c 2-a 24=12bc sin A .由余弦定理知b 2+c 2-a 24=12bc cos A ,∴12bc cos A =12bc sin A ,∴tan A =1, 而A ∈(0,π),∴A =π4.∵b sin B -c sin C =a ,由正弦定理,得 sin 2B -sin 2C =sin A =22, ∴cos 2C -cos 2B = 2.∵2C =2π-2A -2B =3π2-2B ,∴-sin 2B -cos 2B =2,∴sin ⎝⎛⎭⎫2B +π4=-1. ∵B ∈(0,π),∴2B +π4=3π2,∴B =5π8.4.(2017·武汉武昌五月调研)已和函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,0<φ<π2的图象经过点⎝⎛⎭⎫0,12,且相邻两条对称轴的距离为π2.(1)求函数f (x )的解析式及其在[0,π]上的单调递增区间;(2)在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,若f ⎝⎛⎭⎫A 2-cos A =12,bc =1,b +c =3,求a 的值.解析 (1)将⎝⎛⎭⎫0,12代入f (x )的解析式,得sin φ=12. 又因为0<φ<π2,所以φ=π6.又因为最小正周期T =π2×2=π,所以ω=2.所以函数f (x )的解析式为f (x )=sin ⎝⎛⎭⎫2x +π6. 因为x ∈[0,π], 所以π6≤2x +π6≤13π6,所以2x +π6∈⎣⎡⎦⎤π6,π2或2x +π6∈⎣⎡⎦⎤3π2,13π6时,f (x )递增,即x ∈⎣⎡⎦⎤0,π6或x ∈⎣⎡⎦⎤2π3,π时,f (x )递增.所以函数f (x )在[0,π]上的单调递增区间是⎣⎡⎦⎤0,π6,⎣⎡⎦⎤2π3,π. (2)由(1)知f ⎝⎛⎭⎫A 2=sin ⎝⎛⎭⎫A +π6,代入已知等式得 sin ⎝⎛⎭⎫A +π6-cos A =32sin A +12cos A -cos A =32sin A -12cos A =sin ⎝⎛⎭⎫A -π6=12, 所以A -π6=π6或5π6,即A =π3或A =π(舍去).又因为bc =1,b +c =3,由余弦定理,得a 2=b 2+c 2-2bc ·cos A =b 2+c 2-bc =(b +c )2-3bc =6,所以a = 6. 5.(2018·山东青岛模拟)在△ABC 中,边a ,b ,c 的对角分别为A ,B ,C ,且b =4,A =π3,面积S =2 3. (1)求a 的值;(2)设f (x )=2(cos C sin x -cos A cos x ),将f (x )图象上所有点的横坐标变为原来的12(纵坐标不变)得到g (x )的图象,求g (x )的单调增区间.解析 (1)在△ABC 中,∵S =12bc sin A ,∴23=12×4×c ×32,∴c =2.∴a =b 2+c 2-2bc cos A =16+4-2×4×2×12=2 3.(2)∵a sin A =b sin B ,即2332=4sin B,∴sin B =1, 又0<B <π,∴B =π2,∴C =π6,∴f (x )=2(cos C sin x -cos A cos x )=2sin ⎝⎛⎭⎫x -π6, 将f (x )图象上所有点的横坐标变为原来的12(纵坐标不变),得到的图象对应的函数解析式为g (x )=2sin ⎝⎛⎭⎫2x -π6, 令2k π-π2≤2x -π6≤2k π+π2(k ∈Z ),解得k π-π6≤x ≤k π+π3(k ∈Z ),故g (x )的单调增区间为⎣⎡⎦⎤k π-π6,k π+π3(k ∈Z ). 6.(2018·辽宁协作体一模)设△ABC 是锐角三角形,三个内角A ,B ,C 所对的边分别为a ,b ,c ,且(sin A -sin B )(sin A +sin B )=sin ⎝⎛⎭⎫π3+B sin ⎝⎛⎭⎫π3-B . (1)求角A 的值;(2)若AB →·AC →=12,a =27,求b ,c (其中b <c ).解析 (1)∵(sin A -sin B )(sin A +sin B )=sin ⎝⎛⎭⎫π3+B ·sin ⎝⎛⎭⎫π3-B ,∴sin 2A -sin 2B =⎝⎛⎭⎫32cos B +12sin B⎝⎛⎭⎫32cos B -12sin B , 即sin 2A =34cos 2B -14sin 2B +sin 2B=34(cos 2B +sin 2B )=34, ∵角A 为锐角△ABC 的内角,∴sin A >0, ∴sin A =32,∴A =π3. (2)AB →·AC →=bc cos A =12,∴bc =24,又a 2=b 2+c 2-2bc cos A =(b +c )2-3bc =(27)2, ∴b +c =10,又∵b <c ,∴b =4,c =6.第3讲 平面向量题型一 向量的概念及线性运算高考中常从以下角度命题:1. (1)平面内给定三个向量a=(3,2),b=(-1,2),c=(4,1).若(a+k c)∥(2b-a),则k=-1613.(2)如图,E为平行四边形ABCD的边DC的中点,F为△ABD的重心,且AB→=a,AD→=b,则FE→=23b+16a.突破点拨(1)利用向量的坐标运算和向量共线定理求解.(2)利用向量加、减法的几何意义和重心公式求解.解析(1)因为(a+k c)∥(2b-a),又a+k c=(3+4k,2+k),2b-a=(-5,2),所以2×(3+4k)-(-5)×(2+k)=0,所以k=-1613.(2)由F为△ABD的重心,得AF→=23×12AC→=13(a+b).又AE→=AD→+DE→=b+12a,所以FE→=AE→-AF→=23b+16a.2.(1)在△ABC中,点M,N满足AM→=2MC→,BN→=NC→.若MN→=xAB→+yAC→,则x=12,y=-16.(2)已知向量a=(2,1),b=(1,-2),若m a+n b=(9,-8)(m,n∈R),则m-n的值为__-3__.突破点拨(1)画出图形,利用向量加减法则求解.(2)利用向量的坐标运算求解.。

