题型09 必考的几类初等函数(对数函数、幂函数、对勾函数与双刀函数)(解析版)
高三数学(文)黄金考点总动员:考点06 基本初等函数(指数函数、对数函数、幂函数、二次函数)(含解析)
2019届高三数学33个黄金考点总动员考点6 基本初等函数(指数函数、对数函数、幂函数、二次函数)【考点剖析】1.最新考试说明:1.理解指数幂的概念,理解指数函数的单调性,会解决与指数函数性质相关的问题.2.理解对数的概念及其运算性质,会用换底公式将一般对数转化为自然对数或常用对数;了解对数在简化运算中的作用.3.理解对数函数的概念,能解决与对数函数性质相关的问题.4.结合函数y =x ,y =x 2,y =x 3,y =x ,1y=x的图象,了解它们的变化情况. 2.命题方向预测:1.指数函数的概念、图象与性质是近几年高考的热点.2.通过具体问题考查指数函数的图象与性质,或利用指数函数的图象与性质解决一些实际问题是重点,也是难点,同时考查分类讨论思想和数形结合思想.3.高考考查的热点是对数式的运算和对数函数的图象、性质的综合应用,同时考查分类讨论、数形结合、函数与方程思想.4.关于幂函数常以5种幂函数为载体,考查幂函数的概念、图象与性质,多以小题形式出现,属容易题.5.二次函数的图象及性质是近几年高考的热点;用三个“二次”间的联系解决问题是重点,也是难点.6.题型以选择题和填空题为主,若与其他知识点交汇,则以解答题的形式出现. 3.课本结论总结: 指数与指数函数 1.分数指数幂(1)规定:正数的正分数指数幂的意义是a m n=a >0,m ,n ∈N *,且n >1);正数的负分数指数幂的意义是am n-=(a >0,m ,n ∈N *,且n >1);0的正分数指数幂等于0;0的负分数指数幂没有意义.(2)有理指数幂的运算性质:a r a s=ar +s,(a r )s =a rs ,(ab )r =a r b r,其中a >0,b >0,r ,s ∈Q .2.指数函数的图象与性质对数与对数函数 1.对数的概念如果a x=N (a >0且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中__a __叫做对数的底数,__N __叫做真数. 2.对数的性质与运算法则 (1)对数的运算法则如果a >0且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N ;②log aMN=log a M -log a N ; ③log a M n=n log a M (n ∈R );④log am M n=nmlog a M . (2)对数的性质①a log a N =__N __;②log a a N=__N __(a >0且a ≠1). (3)对数的重要公式 ①换底公式:log b N =a a log Nlog b(a ,b 均大于零且不等于1); ②log a b =1b log a,推广log a b ·log b c ·log c d =log a d . 3.对数函数的图象与性质二次函数与幂函数1.二次函数(1)二次函数解析式的三种形式①一般式:f(x)=ax2+bx+c(a≠0).②顶点式:f(x)=a(x-m)2+n(a≠0).③零点式:f(x)=a(x-x1)(x-x2)(a≠0).(2)二次函数的图象和性质2.幂函数(1)定义:形如y =x α(α∈R )的函数称为幂函数,其中x 是自变量,α是常数. (2)幂函数的图象比较(3)幂函数的性质比较4.名师二级结论:(1)根式与分数指数幂的实质是相同的,分数指数幂与根式能够相互转化,通常利用分数指数幂实行根式的化简运算.(2)指数函数的单调性是由底数a 的大小决定的,所以解题时通常对底数a 按:0<a <1和a >1实行分类讨论.(3)换元时注意换元后“新元”的范围.(4)对数源于指数,指数式和对数式能够互化,对数的性质和运算法则都能够通过对数式与指数式的互化实行证明.(5)解决与对数相关的问题时,(1)务必先研究函数的定义域;(2)注意对数底数的取值范围. (6)对数值的大小比较方法化同底后利用函数的单调性、作差或作商法、利用中间量(0或1)、化同真数后利用图象比较. (7)函数y =f (x )对称轴的判断方法1、对于二次函数y =f (x )对定义域内所有x ,都有f (x 1)=f (x 2),那么函数y =f (x )的图象关于x =x 1+x 22对称.2、对于二次函数y =f (x )对定义域内所有x ,都有f (a +x )=f (a -x )成立的充要条件是函数y =f (x )的图象关于直线x =a 对称(a 为常数).5.课本经典习题:(1)新课标A 版第 70 页,B 组第 2 题指数函数xb y a ⎛⎫= ⎪⎝⎭的图象如图所示,求二次函数2y ax bx =+的顶点的横坐标的取值范围.错误!未找到引用源。
高中特殊函数(取整与超越函数、绝对值与对勾、双刀函数、蛙跳函数)
专题1 对勾函数、双刀函数题型1对勾函数(因其图象类似于耐克标志,所以也称耐克函数。
)双刀函数对勾函数:一般式:y = ax + -(x^O)(a% b>0)Q性质:x①定义域:xe R,xW。
②奇偶性:奇函数;③单调区间:单调递增区间,、因+sj ,单调递减区间:双刀函数:一般式:y = ax + -(x^O)(a %〃异号),性质:x①定义域:xeR,xW。
;②奇偶性:奇函数;③单调区间:当〃>0、〃<0时,在(―s,O)(O, + s)单调递增;当〃<0、〃:>0时,在(―s,O)(O,+8)单调递减;1 .函数y = — 的图象大致是 ( )【解析】等价于分段函数:),= <"r ,选。
jU>l)2 .已知函数/(x)=llgxl,若4 H 〃且/(") = /(〃),则4+〃的取值范围是 【解析】v f(a) = f(b) ,舍去)或,必=1 , .,.4 + b = 4 + 1 >24.函数/(x)=— 的最大值为 ______________x + \ 【解析】/(X)= ―,分母最小值为2,则最大值为:6+不一5…、厂-4x + 55.已知x 2 —,则 /(x)=——■— ___________2 2x-4【解析】/(x) = -(x-2 + —),由对勾曲线或基本不等式可求得最小值是12 x-249 .(2019年新高考江苏卷)在平面直角坐标系xQv 中,P 是曲线y = x +—(x>0)上的一个动点,则点P 到直 x线X+产0的距离的最小值是 o方法二:y =1 —二=一1 ,得切点卜反3夜),贝!14面=4 厂 10 .(2020年新课标全国卷U10)设函数/(工)=/一],则“X)()X人是奇函数,且在(0,+8)单调递增 8.是奇函数,且在(0,+8)单调递减【解析】选A4方法一:设P X,X + — X,则2x + -x>4°C 是偶函数,且在(0,+8)单调递增D 是偶函数,且在(0,+8)单调递减专题2 取整函数与小数函数、绝对值函数、狄克莱克函数、符号函弟题型1取整函数与小数函数。
幂函数、指数函数与对数函数(解析版))
幂函数、指数函数与对数函数知识方法扫描一、指数函数及其性质形如y =a x (a >0,a ≠1)的函数叫作指数函数,其定义域为R ,值域为(0,+∞).当0<a <1时,y =a x 是减函数,当a >1时,y =a x 为增函数,它的图像恒过定点(0,1).二、分数指数幂a 1n=na ,a m n=n a m ,a -n=1an ,a -mn =1na m三、对数函数及其性质对数函数y =log a x (a >0,a ≠1)的定义域为(0,+∞),值域为R ,图像过定点(1,0).它是指数函数y =a x (a >0,a ≠1)的反函数,所有性质均可由指数函数的性质导出.当0<a <1时,y =log a x 为减函数,当a >1时,y =log a x 为增函数.四、对数的运算性质(M >0,N >0)(1)a log M a =M (这是定义);(2)log a (MN )=log M a +log a N ;(3)log a MN=log a M -log a N ;(4)log a M n =n log a M ;(5)log a b =log c blog c a (a ,b ,c >0,a ,c ≠1)(换底公式).由以上性质(4)、(5)容易得到以下两条推论:1)log a mb n =n m log a b ;2)log a b =1log b a.典型例题剖析1已知x 1是方程x +lg x =10的根,x 2是方程x +10x =10的根,求x 1+x 2的值.【解法1】由题意得lg x 1=10-x 110x 2=10-x 2,表明x 1是函数y =lg x 与y =10-x 的交点的横坐标,x 2是函数y =10x 与y =10-x 的交点的横坐标.因为y =lg x 与y =10x 互为反函数,其图像关于y =x 对称,由y =10-x y =x 得,x =5y =5 ,所以x 1+x 22=5,所以x 1+x 2=10.【解法2】构造函数f (x )=x +lg x ,由x 1+lg x 1=10知f x 1 =10,x 2+10x 2=10即10x 2+lg10x 2=10,则f 10x 2 =10,于是f x 1 =f 10x 2 ,又f (x )为(0,+∞)上的增函数,故x 1=10x 2,x 1+x 2=10x 2+x 2=10.【解法3】由题意得x 1=1010-x 110-x 2=10x 2,两式相减有x 1+x 2-10=1010-x 1-10x 2.若x 1+x 2-10>0,则1010-x 1-10x 2>0,得10-x 1>x 2,矛盾;若x 1+x 2-10<0,则1010-x 1-10x 2<0,得10-x 1<x 2,矛盾;而当x 1+x 2=10时,满足题意.【评注】解法1巧妙地利用了数形结合的方法,解法2巧妙地利用了函数的单调性,解法3巧妙地利用了反证法的技巧.2已知a >0,b >0,log9a =log 12b =log 16(a +b ),求ba的值.【解法1】设log 9a =log 12b =log 16(a +b )=k ,则a =9k ,b =12k ,a +b =16k .由于9k ×16k =12k 2故(a +b )a =b 2,解得:b a =1+52(负根舍去).【解法2】设log 9a =log 12b =log 16(a +b )=k ,则a =9k ,b =12k ,a +b =16k .b a =12k 9k =43 k ,而9k +12k =16k,故1+12k 9k =16k 9k ,即43 k 2-43 k -1=0,故b a =43 k =1+52(负根舍去).【评注】对数运算和指数运算互为逆运算,有关对数的运算和处理,往往可以转化为指数的运算和处理.3已知函数f (x )=1x +1+log 13x 2-x,试解不等式f x x -12 >12.【分析】本题为分式不等式与对数不等式混合.初看不易解决,但可以发现该函数在其定义域内单调递减,这是本题的解题关键.【解】易证函数y =f (x )在其定义域(0,2)内是单调减函数.并且f (1)=12,所以原不等式即为f x x -12 >f (1)等价于x x -12 <10<x x -12 <2⇒ x 12<x <1+174或1-174<x <0 .【评注】利用函数单调性解决不易入手的不等式是一种常用方法.4设方程lg (kx )=2lg (x +1)仅有一个实根,求k 的取值范围.【分析】本题要注意函数的定义域.【解法1】当且仅当kx >0①x +1>0②x 2+(2-k )x +1=0③时原方程仅有一个实根,对方程③使用求根公式,得x 1,x 2=12k -2±k 2-4k ④Δ=k 2-4k ≥0⇒k <0或k ≥4.当k <0时,由方程③,得x 1+x 2=k -2<0,x 1x 2=1>0,所以x 1,x 2同为负根.又由方程程④知x 1+1>0,x 2+1<0,所以原方程有一个解x 1.当k =4时,原方程有一个解x =k2-1=1.当k >4时,由方程③,得x 1+x 2=k -2>0,x 1x 2=1>0. 所以x 1,x 2同为正根,且x 1≠x 2,不合题意,舍去.综上所述可得k <0或k =4为所求.【解法2】由题意,方程kx =(x +1)2,也即方程k =x +1x+2在满足关于x 的不等式kx >0x +1>0 的范围内有唯一实数根,以下分两种情况讨论:(1)当k >0时,k =x +1x +2在x >0范围内有唯一实数根,则有k =4;(2)当k <0时,k =x +1x+2在-1<x <0范围内有唯一实数根,则有k <0.综上可得k <0或k =4为所求.【评注】本题实质上是一道一元二次方程问题.5解不等式:log 12(x +3x )>log 64x .【分析】若考虑到去根号,可设x =y 6(y >0),原不等式变为log 12y 3+ y 2 >log 6446=log 2y ,即2log 12y +log 2(y +1)>log 2y ,陷入困境.原不等式即6log 12(x +3x )>log 2x ⇒2log 12x +log 121+x166>log 2x ,设t =log 2x ,则log 12x =1log x12=12log x 2+log x 3,同样陷入困境.下面用整体代换y =log 64x .【解】设y =log 64x ,则x =64y,代人原不等式,有log 128y +4y >y ,8y +4y >12y,23 y +13 y >1,由指数函数的单调性知y =log 64x <1,则0<x <64.故原不等式的解集为(0,64).6已知1<a ≤b ≤c 证明:log a b +log b c +log c a ≤log b a +log c b +log a c .【证法1】注意到log a b +log b c +log c a -log b a +log c b +log a c=ln b ln a +ln c ln b +ln a ln c -ln a ln b+ln b ln c +ln c ln a =ln 2b ln c +ln 2c ln a +ln 2a ln b -ln 2b ln a +ln 2c ln b +ln 2a ln c ln a lnb ln c=-(ln a -ln b )(ln b -ln c )(ln c -ln a )ln a ln b ln c.【证法2】设log b a =x ,log c b =y ,则log a c =1xy ,于是原不等式等价于x +y +1xy ≤1x +1y+xy ,即x 2y +xy 2+1≤y +x +x 2y 2,即xy (x +y )-(x +y )+1-x 2y 2 ≤0,也即(x +y -1-xy )(xy -1)≤0也即(x -1)(y -1)(xy -1)≥0,由1<a ≤b ≤c 知x ≥1,y ≥1,所以(x -1)(y -1)(xy -1)≥0,得证.因为1<a ≤b ≤c ,所以ln a ln b ln c >0,(ln a -ln b )(ln b -ln c )(ln c -ln a )≥0所以log a b +log b c +log c a -log b a +log c b +log a c ≤0即log a b +log b c +log c a ≤log b a +log c b +log a c °【评注】若令x =ln a ,y =ln b ,z =ln c 则原不等式等价于:设0<x ≤y ≤z ,求证:x 2y +y 2z +z 2x ≤xy 2+yz 2+zx 2.7设函数f (x )=|lg (x +1)|,实数a ,b (a <b )满足f (a )=f -b +1b +2,f (10a +6b +21)=4lg2,求a 、b 的值.【分析】利用已知条件构建关于a 、b 的二元方程组进行求解.【解】因为f (a )=f -b +1b +2 ,所以|lg (a +1)|=lg -b +1b +2+1 =lg 1b +2=|lg (b +2)|所以,a +1=b +2或(a +1)(b +2)=1,又因为a <b ,所以a +1≠b +2,所以(a +1)(b +2)=1又由于0<a +1<b +1<b +2,于是0<a +1<1<b +2,所以(10a +6b +21)+1=10(a +1)+6(b +2)=6(b +2)+10b +2>1,从而f (10a +6b +21)=lg 6(b +2)+10b +2=lg 6(b +2)+10b +2,又f (10a +6b +21)=4lg2,所以lg 6(b +2)+10b +2 =4lg2,故6(b +2)+10b +2=16.解得b =-13或b =-1(舍去).把b =-13代故(a +1)(b +2)=1,解得a =-25.所以,a =-25,b =-13.同步训练一、选择题1已知a 、b 是方程log 3x 3+log 27(3x )=-43的两个根,则a +b =().A.1027B.481C.1081D.2881【答案】C .【解析】原方程变形为log 33log 3(3x )+log 3(3x )log 327=-43,即11+log 3x +1+log 3x 3=-43.令1+log 3x =t ,则1t +t 3=-43,解得t 1=-1,t 2=-3.所以1+log 3x =-1或1+log 3x =-3,方程的两根分别为19和181,所以a +b =1081.故选C .2已知函数f (x )=1a x -1+12x 2+bx +6(a ,b 为常数,a >1),且f lglog 81000 =8,则f (lglg2)的值是().A.8 B.4 C.-4 D.-8【答案】B .【解析】由已知可得f lglog 81000 =f lg33lg2=f (-lglg2)=8,又1a -x -1+12=a x 1-a x +12=-1+11-a x +12=-1a x -1-12,令F (x )=f (x )-6,则有F (-x )=-F (x ).从而有f (-lglg2)=F (-lglg2)+6=-F (lglg2)+6=8,即知F (lglg2)=-2,f (lglg2)=F (lglg2)+6=4.3如果f (x )=1-log x 2+log x 29-log x 364,则使f (x )<0的x 的取值范围为().A.0<x <1 B.1<x <83C.x >1D.x >83【答案】B .【解析】显然x >0,且x ≠1.f (x )=1-log x 2+log x 29-log x 364=1-log x 2+log x 3-log x 4=log x 38x .要使f (x )<0.当x >1时,38x <1,即1<x <83;当0<x <1时,38x >1,此时无解.由此可得,使得f (x )<0的x 的取值范围为1<x <83.应选B .4若f (x )=lg x 2-2ax +a 的值域为R ,则a 的取值范围是().A.0<a <1 B.0≤a ≤1 C.a <0或a >1 D.a ≤0或a ≥1【答案】D .【解析】由题目条件可知,(0,+∞)⊆y |y =x 2-2ax +a ,故Δ=(-2a )2-4a ≥0,解得a ≤0或a ≥1.选D .二、填空题5设f (x )=log 3x -4-x ,则满足f (x )≥0的x 的取值范围是.【答案】[3,4].【解析】定义域(0,4].在定义域内f (x )单调递增,且f (3)=0.故f (x )≥0的x 的取值范围为[3,4].6设0<a <1,0<θ<π4,x =(sin θ)log asin θ,y =(cos θ)log atan θ,则x 与y 的大小关系为.【答案】x <y .【解析】根据条件知,0<sin θ<cos θ<1,0<sin θ<tan θ<1,因为0<a <1,所以f (x )=log a x 为减函数,所以log a sin θ>log a tan θ>0,于是x =(sin θ)log a sin θ<(sin θ)log a tan θ<(cos θ)log a tan θ=y .7设f (x )=12x +5+lg 1-x 1+x ,则不等式f x x -12<15的解集为.【答案】1-174,0 ∪12,1+174.【解析】原不等式即为f x x -12<f (0).因为f (x )的定义域为(-1,1),且f (x )为减函数.所以-1<x x -12 <1x x -12 >0.解得x ∈1-174,0∪12,1+174.8设f (x )=11+2lg x +11+4lg x +11+8lg x ,则f (x )+f 1x =.【答案】3.【解析】f (x )+f 1x =11+2lg x +11+4lg x +11+8lg x +11+2-lg x +11+4-lg x +11+8-lg x =3.三、解答题9已知函数f (x )=a x +3a (a >0,a ≠1)的反函数是y =f -1(x ),而且函数y =g (x )的图像与函数y =f -1(x )的图像关于点(a ,0)对称.