小题透析-三角函数、解三角形与平面向量-【高考倒计时15天考前过关】2023年高考数学(新高考专用)

小题透析-三角函数、解三角形与平面向量-【高考倒计时15天考前过关】2023年高考数学(新高考专用)
2
要点归纳
2.诱导公式的规律
三角函数的诱导公式可概括为“奇变偶不变,符号看象限”.其中“奇变偶不变”
π
的奇、偶分别是指2的奇数倍、偶数倍,变与不变是指函数名称的变化.
要点归纳
3.与三角函数的奇偶性相关的结论
π
(1)若 y=Asin(ωx+φ)为偶函数,则φ=kπ+ (k∈Z);若 y=Asin(ωx+φ)为奇函数,
则 cos θ=
·
| ||b|
=
1 2+ 1 2
2
2
1+ 1
2
2
2+ 2
.
要点归纳
(7)三角形“四心”向量形式的充要条件
设 O 为△ABC 所在平面上一点,角 A,B,C 所对的边长分别为 a,b,c,则
①O 为△ABC 的外心⇔|
|=|
②O 为△ABC 的重心⇔
+
③O 为△ABC 的垂心⇔
·
④O 为△ABC 的内心⇔a
取出来.
要点归纳
7.三角恒等变换的常用结论
1+cos2
1-cos2
2
2
(1)降幂公式:cos2α=
,sin2α=
.
(2)升幂公式:1+cos 2α=2cos2α,1-cos 2α=2sin2α.
(3)公式变形:tan α±tan β=tan(α±β)(1∓tan αtan β).
(4)辅助角公式:asin x+bcos x=
2+ 2
, cos
=
2+ 2
.
2
+
2 sin(x+φ)
其中 sin