(1)求函数y =g (x )的解析式;(2)若函数F (x )=f -1(x )-g (-x )在x ∈[a +2,a +3]上有意义,求a 的取值范围.【解析】(1)由f (x )=a x +3a (a >0,a ≠1),得f -1(x )=log a (x -3a ).又函数y =g (x )的图像与函数y =f -1(x )的图像关于点(a ,0)对称,则g (a +x )=-f -1(a -x ),于是,g (x )=-f -1(2a -x )=-log a (-x -a ),(x <-a ).(2)由(1)的结论,有F (x )=f -1(x )-g (-x )=log a (x -3a )+log a (x -a ).要使F (x )有意义,必须满足x -3a >0,x -a >0. 又a >0,故x >3a .由题设F (x )在x ∈[a +2,a +3]上有意义,所以a +2>3a ,即a <1.于是,0<a <1.10设f (x )=log a (x -2a )+log a (x -3a ),其中a >0且a ≠1.若在区间[a +3,a +4]上f (x )≤1恒成立,求a 的取值范围.【解析】f (x )=log a x 2-5ax +6a 2=log a x -5a 2 2-a 24.由x -2a >0x -3a >0, 得x >3a ,由题意知a +3>3a ,故a <32,从而(a +3)-5a 2=-32(2-a )>0,故函数g (x )=x -5a 2 2-a 24在区间[a +3,a +4]上单调递增.若0<a <1,则f (x )在区间[a +3,a +4]上单调递减,所以f (x )在区间[a +3,a +4]上的最大值为f (a +3)=log a 2a 2-9a +9 .在区间[a +3,a +4]上不等式f (x )≤1恒成立,等价于不等式loglog a 2a 2-9a +9 ≤1恒成立,从而2a 2-9a +9≥a ,解得a ≥5+72或a ≤5-72.结合0<a <1,得0<a <1.若1<a <32,则f (x )在区间[a +3,a +4]上单调递增,所以f (x )在区间[a +3,a +4],上的最大值为f (a +4)=log a 2a 2-12a +16 .在区间[a +3,a +4]上不等式f (x )≤1恒成立,等价于不等式log a 2a 2-12a +16 ≤1恒成立,从而2a 2-12a +16≤a ,即2a 2-13a +16≤0,解得13-414≤a ≤13+414.易知13-414>32,所以不符合.综上所述,a 的取值范围为(0,1).11解方程组x x +y=y 12y x +y =x 3,(其中x ,y ∈R * .【解析】两边取对数,则原方程组可化为(x +y )lg x =12lg y ①(x +y )lg y =3lg x ②把式①代入式②,得(x +y )2lg x =36lg x ,所以(x +y )2-36 lg x =0.由lg x =0,得x =1;代入式①,得y =1.由(x +y )2-36=0x ,y ∈R * 得x +y =6.代入式①得lg x =2lg y ,即x =y 2,所以y 2+y -6=0.又y >0,所以y =2,x =4.所以方程组的解为x 1=1y 1=1 ,x 2=4y 2=2 .12已知f (x )=lg (x +1)-12log 3x .(1)解方程f (x )=0;(2)求集合M =n f n 2-214n -1998 ≥0,n ∈Z 的子集个数.【解析】(1)任取0<x 1<x 2,则f x 1 -f x 2 =lg x 1+1 -lg x 2+1 -12log 3x 1-log 3x 2=lgx 1+1x 2+1-12log 3x 1x 2=lg x 1+1x 2+1-log 9x 1x 2,因为x 1+1x 2+1>x 1x 2,所以lg x 1+1x 2+1>lg x 1x 2.故f x 1 -f x 2 =lg x 1+1x 2+1-log 9x 1x 2>lg x 1x 2-lg x1x 2lg9,因为0<lg9<1,lg x 1x 2<0,所以f x 1 -f x 2 >lg x 1x 2-lg x1x 2=0,f (x )为(0,+∞)上的减函数,注意到f (9)=0,当x >9时,f (x )<f (9)=0;当<x <9时,f (x )>f (9)=0,所以f (x )=0有且仅有一个根x =9.(2)由f n 2-214n -1998 ≥0⇒f n 2-214n -1998 ≥f (9)所以n 2-214n -1998≤9n 2-214n -1998>0 ⇔n 2-214n -2007≤0n 2-214n -1998>0⇔(n -223)(n +9)≤0(n -107)2>1998+1072=13447>1152⇔-9≤n ≤223n >222或n <-8 ⇔⇔-9≤n ≤223n ≥223或n ≤-9 ,所以n =223或n =-9,M ={-9,223},M 的子集的个数是4.13已知a >0,a ≠1,试求使得方程log a (x -ak )=log a x 2-a 2 有解的k 的取值范围.【解析】由对数性质知,原方程的解x 应满足(x -ak )2=x 2-a 2x -ak >0x 2-a 2>0(1)(2)(3)若式(1)、式(2)同时成立,则式(3)必成立,故只需要解(x -ak )2=x 2-a 2x -ak >0.由式(1)可得2kx =a 1+k 2(4)当k =0时,式(4)无解;当k ≠0时,式(4)的解是x =a 1+k 2 2k ,代人式(2),得1+k 22k>k .若k <0,则k 2>1,所以k <-1;若k >0,则k 2<1,所以0<k <1.综上所述,当k ∈(-∞,-1)∪(0,1)时,原方程有解.14已知0.301029<lg2<0.301030,0.477120<lg3<0.477121,求20001979的首位数字.【解析】lg20001979=1979lg2000=1979(3+lg2).所以6532.736391<lg20001979<6532.73837.故20001979为6533位数,由lg5=1-lg2,lg6=lg2+lg3,得0.698970<lg5<0.6989710.778149<lg6<0.778151⇒lg5<0.736391<0.73837<lg6,说明20001979的首位数字是5.15已知3a +13b =17a ,5a +7b =11b ,试判断实数a 与b 的大小关系,并证明之.【解析】令a =1,则13b =14,5+7b =11b ,可见b >1.猜想a <b .下面用反证法证明:若a ≥b ,则13a ≥13b ,5a ≥5b ,所以17a =3a +13b ≤3a +13a ,11b =5a +7b ≥5b +7b ,即317 a +1317 a ≥1,511 b +711 b ≤1,而函数f (x )=317 x +1317 x和g (x )=511 x +711 x在R 上均为减函数,且f (1)=317+1317=1617<1≤f (a ),g (1)=511+711=1211>1≥g (b ).所以a <1,b >1.这与a ≥b 矛盾,故a <b .16解不等式log 2x 12+3x 10+5x 8+3x 6+1 <1+log 2x 4+1 .【解析】原不等式等价于log 2x 12+3x 10+5x 8+3x 6+1 <log 22x 4+2 .由于y =log 2x 为单调递增函数,于是x 12+3x 10+5x 8+3x 6+1<2x 4+2,两端同时除以x 6,并整理得2x2+1x 6>x 6+3x 4+3x 2+1+2x 4+2=x 2+1 3+2x 2+1 构造函数g (t )=t 3+2t ,则上述不等式转化为g1x2>g x 2+1 .显然g (t )=t 3+2t 在R 上为增函数.于是以上不等式等价于1x2>x 2+1,即x 2 2+x 2-1<0,解得x 2<5-12.故原不等式的解集为-5-12,5-12.。
六类初等函数总结
对数函数
常用对数:lg(x)=log10x(10 为底数)。 自然对数:ln(x)=logex(e 为底数)
底真同对数正,底真异对数负
当 0<a<1,0<b<1 时 y=logab>0;
当 0<a<1,b>1 时 y=logab<0
负数和 0 没有对数
当 a>1,b>1 时 y=logab>0
当 a>1,0<b<1 时 y=logab<0
函数 是反正弦 arcsin x,反余弦 arccos x,反正切 arctan x, 反余切 arccot x,反正割 arcsec x,反余割 arccsc x 这些函数的统称,各自表示 其正弦、余弦、正切、余切 ,
正割,余割为 x 的角 是指值不发生改变(即是常
数)的函数
详见三角函 数模块
详见反三角 函数模块
[-1,1]
[0,π]
减 非奇非偶
反正切函数
y=arc tan x
R
[-π/2,π/2] 增 奇函数
反余切函数 R
y=arc cot x
(0,π)
减 奇函数
转换公式
指数函数
函数
a>1
0<a<1
图像
定义域 值域 性质 运算 法则
表达 方式
性质
R (0,+∞) 过点(0,1) 在 R 上是增函数
R (0,+∞) 过点(0,1) 在 R 上是减函数
y=cot x
(k∈Z)
余
正割函数 y=sec x
x=kπ(k∈Z)
(kπ+π/2,0) (k∈Z)
届高三数学(理)二轮复习 基本初等函数(指数函数、对数函数、幂函数、二次函数)(解析版)
基本初等函数(指数函数、对数函数、幂函数、二次函数)【考点剖析】1.最新考试说明:1.理解指数幂的概念,理解指数函数的单调性,会解决与指数函数性质有关的问题.2.理解对数的概念及其运算性质,会用换底公式将一般对数转化为自然对数或常用对数;了解对数在简化运算中的作用.3.理解对数函数的概念,能解决与对数函数性质有关的问题.4.结合函数y=x,y=x2,y=x3,y=x 12,1y=x的图象,了解它们的变化情况.2.命题方向预测:1.指数函数的概念、图象与性质是近几年高考的热点.2.通过具体问题考查指数函数的图象与性质,或利用指数函数的图象与性质解决一些实际问题是重点,也是难点,同时考查分类讨论思想和数形结合思想.3.高考考查的热点是对数式的运算和对数函数的图象、性质的综合应用,同时考查分类讨论、数形结合、函数与方程思想.4.关于幂函数常以5种幂函数为载体,考查幂函数的概念、图象与性质,多以小题形式出现,属容易题.5.二次函数的图象及性质是近几年高考的热点;用三个“二次”间的联系解决问题是重点,也是难点.6.题型以选择题和填空题为主,若与其他知识点交汇,则以解答题的形式出现.1.课本结论总结:指数与指数函数1.分数指数幂(1)规定:正数的正分数指数幂的意义是a mn mn a= (a>0,m,n∈N*,且n>1);正数的负分数指数幂的意义是1amnn ma-= (a>0,m,n∈N*,且n>1);0的正分数指数幂等于0;0的负分数指数幂没有意义.(2)有理指数幂的运算性质:a r a s=a r+s,(a r)s=a rs,(ab)r=a r b r,其中a>0,b>0,r,s∈Q. 2.指数函数的图象与性质对数与对数函数 1.对数的概念如果a x=N (a >0且a ≠1),那么数x 叫做以a 为底N 的对数,记作x =log a N ,其中__a __叫做对数的底数,__N __叫做真数. 2.对数的性质与运算法则 (1)对数的运算法则如果a >0且a ≠1,M >0,N >0,那么 ①log a (MN )=log a M +log a N ;②log aMN=log a M -log a N ; ③log a M n=n log a M (n ∈R );④log am M n=nmlog a M . (2)对数的性质①a log a N =__N __;②log a a N=__N __(a >0且a ≠1). (3)对数的重要公式 ①换底公式:log b N =a a log Nlog b(a ,b 均大于零且不等于1); ②log a b =1b log a,推广log a b ·log b c ·log c d =log a d . 3.对数函数的图象与性质二次函数与幂函数1.二次函数(1)二次函数解析式的三种形式①一般式:f(x)=ax2+bx+c(a≠0).②顶点式:f(x)=a(x-m)2+n(a≠0).③零点式:f(x)=a(x-x1)(x-x2)(a≠0).(2)二次函数的图象和性质解析式f(x)=ax2+bx+c(a>0)f(x)=ax2+bx+c(a<0) 图象定义域(-∞,+∞)(-∞,+∞)值域244ac ba⎡⎫-+∞⎪⎢⎣⎭,244ac ba⎛⎤--∞⎥⎝⎦,单调性在x∈2ba⎛⎤-∞⎥⎝⎦,-上单调递减;在x∈2ba⎡⎫-+∞⎪⎢⎣⎭,上单调递增在x∈2ba⎡⎫-+∞⎪⎢⎣⎭,上单调递减在x∈2ba⎛⎤-∞⎥⎝⎦,-上单调递增对称性函数的图象关于x =2ba-对称2.幂函数(1)定义:形如y =x α(α∈R )的函数称为幂函数,其中x 是自变量,α是常数. (2)幂函数的图象比较(3)幂函数的性质比较特征函数 性质 y =x y =x 2 y =x 312y x =y =x -1定义域 R R R [0,+∞) {x |x ∈R 且x ≠0} 值域 R [0,+∞) R [0,+∞) {y |y ∈R 且y ≠0} 奇偶性奇函数偶函数奇函数非奇非偶函数奇函数单调性增x ∈[0,+∞)时,增;x ∈(-∞,0]时,减增增x ∈(0,+∞) 时,减;x ∈(-∞,0)时,减4.名师二级结论:(1)根式与分数指数幂的实质是相同的,分数指数幂与根式可以相互转化,通常利用分数指数幂进行根式的化简运算.(2)指数函数的单调性是由底数a 的大小决定的,因此解题时通常对底数a 按:0<a <1和a >1进行分类讨论.(3)换元时注意换元后“新元”的范围.(4)对数源于指数,指数式和对数式可以互化,对数的性质和运算法则都可以通过对数式与指数式的互化进行证明.(5)解决与对数有关的问题时,(1)务必先研究函数的定义域;(2)注意对数底数的取值范围. (6)对数值的大小比较方法化同底后利用函数的单调性、作差或作商法、利用中间量(0或1)、化同真数后利用图象比较. (7)函数y =f (x )对称轴的判断方法1、对于二次函数y =f (x )对定义域内所有x ,都有f (x 1)=f (x 2),那么函数y =f (x )的图象关于x =x 1+x 22对称.2、对于二次函数y =f (x )对定义域内所有x ,都有f (a +x )=f (a -x )成立的充要条件是函数y =f (x )的图象关于直线x =a 对称(a 为常数). 5.课本经典习题:(1)新课标A 版第 70 页,B 组第 2 题指数函数xb y a ⎛⎫= ⎪⎝⎭的图象如图所示,求二次函数2y ax bx =+的顶点的横坐标的取值范围.答案:由图可知指数函数xb y a ⎛⎫= ⎪⎝⎭是减函数,所以01b a <<.而二次函数2y ax bx =+的顶点的横坐标为122b b a a-=-⋅, 所以1022b a -<-<,即二次函数2y ax bx =+的顶点的横坐标的取值范围是102⎛⎫- ⎪⎝⎭,. 【经典理由】有效把指数函数和二次函数相结合 (2)新课标A 版第 60 页,B 组第 4 题 设31212,,x x y ay a +-==其中0, 1.a a >≠且确定x 为何值时,有:12;(1)y y = 12(2).y y >【解析】(1)3x +1=-2x 时,得x =-15; oyx1(2)1a >时,x y a =单调递增,由于12y y >,得3x +1>-2x 得x >-15, 01a <<,x y a =单调递减,由于12y y >,得3x +1<-2x 解得x <-15.【经典理由】根据a 的取值进行分类讨论 (3)新课标A 版第 72 页,例8 比较下列各组数中两个数的大小: (1)log 2 3 . 4 与 log 2 8 . 5; (2)log 0 . 3 1 . 8 与 log 0 . 3 2 . 7; (3)log a 5 . 1 与 log a 5 . 9 (0a >且1a ≠).解:(1)∵ y = log 2 x 在 ( 0 , + ∞) 上是增函数且 3 . 4<8 . 5, ∴ log 2 3 . 4 < log 2 8 . 5 ;(2)∵ y = log 0 . 3 x 在 ( 0 , + ∞)上是减函数且 1 . 8<2 . 7, ∴log 0 . 3 1 . 8>log 0 . 3 2 . 7;(3)解:当1a >时,∵ y = log a x 在( 0 , + ∞) 上是增函数且5 . 1<5 . 9, ∴ log a 5 . 1<log a 5 . 9,当0<a <1时,∵ y = log a x 在 ( 0 , + ∞) 上是减函数且5 . 1<5 . 9, ∴ l og a 5 . 1>log a 5 . 9 .【经典理由】以对数函数为载体,考查对数运算和对数函数的图象与性质的应用 (4)新课标A 版第 822 页,A 组第10题已知幂函数()y f x =的图象过点222(,),试求出此函数的解析式,并作出图像,判断奇偶性、单调性.【分析】根据幂函数的概念设()nf x x =,将点的坐标代入即可求得n 值,从而求得函数解析式.要判断函数的奇偶性我们可以根据函数奇偶性的定义判断函数的奇偶性,判断函数图象在(0,+∞)的单调性,进而画出函数的图象.【解析】设()nf x x =,因为幂函数()y f x =的图象过点222(,),212,22n n ∴=∴=-, 这个函数解析式为 12y x -=.定义域为(0,+∞),它不关于原点对称, 所以,y =f (x )是非奇非偶函数.当x >0时,f (x )是单调减函数,函数的图象如图.【经典理由】本题通过待定系数法求幂函数解析式、解指数方程的解法、奇(偶)函数性、幂函数图象考查学生对幂函数有关知识的掌握程度和对知识的综合应用能力 6.考点交汇展示:(1)基本初等函数与集合交汇例1【河北省“五个一名校联盟”2015高三教学质量监测(一)1】设集合{}023A 2<+-=x x x ,{}822B <<=x x ,则( )A.A =BB.A ⊆BC.A ⊇BD.A ⋂B φ= 【答案】B考点:1.一元二次不等式解法;2.指数不等式解法;3.集合间关系与集合运算. 例2 设集合}032{2<--=x x x M ,}1log {2<=x x N ,则M N ⋂等于 (A )}31{<<-x x (B )}21{<<-x x (C )}10{<<x x (D )}20{<<x x 【答案】D【解析】M =}31{<<-x x ,N =}20{<<x x ,故M N ⋂=}20{<<x x 考点:1.简单不等式的解法;2.对数函数的性质;3.集合的运算. (2)基本初等函数与基本不等式交汇例1【成都石室中学2014届高三上期“一诊”模拟考试(一)】已知二次函数)R (4)(2∈+-=x c x ax x f的值域为)0[∞+,,则ac 91+的最小值为 . 【答案】3【解析】由题意得:191916404,23ac ac c a c a∆=-=⇒=∴+≥⋅=. 考点:1.二次函数的图象和性质;2.基本不等式.【考点分类】热点1 指数函数、对数函数1. 【2015高考四川,理8】设a ,b 都是不等于1的正数,则“333a b >>”是“log 3log 3a b <”的 ( ) (A )充要条件 (B )充分不必要条件 (C )必要不充分条件 (D )既不充分也不必要条件 【答案】B考点:1.充要条件;2.指数函数、对数函数的性质. 2. 设0,1a a >≠且,函数1()log 1ax f x x -=+在(1,)+∞单调递减,则()f x ( ) A .在(,1)-∞-上单调递减,在(1,1)-上单调递增 B .在(,1)-∞-上单调递增,在(1,1)-上单调递减 C .在(,1)-∞-上单调递增,在(1,1)-上单调递增 D .在(,1)-∞-上单调递减,在(1,1)-上单调递减 【答案】A 【解析】由11221111x x y x x x -+-===-+++的图像可知,函数在在(,1)-∞-上单调递增,在(1,1)-上单调递减,在(1,)+∞单调递增,因函数1()log 1ax f x x -=+在(1,)+∞单调递减,故根据同增异减可知,01,a <<故答案为A .考点:1.对数函数的性质;2.复合函数的单调性. 3.【2014辽宁高考理第3题】已知132a -=,21211log ,log 33b c ==,则( )A .a b c >>B .a c b >>C .c a b >>D .c b a >>【答案】C 【解析】试题分析:1032122110221,log 0,log log 31,33a b c -<=<==<==>所以c a b >>,故选C . 考点:1.指数对数化简;2.