新高考数学创新好题1情境创新之知识综合

新高考数学创新好题1情境创新之知识综合

新高考数学创新好题1情境创新之知识综合新高考数学创新好题主题一情境创新之知识综合学科知识综合1.[平面向量与三角函数综合]已知单位向量a,b满足a·b=0,若向量c=a+b,则sin=()A.B.C.D.2.[三角函数与数列综合]已知数列{an}的通项公式是an=f(),其中f(x)=sin(ωx+φ)(ω>0,|φ|.-1B.-C.1D.3.[逻辑联结词与二项式、正态分布综合]已知命题p:(x2-)n的展开式中,仅有第7项的二项式系数最大,则展开式中的常数项为495.命题q:随机变量ξ服从正态分布N(2,σ2),且P(ξ<4)=0.7,则P(0给出四个命题:①p∧q,②p∨q,③p∧(?q),④(?p)∨q,其中真命题是()A.①③B.①④C.②③D.②④4.[数列与平面向量综合]设{an}是首项为-10,公差为2的等差数列,{bn}是首项为-,公差为的等差数列.O为原点,向量=(-1,1),=(1,1),点Pn满足=an+bn(n∈N).若存在点Pk(k∈N)位于第一象限,则k=()A.5或6B.6C.7D.6或75.[导数与三角函数综合]已知函数f(x)的定义域为R,f()=-,对任意的x∈R,满足f''(x)>4x.当α∈[0,2π]时,不等式f(sinα)+cos2α>0的解集为()A.(,)B.(,)C.(,)D.(,)6.[函数与数列综合]定义在[0,+∞)上的函数f(x)满足:当0≤x<2时,f(x)=2x-x2;当x≥2时,f(x)=3f(x-2).若函数f(x)的极大值点从小到大依次记为a1,a2,…,an,…,并记相应的极大值为b1,b2,…,bn,…,则a1b1+a2b2+…+a20b20的值为()A.19×320+1B.19×319+1C.20×319+1D.20×320+17.[椭圆与平面向量综合]已知椭圆C:=1,F1,F2分别是其左、右焦点,若对椭圆C上的任意一点P,·>0恒成立,则实数m的取值范围为()A.(-3,0)∪(0,3)B.[-3,0)∪(0,3]C.(-∞,-3)∪(3,+∞)D.(-∞,-3]∪[3,+∞)8.[抛物线与平面向量综合]已知抛物线C:y2=4x的焦点为F,准线为l,P是l上一点,直线PF与抛物线C交于M,N两点,若=4,则|MN|=()A.B.3C.D.9图1-29.[立体几何与函数综合]如图1-2所示,在长方体ABCD-A1B1C1D1中,底面ABCD是边长为3的正方形,侧棱AA1=t,P为矩形CDD1C1上及内部的动点,M为BC 的中点,∠APD=∠CPM,三棱锥A1-PCD的体积的最大值记为V(t),则下列关于函数V(t)的结论正确的是()A.V(t)为奇函数B.V(t)在(0,+∞)上单调递增C.V(2)=3D.V(3)=10.[双曲线与解三角形综合]已知双曲线E:=1(a>0,b>0)的左、右顶点分别为A,B,M是E上一点,且△ABM为等腰三角形,其外接圆的半径为a,则双曲线E的离心率为()A.B.+1C.D.+111.[解三角形与平面向量、基本不等式综合] 已知锐角△ABC的内角A,B,C的对边分别为a,b,c.若向量m=(a-b,sinC),n=(c-b,sinA+sinB),m=λn(λ≠0),则tanC的最小值为()A.B.2C.D.12.[直线斜率与三角恒等变换综合]若正方形一条对角线所在直线的斜率为2,则该正方形的两条邻边所在直线的斜率分别为,.?13.[数列与双曲线综合]已知一族双曲线En:x2-y2=(n∈N,n≤2019),设直线x=2与En在第一象限内的交点为An,点An在En的两条渐近线上的射影分别为Bn,Cn,记△AnBnCn的面积为an,则a1+a2+a3+…+a2019=.?跨学科知识综合14.[数学与化学综合]溶液的酸碱度是通过pH来刻画的,已知某溶液的pH等于-lg[H+],其中[H+]表示该溶液中氢离子的浓度,且该溶液中氢离子的浓度为10-6mol/L,则该溶液的pH为()A.4B.5C.6D.715.[数学与物理综合]长江流域内某地南北两岸平行,如图1-3所示,已知游船在静水中的航行速度v1的大小|v1|=10km/h,水流的速度v2的大小|v2|=4km/h,设v1和v2所成的角为θ(0行到正北方向上位于北岸的码头B处,则cosθ等于()图1-3A.-B.-C.-D.-16.[数学与物理综合]体育锻炼是青少年学习生活中非常重要的组成部分.某学生做引体向上运动,处于图1-4所示的平衡状态时,两只胳膊的夹角为,每只胳膊的拉力大小均为400 N,则该学生的体重(单位:kg)约为()图1-4(参考数据:重力加速度大小取g=10m/s2,≈1.732)A.63kgB.69kgC.75kgD.81kg17.[2020山东,4,5分][数学与地理综合]日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A 处的水平面所成角为()A.20°B.40°C.50°D.90°图1-518.[数学与体育综合]台球运动已有五、六百年的历史,参与者用球杆在台上击球.若和光线一样,台球在球台上碰到障碍物后也遵从反射定律.如图1-5,有一张长方形球台ABCD,AB=2AD,现从角落A沿角α的方向把球打出去,球经2次碰撞球台内沿后进入角落C的球袋中,则tanα的值为()A.B.C.或D.19.[2020全国卷Ⅱ,12,5分][理][数学与通信技术综合]0-1周期序列在通信技术中有着重要应用.若序列a1a2…an…满足ai∈{0,1}(i=1,2,…),且存在正整数m,使得ai+m=ai(i=1,2,…)成立,则称其为0-1周期序列,并称满足ai+m=ai(i=1,2,…)的最小正整数m为这个序列的周期.对于周期为m的0-1序列a1a2…an…,C(k)=aiai+k(k=1,2,…,m-1)是描述其性质的重要指标.下列周期为5的0-1序列中,满足C(k)≤(k=1,2,3,4)的序列是()A.11010…B.11011…C.10001…D.11001…20.[数学与化学综合]稠环芳烃类化合物中有不少致癌物质,比如学生钟爱的快餐油炸食品中会产生苯并芘,它可看作是由一个苯环和一个芘分子结合而成的稠环芳烃类化合物,长期食用会致癌.下面是一组稠环芳烃的结构简式和分子式:名称萘蒽并四苯…并n苯结构简式……分子式C10H8C14H10C18H12……由此推断并十苯的分子式为.?答案主题一情境创新之知识综合1.B解法一由已知知|a|=|b|=1,|c|=|a+b|==3,则cos=,因为∈(0,π),所以sin=.解法二由题可设a=(1,0),b=(0,1),则c=(,),cos=,因为∈(0,π),所以sin=,故选B.2.B由题图可得(T为f(x)的最小正周期),则T=π,ω==2.将(,-1)代入f(x)=sin(2x+φ)中,可得+φ=2kπ+,k∈Z,则φ=2kπ+,k∈Z.又|φ|n=f()=sin,则{an}为周期为6的数列,因为a1=,a2=0,a3=-,a4=-,a5=0,a6=,所以S2020=336S6+(a1+a2+a3+a4)=0-=-.故选B.3.C对于命题p,(x2-)n的展开式中,仅有第7项的二项式系数最大,即最大,所以n=12.展开式的通项公式为Tr+1=··=(-1)r··x24-3r,令24-3r=0,得r=8,故展开式中的常数项为(-1)8·=495,所以p为真命题.对于命题q,根据正态分布的对称性可知P(0假命题.所以p∧q,(?p)∨q为假命题,p∨q,p∧(?q)为真命题,即②③为真命题.故选C.4.D由已知得an=2n-12,bn=-1.因为=an+bn=(2n-12)·(-1,1)+(-1)·(1,1)=(11-,-13),所以点Pn的坐标为(11-,-13),可得Pk(11-,-13).若存在点Pk(k∈N)位于第一象限,则解得造函数g(x)=f(x)-2x2+1,则g''(x)=f''(x)-4x>0,所以函数g(x)在R上为增函数.因为f()=-,所以g()=f()-2×()2+1=0.又f(sinα)+cos2α>0,所以g(sinα)=f(sinα)-2sin2α+1=f(sinα)+cos2α>0=g(),所以sinα>.因为0≤α≤2π,所以α>0的解集为(,).故选D.6.A当0≤x<2时,f(x)=2x-x2=1-(x-1)2,可得f(x)的极大值点a1=1,极大值b1=1,当2≤x<4,即0≤x-2<2时,可得f(x)=3f(x-2)=3[1-(x-3)2],可得a2=3,b2=3,当4≤x<6,即0≤x-4<2时,可得f(x)=9f(x-4)=9[1-(x-5)2],可得a3=5,b3=9,…,即有a20=39,b20=319.记S20=a1b1+a2b2+…+a20b20,则S20=1×1+3×3+5×9+…+39×319①,3S20=1×3+3×9+5×27+…+39×320②,①-②得-2S20=1+2×(3+9+27+…+319)-39×320=1+2×-39×320,化简可得S20=19×320+1,故选A.7.C当点P为短轴上的顶点时,∠F1PF2最大,要使·>0恒成立,则∠F1PF2为锐角,即∠F1PO<45°(O为坐标原点),即tan∠F1PO=<1,所以c29,所以93或m,M(xM,yM),N(xN,yN),因为=4,所以(2,-t)=4(1-xM,-yM),所以解得因为MN为过抛物线焦点的弦,由焦点弦的常用结论(详见主书P215【规律总结】)可得xM·xN==1,所以xN=2,所以xM+xN=.由抛物线的定义,得|MN|=xM+xN+p=+2=,故选C.解法二设准线l与x轴交于点E,点N在第一象限,如图D1-1所示,作MM''⊥l于点M'',NN''⊥l于点N'',则由抛物线的定义知,|MM''|=|MF|,|NN''|=|NF|.因为=4,所以|PF|∶|PM|=4∶3.因为△PFE∽△PMM'',所以,即,解得|MF|=,所以|PF|=6.又△PFE∽△PNN'',所以,即,解得|NF|=3,所以|MN|=|MF|+|NF|=+3=,故选 C.9.D由题意知,AD⊥PD,MC⊥PC.因为∠APD=∠CPM,所以Rt△PDA∽Rt△PCM.又M为BC的中点,所以=2,即PD=2PC,即PD2=4PC2.在平面DCC1D1中,以DC的中点为坐标原点,以DC所在直线为x轴,DC的垂直平分线为y轴,以的方向为x轴的正方向,的方向为y轴的正方向建立平面直角坐标系,则D(-,0),C(,0).