不等式大小比较.4. 下列函数中,在(0)+∞,内单调递减,并且是偶函数的是( ) A .2y x = B .1y x =+C .lg ||y x =-D .2x y =【答案】C考点:函数奇偶性与单调性. 【方法规律】1.求解与指数函数有关的复合函数问题,首先要熟知指数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断,最终将问题归纳为内层函数相关的问题加以解决.2.对数式的化简与求值的常用思路(1)先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后正用对数运算法则化简合并.(2)先将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、商、幂再运算.3.比较对数值大小时若底数相同,构造相应的对数函数,利用单调性求解;若底数不同,可以找中间量,也可以用换底公式化成同底的对数再比较.4.利用对数函数的性质,求与对数函数有关的复合函数的值域和单调性问题,必须弄清三方面的问题,一是定义域,所有问题都必须在定义域内讨论;二是底数与1的大小关系;三是复合函数的构成,即它是由哪些基本初等函数复合而成的. 【解题技巧】1.图像题要注意根据图像的单调性和特殊点判断2.指数形式的几个数字比大小要注意构造相应的指数函数和幂函数3.判断指数函数图象上底数大小的问题,可以先通过令x =1得到底数的值再进行比较. 4.指数函数y =a x(a>0,a ≠1)的性质和a 的取值有关,一定要分清a>1与0<a<1. 5.对和复合函数有关的问题,要弄清复合函数由哪些基本初等函数复合而成. 【易错点睛】1.求解复合函数的单调性要注意“同增异减”的应用2.涉及到对数函数的运算是要首先考虑其定义域3.恒成立问题一般与函数最值有关,要与方程有解区别开来.4.复合函数的问题,一定要注意函数的定义域.5.对可化为a 2x+b ·a x +c =0或a 2x +b ·a x+c ≥0 (≤0)形式的方程或不等式,常借助换元法解决,但应注意换元后“新元”的范围.6.在运算性质log a M α=αlog a M 中,要特别注意条件,在无M >0的条件下应为log a M α=αlog a |M |(α∈N +,且α为偶数).7.解决与对数函数有关的问题时需注意两点:(1)务必先研究函数的定义域;(2)注意对数底数的取值 例1:方程03241=--+x x的解是_________.【答案】3log 2=x【解析】0322)2(2=-⋅-x x ,0)32)(12(=-+x x ,32=x,3log 2=x . 【易错点】应用换元法的时候要注意选取合适的元,且要注意元的取值范围 例2:设a >0且a ≠1,函数f (x )=a lg(x 2-2x +3)有最大值,则不等式log a (x 2-5x +7)>0的解集为________.【答案】{x |2<x <3}【解析】∵函数y =lg(x 2-2x +3)有最小值,f (x )=a lg(x 2-2x +3)有最大值,∴0<a <1.∴由log a (x 2-5x +7)>0,得0<x 2-5x +7<1, 解得2<x <3.∴不等式log a (x 2-5x +7)>0的解集为{x |2<x <3}.【易错点】指数函数和对数函数中注意讨论底数a 的大小,复合函数的单调性往往也和a 的取值有关 热点2 幂函数、二次函数1. 【2015高考天津,理8】已知函数()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩ 函数()()2g x b f x =-- ,其中b R ∈,若函数()()y f x g x =- 恰有4个零点,则b 的取值范围是( )(A )7,4⎛⎫+∞⎪⎝⎭ (B )7,4⎛⎫-∞ ⎪⎝⎭ (C )70,4⎛⎫ ⎪⎝⎭ (D )7,24⎛⎫⎪⎝⎭【答案】D考点:求函数解析、函数与方程思、数形结合.2.【2014高考江苏卷第10题】已知函数2()1f x x mx =+-,若对于任意的[],1x m m ∈+都有()0f x <,则实数m 的取值范围为 . 【答案】2(,0)2-【解析】据题意222()10,(1)(1)(1)10,f m m m f m m m m ⎧=+-<⎪⎨+=+++-<⎪⎩解得202m -<<.考点:二次函数的性质.3.【2014浙江高考理第15题】设函数()⎪⎩⎪⎨⎧≥-<+=0,0,22x x x x x x f 若()()2≤a f f ,则实数a 的取值范围是______【答案】2a ≤考点:1.分段函数;2.二次函数的性质.4.【2014高考上海理科第9题】若2132)(x x x f -=,则满足0)(<x f 的x 取值范围是 . 【答案】(0,1)【解析】根据幂函数的性质,由于1223<,所以当01x <<时2132x x <,当1x >时,2132x x >,因此()0f x <的解集为(0,1). 考点:幂函数的性质. 【方法规律】1.二次函数在闭区间上的最值与抛物线的开口方向、对称轴位置、闭区间三个要素有关;2.常结合二次函数在该区间上的单调性或图象求解,在区间的端点或二次函数图象的顶点处取得最值.二次函数、二次方程、二次不等式之间可以相互转化.一般规律(1)在研究一元二次方程根的分布问题时,常借助于二次函数的图象数形结合来解,一般从①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.(2)在研究一元二次不等式的有关问题时,一般需借助于二次函数的图象、性质求解.3.幂函数y =x α的图象与性质由于α的值不同而比较复杂,一般从两个方面考查(1)α的正负:α>0时,图象过原点和(1,1),在第一象限的图象上升;α<0时,图象不过原点,在第一象限的图象下降,反之也成立.(2)曲线在第一象限的凹凸性:α>1时,曲线下凸;0<α<1时,曲线上凸;α<0时,曲线下凸.4.二次函数、二次方程、二次不等式间相互转化的一般规律:(1)在研究一元二次方程根的分布问题时,常借助于二次函数的图象数形结合来解,一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.(2)在研究一元二次不等式的有关问题时,一般需借助于二次函数的图象、性质求解.5.幂函数y=xα(α∈R)图象的特征α>0时,图象过原点和(1,1),在第一象限的图象上升;α<0时,图象不过原点,在第一象限的图象下降,反之也成立.【解题技巧】2.做二次函数类型题是注意数形结合的应用,画出函数的草图能帮助我们理清思路3.二次函数中如果含有参数,往往要进行分类讨论3.对于函数y=ax2+bx+c,要认为它是二次函数,就必须满足a≠0,当题目条件中未说明a≠0时,就要讨论a=0和a≠0两种情况.4.幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图象最多只能同时出现在两个象限内;如果幂函数图象与坐标轴相交,则交点一定是原点.【易错点睛】1.注意幂函数与指数函数的联系与区别2.幂函数的增减与α的关系3.对于函数y=ax2+bx+c,要认为它是二次函数,就必须满足a≠0,当题目条件中未说明a≠0时,就要讨论a=0和a≠0两种情况.例如图是函数mny x(m、n∈N*,m、n互质)的图象,则下列判断正确的是________.①m、n是奇数,且mn<1②m是偶数,n是奇数且mn>1③m是偶数,n是奇数且mn<1④m是奇数,n是偶数且mn>1解析:将分数指数式化为根式y=n m x,由定义域为R,值域为[0,+∞)知n为奇数,m为偶数,又由幂函数y=xα,当α>1时,图象在第一象限的部分下凸,当0<α<1时,图象在第一象限的部分上凸,故③正确.答案:③【易错点】幂函数的单调性和a有关,注意a与0和1的比较【热点预测】1.函数1222)21()(--+-=m mx x x f 的单调增区间与值域相同,则实数m 的取值为( )A .2-B .2C .1-D .1【答案】B【解析】函数1222)21()(--+-=m mx x x f 的单调增区间为[,),m +∞当x m =为函数的最小值,故有222211()(), 2.2m m m f m m m -+--==∴=2.函数()()130,1x f x a a a -=+>≠且的图象过一个定点P ,且点P 在直线()100,0mx ny m n +-=>>上,则14m n+的最小值是( ) A.12B.13C.24D.25【答案】D3.已知函数⎩⎨⎧≥-<+--=)0)(1()0(2)(2x x f x a x x x f ,且函数x x f y -=)(恰有3个不同的零点,则实数a 的取值范围是( )A. ),0(+∞B. )0,1[-C. ),1[+∞-D. ),2[+∞- 【答案】C 【解析】222(1)1y x x a x a =--+=-+++,其顶点为(1,1)A a -+,点(0,1)C a +在函数图象上,而点(0,)B a 不在函数图象上.结合图形可知,当1a ≥-,函数x x f y -=)(恰有3个不同的零点.xy–1–2–31234–1–2–3–4–512aOxy–1–2–31234–1–2–3–4–512BOAC4.已知函数的值域是,则实数的取值范围是 ( )A .;B .;C .;D ..【答案】C5.已知函数是定义在实数集上的以2为周期的偶函数,当时,.若直线与函数的图像在内恰有两个不同的公共点,则实数的值是( )A .或;B .0;C .0或;D .0或.【答案】D【解析】根据已知可得函数2()(2),[21,21),f x x k x k k k Z =-∈-+∈,在直角坐标系中作出它的图象,如图,再作直线y x a =+,可见当直线y x a =+与抛物线2y x =相切时,或者直线y x a =+过原点时,符合题意,此时14a =-或0a =.6.【河南省安阳一中2015届高三第一次月考】设函数32()log x f x a x+=-在区间(1,2)内有零点,则实数a 的取值范围是( ) A .3(1,log 2)-- B .3(0,log 2)C .3(log 2,1)D .3(1,log 4)【答案】C7.【北京市重点中学2015届高三8月开学测试】函数()122log 1xf x x =-的零点个数为( )A.1B.2C. 3D.4 【答案】B. 【解析】试题分析:令()0f x =,则122log 10x x -=,即121log ()2xx =,如图,分别作出12()|log |g x x =与1()()2x h x =的图象,则可知有两个交点,即零点个数为两个.8.【2014天津高考理第4题】函数()()212log 4f x x =-的单调递增区间是 ( )(A )()0,+∞ (B )(),0-∞ (C )()2,+∞ (D )(),2-∞- 【答案】D .9.【2015高考浙江,理12】若4log 3a =,则22a a-+= .【答案】334. 【解析】∵3log 4=a ,∴3234=⇒=aa,∴33431322=+=+-aa. 10.【2015高考上海,理7】方程()()1122log 95log 322x x ---=-+的解为 .【答案】2【解析】设13,(0)x t t -=>,则2222log (5)log (2)254(2)0t t t t -=-+⇒-=-> 21430,5333112x t t t t x x -⇒-+=>⇒=⇒=⇒-=⇒=11.已知函数()()1,0112log ≠>+--=a a x mxm x f a 是奇函数,则函数()x f y =的定义域为【答案】(1,1)- 【解析】本题定义域不确定,不要用奇函数的必要条件(0)0f =来求参数m ,而就根据奇函数的定义有()()0f x f x +-=,即2121log log 011aa m mx m mxx x ---++=+-+,化简得22(1)4(1)m x m m -=-恒成立,所以1m =,则1()log 1ax f x x -=+.由101xx ->+,解得11x -<<. 12.【2015高考湖南,理15】已知32,(),x x af x x x a⎧≤=⎨>⎩,若存在实数b ,使函数()()g x f x b =-有两个零点,则a 的取值范围是 . 【答案】(,0)(1,)-∞⋃+∞.13.【2015高考四川,理15】已知函数xx f 2)(=,ax x x g +=2)((其中R a ∈).对于不相等的实数21,x x ,设2121)()(x x x f x f m --=,2121)()(x x x g x g n --=.现有如下命题:(1)对于任意不相等的实数21,x x ,都有0>m ;(2)对于任意的a 及任意不相等的实数21,x x ,都有0>n ; (3)对于任意的a ,存在不相等的实数21,x x ,使得n m =; (4)对于任意的a ,存在不相等的实数21,x x ,使得n m -=. 其中的真命题有 (写出所有真命题的序号). 【答案】①④ 【解析】设11221122(,()),(,()),(,()),(,())A x f x B x f x C x g x D x g x . 对(1),从2xy =的图象可看出,0AB m k =>恒成立,故正确.对(2),直线CD 的斜率可为负,即0n <,故不正确.对(3),由m=n 得1212()()()()f x f x g x g x -=-,即1122()()()()f x g x f x g x -=-. 令2()()()2xh x f x g x x ax =-=--,则()2ln 22xh x x a '=--.由()0h x '=得:2ln 22x x a =+,作出2ln 2,2xy y x a ==+的图象知,方程2ln 22x x a =+不一定有解,所以()h x 不一定有极值点,即对于任意的a ,不一定存在不相等的实数21,x x ,使得12()()h x h x =,即不一定存在不相等的实数21,x x ,使得n m =.故不正确.对(4),由m=-n 得1221()()()()f x f x g x g x -=-,即1122()()()()f x g x f x g x +=+. 令2()()()2xh x f x g x x ax =+=++,则()2ln 22xh x x a '=++.由()0h x '=得:2ln 22x x a =--,作出2ln 2,2xy y x a ==--的图象知,方程2ln 22x x a =--必一定有解,所以()h x 一定有极值点,即对于任意的a ,一定存在不相等的实数21,x x ,使得12()()h x h x =,即一定存在不相等的实数21,x x ,使得m n =-.故正确. 所以(1)(4)14.【2015高考浙江,理18】已知函数2()(,)f x x ax b a b R =++∈,记(,)M a b 是|()|f x 在区间[1,1]-上的最大值.(1)证明:当||2a ≥时,(,)2M a b ≥;(2)当a ,b 满足(,)2M a b ≤,求||||a b +的最大值. 【答案】(1)详见解析;(2)3.||3a b -≤,由||,0||||||,0a b ab a b a b ab +≥⎧+=⎨-<⎩,得||||3a b +≤,当2a =,1b =-时,||||3a b +=,且2|21|x x +-在[1,1]-上的最大值为2,即(2,1)2M -=,∴||||a b +的最大值为3.。
【高考数学考点预测】指数函数对数函数幂函数二次函数思维方法总结及15类常考题型归纳(新高考)原卷版
1.指数幂的运算首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算,但应注意:(1)必须同底数幂相乘,指数才能相加;(2)运算的先后顺序.2.当底数是负数时,先确定符号,再把底数化为正数.3.运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数.4.对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换得到.特别地,当底数a与1的大小关系不确定时应注意分类讨论.5.有关指数方程、不等式问题的求解,往往利用相应的指数型函数图象,数形结合求解.6.比较指数式的大小的方法是:(1)能化成同底数的先化成同底数幂,再利用单调性比较大小;(2)不能化成同底数的,一般引入“1”等中间量比较大小.7.指数方程(不等式)的求解主要利用指数函数的单调性进行转化.8.涉及指数函数的综合问题,首先要掌握指数函数相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断.9.在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后用对数运算法则化简合并.10.先将对数式化为同底数对数的和、差、倍数运算,然后逆用对数的运算法则,转化为同底对数真数的积、商、幂再运算.11.a b=N⇔b=log a N(a>0,且a≠1)是解决有关指数、对数问题的有效方法,在运算中应注意互化.12.在识别函数图象时,要善于利用已知函数的性质、函数图象上的特殊点(与坐标轴的交点、最高点、最低点等)排除不符合要求的选项.13.一些对数型方程、不等式问题常转化为相应的函数图象问题,利用数形结合法求解.14.比较对数值的大小与解形如log a f(x)>log a g(x)的不等式,主要是应用函数的单调性求解,如果a的取值不确定,需要分a>1与0<a<1两种情况讨论.15.与对数函数有关的复合函数的单调性问题,必须弄清三方面的问题:一是定义域,所有问题都必须在定义域内讨论;二是底数与1的大小关系;三是复合函数的构成,即它是由哪些基本初等函数复合而成的.16.对于幂函数图象的掌握,需记住在第一象限内三条线分第一象限为六个区域,即x=1,y=1,y=x所分区域.根据α<0,0<α<1,α=1,α>1的取值确定位置后,其余象限部分由奇偶性决定.17.在比较幂值的大小时,必须结合幂值的特点,选择适当的函数,借助其单调性进行比较.18.在区间(0,1)上,幂函数中指数越大,函数图象越靠近x轴(简记为“指大图低”),在区间(1,+∞)上,幂函数中指数越大,函数图象越远离x轴.19.求二次函数的解析式,一般用待定系数法,其关键是根据已知条件恰当选择二次函数解析式的形式,一般选择规律如下:20.研究二次函数图象应从“三点一线一开口”进行分析,“三点”中有一个点是顶点,另两个点是图象上关于对称轴对称的两个点,常取与x轴的交点;“一线”是指对称轴这条直线;“一开口”是指抛物线的开口方向.21.求解与二次函数有关的不等式问题,可借助二次函数的图象特征,分析不等关系成立的条件.22.闭区间上二次函数最值问题的解法:抓住“三点一轴”数形结合,三点是指区间两个端点和中点,一轴指的是对称轴,结合图象,根据函数的单调性及分类讨论的思想求解.23.二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动.无论哪种类型,解题的关键都是图象的对称轴与区间的位置关系,当含有参数时,要依据图象的对称轴与区间的位置关系进行分类讨论.24.由不等式恒成立求参数取值范围的思路及关键(1)一般有两个解题思路:一是分离参数;二是不分离参数.(2)两种思路都是将问题归结为求函数的最值,至于用哪种方法,关键是看参数是否易分离.其中分离参数的依据是:a≥f(x)恒成立⇔a≥f(x)max,a≤f(x)恒成立⇔a≤f(x)min.【查缺补漏】【考点一】指数幂的运算【典例1】已知f(x)=2x+2-x,若f(a)=3,则f(2a)=________.【典例2】已知常数a>0,函数f(x)=2x2x+ax的图象经过点P⎝⎛⎭⎪⎫p,65,Q⎝⎛⎭⎪⎫q,-15.若2p+q=36pq,则a=________.【典例3】[(0.06415)-2.5]23-3338-π0=________.【考点二】指数函数的图象及应用【典例1】(多选题)已知实数a ,b 满足等式2 020a =2 021b ,则下列关系式成立的是( ) A.0<b <a B.a <b <0 C.0<a <bD.a =b【典例2】已知函数f (x )=|2x -1|,a <b <c 且f (a )>f (c )>f (b ),则下列结论中,一定成立的是( ) A.a <0,b <0,c <0 B.a <0,b ≥0,c >0 C.2-a <2cD.2a +2c <2【典例3】函数y =a x -1a (a >0,且a ≠1)的图象可能是( )【考点三】比较指数式的大小 【典例1】设a =30.7,b =⎝ ⎛⎭⎪⎫13-0.8,c =log 0.70.8,则a ,b ,c 的大小关系为( )A.a <b <cB.b <a <cC.b <c <aD.c <a <b【典例2】已知f (x )=2x-2-x ,a =⎝ ⎛⎭⎪⎫79-14,b =⎝ ⎛⎭⎪⎫9715,则f (a ),f (b )的大小关系是________.