设P(x'',y'')(-≤x''≤,0≤y''≤t),则(x''+)2+(y'')2=4(x''-)2+4(y'')2,整理得(y'')2=-(x'')2+5x''-,易知当x''=时,y''取得最大值.若0,则(S△PCD)max=.又A1到平面PCD的距离为3,所以V(t)=所以V(t)为非奇非偶函数,故A错误;函数V(t)在(0,+∞)上不是单调函数,故B错误;V(2)=,故C错误;V(3)=,故D正确.故选D.10.C解法一不妨设M在第一象限,M(x0,y0),因为△ABM是等腰三角形,所以结合图形可知,只能|AB|=|BM|=2a.令∠MAB=θ,则∠AMB=θ,∠ABM=π-2θ,∠MBx=2θ,在△MAB中,由正弦定理可得=2×a,所以sinθ=,则cos2θ=1-2sin2θ=,sin2θ=,则x0=a+2acos2θ=,y0=2asin2θ=,即M(,).又点M在双曲线上,所以·=1,解得=2,则e2=1+=3,则e=,故选C.解法二不妨设M在第一象限,因为△ABM是等腰三角形,所以结合图形可知,只能|AB|=|BM|=2a.令∠MAB=θ,则∠AMB=θ,∠ABM=π-2θ,∠MBx=2θ,由正弦定理可得=2×a,所以sinθ=,则cosθ=,tanθ=,即kMA=,cos2θ=1-2sin2θ=,则sin2θ=,tan2θ==2,即kMB=2,根据kMA·kMB=2=,得e2=1+=3,则e=,故选C.11.C∵m=λn(λ≠0),∴m∥n,∴(a-b)(sinA+sinB)=sinC(c-b),由正弦定理得(a-b)(a+b)=c(c-b),整理得a2=b2+c2-bc,由余弦定理得cosA=.∵A∈(0,),∴A=,又C∈(0,),∴,∴tanC=tanC.∵△ABC是锐角三角形,且A=,∴解得,∴tanC=tanC≥+2,当且仅当tanC,即tanC=2时等号成立,故tanC的最小值为,选C.图D1-212.-3如图D1-2,以A为原点建系,AC的斜率为2,设AB的倾斜角为θ,则AC的倾斜角为θ+,则tan(θ+)=2.kAB=tanθ=tan(θ+)=,则kAD=-=-3.所以正方形的两条邻边所在直线的斜率分别为和-3.13.设An(x0,y0),可得.双曲线En:x2-y2=(n∈N,n≤2019)的渐近线方程为x-y=0,x+y=0.已知点An在En的两条渐近线上的射影分别为Bn,Cn,不妨设Bn在第一象限内,可得|AnBn|=,|AnCn|=,易知双曲线En的两条渐近线互相垂直,可得AnBn⊥AnCn,则△AnBnCn的面积an=|AnBn|·|AnCn|=··,则a1+a2+a3+…+a2019=×2019×2020=.14.C由题意可得,该溶液的pH为-lg10-6=6.故选C.15.B设游船的实际速度为v,v1与河流南岸上游的夹角为α,v1=,v2=.以AD,AC为邻边作平行四边形如图D1-3所示,要使得游船正好航行到B处,则|v1|cosα=|v2|,即cosα=.又θ=π-α,所以cosθ=cos(π-α)=-cosα=-,故选B.16.B作出示意图,如图D1-4所示,设图中重力为G,两只胳膊的拉力分别为F1,F2,F1与F2的合力为F'',则|G|=|F''|.由余弦定理得|F''|2=4002+4002-2×400×400×cos=3×4002(N2),解得|F''|=400N.所以|G|=400N.所以该学生的体重约为≈69(kg).故选B.图D1-517.B过球心O,点A以及晷针的轴截面如图D1-5所示,其中CD为晷面,GF为晷针所在直线,EF为点A处的水平面,GF⊥CD,CD∥OB,∠AOB=40°,∠OAE=∠OAF=90°,所以∠GFA=∠CAO=∠AOB=40°.故选B.18.C由题意知,可分为两种,且仅有两种情况.第一种情况,球碰撞CD与AB边内沿后进入角落C的球袋中,如图D1-6所示.根据台球碰撞障碍物后也遵从反射定律知,AE=EF=FC,于是根据图形的对称性知E,F分别为CD与AB的三等分点,则DE=DC=AD,所以tanα=tan∠AED=.第二种情况,球碰撞BC与AD边内沿后进入角落C的球袋中,如图D1-7所示.同理,由第一种情况的解法知M,N分别为BC,AD的三等分点,所以BM=BC=AB=AB,所以tanα=.综上可知,选C.图D1-6图D1-719.C对于A,因为C(1)=,C(2)=,不满足C(k)≤,故A不正确;对于B,因为C(1)=,不满足C(k)≤,故B不正确;对于C,因为C(1)=,C(2)==0,C(3)==0,C(4)=,满足C(k)≤,故C正确;对于D,因为C(1)=,不满足C(k)≤,故D不正确.综上所述,故选C.20.C42H24因为表格中所给的稠环芳烃的分子式中C的下标分别是10,14,18,…,H的下标分别是8,10,12,…,所以表格中所给的稠环芳烃的分子式中C的下标构成等差数列,设为{am},则首项a1=10,公差为4,所以其通项公式为am=10+(m-1)·4=4m+6,表格中所给的稠环芳烃的分子式中H的下标构成等差数列,设为{bm},首项b1=8,公差为2,所以其通项公式为bm=8+(m-1)·2=2m+6.易知m=n-1,所以并n苯的分子式为C4n+2H2n+4(n≥4,n∈N),所以并十苯的分子式为C42H24.第8页共8页。

例说平面向量与三角函数的综合性问题

例说平面向量与三角函数的综合性问题

说 :题 以线 量 载 , 、 , . 明本 是 共 向 为体利 / 求 t 0 丁
谊, o

. . +

莲 髻 鬟





中 角
, ,


, 上∞ ,


I 嘉 豫 掰 求的 g ; 三
1:( 譬 一 小解 : 1) 1,) , , 2 ‘ m 4 (
u 手。 ~
‘ .

・ c, z 手 唔, ・ 手 一
时 L o 6 nZ u— o i



取范 手 孑 詈 J2 值 一, , 亍 时 【 ̄ 2s i 3 :
哨 的向量运算。 蓄 赛 署
年 囊 高磊 盂
竺嘉 耄荦
篙量 垒
] 。 i AA C 角 对 .  ̄ . B A , , 的 对 B C
o]=A 曰 + ss … 或 s: i A一 8i n =2 n 2 ,B 手  ̄


线
3 I. ). . (+ t n ,+ 。 x 2 a0y 1)
x 2 a0 + t n 一1
c.c , , 一 等 3 手
三 磊 角嚣袤妻
; 巍麓 鋈
2抓 表 现 手 法 中 的 以 动 写 静 、 小 见 . 以 大、 虚实 结 合 等 3抓 修 辞 手 法 中 的 比 喻 、 人 、 张 、 . 拟 夸 抒 发 了作 者 怎 样 的 思 想 感 情 或 间 接 流 露 出 作 者 怎 样 的 情 感 。 其 主 要 方 法 就 是 运 用 上 面 所 说 的 联 系 法和 诗 词 的 艺 术 手 法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1讲 三角函数与平面向量综合题3.17题型一:三角函数与平面向量平行(共线)的综合【例1】 已知A 、B 、C 为三个锐角,且A +B +C =π.若向量→p =(2-2sinA ,cosA +sinA)与向量→q =(cosA -sinA ,1+sinA)是共线向量.(Ⅰ)求角A ;(Ⅱ)求函数y =2sin 2B +cos C -3B2的最大值.题型二. 三角函数与平面向量垂直的综合 【例2】已知向量→a =(3sinα,cosα),→b =(2sinα,5sinα-4cosα),α∈(3π2,2π),且→a ⊥→b .(Ⅰ)求tanα的值;(Ⅱ)求cos(α2+π3)的值.题型三. 三角函数与平面向量的模的综合【例3】 已知向量→a =(cosα,sinα),→b =(cosβ,sinβ),|→a -→b |=25 5.(Ⅰ)求cos(α-β)的值;(Ⅱ)若-π2<β<0<α<π2,且sinβ=-513,求sinα的值.题型四 三角函数与平面向量数量积的综合【例4】设函数f(x)=→a ·→b .其中向量→a =(m ,cosx),→b =(1+sinx ,1),x ∈R ,且f(π2)=2.(Ⅰ)求实数m 的值;(Ⅱ)求函数f(x)的最小值.题型五:结合三角形中的向量知识考查三角形的边长或角的运算【例5】(山东卷)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,tan 37C =. (1)求cos C ;(2)若52CB CA ⋅=,且9a b +=,求c .题型六:结合三角函数的有界性,考查三角函数的最值与向量运算【例6】()f x a b =⋅,其中向量(,cos 2)a m x =,(1sin 2,1)b x =+,x R ∈,且函数()y f x =的图象经过点(,2)4π.(Ⅰ)求实数m 的值; (Ⅱ)求函数()y f x =的最小值及此时x 值的集合。

题型七:结合向量的坐标运算,考查与三角不等式相关的问题【例7】设向量(sin ,cos ),(cos ,cos ),a x x b x x x R ==∈,函数()()f x a a b =⋅+. (Ⅰ)求函数()f x 的最大值与最小正周期;(Ⅱ)求使不等式3()2f x ≥成立的x 的取值集. 【跟踪训练】三角函数与平面向量训练反馈1、已知向量a =(x x x 3,52-),b =(2,x ),且b a ⊥,则由x 的值构成的集合是( )A 、{0,2,3}B 、{0,2}C 、{2}D 、{0,-1,6} 2、设02x π≤≤,1sin 2sin cos x x x -=-,则 ( )A .0x π≤≤B .744x ππ≤≤C .544x ππ≤≤ D .322x ππ≤≤3、函数1cos 4tan 2sin )(++⋅=x x x x f 的值域是 。