【典例3】已知函数f (x )=4x -12x ,a =f (20.3),b =f (0.20.3),c =f (log 0.32),则a ,b ,c 的大小关系为( ) A.c <b <a B.b <a <c C.b <c <aD.c <a <b【考点四】解简单的指数方程或不等式【典例1】已知实数a ≠1,函数f (x )=⎩⎨⎧4x ,x ≥0,2a -x ,x <0,若f (1-a )=f (a -1),则a 的值为______.【典例2】设函数f (x )=⎩⎨⎧⎝ ⎛⎭⎪⎫12x-7,x <0,x ,x ≥0,若f (a )<1,则实数a 的取值范围是________.【典例3】已知a =log 20.2,b =20.2,c =0.20.3,则( ) A.a <b <c B.a <c <b C.c <a <bD.b <c <a【考点五】指数函数性质的综合应用【典例1】函数y =⎝ ⎛⎭⎪⎫14x-⎝ ⎛⎭⎪⎫12x+1在区间[-3,2]上的值域是________.【典例2】已知定义域为R 的函数f (x )=-12+12x +1,则关于t 的不等式f (t 2-2t )+f (2t 2-1)<0的解集为________. 【典例3】若函数f (x )=⎝ ⎛⎭⎪⎫13ax 2+2x +3的值域是⎝ ⎛⎦⎥⎤0,19,则f (x )的单调递增区间是________.【考点六】对数的运算【典例1】若a =log 43,则2a +2-a = .【典例2】2(lg 2)2+lg 2·lg 5+(lg 2)2-lg 2+1= . 【典例3】计算:(1-log 63)2+log 62·log 618log 64= .【考点七】对数函数的图象及应用【典例1】已知函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图象如图,则下列结论成立的是( )A .a >1,c >1B .a >1,0<c <1C .0<a <1,c >1D .0<a <1,0<c <1【典例2】当0<x ≤12时,4x <log a x ,则a 的取值范围是( )A .(0,22) B .(22,1) C .(1,2)D .(2,2)【典例3】若函数y =log a x (a >0且a ≠1)的图象如图所示,则下列函数图象正确的是( )【考点八】比较对数值大小【典例1】已知定义在R 上的函数f (x )=2|x -m |-1(m 为实数)为偶函数,记a =f (log 0.53),b =f (log 25),c =f (2m ),则a ,b ,c 的大小关系为( ) A .a <b <c B .a <c <b C .c <a <bD .c <b <a【典例2】若a >b >0,0<c <1,则( ) A .log a c <log b c B .log c a <log c b C .a c <b cD .c a >c b【典例3】若a =20.3,b =log π3,c =log 4cos 100,则( ) A .b >c >a B .b >a >c C .a >b >cD .c >a >b【考点九】解简单的对数不等式【典例1】若log a 23<1,则a 的取值范围是 .【典例2】设函数212log ()()log ()(0),x x f x x x ⎧⎪⎨-⎪⎩>0,<若f (a )>f (-a ),则实数a 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)【典例3】设函数f (x )=⎩⎨⎧21-x ,x ≤1,1-log 2x ,x >1,则满足f (x )≤2的x 的取值范围是( )A .[-1,2]B .[0,2]C .[1,+∞)D .[0,+∞)【考点十】对数型函数性质的综合应用 【典例1】已知函数f (x )=log 2⎝ ⎛⎭⎪⎫12x +a .(1)若函数f (x )是R 上的奇函数,求a 的值;(2)若函数f (x )的定义域是一切实数,求a 的取值范围;(3)若函数f (x )在区间[0,1]上的最大值与最小值的差不小于2,求实数a 的取值范围.【典例2】已知a =log 23+log 23,b =log 29-log 23,c =log 32,则a ,b ,c 的大小关系是( ) A.a =b <cB.a =b >cC.a <b <cD.a >b >c【典例3】已知函数f (x )=log a (8-ax )(a >0,且a ≠1),若f (x )>1在区间[1,2]上恒成立,则实数a 的取值范围是________. 【考点十一】幂函数的图象和性质【典例1】若幂函数y =f (x )的图象过点(4,2),则幂函数y =f (x )的大致图象是( )【典例2】若幂函数f (x )=(2b -1)x a2-10a +23(a ,b ∈Z )为偶函数,且f (x )在(0,+∞)上是减函数,则a ,b 的值分别为( )A.2,1B.4,1C.5,1D.6,1【典例3】如图是①y=x a;②y=x b;③y=x c在第一象限的图象,则a,b,c的大小关系为()A.c<b<aB.a<b<cC.b<c<aD.a<c<b【考点十二】二次函数的解析式【典例1】已知二次函数f(x)=ax2+bx+1(a,b∈R),x∈R,若函数f(x)的最小值为f(-1)=0,则f(x)=________.【典例2】已知二次函数f(x)的图象经过点(4,3),在x轴上截得的线段长为2,并且对任意x∈R,都有f(2-x)=f(2+x),则f(x)=________.【典例3】已知二次函数f(x)满足f(2)=-1,f(-1)=-1,且f(x)的最大值是8,试确定该二次函数的解析式.【考点十三】二次函数的图象【典例1】二次函数y=ax2+bx+c的图象如图所示.则下列结论正确的是______(填序号).①b2>4ac;②c>0;③ac>0;④b<0;⑤a-b+c<0.【典例2】设函数f(x)=x2+x+a(a>0),若f(m)<0,则()A.f(m+1)≥0B.f(m+1)≤0C.f(m+1)>0D.f(m+1)<0【考点十四】二次函数的单调性与最值【典例1】函数f(x)=ax2+(a-3)x+1在区间[-1,+∞)上单调递减,则实数a 的取值范围是()A.[-3,0)B.(-∞,-3]C.[-2,0]D.[-3,0]【典例2】已知f(x)=ax2-2x(0≤x≤1),求f(x)的最小值.【考点十五】二次函数中的恒成立问题【典例1】已知a是实数,函数f(x)=2ax2+2x-3在x∈[-1,1]上恒小于零,则实数a的取值范围是________.【典例2】函数f(x)=a2x+3a x-2(a>1),若在区间[-1,1]上f(x)≤8恒成立,则实数a的最大值为________.【典例3】已知二次函数f(x)满足f(3+x)=f(3-x),若f(x)在区间[3,+∞)上单调递减,且f(m)≥f(0)恒成立,则实数m的取值范围是()A.(-∞,0]B.[0,6]C.[6,+∞)D.(-∞,0]∪[6,+∞)【真题训练】1.(2021•上海)以下哪个函数既是奇函数,又是减函数()A .y =﹣3xB .y =x 3C .y =log 3xD .y =3x2. (2021•天津)设a =log 20.3,b =0.4,c =0.40.3,则三者大小关系为( ) A .a <b <cB .c <a <bC .b <c <aD .a <c <b3. (2021•新高考Ⅱ)已知a =log 52,b =log 83,c =,则下列判断正确的是( ) A .c <b <aB .b <a <cC .a <c <bD .a <b <c4. (2021•甲卷)青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录法的数据V 满足L =5+lgV .已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据约为( )(≈1.259) A .1.5B .1.2C .0.8D .0.65. (2022•上海)下列函数定义域为R 的是( ) A .y =B .y =x ﹣1C .y =D .y =6. (2022•浙江)已知2a =5,log 83=b ,则4a ﹣3b =( ) A .25B .5C .D .7. (2022•甲卷)已知9m =10,a =10m ﹣11,b =8m ﹣9,则( ) A .a >0>bB .a >b >0C .b >a >0D .b >0>a8. (2022•新高考Ⅰ)设a =0.1e 0.1,b =,c =﹣ln 0.9,则( ) A .a <b <c B .c <b <a C .c <a <b D .a <c <b【热点预测】 【单选题】1. 函数f (x )=2x 2-mx +3,当x ∈[-2,+∞)时,f (x )是增函数,当x ∈(-∞,-2]时,f (x )是减函数,则f (1)的值为( ) A .-3 B .13 C .7 D .52. 幂函数24m m y x -=(m ∈Z )的图象如图所示,则m 的值为( )A .0B .1C .2D .33. 若函数f (x )=a x(a >0,且a ≠1)的图象经过⎝ ⎛⎭⎪⎫2,13,则f (-1)=( ) A.1 B.2 C. 3 D.34. 已知二次函数f (x )满足f (2+x )=f (2-x ),且f (x )在[0,2]上是增函数,若f (a )≥f (0),则实数a 的取值范围是( )A .[0,+∞)B .(-∞,0]C .[0,4]D .(-∞,0]∪[4,+∞)5. 不论a 为何值,函数y =(a -1)2x -a 2恒过定点,则这个定点的坐标是( )A.⎝ ⎛⎭⎪⎫1,-12 B.⎝ ⎛⎭⎪⎫1,12 C.⎝ ⎛⎭⎪⎫-1,-12 D.⎝ ⎛⎭⎪⎫-1,12 6. 设a =log 0.20.3,b =log 20.3,则( )A.a +b <ab <0B.ab <a +b <0C.a +b <0<abD.ab <0<a +b7. 若函数y =x 2-3x -4的定义域为[0,m ],值域为[-254,-4],则m 的取值范围是( )A .[0,4]B .[32,4]C .[32,+∞)D .[32,3]8. 函数y =a x -1a (a >0,且a ≠1)的图象可能是( )9. 已知函数f (x )=lg ⎝ ⎛⎭⎪⎫3x +43x +m 的值域是全体实数,则实数m 的取值范围是( )A.(-4,+∞)B.[-4,+∞)C.(-∞,-4)D.(-∞,-4]10. 若函数f (x )=x 2-ax -a 在区间[0,2]上的最大值为1,则实数a 等于( )A .-1B .1C .2D .-2 11. 设a =30.7,b =⎝ ⎛⎭⎪⎫13-0.8,c =log 0.70.8,则a ,b ,c 的大小关系为( ) A.a <b <cB.b <a <cC.b <c <aD.c <a <b12. (多选题)已知函数f (x )的图象与g (x )=2x 的图象关于直线y =x 对称,令h (x )=f (1-|x |),则关于函数h (x )有下列说法,其中正确的说法为( )A.h (x )的图象关于原点对称B.h (x )的图象关于y 轴对称C.h (x )的最大值为0D.h (x )在区间(-1,1)上单调递增13. (多选题)若10a =4,10b =25,则( )A.a +b =2B.b -a =1C.ab >8lg 22D.b -a >lg 614.已知二次函数f (x )=2ax 2-ax +1(a <0),若x 1<x 2,x 1+x 2=0,则f (x 1)与f (x 2)的大小关系为( )A .f (x 1)=f (x 2)B .f (x 1)>f (x 2)C .f (x 1)<f (x 2)D .与a 值有关15. 当x ∈(-∞,-1]时,不等式(m 2-m )·4x -2x <0恒成立,则实数m 的取值范围是( )A.(-2,1)B.(-4,3)C.(-3,4)D.(-1,2)16. 基本再生数R 0与世代间隔T 是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I (t )=e rt 描述累计感染病例数I (t )随时间t (单位:天)的变化规律,指数增长率r 与R 0,T 近似满足R 0=1+rT .有学者基于已有数据估计出R 0=3.28,T =6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln 2≈0.69)( )A.1.2天B.1.8天C.2.5天D.3.5天17. (多选题)函数y =log a (x +c )(a ,c 为常数,其中a >0,a ≠1)的图象如图所示,则下列结论成立的是( )A.a >1B.0<c <1C.0<a <1D.c >118. (多选题)已知0<a <b <1,下列不等式成立的是( ) A.⎝ ⎛⎭⎪⎫12a >⎝ ⎛⎭⎪⎫13bB.a 12>b 13C.log 12a >log 13bD.log a 12>log b 13 19. (多选题)关于函数f (x )=ln(1+x )-ln(3-x ),下列结论正确的是( )A.f (x )在(-1,3)上单调递增B.f (x )的图象关于直线x =1对称C.f (x )的图象关于点(1,0)对称D.f (x )的值域为R20. 当0<x <1时,函数f (x )=x 1.1,g (x )=x 0.9,h (x )=x -2的大小关系是________________.21. 已知函数f (x )=⎩⎨⎧-⎝ ⎛⎭⎪⎫12x ,a ≤x <0,-x 2+2x ,0≤x ≤4的值域是[-8,1],则实数a 的取值范围是________.22. 已知函数f (x )=log a (x +1)-log a (1-x ),a >0且a ≠1.(1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明;(3)若a >1时,求使f (x )>0的x 的解集.。
高考数学 试题汇编 第三节 幂函数、指数函数与对数函数 理(含解析)
第三节幂函数、指数函数与对数函数对数函数考向聚焦对数函数是高考的热点内容,考查内容涉及以下几个方面:一是对数运算以及对数值的大小比较;二是对数函数以及与对数函数有关的函数图象的应用;三是对数函数的性质及其应用.对数函数在高考中主要以选择题的形式出现,为基础题目和中档题,所占分值为5分左右,在高考试卷中常有考查.备考指津对数运算是一个难点和易错点,应强化训练,要重视对数函数图象和性质的练习,熟练掌握借助函数图象解决问题的方法.1.(2012年全国大纲卷,理9,5分)已知x=ln π,y=log 52,z=,则( )(A)x<y<z (B)z<x<y (C)z<y<x (D)y<z<x解析:∵x=ln π>ln e=1,y=log52<log55=1,又log25>2,∴y<.z==,∴<z<1.∴y<z<x,故选D.答案:D.2.(2011年江西卷,理3)若f(x)=,则f(x)的定义域为( )(A)(-,0) (B)(-,0](C)(-,+∞) (D)(0,+∞)解析:法一:由题意知lo(2x+1)>0,即0<2x+1<1,∴-<x<0.函数f(x)的定义域为(-,0).故选A.法二:当x=0时,函数解析式的分母等于零,无意义,由此排除选项B和C;当x=时,lo(2x+1)=-1,所以无意义,由此排除选项D,故选A.答案:A.3.(2010年天津卷,理8)设函数f(x)=若f(a)>f(-a),则实数a的取值范围是( )(A)(-1,0)∪(0,1) (B)(-∞,-1)∪(1,+∞)(C)(-1,0)∪(1,+∞) (D)(-∞,-1)∪(0,1)解析:法一:①若a>0,由f(a)>f(-a)得log 2a>lo a,由换底公式得log2a>-log2a,即2log2a>0,∴a>1.②若a<0,由f(a)>f(-a)得lo(-a)>log 2(-a),由换底公式得log2(-a)<0,∴0<-a<1,∴-1<a<0.综合①②知a的取值范围是a>1或-1<a<0.选C.法二:数形结合,画出f(x)草图.显然,a>1时f(a)>0,f(-a)<0,即f(a)>f(-a),同理-1<a<0时,f(a)>f(-a),故选C.答案:C.本题考查了对数函数的单调性、对数的换底公式以及计算等知识,同时对分类讨论和数形结合这两种数学思想方法也进行了考查.4.(2011年天津卷,理7)已知a=,b=,c=(,则( )(A)a>b>c (B)b>a>c (C)a>c>b (D)c>a>b解析:∵0<log43.6<1,∴b=<5,而又log23.4>1,log3>1,∴a=>5,c=(==>5,∴a>b,c>b.∵log23.4>log33.4>log3,∴a>c.∴a>c>b,故选C.答案:C.5.(2011年四川卷,理13)计算(lg-lg 25)÷10= . 解析:(lg-lg 25)÷10=lg÷10=lg 10-2÷=-2×10=-20.答案:-20。
专题 幂、指数、对数函数(七大题型)(解析版)
专题幂、指数、对数函数(七大题型)目录:01幂函数的相关概念及图像02幂函数的性质及应用03指数、对数式的运算04指数、对数函数的图像对比分析05比较函数值或参数值的大小06指数、对数(函数)的实际应用07指数、对数函数的图像与性质综合及应用01幂函数的相关概念及图像1(2024高三·全国·专题练习)若幂函数y=f x 的图象经过点2,2,则f16=()A.2B.2C.4D.12【答案】C【分析】利用已知条件求得幂函数解析式,然后代入求解即可.【解析】设幂函数y=f x =xα,因为f x 的图象经过点2,2,所以2α=2,解得α=1 2,所以f x =x 12,所以f16=1612=4.故选:C2(2024高三·全国·专题练习)结合图中的五个函数图象回答问题:(1)哪几个是偶函数,哪几个是奇函数?(2)写出每个函数的定义域、值域;(3)写出每个函数的单调区间;(4)从图中你发现了什么?【答案】(1)答案见解析;(2)答案见解析;(3)答案见解析;(4)答案见解析.【分析】根据已知函数图象,数形结合即可求得结果.【解析】(1)数形结合可知,y =x 2的图象关于y 轴对称,故其为偶函数;y =x ,y =x 3,y =1x的图象关于原点对称,故都为奇函数.(2)数形结合可知:y =x 的定义域是0,+∞ ,值域为0,+∞ ;y =x ,y =x 3的定义域都是R ,值域也是R ;y =1x的定义域为-∞,0 ∪0,+∞ ,值域也为-∞,0 ∪0,+∞ ;y =x 2的定义域为R ,值域为0,+∞ .(3)数形结合可知:y =x 的单调增区间是:0,+∞ ,无单调减区间;y =x ,y =x 3的单调增区间是:R ,无单调减区间;y =1x的单调减区间是:-∞,0 和0,+∞ ,无单调增区间;y =x 2的单调减区间是-∞,0 ,单调增区间是0,+∞ .(4)数形结合可知:幂函数均恒过1,1 点;幂函数在第一象限一定有图象,在第四象限一定没有图象.对幂函数y =x α,当α>0,其一定在0,+∞ 是单调增函数;当α<0,在0,+∞ 是单调减函数.3(2022高一上·全国·专题练习)如图所示是函数y =x mn(m 、n ∈N *且互质)的图象,则()A.m ,n 是奇数且mn<1 B.m 是偶数,n 是奇数,且m n<1C.m 是偶数,n 是奇数,且mn>1 D.m ,n 是偶数,且mn>1【答案】B【分析】根据图象得到函数的奇偶性及0,+∞ 上单调递增,结合m 、n ∈N *且互质,从而得到答案.【解析】由图象可看出y =x mn为偶函数,且在0,+∞ 上单调递增,故m n ∈0,1 且m 为偶数,又m 、n ∈N *且互质,故n 是奇数.故选:B02幂函数的性质及应用4(2023高三上·江苏徐州·学业考试)已知幂函数f x =m 2+2m -2 x m 在0,+∞ 上单调递减,则实数m 的值为()A.-3 B.-1C.3D.1【答案】A【分析】根据幂函数的定义,求得m =-3或m =1,结合幂函数的单调性,即可求解.【解析】由函数f x =m 2+2m -2 x m 为幂函数,可得m 2+2m -2=1,即m 2+2m -3=0,解得m =-3或m =1,当m =-3时,函数f x =x -3在0,+∞ 上单调递减,符合题意;当m =1时,函数f x =x 在0,+∞ 上单调递增,不符合题意.故选:A .5(23-24高三上·安徽·阶段练习)已知幂函数f x =m 2-5m +5 x m -2是R 上的偶函数,且函数g x =f x -2a -6 x 在区间1,3 上单调递增,则实数a 的取值范围是()A.-∞,4B.-∞,4C.6,+∞D.-∞,4 ∪6,+∞【答案】B【分析】根据幂函数的定义与奇偶性求出m 的值,可得出函数f x 的解析式,再利用二次函数的单调性可得出关于实数a 的不等式,即可解得实数a 的取值范围.