4、在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cos cos 2B bC a c=-+. (1)求角B 的大小;(2)若b 13a +c =4,求a 的值. 5、已知向量 )1),3(cos(π+=x a ,)21),3(cos(-+=πx b ,)0),3(sin(π+=x c 函数 b a x f ⋅=)(, c a x g ⋅=)(, c b b a x h ⋅-⋅=)((1)要得到)(x f y =的图象,只需把)(x g y =的图象经过怎样的平移或伸缩变换? (2)求)()()(x g x f x h -=的最大值及相应的x .6.设函数()()f x a b c =⋅+,其中向量(sin ,cos ),(sin ,3cos )a x x b x x =-=-,(cos ,sin ),c x x x R =-∈.(Ⅰ)求函数()x f 的最大值和最小正周期;(Ⅱ)将函数()x f y =的图像按向量d 平移,使平移后得到的图像关于坐标原点成中心对称,求长度最小的d .7.已知向量(sin ,1),(1,cos ),22a b ππθθθ==-<<.(Ⅰ)若a b ⊥,求θ;(Ⅱ)求a b +的最大值.8、已知向量)21,sin (--=→θa m ,)cos ,21(θ=→n .(1)当22=a ,且→→⊥n m 时,求θ2sin 的值; (2)当0=a ,且→m ∥→n 时,求θtan 的值.【专题训练】 一、选择题1.已知→a =(cos40︒,sin40︒),→b =(cos20︒,sin20︒),则→a ·→b = ( )A .1B .32 C .12D .222.将函数y =2sin2x -π2的图象按向量(π2,π2)平移后得到图象对应的解析式是( )A .2cos2xB .-2cos2xC .2sin2xD .-2sin2x3.已知△ABC 中,AB →=a →,AC →=b →,若a →·b →<0,则△ABC 是 ( )A .钝角三角形B .直角三角形C .锐角三角形D .任意三角形 4.设→a =(32,sin α),→b =(cos α,13),且→a ∥→b ,则锐角α为( )A .30︒B .45︒C .60︒D .75︒5.已知→a =(sin θ,1+cosθ),→b =(1,1-cosθ),其中θ∈(π,3π2),则一定有 ( )A .→a ∥→bB .→a ⊥→bC .→a 与→b 夹角为45°D .|→a |=|→b |6.已知向量a →=(6,-4),b →=(0,2),c →=a →+λb →,若C 点在函数y =sin π12x 的图象上,实数λ= ( )A .52B .32C .-52D .-327.设0≤θ≤2π时,已知两个向量OP 1→=(cos θ,sin θ),OP 2→=(2+sin θ,2-cos θ),则向量P 1P 2→长度的最大值是( )A . 2B . 3C .3 2D .2 3 8.若向量→a =(cos α,sin α),→b =(cos β,sin β),则→a 与→b 一定满足( ) A .→a 与→b 的夹角等于α-βB .→a ⊥→bC .→a ∥→bD .(→a +→b )⊥(→a -→b )9.已知向量→a =(cos25︒,sin25︒),→b =(sin20︒,cos20︒),若t 是实数,且→u =→a +t →b ,则|→u |的最小值为 ( )A . 2B .1C .22D .1210.O 是平面上一定点,A 、B 、C 是该平面上不共线的3个点,一动点P 满足:→OP=→OA +λ(→AB +→AC),λ∈(0,+∞),则直线AP 一定通过△ABC 的 ( )A .外心B .内心C .重心D .垂心二、填空题11.已知向量→m =(sin θ,2cos θ),→n =(3,-12).若→m ∥→n ,则sin2θ的值为____________.12.已知在△OAB(O 为原点)中,→OA=(2cos α,2sin α),→OB =(5cos β,5sin β),若→OA·→OB =-5,则S △AOB 的值为_____________.13.已知向量→m =(1,1)向量→n 与向量→m 夹角为3π4,且→m ·→n =-1.则向量→n =__________.三、解答题14.已知向量→m =(sinA,cosA),→n =(3,-1),→m·→n =1,且A 为锐角.(Ⅰ)求角A 的大小;(Ⅱ)求函数f(x)=cos2x +4cosAsinx(x ∈R)的值域.15.在△ABC 中,A 、B 、C 所对边的长分别为a 、b 、c ,已知向量→m =(1,2sinA),→n =(sinA ,1+cosA),满足→m ∥→n ,b +c =3a.(Ⅰ)求A 的大小;(Ⅱ)求sin(B +π6)的值.16.△ABC 的角A 、B 、C 的对边分别为a 、b 、c ,→m =(2b -c ,a),→n =(cosA ,-cosC),且→m⊥→n .(Ⅰ)求角A 的大小;(Ⅱ)当y =2sin 2B +sin(2B +π6)取最大值时,求角B 的大小.17.已知→a =(cosx +sinx ,sinx),→b =(cosx -sinx ,2cosx),(Ⅰ)求证:向量→a 与向量→b 不可能平行;(Ⅱ)若f(x)=→a ·→b ,且x ∈[-π4,π4]时,求函数f(x)的最大值及最小值.【专题训练】参考答案 一、选择题1.B 解析:由数量积的坐标表示知→a ·→b =cos40︒sin20︒+sin40︒cos20︒=sin60︒=32. 