【解析】因为幂函数f x =m 2-5m +5 x m -2是R 上的偶函数,则m 2-5m +5=1,解得m =1或m =4,当m =1时,f x =x -1,该函数是定义域为x x ≠0 的奇函数,不合乎题意;当m =4时,f x =x 2,该函数是定义域为R 的偶函数,合乎题意.所以,f x =x 2,则g x =x 2-2a -6 x ,其对称轴方程为x =a -3,因为g x 在区间1,3 上单调递增,则a -3≤1,解得a ≤4.故选:B .6(23-24高三上·上海静安·阶段练习)已知a ∈-1,2,12,3,13,若f x =x a为奇函数,且在0,+∞ 上单调递增,则实数a 的取值个数为()A.1个 B.2个C.3个D.4个【答案】B【分析】a =-1时,不满足单调性,a =2或a =12时,不满足奇偶性,当a =3或a =13时,满足要求,得到答案.【解析】当a =-1时,f x =x -1在0,+∞ 上单调递减,不合要求,当a =2时,f -x =-x 2=x 2=f x ,故f x =x 2为偶函数,不合要求,当a =12时,f x =x 12的定义域为0,+∞ ,不是奇函数,不合要求,当a =3时,f -x =-x 3=-x 3=-f x ,f x =x 3为奇函数,且f x =x 3在0,+∞ 上单调递增,满足要求,当a =13时,f -x =-x 13=-x 13=-f x ,故f x =x 13为奇函数,且f x =x 13在0,+∞ 上单调递增,满足要求.故选:B7(22-23高三下·上海·阶段练习)已知函数f x =x 13,则关于t 的表达式f t 2-2t +f 2t 2-1 <0的解集为.【答案】-13,1 【分析】利用幂函数的性质及函数的奇偶性和单调性即可求解.【解析】由题意可知,f x 的定义域为-∞,+∞ ,所以f -x =-x 13=-x 13=-f x ,所以函数f x 是奇函数,由幂函数的性质知,函数f x =x 13在函数-∞,+∞ 上单调递增,由f t 2-2t +f 2t 2-1 <0,得f t 2-2t <-f 2t 2-1 ,即f t 2-2t <f 1-2t 2 ,所以t 2-2t <1-2t 2,即3t 2-2t -1<0,解得-13<t <1,所以关于t 的表达式f t 2-2t +f 2t 2-1 <0的解集为-13,1 .故答案为:-13,1 .8(23-24高三上·河北邢台·期中)已知函数f x =m 2-m -1 x m 2+m -3是幂函数,且在0,+∞ 上单调递减,若a ,b ∈R ,且a <0<b ,a <b ,则f a +f b 的值()A.恒大于0B.恒小于0C.等于0D.无法判断【答案】B【分析】由幂函数的定义与性质求得函数解析式,确定其是奇函数,然后利用单调性与奇偶性可判断.【解析】由m 2-m -1=1得m =2或m =-1,m =2时,f (x )=x 3在R 上是增函数,不合题意,m =-1时,f (x )=x -3,在(0,+∞)上是减函数,满足题意,所以f (x )=x -3,a <0<b ,a <b ,则b >-a >0,f (-a )>f (b ),f (x )=-x 3是奇函数,因此f (-a )=-f (a ),所以-f (a )>f (b ),即f (a )+f (b )<0,故选:B .9(2023·江苏南京·二模)幂函数f x =x a a ∈R 满足:任意x ∈R 有f -x =f x ,且f -1 <f 2 <2,请写出符合上述条件的一个函数f x =.【答案】x 23(答案不唯一)【分析】取f x =x 23,再验证奇偶性和函数值即可.【解析】取f x =x 23,则定义域为R ,且f -x =-x 23=x 23=f x ,f -1 =1,f 2 =223=34,满足f -1 <f 2 <2.故答案为:x 23.10(2022高三·全国·专题练习)已知函数f (x )=x 2,g (x )=12x-m(1)当x ∈[-1,3]时,求f (x )的值域;(2)若对∀x ∈0,2 ,g (x )≥1成立,求实数m 的取值范围;(3)若对∀x 1∈0,2 ,∃x 2∈[-1,3],使得g (x 1)≤f (x 2)成立,求实数m 的取值范围.【答案】(1)[0,9];(2)m ≤-34;(3)m ≥-8.【分析】(1)由二次函数的性质得出值域;(2)将问题转化为求g (x )在0,2 的最小值大于或等于1,再根据指数函数的单调性得出实数m 的取值范围;(3)将问题转化为g (x )在0,2 的最大值小于或等于f (x )在[-1,3]上的最大值9,从而得出实数m 的取值范围.【解析】(1)当x ∈[-1,3]时,函数f (x )=x 2∈[0,9]∴f (x )的值域0,9(2)对∀x ∈0,2 ,g (x )≥1成立,等价于g (x )在0,2 的最小值大于或等于1.而g (x )在0,2 上单调递减,所以12 2-m ≥1,即m ≤-34(3)对∀x 1∈0,2 ,∃x 2∈[-1,3],使得g (x 1)≤f (x 2)成立,等价于g (x )在0,2 的最大值小于或等于f (x )在[-1,3]上的最大值9由1-m ≤9,∴m ≥-803指数、对数式的运算11(23-24高三上·山东泰安·阶段练习)(1)计算14-124ab -1 30.1-1⋅a 3⋅b -312的值;.(2)log 37+log 73 2-log 949log 73-log 73 2; (3)log 39+12lg25+lg2-log 49×log 38+2log 23-1+ln e 【答案】(1)85;(2)2;(3)4【分析】根据指数幂运算公式和对数运算公式计算即可.【解析】(1)原式=412⋅4ab -13210⋅a 32b -32=2⋅8a 32b-3210⋅a 32b-32=85;(2)原式=log 37+log 73 2-log 73 2-log 3272×log 37=log 37×log 37+2log 73 -log 37×log 37=log 37×2log 73=2;(3)原式=log 31232+lg5+lg2-log 2232×log 323+2log 23×2-1+ln e12=4+1-3+32+12=4.12(23-24高一上·湖北恩施·期末)(1)计算:lg 12-lg 58+lg12.5-log 89⋅log 278.(2)已知a 12+a -12=3,求a +a -1+2a 2+a -2-2的值.【答案】(1)13;(2)15【分析】(1)根据对数的运算法则和运算性质,即可求解;(2)根据实数指数幂的运算性质,准确运算,即可求解.【解析】(1)由对数的运算公式,可得原式=-lg2-lg5-3lg2 +3lg5-1-23log 32×log 23=13.(2)因为a 12+a -12=3,所以a +a -1+2=9,可得a +a -1=7,所以a 2+a -2+2=49,可得a 2+a -2=47,所以a +a -1+2a 2+a -2-2=7+247-2=15.04指数、对数函数的图像对比分析13(2024·四川·模拟预测)已知函数y =x a ,y =b x ,y =log c x 在同一平面直角坐标系的图象如图所示,则()A.log 12c <b a <sin bB.log 12c <sin b <b aC.sin b <b a <log 12cD.sin b <log 12c <b a【答案】B【分析】根据幂函数,指数与对数函数的性质可得a ,b ,c 的取值范围,进而根据指对数与三角函数的性质判断即可.【解析】因为y =x a 图象过1,1 ,故由图象可得a <0,又y =b x 图象过0,1 ,故由图象可得0<b <1,又y =log c x 图象过1,0 ,故由图象可得c >1.故log 12c <log 121=0,0<sin b <1,b a >b 0=1,故log 12c <sin b <b a .故选:B14(2024高三·全国·专题练习)在同一平面直角坐标系中,函数y =1a x,y =log a x +12 (a >0,且a ≠1)的图象可能是()A. B.C. D.【答案】D 【解析】略15(2024·陕西·模拟预测)已知函数f x 的部分图象如图所示,则f x 的解析式可能为()A.f x =e x -e -xB.f x =1-2e x+1C.f x =x xD.f x =x ln x 2+2【答案】D【分析】结合指数函数的图象与性质即可判断AB 选项错误,对C 代入x =2判断C 错误,则可得到D 正确.【解析】根据函数f (x )的图象,知f (1)≈1,而对A 选项f 1 =e -e -1>2排除A ;对B 选项f x =1-2e x +1,因为e x +1>1,则2e x +1∈0,2 ,则f x =1-2e x +1∈-1,1 ,但图象中函数值可以大于1,排除B ;根据C 选项的解析式,f (2)=22≈2.8,而根据函数f (x )的图象,知f (2)≈1,排除C . 故选:D .16(23-24高三上·山东潍坊·期中)已知指数函数y =a x ,对数函数y =log b x 的图象如图所示,则下列关系成立的是()A.0<a <b <1B.0<a <1<bC.0<b <1<aD.a <0<1<b【答案】B【分析】根据题意,由指数函数以及对数函数的单调性即可得到a ,b 的范围,从而得到结果.【解析】由图象可得,指数函数y =a x 为减函数,对数函数y =log b x 为增函数,所以0<a <1,b >1,即0<a <1<b .故选:B17(23-24高三上·黑龙江哈尔滨·阶段练习)函数f (x )=x 22x -2-x 的图象大致为()A. B.C. D.【答案】A【分析】利用函数的性质和特值法对不符合题意的选项加以排除,即可得出答案.【解析】因为2x -2-x ≠0,所以x ≠0,定义域为-∞,0 ∪0,+∞ ;因为f (x )=x 22x -2-x ,所以f -x =x 22-x -2x ,故f x =-f -x ,所以f x 为奇函数,排除B ,当x 趋向于正无穷大时,x 2、2x -2-x 均趋向于正无穷大,但随x 变大,2x -2-x 的增速比x 2快,所以f x 趋向于0,排除D ,由f 1 =23,f 12 =24,则f 1 >f 12,排除C .故选:A .05比较函数值或参数值的大小18(2024·全国·模拟预测)已知a =12a,12b=log a b ,a c=log12c ,则实数a ,b ,c 的大小关系为()A.a <b <cB.a <c <bC.c <b <aD.c <a <b【答案】D【分析】由函数单调性,零点存在性定理及画出函数图象,得到a ,b ,c ∈0,1 ,得到log a b <1=log a a ,求出b>a ,根据单调性得到c =12 a c<12a=a ,从而得到答案.【解析】令f x =12x-x ,其在R 上单调递减,又f 0 =1>0,f 1 =12-1=-12<0,由零点存在性定理得a ∈0,1 ,则y =log a x 在0,+∞ 上单调递减,画出y 1=12x与y =log a x 的函数图象,可以得到b ∈0,1 ,又y 2=a x 在R 上单调递减,画出y 2=a x 与y 3=log 12x 的函数图象,可以看出c∈0,1,因为12b<12 0=1,故log a b<1=log a a,故b>a,因为a,c∈0,1,故a c>a1=a,由a c=log12c得,c=12a c<12 a=a.综上,c<a<b.故选:D.【点睛】指数和对数比较大小的方法有:(1)画出函数图象,数形结合得到大小关系;(2)由函数单调性,可选取适当的“媒介”(通常以“0”或“1”为媒介),分别与要比较的数比较大小,从而间接地得出要比较的数的大小关系;(3)作差(商)比较法是比较两个数值大小的常用方法,即对两值作差(商),看其值与0(1)的关系,从而确定所比两值的大小关系.19(2023·江西赣州·二模)若log3x=log4y=log5z<-1,则()A.3x<4y<5zB.4y<3x<5zC.4y<5z<3xD.5z<4y<3x【答案】D【分析】设log3x=log4y=log5z=m<-1,得到x=3m,y=4m,z=5m,画出图象,数形结合得到答案.【解析】令log3x=log4y=log5z=m<-1,则x=3m,y=4m,z=5m,3x=3m+1,4y=4m+1,5z=5m+1,其中m+1<0,在同一坐标系内画出y=3x,y=4x,y=5x,故5z<4y<3x故选:D20(2024高三下·全国·专题练习)已知函数f x =e x,g x =ln x,正实数a,b,c满足f a =ga ,fb g b =g a ,gc +f g a c=0,则()A.b<a<cB.c<a<bC.a<c<bD.c<b<a【答案】B【分析】由f a =g a 可得0<a <1,结合f b g b =g a 可判断b 的范围,再由g c +f g a c =0可得ln c +a c =0,结合e a =1a 可判断a ,c 大小关系,进而可得答案.【解析】由题得,g x =1x ,由f a =g a ,得e a =1a ,即1a>1,所以0<a <1.由f b g b =g a ,得e b ln b =ln a ,因为ln a <0,e b >0,所以ln b <0,又e b >1,所以ln a =e b ln b <ln b ,所以0<a <b <1.由g c +f g a c =0,得ln c +e ln a c=0,即ln c +a c =0.易知a c >0,所以ln c <0,所以0<c <1,故a <a c .又e a =1a,所以a =-ln a ,所以-ln c =a c >a =-ln a ,所以ln c <ln a ,所以c <a ,所以c <a <b .故选:B .【点睛】思路点睛:比较大小常用方法:(1)同构函数,利用单调性比较;(2)取中间值进行比较;(3)利用基本不等式比较大小;(4)利用作差法比较大小.21(2023·浙江绍兴·二模)已知f x 是定义域为R 的偶函数,且在(-∞,0)上单调递减,a =f ln2.04 ,b =f -1.04 ,c =f e 0.04 ,则()A.a <b <cB.a <c <bC.c <b <aD.c <a <b【答案】A【分析】令g x =e x -x -1,利用导数求得g x 在(0,1)单调递增,得到g x >g 0 =0,得到e 0.04>1.04,再由对数函数的性质,得到ln2.04<1.04<e 0.04,再由函数f x 的单调性与奇偶性f ln2.04 <f 1.04 <f e 0.04 ,即可求解.【解析】令g x =e x -x -1,x ∈(0,1),可得g x =e x -1>0,所以g x 在(0,1)单调递增,又由g 0 =0,所以g x >g 0 =0,即g 0.04 >0,可得e 0.04>0.04+1=1.04,又由ln2.04∈(0,1),所以ln2.04<1.04<e 0.04,因为f x 是定义域为R 的偶函数,且在(-∞,0)上单调递减,则f x 在(0,+∞)上单调递增,且b =f -1.04 =f (1.04),所以f ln2.04 <f 1.04 <f e 0.04 ,即f ln2.04 <f -1.04 <f e 0.04 ,所以a <b <c .故选:A .06指数、对数(函数)的实际应用22(2024·安徽合肥·二模)常用放射性物质质量衰减一半所用的时间来描述其衰减情况,这个时间被称做半衰期,记为T (单位:天).铅制容器中有甲、乙两种放射性物质,其半衰期分别为T 1,T 2.开始记录时,这两种物质的质量相等,512天后测量发现乙的质量为甲的质量的14,则T 1,T 2满足的关系式为()A.-2+512T1=512T2B.2+512T1=512T2C.-2+log2512T1=log2512T2D.2+log2512T1=log2512T2【答案】B【分析】设开始记录时,甲乙两种物质的质量均为1,可得512天后甲,乙的质量,根据题意列出等式即可得答案.【解析】设开始记录时,甲乙两种物质的质量均为1,则512天后,甲的质量为:1 2512T1,乙的质量为:12 512T2,由题意可得12512T2=14⋅12 512T1=12 2+512T1,所以2+512T1=512T2.故选:B.23(2024·黑龙江哈尔滨·一模)酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:100mL血液中酒精含量达到20~79mg的驾驶员即为酒后驾车,80mg及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了0.6mg/mL.如果停止喝酒以后,他血液中酒精含量会以每小时30%的速度减少,那么他至少经过几个小时才能驾驶?( )(结果取整数,参考数据:lg3≈0.48,lg7≈0.85)A.1B.2C.3D.4【答案】D【分析】设经过x个小时才能驾驶,则0.6×100×1-30%x<20,再根据指数函数的性质及对数的运算计算可得.【解析】设经过x个小时才能驾驶,则0.6×100×1-30%x<20即0.7x<1 3 .由于y=0.7x在定义域上单调递减,x>log0.713=lg13lg0.7=lg1-lg3lg7-1=-0.480.85-1=0.480.15=3.2.他至少经过4小时才能驾驶.故选:D.07指数、对数函数的图像与性质综合及应用24(2024·山东聊城·二模)已知函数f x 为R上的偶函数,且当x>0时,f x =log4x-1,则f-223=()A.-23B.-13C.13D.23【答案】A【分析】根据偶函数的定义可得f-22 3=f223 ,结合函数解析式和对数的运算性质即可求解.【解析】因为f(x)为偶函数,所以f(-x)=f(x),则f-22 3=f223 =log4223-1=log22223-1=log2213-1=13-1=-23.故选:A25(2023·江西南昌·三模)设函数f x =a x0<a<1,g x =log b x b>1,若存在实数m满足:①f (m )+g (m )=0;②f (n )-g (n )=0,③|m -n |≤1,则12m -n 的取值范围是()A.-12,-14B.-12,-3-54C.-34,-12D.-3+54,-12【答案】D【分析】由①f (m )+g (m )=0,②f (n )-g (n )=0解出0<m <1,n >1,解出12m -n <-12;结合③转化为线性规划问题解出z >-3+54.【解析】函数f x =a x 0<a <1 ,g x =log b x b >1 ,若存在实数m 满足:①f (m )+g (m )=0;②f (n )-g (n )=0,即a m =-log b m ,且a n =log b n ,则a n -a m =log b mn <0,则0<mn <1,且0<m <1,n >1,所以12m -n <-12,又因为③|m -n |≤1,则0<mn <1m -n ≤1 ,令z =12m -n ,不防设x =m ,y =n ,则转化为线性规划问题,在A 点处z 取最小值.由y =1xy =x +1 解得x =-1+52y =5+12,代入解得z >-3+54.故选:D .26(2022高三·全国·专题练习)已知函数f x =log a ax +9-3a (a >0且a ≠1).(1)若f x 在1,3 上单调递增,求实数a 的取值范围;(2)若f 3 >0且存在x 0∈3,+∞ ,使得f x 0 >2log a x 0成立,求a 的最小整数值.【答案】(1)1,92 (2)7【分析】(1)设g x =ax +9-3a ,得到g x 在1,3 上是增函数,且g 1 >0,即可求解;(2)由f 3 >0,的得到a >1,把不等式f x 0 >2log a x 0,转化为a >x 0+3,结合题意,即可求解.【解析】(1)解:由函数f x =log a ax +9-3a ,设g x =ax +9-3a ,由a >0且a ≠1,可得函数g x 在1,3 上是增函数,所以a >1,又由函数定义域可得g 1 =9-2a >0,解得a <92,所以实数a 的取值范围是1,92.(2)解:由f 3 =log a 9>0,可得a >1,又由f x 0 >2log a x 0,可得log a ax 0+9-3a >log a x 20,所以ax 0+9-3a >x 20,即a >x 0+3,因为存在x 0∈3,+∞ ,使得f x 0 >2log a x 0成立,可得a >6,所以实数a 的最小整数值是7.27(23-24高二下·湖南·阶段练习)已知函数f x =x 2+x ,-2≤x ≤14log 12x ,14<x ≤c ,若f (x )的值域是[-2,2],则c 的值为()A.2B.22C.4D.8【答案】C【分析】画出函数图像,由分段函数中定义域的范围分别求出值域的取值范围再结合二次函数和对数运算可得正确结果.【解析】当-2≤x ≤14时,f x =x 2+x =x +12 2-14∈-14,2,因为f x 的值域是-2,2 ,又f x =log 12x 在14,c上单调递减,所以log 12c =-2,∴c =4.故选:C .28(22-23高一上·辽宁本溪·期末)若不等式x -1 2<log a x (a >0,且a ≠1)在x ∈1,2 内恒成立,则实数a 的取值范围为()A.1,2B.1,2C.1,2D.2,2【答案】B【分析】分析出0<a <1时,不成立,当a >1时,画出f x =log a x ,g x =x -1 2的图象,数形结合得到实数a 的取值范围.【解析】若0<a <1,此时x ∈1,2 ,log a x <0,而x -1 2≥0,故x -1 2<log a x 无解;若a >1,此时x ∈1,2 ,log a x >0,而x -1 2≥0,令f x =log a x ,g x =x -1 2,画出两函数图象,如下:故要想x -1 2<log a x 在x ∈1,2 内恒成立,则要log a 2>1,解得:a ∈1,2 .故选:B .29(2022高二下·浙江·学业考试)已知函数f x =3⋅2x +2,对于任意的x 2∈0,1 ,都存在x 1∈0,1 ,使得f x 1 +2f x 2+m =13成立,则实数m 的取值范围为.【答案】log 216,log 213 【分析】双变量问题,转化为取值范围的包含关系,列不等式组求解【解析】∵f x 1 ∈5,8 ∴13-f x 1 2∈52,4,∴f x 2+m =3⋅2x 2+m+2∈3⋅2m +2,3⋅21+m +2 ,由题意得3⋅2m +2≥523⋅2m +1+2≤4⇒2m≥162m +1≤23⇒log 216≤m ≤log 213 故答案为:log 216,log 21330(21-22高三上·湖北·阶段练习)已知函数p (x )=m x -4+1(m >0且m ≠1)经过定点A ,函数-∞,2 且a ≠1)的图象经过点A .(1)求函数y =f (2a -2x )的定义域与值域;(2)若函数g x =f (2x λ)⋅f (x 2)-4在14,4上有两个零点,求λ的取值范围.【答案】(1)定义域为(-∞,2),值域为(-∞,2);(2)[1,+∞)【分析】(1)根据对数函数的性质,求得定点A (4,2),代入函数f x =log a x ,求得a =2,进而求得y =f (2a -2x )=log 2(4-2x ),结合对数函数的性质,求得函数的定义域与值域;(2)由(1)知,化简得到函数g x =2λ(log 2x )2+2log 2x -4,设t =log 2x ,则t ∈[-2,2],转化为h x =2λt 2+2t -4在[-2,2]上有两个零点,结合二次函数的性质,分类讨论,即可求解.【解析】(1)解:令x -4=0,解得x =4,所以p (4)=m 0+1=2,所以函数p (x )过点A (4,2),将点A 的坐标代入函数f x =log a x ,可得log a 4=2,解得a =2,又由函数y =f (2a -2x )=log 2(4-2x ),由4-2x >0,解得x <2,所以函数y =f (2a -2x )的定义域为(-∞,2),又由0<4-2x <4,所以函数y =f (2a -2x )的值域为(-∞,2).(2)解:由(1)知,函数g x =f (2x λ)⋅f (x 2)-4=log 2(2x λ)⋅log 2x 2-4=2λ(log 2x )2+2log 2x -4在14,4上有两个零点,设t =log 2x ,则t ∈[-2,2],因为t 为关于x 的单调递增函数,所以g x 在14,4有两个零点,等价于函数h x =2λt 2+2t -4在[-2,2]上有两个零点,①当λ=0时,由h x =2t -4=0,可得t =2,函数h x 只有一个零点,所以λ=0不合题意;②当λ>0时,由Δ=4+32λ>0-2<-12λ<2h -2 =8λ-8≥0h 2 =8λ≥0,解得λ≥1;③当λ<0时,由Δ=4+32λ>0-2<-12λ<2h -2 =8λ-8≤0h 2 =8λ≤0,此时不等式组的解集为空集,综上可得,实数λ的取值范围是[1,+∞).一、单选题1(2024·黑龙江·二模)已知函数y =a 12|x |+b 的图象经过原点,且无限接近直线y =2,但又不与该直线相交,则ab =()A.-1 B.-2C.-4D.-9【答案】C【分析】由题意可得a +b =0且b =2,求出a ,即可求解.【解析】因为函数y =f (x )=a 12 x +b 图象过原点,所以a 12+b =0,得a +b =0,又该函数图象无限接近直线y =2,且不与该直线相交,所以b =2,则a =-2,所以ab =-4.故选:C2(2024·上海闵行·二模)已知y =f (x ),x ∈R 为奇函数,当x >0时,f (x )=log 2x -1,则集合{x |f (-x )-f (x )<0}可表示为()A.(2,+∞)B.(-∞,-2)C.(-∞,-2)∪(2,+∞)D.(-2,0)∪(2,+∞)【答案】D【分析】利用函数奇偶性可得不等式f (-x )-f (x )<0等价于f (x )>0,再求出函数解析式,利用对数函数单调性解不等式可得结果.【解析】因为y =f (x )为奇函数,所以f (-x )-f (x )<0等价于-2f (x )<0,即f (x )>0;当x >0时,f (x )=log 2x -1,即f (x )=log 2x -1>0,解得x >2;当x <0时,-x >0,可得f (-x )=-f x =log 2-x -1,所以f x =1-log 2-x ,解不等式f x =1-log 2-x >0,可得-2<x <0,综上可得集合{x |f (-x )-f (x )<0}可表示为(-2,0)∪(2,+∞).故选:D3(2024·北京通州·二模)某池塘里原有一块浮萍,浮萍蔓延后的面积S (单位:平方米)与时间t (单位:月)的关系式为S =a t +1(a >0,且a ≠1),图象如图所示.则下列结论正确的个数为()①浮萍每个月增长的面积都相等;②浮萍蔓延4个月后,面积超过30平方米;③浮萍面积每个月的增长率均为50%;④若浮萍蔓延到3平方米、4平方米、12平方米所经过的时间分别是t 1,t 2,t 3,则t 1+t 2=t 3.A.0B.1C.2D.3【答案】B【分析】由已知可得出S =2t +1,计算出萍蔓延1月至2月份增长的面积和2月至3月份增长的面积,可判断①的正误;计算出浮萍蔓延4个月后的面积,可判断②的正误;计算出浮萍蔓延每个月增长率,可判断③的正误;利用指数运算可判断④的正误.【解析】由已知可得a 1=2,则S =2t +1.对于①,浮萍蔓延1月至2月份增长的面积为23-22=4(平方米),浮萍蔓延2月至3月份增长的面积为24-23=8(平方米),①错;对于②,浮萍蔓延4个月后的面积为25=32(平方米),②对;对于③,浮萍蔓延第n 至n +1个月的增长率为2n +2-2n +12n +1=1,所以,浮萍蔓延每个月增长率相同,都是100%,③错;对于④,若浮萍蔓延到3平方米、4平方米、12平方米所经过的时间分别是t 1,t 2,t 3,则2t 1+1=3,2t 2+1=4,2t 3+1=12=3×4=2t 1+1⋅2t 2+1=2t 1+t 2+2,所以t 3=t 1+t 2+1,④错.故选:B .4(2024·天津红桥·二模)若a =2313,b =log 1225,c =3-14,则a ,b ,c 的大小关系为()A.a >b >cB.b >c >aC.b >a >cD.a <b <c【答案】C【分析】根据给定条件,利用幂函数、对数函数性质,并借助媒介数比较大小.【解析】b =log 1225>log 1212=1,a =23 13=23 4 112=1681 112>381 112=1314=c ,而a =2313<1,所以a ,b ,c 的大小关系为b >a >c .故选:C5(2024·全国·模拟预测)已知函数f (x )=log a x 3-ax 2+x -2a (a >0且a ≠1)在区间(1,+∞)上单调递减,则a 的取值范围是()A.0,23 B.23,1C.(1,2]D.[2,+∞)【答案】A【分析】对数函数的单调性与底数有关,分0<a <1和a >1两种情况讨论,此外还要注意对数函数的定义域,即真数为正;复合函数单调性满足“同增异减”,根据对数函数单调性结合题干中“在区间(1,+∞)上单调递减”得到真数部分函数的单调性,从而求得a 的取值范围.【解析】设函数g x =x 3-ax 2+x -2a ,则g x =3x 2-2ax +1.①若0<a <1,则y =log a x 在定义域上单调递减.又f x =log a x 3-ax 2+x -2a 在区间1,+∞ 上单调递减,所以g x 在区间1,+∞ 上单调递增,故gx ≥0对任意的x ∈1,+∞ 恒成立.又g 1 =4-2a ≥0,所以对任意的x ∈1,+∞ ,g x ≥0显然成立.又因为g x >0对任意x ∈1,+∞ 恒成立,所以g 1 =2-3a ≥0,故0<a ≤23.②若a >1,则y =log a x 在定义域上单调递增.又f x =log a x 3-ax 2+x -2a 在区间1,+∞ 上单调递减,所以g x 在区间1,+∞ 上单调递减,故gx ≤0对任意的x ∈1,+∞ 恒成立.因为抛物线y =3x 2-2ax +1的开口向上,所以g x ≤0不可能对任意的x ∈1,+∞ 恒成立.所以a 的取值范围为0,23.故选:A .6(2024·宁夏固原·一模)已知函数f x 的部分图像如图所示,则f x 的解析式可能为()A.f x =e x -e -x 4x -3 B.f x =e x -e -x3-4x C.f x =e x +e -x4x -3D.f x =x x -1【答案】A【分析】利用f x 在1,+∞ 上的值排除B ,利用奇偶性排除排除C ,利用f x 在1,+∞ 上的单调性排除D ,从而得解.【解析】对于B ,当x >1时,f x =e x -e -x 3-4x,易知e x -e -x >0,3-4x <0,则f x <0,不满足图象,故B 错误;对于C ,f x =e x +e -x 4x -3,定义域为-∞,-34 ∪-34,34 ∪34,+∞ ,又f (-x )=e -x +e x 4-x -3=e x +e -x4x -3=f (x ),则f x 的图象关于y 轴对称,故C 错误;对于D ,当x >1时,f x =x x -1=x x -1=1+1x -1,由反比例函数的性质可知,f x 在1,+∞ 上单调递减,故D 错误;检验选项A ,f x =e x -e -x4x -3满足图中性质,故A 正确.故选:A .7(2024·陕西西安·模拟预测)已知函数f x =12x +1,x <01x +2,x ≥0,则不等式f a 2-1 >f 3 的解集为()A.-2,2B.0,+∞C.-∞,0D.-∞,-2 ∪2,+∞【答案】A【分析】判断函数f x 的单调性,再利用单调性解不等式即可.【解析】f x =12x +1,x <01x +2,x ≥0,易知y =12x +1在-∞,0 单调递减,y =1x +2在0,+∞ 单调递减,且f x 在x =0处连续,故f x 在R 上单调递减,由f a 2-1 >f 3 ,则a 2-1<3,解得-2<a <2,故不等式f a 2-1 >f 3 的解集为-2,2 .故选:A8(2024·甘肃兰州·一模)已知y =f x 是定义在R 上的奇函数,且对于任意x 均有f x +1 +f x -1 =0,当0<x ≤1时,f x =2x -1,若f [ln (ea )]>f (ln a )(e 是自然对数的底),则实数a 的取值范围是()A.e -1+2k <a <e 1+2k (k ∈Z )B.e -32+k <a <e 12+2k(k ∈Z )C.e -1+4k <a <e 1+4k (k ∈Z ) D.e-32+4k <a <e 12+4k(k ∈Z )【答案】D【分析】首先分析函数的周期性与对称性,画出函数在-2,2 上的函数图象,结合图象可知在-2,2 内要满足f [ln (ea )]>f (ln a ),只需-32<ln a <12,即可求出a 的范围,再结合周期性即可得解.【解析】因为y =f x 是定义在R 上的奇函数,所以f 0 =0且图象关于原点对称,又f x +1 +f x -1 =0,所以f x +1 =-f x -1 =f 1-x ,所以f x +4 =f 1-x +3 =-f 2+x =-f 1-x +1 =-f -x =f x ,f -1+x =f 3+x =f 1-2+x =f -1-x ,f 2+x =f -2+x =-f 2-x ,所以函数的周期为4且函数图象关于x =1+2k k ∈Z 和2k ,0 k ∈Z 对称,又当0<x ≤1时,f x =2x -1,所以f x 在区间-2,2 上的图象如下所示:由图可知,在-2,2 内要满足f [ln (ea )]=f (1+ln a )>f (ln a ),则-32<ln a <12,即e -32<a <e 12,再根据函数的周期性可知e -32+4k <a <e12+4k(k ∈Z ).故选:D【点睛】关键点点睛:本题关键是由题意分析出函数的周期为4且函数图象关于x =1+2k k ∈Z 和2k ,0 k ∈Z 对称,再结合函数在-2,2 上的图象.二、多选题9(2024·河南洛阳·模拟预测)下列正确的是()A.2-0.01>2-0.001B.log 23>log 2π-1C.log 1.85<log 1.75D.log 33.01>e -0.01【答案】BCD【分析】利用指数函数的性质判断A ;由对数函数的性质判断B ,C ;由对数函数的性质可得log 33.01>1,由指数函数的性质可得e -0.01<1,即可判断.【解析】解:对于A ,因为-0.01<-0.001,所以2-0.01<2-0.001,所以A 错误;对于B ,因为log 23>log 2π2=log 2π-1,所以B 正确;对于C ,因为log 1.85>0,log 1.75>0,所以log 1.85=ln5ln1.8<ln5ln1.7=log 1.75,所以C 正确;对于D ,因为log 33.01>log 33=1,e -0.01<e 0=1,所以log 33.01>e -0.01,所以D 正确.故选:BCD .10(2024·全国·模拟预测)已知实数a ,b 满足log 3a +log b 3=log 3b +log a 4,则下列关系式中可能正确的是()A.∃a ,b ∈(0,+∞),使|a -b |>1B.∃a ,b ∈(0,+∞),使ab =1C.∀a ,b ∈(1,+∞),有b <a <b 2D.∀a ,b ∈(0,1),有b <a <b【答案】ABC【分析】由原方程可得log 3b -1log 3b=log 3a -1log 4a ,构适函数,由函数的单调性得出值域,根据函数的值域判断A ;令ab =1,代入原方程转化为判断(ln b )2=ln3×ln122是否有解即可判断B ;条件变形放缩后构造函数,利用函数的单调性得出a ,b 大小,判断CD .【解析】由log 3a +log b 3=log 3b +log a 4得log 3b -1log 3b=log 3a -1log 4a ,令f (x )=log 3x -1log 3x ,则f (x )分别在(0,1)和(1,+∞)上单调递增,令g (x )=log 3x -1log 4x,则g (x )分别在(0,1)和(1,+∞)上单调递增,当x ∈(0,1)时,f x 的值域为R ,当x ∈(2,+∞)时,g (x )的值域为log 32-2,+∞ ,所以存在b ∈(0,1),a ∈(2,+∞),使得f (b )=g (a );同理可得,存在b ∈(2,+∞),a ∈(0,1),使得f (b )=g (a ),因此∃a ,b ∈(0,+∞),使|a -b |>1,故选项A 正确.令ab =1,则方程log 3a +log b 3=log 3b +log a 4可化为log b 3+log b 4=2log 3b ,由换底公式可得(ln b )2=ln3×ln122>0,显然关于b 的方程在(0,+∞)上有解,所以∃a ,b ∈(0,+∞),使ab =1,故选项B 正确.当a ,b ∈(1,+∞)时,因为log 3b -1log 3b =log 3a -1log 4a <log 3a -1log 3a ,所以f (b )<f (a ).又f x 在(1,+∞)上单调递增,所以b <a .因为log 3b -1log 3b=log 3a -1log 4a >log 4a -1log 4a ,令h (x )=x -1x,则h (x )在(0,+∞)上单调递增.因为h log 3b >h log 4a ,所以log 3b >log 4a ,从而log 3b >log 4a =log 2a >log 3a ,所以b >a .综上所述,b <a <b 2,故选项C 正确.当a ,b ∈(0,1)时,因为log 3b -1log 3b =log 3a -1log 4a >log 3a -1log 3a ,所以f (b )>f (a ).又f x 在(0,1)上单调递增,所以b >a .因为log 3b -1log 3b=log 3a -1log 4a <log 4a -1log 4a .令h (x )=x -1x,则h (x )在(0,+∞)上单调递增,因为h log 3b <h log 4a ,所以log 3b <log 4a ,从而log 3b <log 4a =log 2a <log 3a ,所以b <a .综上所述,b 2<a <b ,故选项D 错误.故选:ABC .【点睛】关键点点睛:本题的关键是根据对数式的运算规则和对数函数的单调性求解.11(2024·重庆·三模)已知函数f x =log 62x +3x ,g x =log 36x -2x .下列选项正确的是()A.f 12<g 12 B.∃x 0∈0,1 ,使得f x 0 =g x 0 =x 0C.对任意x ∈1,+∞ ,都有f x <g xD.对任意x ∈0,+∞ ,都有x -f x ≤g x -x【答案】BCD【分析】根据2+3>6,3>6-2即可判断A ;根据2x 0+3x 0=6x 0,令h x =6x -2x -3x ,结合零点的存在性定理即可判断B ;由f x -x =log 613 x +12 x 、g x -x =log 32x-23 x ,结合复合函数的单调性可得f x -x 和g x -x 的单调性,即可判断C ;由选项BC 的分析可得6f x-6x =3x -3g x,分类讨论当x ∈0,x 0 、x ∈x 0,+∞ 时x -f x 与g x -x 的大小,进而判断D .【解析】A :因为2+3 2=5+26>6 2,所以2+3>6,3>6- 2.因为f 12 =log 62+3 >log 66=12,g 12 =log 36-2 <log 33=12,所以f 12 >g 12,故A 错误;B :若f x 0 =g x 0 =x 0,则f x 0 =log 62x 0+3x 0=x 0=log 66x 0,即2x 0+3x 0=6x,g x 0 =log 36x 0-2x 0 =x 0=log 33x 0,可得6x 0-2x 0=3x 0,令h x =6x -2x -3x ,因为h 0 =-1,h 1 =1,所以∃x 0∈0,1 ,使得h x 0 =0,即2x 0+3x 0=6x 0,故B 正确;C :因为f x -x =log 62x +3x -log 66x =log 62x +3x 6x =log 613 x +12 x ,且y =13 x +12 x 在1,+∞ 上单调递减,所以f x -x 也单调递减,可得f x -x <log 612+13<0,因为g x -x =log 36x -2x -log 33x =log 36x -2x 3x =log 32x -23 x .又y =2x -23 x 在1,+∞ 上单调递增,所以g x -x 也单调递增,得g x -x >log 32-23>0,即f x -x <g x -x ,因此,对于任意的x ∈1,+∞ ,都有f x <g x ,故C 正确;D :由B 可知:∃x 0∈0,1 ,使得h x 0 =0,结合C 的结论,可知当x ∈0,x 0 ,f x >x ,g x <x ,即g x <x <f x ,当x ∈x 0,+∞ 时,f x <x ,g x >x ,即f x <x <g x ,因为6f x =2x +3x ,3g x =6x -2x ,得2x =6f x -3x =6x -3g x ,即6f x -6x =3x -3g x ,当x ∈0,x 0 时,有6x 6f x -x -1 =3g x 3x -g x -1 ,因为6x >3g x ,所以6f x -x -1<3x -g x -1,所以0<f x -x <x -g x ,因此可得g x -x ≤x -f x <0,即x -f x ≤g x -x ,当x ∈x 0,+∞ ,有6f x 6x -f x -1 =3x 3g x -x -1 ,因为6f x >3x ,所以6x -f x -1<3g x -x -1,可得0<x -f x <g x -x ,即x -f x ≤g x -x ,因此,对于任意的x ∈0,+∞ ,都有x -f x ≤g x -x ,故D 正确.