2.D 【解析】y =2sin2x -π2→y =2sin2(x +π2)-π2+π2,即y =-2sin2x.3.A 【解析】因为cos ∠BAC =AB →·AC →|AB →|·|AC →|=a →·b→|a →|·|b →|<0,∴∠BAC 为钝角.4.B 【解析】由平行的充要条件得32×13-sin αcos α=0,sin2α=1,2α=90︒,α=45︒.5.B 【解析】→a ·→b =sin θ+|sin θ|,∵θ∈(π,3π2),∴|sin θ|=-sin θ,∴→a ·→b =0,∴→a ⊥→b . 6.A 【解析】c →=a →+λb →=(6,-4+2λ),代入y =sin π12x 得,-4+2λ=sin π2=1,解得λ=52. 7.C 【解析】|P 1P 2→|=(2+sin θ-cos θ)2+(2-cos θ-sin θ)2=10-8cosθ≤3 2.8.D 【解析】→a +→b =(cos α+cos β,sin α+sin β),→a -→b =(cos α+cos β,sin α-sin β),∴(→a +→b )·(→a -→b )=cos 2α-cos 2β+sin 2α-sin 2β=0,∴(→a +→b )⊥(→a -→b ). 9.C 【解析】|→u |2=|→a |2+t 2|→b |2+2t →a ·→b =1+t 2+2t(sin20︒cos25︒+cos20︒sin25︒)=t 2+2t +1=(t +22)2+12,|→u |2 min =12,∴|→u |min =22.10.C 【解析】设BC 的中点为D ,则→AB +→AC =2→AD ,又由→OP =→OA +λ(→AB +→AC),→AP=2λ→AD ,所以→AP 与→AD 共线,即有直线AP 与直线AD 重合,即直线AP 一定通过△ABC 的重心. 二、填空题11.-8349 【解析】由→m ∥→n ,得-12sin θ=23cos θ,∴tan θ=-43,∴sin2θ=2sin θcos θsin 2θ+cos 2θ=2tan θtan 2θ+1=-8349.12.532 【解析】→OA·→OB =-5⇒10cos αco βs +10sin αsin β=-5⇒10cos(α-β)=-5⇒cos(α-β)=-12,∴sin ∠AOB =32,又|→OA|=2,|→OB|=5,∴S △AOB =12×2×5×32=532. 13.(-1,0)或(0,-1) 【解析】设→n =(x ,y),由→m·→n =-1,有x +y =-1 ①,由→m 与→n夹角为3π4,有→m·→n =|→m |·|→n |cos 3π4,∴|→n |=1,则x 2+y 2=1 ②,由①②解得⎩⎨⎧ x=﹣1y=0或⎩⎨⎧x =0y =-1 ∴即→n =(-1,0)或→n =(0,-1) . 三、解答题14.【解】(Ⅰ)由题意得→m·→n =3sinA -cosA =1,2sin(A -π6)=1,sin(A -π6)=12, 由A 为锐角得A -π6=π6,A =π3.(Ⅱ)由(Ⅰ)知cosA =12,所以f(x)=cos2x +2sinx =1-2sin 2x +2sinx =-2(sinx -12)2+32,因为x ∈R ,所以sinx ∈[-1,1],因此,当sinx =12时,f (x )有最大值32.当sinx =-1时,f(x)有最小值-3,所以所求函数f(x)的值域是[-3,32].15.【解】(Ⅰ)由→m ∥→n ,得2sin 2A -1-cosA =0,即2cos 2A +cosA -1=0,∴cosA =12或cosA=-1.∵A 是△ABC 内角,cosA =-1舍去,∴A =π3.(Ⅱ)∵b +c =3a ,由正弦定理,sinB +sinC =3sinA =32,∵B +C =2π3,sinB +sin(2π3-B)=32,∴32cosB +32sinB =32,即sin(B +π6)=32. 16.【解】(Ⅰ)由→m ⊥→n ,得→m·→n =0,从而(2b -c)cosA -acosC =0,由正弦定理得2sinBcosA -sinCcosA -sinAcosC =0 ∴2sinBcosA -sin(A +C)=0,2sinBcosA -sinB =0,∵A 、B ∈(0,π),∴sinB≠0,cosA =12,故A =π3.(Ⅱ)y =2sin 2B +2sin(2B +π6)=(1-cos2B)+sin2Bcos π6+cos2Bsin π6=1+32sin2B -12 cos2B =1+sin(2B -π6).由(Ⅰ)得,0<B <2π3,-π6<2B -π6<7π6,∴当2B -π6=π2,即B =π3时,y 取最大值2.17.【解】(Ⅰ)假设→a ∥→b ,则2cosx(cosx +sinx)-sinx(cosx -sinx)=0,∴2cos 2x +sinxcosx +sin 2x =0,2·1+cos2x 2+12sin2x +1-cos2x2=0,即sin2x +cos2x =-3,∴2(sin2x +π4)=-3,与|2(sin2x +π4)|≤2矛盾,故向量→a 与向量→b 不可能平行.(Ⅱ)∵f(x)=→a ·→b =(cosx +sinx)·(cosx -sinx)+sinx·2cosx =cos 2x -sin 2x +2sinxcosx =cos2x +sin2x =2(22cos2x +22sin2x)=2(sin2x +π4), ∵-π4≤x≤π4,∴-π4≤2x +π4≤3π4,∴当2x +π4=π2,即x =π8时,f(x)有最大值2;当2x +π4=-π4,即x =-π4时,f(x)有最小值-1.。

相关文档
最新文档