故选:BCD .【点睛】方法点睛:证明不等式的恒成立问题的求解策略:形如f x ≥g x 的恒成立的求解策略:1、构造函数法:令F x =f x -g x ,利用导数或基本函数的单调性求得函数F x 的单调性与最小值,只需F x min ≥0恒成立即可;2、参数分离法:转化为a ≥φx 或a ≤φx 恒成立,即a ≥φx max 或a ≤φx min 恒成立,只需利用导数求得函数φx 的单调性与最值即可;3,数形结合法:结合函数y =f x 的图象在y =g x 的图象的上方(或下方),进而得到不等式恒成立.三、填空题12(2023·河南·模拟预测)已知幂函数f x =m 2-6m +9 x m 满足f 1 =2,则f 2 =.【答案】4【分析】由幂函数的定义结合导数求得m ,进而可得答案.【解析】由幂函数的定义可得m 2-6m +9=1,解得m =2或m =4,当m =2时,f x =x 2,f x =2x ,f 1 =2符合题意;当m =4时,f x =x 4,f x =4x 3,f 1 =4,不符合题意.故f x =x 2,f 2 =4.故答案为:4.13(2024·全国·模拟预测)已知函数f x =x x -1,g x =e x -1-e -x +1+1,则f x 与g x 的图象交点的纵坐标之和为.【答案】2【分析】分析函数的奇偶性,由图象的平移变换求解即可.【解析】对于f x =x x -1=1x -1+1,可以把f x 的图象看作:由f 1x =1x -1的图象向上平移1个单位长度得到,而f 1x 的图象可看作由f 2x =1x 的图象向右平移1个单位长度得到;对于g x =e x -1-e -x +1+1=e x -1-1e x -1+1的图象可看作由g 1x =e x -1-1e x -1的图象向上平移1个单位长度得到,而g 1x 的图象可看作由g 2x =e x -1e x 的图象向右平移1个单位长度得到.易知f 2x =1x 与g 2x =e x -1ex 都为奇函数,公众号:慧博高中数学最新试题则易知f 2x 与g 2x 的图象共有两个关于原点对称的交点,且交点的纵坐标之和为0.因为将函数图象向右平移不改变f 1x 与g 1x 两函数图象交点处函数值的大小,所以f 1x 与g 1x 的图象交点的纵坐标之和为0,又将函数图象向上平移1个单位长度会使得原交点处的函数值都增加1,则f x 与g x 的图象的两个交点的纵坐标与f 1x 与g 1x 的图象两个交点的纵坐标相比都增加1,故f x 与g x 的图象交点的纵坐标之和为2.故答案为:214(2024·全国·模拟预测)已知定义在-∞,0 ∪0,+∞ 上的函数f x ,对于定义域内任意的x ,y ,都有f xy =f x +f y ,且f x 在0,+∞ 上单调递减,则不等式f x <log 2x +12的解集为.【答案】x x <-1 或x >1【分析】由f xy =f x +f y ,利用赋值法,得到函数f x 的奇偶性,构造函数F x =f x -log 2x +12,研究其单调性和奇偶性,再由F 1 =0,将不等式f x <log 2x +12转化为F x <F 1 求解.【解析】由f xy =f x +f y ,令x =y =1,得f 1 =f 1 +f 1 ,所以f 1 =0.令x =y =-1,得f -1 =0.令y =-1,得f -x =f x +f -1 =f x ,所以函数f x 为偶函数.构造函数F x =f x -log 2x +12,因为F -x =F x ,所以F x 为偶函数,且在0,+∞ 上为减函数.因为F 1 =f 1 -log 21+12=0,所以不等式f x <log 2x +12等价于F x =f x -log 2x +12<0=F 1 ,所以F x <F 1 ,即x >1,所以x <-1或x >1,故不等式f x <log 2x +12的解集为x |x <-1 或x >1 .故答案为:x |x <-1 或x >1 .。
指数、对数、幂函数-解析版
基础回顾知识一、幂函数(1)幂函数的定义“”如果一个函数,底数是自变量x,指数是常量α,即y=xα,这样的函数称为幂函数.(2)常见的5种幂函数的图象(3)常见的5种幂函数的性质特征函数性质y=x y=x2y=x3y=x12y=x-1定义域R R R[0,+∞){x|x∈R,且x≠0}值域R[0,+∞)R[0,+∞){y|y∈R,且y≠0}奇偶性奇偶奇非奇非偶奇单调性增(-∞,0]减,[0,+∞)增增增(-∞,0)减,(0,+∞)减定点(0,0),(1,1)(1,1)常用结论:(1)幂函数的图像一定会出现在第一象限内,一定不会出现在第四象限,至于是否出现在第二、三象限内,要看函数的奇偶性.(2)幂函数的图像过定点(1,1),如果幂函数的图像与坐标轴相交,则交点一定是原点.(3)当α>0时,y=xα在[0,+∞)上为增加的;当α<0时,y=xα在(0,+∞)上为减少的.二、指数函数1.根式:(1)概念:式子na叫做根式,其中n叫做根指数,a叫做被开方数.(2)性质:(na)n=a(a使na有意义);当n为奇数时,na n=a,当n 为偶数时,na n=|a |=⎩⎪⎨⎪⎧a ,a ≥0,-a ,a <0.2.分数指数幂(1)规定:正数的正分数指数幂的意义是a m n=a >0,m ,n ∈N *,且n >1);正数的负分数指数幂的意义是a -m n =1(a >0,m ,n ∈N *,且n >1);0的正分数指数幂等于0;0的负分数指数幂没有意义.(2)有理指数幂的运算性质:a r a s =a r +s ;(a r )s =a rs ;(ab )r =a r b r ,其中a >0,b >0,r ,s ∈Q . 3.指数函数的图象与性质三、对数函数1.对数的概念一般地,如果a (a >0,a ≠1)的b 次幂等于N ,即a b =N ,那么数b 叫作以a 为底N 的对数,记作log a N =b .其中a 叫作对数的底数,N 叫作真数. 2.对数的性质与运算性质(1)对数的性质①a log a N =N ;②log a a N =N (a >0,且a ≠1);③零和负数没有对数. (2)对数的运算性质(a >0,且a ≠1,M >0,N >0)①log a (M ·N )=log a M +log a N ;②log a MN =log a M -log a N ;③log a M n =n log a M (n ∈R ).(3)对数的重要公式①换底公式:log b N =log a N log a b (a ,b 均大于零且不等于1);②log a b =1log b a ,推广log a b ·log b c ·log c d=log a d .3.对数函数的图象与性质(0,+∞)指数、对数、幂函数一、选择题1.下列结论中,正确的是( )A .幂函数的图像都通过点(0,0),(1,1)B .幂函数的图像可以出现在第四象限C .当幂指数α取1,3,12时,幂函数y =x α是增函数 D .当幂指数α=-1时,幂函数y =x α在定义域上是减函数解析: 当幂指数α=-1时,幂函数y =x -1的图像不通过原点,故选项A 不正确; 因为所有的幂函数在区间(0,+∞)上都有定义,且y =x α(α∈R ),y >0,所以幂函数的图像不可能出现在第四象限,故选项B 不正确;当α=-1时,y =x -1在区间(-∞,0)和(0,+∞)上是减函数,但在它的定义域上不是减函数,故选项D 不正确. 答案: C2.下列幂函数中过点(0,0),(1,1)的偶函数是( )A .y =x 12 B .y =x 4 C .y =x -2D .y =x 13解析: 函数y =x 12定义域为(0,+∞),既不是奇函数也不是偶函数,故A 不正确; 函数y =x 4是过点(0,0),(1,1)的偶函数,故B 正确; 函数y =x-2不过点(0,0),故C 不正确;函数y =x 13是奇函数,故D 不正确. 答案: B3.设a =⎝⎛⎭⎫1234,b =⎝⎛⎭⎫1534,c =⎝⎛⎭⎫1212,则( )A .a <b <cB .c <a <bC .b <c <aD .b <a <c解析: 由y =x 34是[0,+∞)上的增函数,∴⎝⎛⎭⎫1534<⎝⎛⎭⎫1234,由y =⎝⎛⎭⎫12x是R 上的减函数,∴⎝⎛⎭⎫1234<⎝⎛⎭⎫1212.∴b <a <c .答案: D4.已知函数y =x a ,y =x b ,y =x c 的图像如图所示,则a ,b ,c 的大小关系为( )A .c <b <aB .a <b <cC .b <c <aD .c <a <b解析: 由幂函数的图像特征知,c <0,a >0,b >0.由幂函数的性质知,当x >1时,幂函数的幂指数大,其函数值就大,则a >b . 综上所述,可知c <b <a . 答案: A5. 将3-22化为分数指数幂,其形式是( )A .212B .-212C .2-12D .-2-12解析:3-22=(-22)13=(-2×212)13 =(-232)13=-212. 答案: B6. 化简-x 3x的结果是( )A .--x B.x C .-xD .-x 解析: 依题意知x <0,所以-x 3x =--x 3x 2=--x . 答案: A 7.a 3a ·5a 4(a >0)的值是( )A .1B .aC .a 15D .a 1710解析: 原式=a 3a 12·a 45=a 3-12-45=a 1710. 答案: D8.下列结论正确的是( )A .对于x ∈R ,恒有3x >2xB .y =(2)-x 是增函数 C .对a >1,x ∈R ,一定有a x >a-xD .y =2|x |是偶函数解析: A .当x <0时,2x>3x;B.y =⎝⎛⎭⎫12x =⎝⎛⎭⎫22x在R 上单调递减;C.当x =0时,就有a x =1,a -x =1;D.符合偶函数的定义.答案: D 9.设a =22.5,b =2.50,c =⎝⎛⎭⎫12 2.5,则a ,b ,c 的大小关系是( ) A .a >c >b B .c >a >b C .a >b >c D .b >a >c解析: 因为a =22.5>1,b =2.50=1,c =⎝⎛⎭⎫12 2.5<1,所以a >b >c . 答案: C10.函数y =3x 与y =3-x 的图像关于下列哪条直线对称( )A .x 轴B .y 轴C .直线y =xD .直线y =-x解析: y =3-x=⎝⎛⎭⎫13x,由y =3x与y =⎝⎛⎭⎫13x关于y 轴对称,所以y =3x 与y =3-x 关于y 轴对称. 答案: B11.在同一平面直角坐标系中,函数f (x )=ax 与g (x )=a x 的图像可能是( )解析: 需要对a 讨论:①当a >1时,f (x )=ax 过原点且斜率大于1,g (x )=a x 是递增的.②当0<a <1时,f (x )=ax 过原点且斜率小于1,g (x )=a x 是减函数.显然B 正确.答案: B12.已知2x =9,log 283=y ,则x +2y 的值为( )A .6B .8C .4D .log 48解析: 由2x =9,得log 29=x , ∴x +2y =log 29+2log 283=log 29+log 2649=log 264=6. 答案: A13.设a =log 32,则log 38-2log 36用a 表示的形式是( )A .a -2B .3a -(1+a )2C .5a -2D .1+3a -a 2 解析: ∵a =log 32,∴log 38-2log 36=3log 32-2(log 32+1)=3a -2(a +1)=a -2. 答案: A 14. .1log 1419+1log 1513=( ) A .lg 3 B .-lg 3 C.1lg 3D .-1lg 3解析: 原式=log 1914+log 1315=log 94+log 35=log 32+log 35=log 310=1lg 3.答案: C15.设log 34·log 48·log 8m =log 416,则m 的值为( )A.12 B .9 C .18D .27 解析: 由题意得lg 4lg 3·lg 8lg 4·lg mlg 8=lg m lg 3=log416=log442=2,∴lg mlg 3=2,即lg m=2lg 3=lg 9.∴m=9.答案:B16.若某对数函数的图像过点(4,2),则该对数函数的解析式为()A.y=log2x B.y=2log4xC.y=log2x或y=2log4x D.不确定解析:由对数函数的概念可设该函数的解析式为y=log a x(a>0,且a≠1,x>0),则2=log a4=log a22=2log a2,即log a2=1,a=2.故所求解析式为y=log2x.答案:A17.已知函数f(x)=a x(a>0,a≠1)的反函数为g(x),且满足g(2)<0,则函数g(x+1)的图像是下图中的()解析:由y=a x解得x=log a y,∴g(x)=log a x.又∵g(2)<0,∴0<a<1.故g(x+1)=log a(x+1)是递减的,并且是由函数g(x)=log a x向左平移1个单位得到的.答案:A18.当a>1时,在同一坐标系中,函数y=a-x与y=log a x的图像是()解析: ∵a >1,不妨取a =2,找出函数y =2-x 与y =log 2x 的图像即可. 答案: D 二、填空题19.已知幂函数f (x )=xm 2-1(m ∈Z )的图像与x 轴,y 轴都无交点,且关于原点对称,则函数f (x )的解析式是________.解析: ∵函数的图像与x 轴,y 轴都无交点, ∴m 2-1<0,解得-1<m <1; ∵图像关于原点对称,且m ∈Z , ∴m =0,∴f (x )=x -1. 答案: f (x )=x -120.若直线y =2a 与函数y =|a x -1|(a >0,且a ≠1)的图像有两个公共点,则a 的取值范围是________.解析: 当0<a <1时,如图(1)所示, 要使得y =2a 与y =|a x -1|有两个交点, 需0<2a <1,故0<a <12.当a >1时,如图(2)所示,由于y =2a >2,所以y =2a 与y =|a x -1|不存在两个交点,故a 的取值范围为0<a <12.答案: 0<a <1221.已知a 23=49(a >0),则log 23a =________.解析: 法一:∵a 23=49,∴log a 49=23,∴2log a 23=23,∴log a 23=13,∴1log a 23=3,∴log 23a =3. 法二:∵a 23=49,∴a 2=64729,∴a =827=⎝⎛⎭⎫233,∴log 23a =log 23⎝⎛⎭⎫233=3. 答案: 322.(lg 2)3+(lg 5)3+3lg 2·lg 5=________.解析: ∵原式=(lg 2+lg 5)[(lg 2)2-lg 2·lg 5+(lg 5)2]+3lg 2·lg 5 =1×[(lg 2)2-lg 2·lg 5+(lg 5)2]+3lg 2·lg 5 =(lg 2)2+2lg 2·lg 5+(lg 5)2 =(lg 2+lg 5)2=1. 答案: 123 .lg 2+lg 5-lg 12lg 12+lg 8·(lg 32-lg 2)=________.解析: 原式=lg (2×5)-0lg ⎣⎡⎦⎤⎝⎛⎭⎫122×8×lg 322=1lg 2·lg 24=4. 答案: 4 三、解答题 24.化简求值:(1)(5x -23y 12)·⎝⎛⎭⎫-14x -1y 12·⎝⎛⎭⎫-56x 13y -16; (2)23a ÷46a ·b ×3b 3.解析: (1)原式=⎣⎡⎦⎤5×⎝⎛⎭⎫-14×⎝⎛⎭⎫-56·x -23+(-1)+13·y 12+12-16=2524x -43·y 56. (2)原式=2a 13÷(4a 16b 16)×(3b 32)=12a 13-16b -16·3b 32 =32a 16b 43. 25.已知函数f (x )=a x +b (a >0,且a ≠1).若f (x )的图像如图所示,(1)求a ,b 的值;(2)解不等式f (x )≥2.解析: (1)由图像得,点(1,0),(0,-1)在函数f (x )的图像上,所以⎩⎪⎨⎪⎧a 1+b =0,a 0+b =-1,解得⎩⎪⎨⎪⎧a =2,b =-2, ∴f (x )=2x -2.(2)f (x )=2x -2≥2,∴2x ≥4,∴x ≥2.26.若函数f (x )=a x -1(a >0,a ≠1)的定义域和值域都是[0,2],求实数a 的值.解析: 当a >1时,f (x )在[0,2]上递增,∴⎩⎪⎨⎪⎧f (0)=0,f (2)=2,即⎩⎪⎨⎪⎧a 0-1=0,a 2-1=2.∴a =± 3.又a >1,∴a =3;当0<a <1时,f (x )在[0,2]上递减,∴⎩⎪⎨⎪⎧f (0)=2,f (2)=0, 即⎩⎪⎨⎪⎧a 0-1=2,a 2-1=0.解得a ∈∅. 综上所述,实数a 的值为 3.27.求下列各式的值:(1)2log 32-log 3329+log 38-5log 53; (2)[(1-log 63)2+log 62·log 618]÷log 64.解析: (1)原式=2log 32-(log 332-log 39)+3log 32-3=2log 32-5log 32+2+3log 32-3=-1.(2)原式=[(log 66-log 63)2+log 62·log 6(2·3)2]÷log 64=⎣⎡⎦⎤⎝⎛⎭⎫log 6632+log 62(log 62+log 632)÷2log 62 =[(log 62)2+(log 62)2+2·log 62·log 63]÷2log 62 =log 62+log 63=log 6(2·3)=1.28.计算下列各式的值:(1)log 2125·log 318·log 519;(2)(log 23+log 89)(log 34+log 98+log 32). 解析: (1)log 2125·log 318·log 519 =log 25-2·log 32-3·log 53-2=-12log 25·log 32·log 53=-12·lg 5lg 2·lg 2lg 3·lg 3lg 5=-12.(2)原式=(log 23+log 3232)(log 322+log 2323+log 32) =53log 23·92log 32=152·1log 32·log 32=152.29.函数f (x )=log 2x 在区间[a ,2a ](a >0)上最大值与最小值之差为________.解析: ∵f (x )=log 2x 在区间[a ,2a ]上是增函数, ∴f (x )max -f (x )min =f (2a )-f (a )=log 2(2a )-log 2a =1. 答案: 1。
基本初等函数知识点
基本初等函数知识点一、引言在数学中,初等函数是由基本初等函数经过有限次的四则运算(加、减、乘、除)以及复合运算得到的函数。
基本初等函数包括常数函数、幂函数、指数函数、对数函数、三角函数以及反三角函数。
本文将详细介绍这些基本初等函数的定义、性质和图像。
二、常数函数定义:常数函数 \( f(x) = c \),其中 \( c \) 是一个实数常数。
性质:常数函数的图像是一条平行于 \( x \) 轴的直线,其所有点的函数值都等于常数 \( c \)。
图像:见附录图1。
三、幂函数定义:幂函数 \( f(x) = x^n \),其中 \( n \) 是实数。
性质:幂函数的性质取决于指数 \( n \) 的值。
当 \( n \) 为正整数时,函数图像是 \( n \) 次幂的曲线;当 \( n \) 为负整数时,函数图像是倒数的幂函数曲线。
图像:见附录图2。
四、指数函数定义:指数函数 \( f(x) = a^x \),其中 \( a > 0 \) 且 \( a\neq 1 \)。
性质:指数函数的底数 \( a \) 决定了函数图像的形状。
当 \( a > 1 \) 时,函数是增长的;当 \( 0 < a < 1 \) 时,函数是衰减的。
图像:见附录图3。
五、对数函数定义:对数函数 \( f(x) = \log_a(x) \),其中 \( a > 0 \) 且\( a \neq 1 \)。
性质:对数函数是指数函数的逆函数。
当 \( a > 1 \) 时,函数是单调增加的;当 \( 0 < a < 1 \) 时,函数是单调减少的。
图像:见附录图4。
六、三角函数1. 正弦函数 \( \sin(x) \)2. 余弦函数 \( \cos(x) \)3. 正切函数 \( \tan(x) \)定义:这些函数与单位圆上的点的坐标有关。
性质:三角函数具有周期性,它们的周期为 \( 2\pi \)。
高一数学 基本初等函数(对、指、幂函数)高考考纲及典型例题高考真题解析
.
2
a 3 3a
【法二】 8 x 8 x 2 x
2
3 2
x 3
2 2 2 x 2 x 2 x 2 x 2 x 2 x
1
2 3
3
37 48
5 9 37 100 3 100 . 3 16 48
4
(4)原式 0.4 1 1 2 2 3 0.1
5 1 1 1 143 . 1 2 16 8 10 80
4.函数 f x a 2 7a 7 a x 是指数函数,求实数 a 的值. 【解析】∵函数 f x a 2 7a 7 a x 是指数函数,
1
0 a2 a1 1 a4 a3 . 1 又由题知: 0 10 1 3 10 ,∴ A 项正确. 3
1 x
a1 a2
O
x 1 x
b 7.已知二次函数 y ax 2 bx 与指数函数 y 的图象只能是下列图形中的 a y
1 1
1 2
1 1 , y x 2 的图像,了解它们的变化情况. x
二、重点知识总结
1.指数与指数幂运算 (1)①
a
n n n
n
a. a , 当n是奇数时 . a , 当n是偶数时
② a
(2)分数指数幂 ①a ②a
m n
n a m ( a 0 , m, n N * ,且 n 1 )
x y
2
是非负数,故④对.
7 (3) 2 9
高考函数知识点类型
高考函数知识点类型高考函数部分是数学考试中难度较大的内容之一,涉及的知识点也较为繁杂。
为了帮助同学们更好地掌握这一部分内容,以下将按照不同类型进行归纳和总结。
一、基本函数类型1. 线性函数线性函数是指一次函数,其函数表达式一般为f(x)=kx+b,其中k和b为常数。
解题时需要掌握线性函数的性质和常见题型,包括直线的斜率和截距、两直线关系等。
2. 幂函数幂函数是指形如f(x)=ax^m的函数,其中a和m为常数。
学生需要了解幂函数的图像特点、单调性、极限等概念,并能运用这些知识进行相关题目的解答。
3. 指数函数指数函数是指形如f(x)=a^x的函数,其中a为常数。
学生应该熟悉指数函数的图像、性质以及指数方程的解法,能够灵活应用于实际问题的求解。
4. 对数函数对数函数是指形如f(x)=loga(x)的函数,其中a为常数。
学生需要了解对数函数的图像、性质和对数方程的解法,并能熟练运用于各种相关问题的解答。
二、复合函数类型1. 函数的复合复合函数是指将一个函数的输出作为另一个函数的输入,通过不断复合得到一个新的函数。
学生需要了解复合函数的定义和性质,并能够进行相关题目的分析和求解。
2. 反函数反函数是指满足f(f^(-1)(x))=x和f^(-1)(f(x))=x的函数。
学生需要掌握反函数的概念和性质,能够进行反函数关系的判断和求解。
三、函数的图像与性质1. 对称性函数的对称性包括奇偶对称和轴对称两种类型。
学生需要能够通过函数的表达式或者图像判断函数的对称性,并能够应用对称性解决相关问题。
2. 单调性函数的单调性是指函数在定义域上的增减性质。
学生需要学会判断函数的单调性、求解函数的最值以及应用单调性解决相关问题。
3. 零点与极值点零点是指函数曲线与x轴相交的点,极值点是指函数的最值点。
学生需要能够准确判断函数的零点和极值点,并且理解相关概念的几何意义。
四、函数的应用1. 函数的模型建立将实际问题转化为函数模型是函数应用的一种重要方式。
题型08 必考的几类初等函数(分式一次型函数、二次函数、指数函数)(解析版)
秒杀高考题型之必考的几类初等函数(分式一次型函数、二次函数、指数函数)【秒杀题型一】:分式一次型函数:()ax b dy x cx d c+=≠-+。
『秒杀策略』:反比例函数()kf x x =推广为分式函数:()ax b d y x cx d c+=≠-+→把分子变量去掉,可转化为:ty m x n=+-,图象为双曲线,有以下性质:①定义域:,x R x n ∈≠; ②值域:,y R y m ∈≠,am c=; ③单调性:单调区间为()(),,,n n -∞+∞,当0t >时为减函数,反之为增函数; ④对称中心:(),n m 。
秒杀方法:在选择题中考查增减性时...........,.如选项中有分式.......一次型...函数..,.一般情况下.....优先考虑....此选项。
.... 1.(高考题)函数111--=x y 的图象是 ( )【解析】:可知函数的对称中心为()1,1,0t <,对应区间为增函数,选B 。
2.(高考题)在区间(),0-∞上为增函数的是 ( ) A.0.5log ()y x =-- B.1xy x=- C.2(1)y x =-+ D.21y x =+ 【解析】:A 为减函数,C 的对称轴为1-=x ,先增后减;D 为先减后增;选B 。
3.(高考题)函数()21)(≥-=x x xx f 的最大值为 。
【解析】:1-=x x y =111-+x ,可知()+∞∈,1x 为减函数,即2)2()(max ==f x f 。
【秒杀题型二】:二次函数。
『秒杀策略』:二次函数解析式设法有三种:根据条件特点采用对应设法。
①一般式:2y ax bx c =++; ②两根式:12()()y a x x x x =--;③顶点式:2()y a x h k =-+。
1.(高考题)商家通常依据“乐观系数准则”确定商品销售价格,即根据商品的最低销售限价a ,最高销售限价()b b a >以及常数()01x x <<确定实际销售价格()c a x b a =+-,这里x 被称为乐观系数。
指数函数、对数函数、幂函数、二次函数【解析版】
第三节 指数函数、对数函数、幂函数、二次函数1.【贵州省遵义四中2014届高三上学期第五次月考(理科)】若函数f (x )为定义在R 上的奇函数,当x >0时,f (x )=2x ﹣1﹣3,则不等式f (x )>1的解集为 .【答案】(﹣2,0)∪(3,+∞) 【解析】试题分析:当0x <时,0x ->,∴1()23x f x ---=-,∴1()23x f x ---=-,∴1()23x f x --=-+,∴当0x <时,1()23x f x --=-+,当0x =时,(0)0f =,()1f x >⇔10231x x ->⎧⎨->⎩或10231x x --<⎧⎨-+>⎩,即3x >或20x -<<.考点:函数的性质、不等式的解法. 【结束】2.【宁夏银川市九中2014届高三上学期第四次月考数学(理)试题】若函数()xxf x ka a -=-(a >0且1a ≠)在(,-∞+∞)上既是奇函数又是增函数,则()log ()a g x x k =+的图象是( )【答案】C 【解析】试题分析:因为()f x 是奇函数,则00(0)0f ka a =-=,所以1k =,又函数是增函数,所以1a >,因而()log (1)(1)a g x x a =+>,则选C. 考点:1.函数的单调性与奇偶性;2.函数的图像.3.【宁夏银川市银川九中2014届高三上学期第五次月考数学(理)试题】已知,22)(),3)(2()(-=++-=x x g m x m x m x f 若0)(,<∈∀x f R x 或,0)(<x g 则m 的取值范围 .4.【宁夏银川市银川一中2014届高三上学期第五次月考数学(理)试题】已知命题p :函数2()21(0)f x ax x a =--≠在(0,1)内恰有一个零点;命题q :函数2a y x -=在(0,)+∞上是减函数,若p 且q ⌝为真命题,则实数a 的取值范围是( ) A .1a > B .a≤2 C . 1<a≤2 D .a≤l 或a>2【答案】C 【解析】5. 【宁夏银川市银川一中2014届高三上学期第五次月考数学(理)试题】设方程ln x x =-与方程xe x =- (其中e 是自然对数的底数)的所有根之和为m ,则( ) A .0m < B. 0m = C. 01m << D. 1m >【答案】B 【解析】试题分析:ln x x =-的根即ln y x =和y x =-交点横坐标;x e x =-的根即xy e =和y x =-交点横坐标,在同一直角坐标系中,画出函数图象,因为ln y x =和xy e =互为反函数,其图象关于y x=对称,故与直线y x =-的交点亦关于y x =对称,则两个交点关于原点对称,所以0m =.考点:1、指数函数和对数函数的图象和性质;2、反函数.6.【甘肃省临夏中学2014届高三上学期期中考试数学(理)试题】若函数()(0,1)x f x a a a =>≠在[1,2]-上的最大值为4,最小值为m ,且函数()(14)g x m x =-在[0,)+∞上是增函数,则a =( )A .14 B .13 C .12D .32 【答案】A 【解析】试题分析:当1>a 时,m a a ==1,42,∴21,2==m a ;当10<<a 时,m a a==2,41,∴161,41==m a ,又()(14)g x m x =-在[0,)+∞上是增函数,∴41,041<>-m m ,∴41=a .考点:1、指数函数的单调性;2、函数的最值. 【结束】7.【甘肃省临夏中学2014届高三上学期期中考试数学(理)试题】对任意的实数R x ∈,不等式01||2≥++x a x 恒成立,则实数a 的取值范围是 .【答案】2-≥a 【解析】试题分析:当0=x 时,R a ∈;当0≠x 时,)1(2+-≥x x a ,∴)1(xx a +-≥,所以2-≥a ,综上所述2-≥a . 考点:基本不等式. 【结束】8. 【甘肃省西北师大附中2012届高三上学期期中考试数学(理)试题】设函数y=f(x)存在反函数y =1()fx -,且函数()y x f x =-的图象过点(1,2),则函数1()y f x x -=-的图象一定过点( )A .(1,2)B .(2,0)C .(-1,2)D .(2,1) 【答案】C 【解析】试题分析:函数()y x f x =-的图象过点()1,2,所以()211f =-,解得()11f =-.因为互为反函数的图像关于y x =对称,则()111f --=.所以1x =-时()()1112y f -=---=,即函数1()y f x x -=-的图象一定过点()1,2-.故C 正确.考点:1图像过定点问题;2反函数. 【结束】9.【甘肃省西北师大附中2012届高三上学期期中考试数学(理)试题】若函数[)[]⎪⎩⎪⎨⎧∈-∈=1,0,40,1,41)(x x x f x x)( 则411log 33f f ⎧⎫⎛⎫=⎨⎬ ⎪⎝⎭⎩⎭ ( )A.31 B.3 C.41D.4 【答案】D 【解析】试题分析:因为444111log log log 1043-=<<=,所以4441log 1log 3log 33411log 44334f -⎛⎫==== ⎪⎝⎭,所以()14111log 3144333f f f f ⎧⎫⎛⎫⎛⎫=⨯===⎨⎬ ⎪ ⎪⎝⎭⎝⎭⎩⎭.故D 正确. 考点:1分段函数;2对数不等式. 【结束】10.【甘肃省西北师大附中2012届高三上学期期中考试数学(理)试题】已知函数f(x)=x 2-2x+3在闭区间[0,m ]上最大值为3,最小值为2,则m 的取值范围为 【答案】[]1,2 【解析】试题分析:二次函数()223f x x x =-+的开口向上对称轴为1x =,且函数()f x 在(),1-∞上单调递减,在()1,+∞上单调递增.所以1x =时()f x 取得最小值为()()2min 112132f x f ==-⨯+=.所以[]10,m ∈.即1m ≤.因为()03f =,由对称性可知()()203f f ==,所以2m ≤,综上可得12m ≤≤.考点:二次函数的图像. 【结束】11.【云南省部分名校2014届高三12月份联考(理)数学试题】已知正数,x y 满足20350x y x y -≤⎧⎨-+≥⎩,则14()2xy z -=⋅的最小值为( ) .1A 31.24B 1.16C 1.32D当z 取到最小值时,'z 最小,此时直线'2y x z =--的纵截距最大,故当直线过点(1,2)A 时,'z 取到最小值4-,故yx z )21(4⋅=-的最小值为161.故选C . 考点:1、指数幂运算性质;2、线性规划.12. 【云南省部分名校2014届高三12月份联考(理)数学试题】如右图所示的程序框图的输出值]2,1(∈y ,则输入值∈x .【答案】)1,3log []3,1(2-- 【解析】试题分析:程序框图表示的是一个分段函数2log (1),021,0x x x y x -+≥⎧=⎨-<⎩,所以201log (1)2x x ≥⎧⎨<+≤⎩或1212xx -<⎧⎨<-≤⎩,解得{2log 31x x -≤<-,或}13x <≤.. 考点:1、程序框图;2、指数不等式、对数不等式解法.13.【云南省昆明市2014届高三上学期第一次摸底调研测试数学(理)试题】设0.30.20.12,3,7a b c ===,则,,a b c 的大小关系为( )(A )c a b << (B) a c b << (C) a b c << (D) c b a <<输出y是开始 结束)1(log 2+=x y12-=-x y ?0≥x输入x否。
6类基本初等函数以及三角函数(考研数学基础)
基本初等函数及图形(1) 常值函数(也称常数函数) y =c (其中c 为常数)(2) 幂函数 μx y =,μ是常数;(3) 指数函数 xa y = (a 是常数且01a a >≠,),),(+∞-∞∈x ;(4) 对数函数x y a log =(a是常数且01a a >≠,),(0,)x ∈+∞;1. 当u 为正整数时,函数的定义域为区间),(+∞-∞∈x ,他们的图形都经过原点,并当u>1时在原点处与X 轴相切。
且u 为奇数时,图形关于原点对称;u 为偶数时图形关于Y 轴对称;2. 当u 为负整数时。
函数的定义域为除去x=0的所有实数。
3. 当u 为正有理数m/n 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞+∞)。
函数的图形均经过原点和(1 ,1).如果m>n 图形于x 轴相切,如果m<n,图形于y 轴相切,且m 为偶数时,还跟y 轴对称;m,n 均为奇数时,跟原点对称1. 当a>1时函数为单调增,当a<1时函数为单调减.2. 不论x 为何值,y 总是正的,图形在x 轴上方.3. 当x=0时,y=1,所以他的图形通过(0,1)点.他的图形为于y 轴的右方.并通过点(1,0)当a>1时在区间(0,1),y 的值为负.图形位于x 的下方,在区间(1, +∞),y 值为正,图形位于x 轴上方.在定义域是单调增函数.a<1在实用中很少用到/(5) 三角函数正弦函数 x y sin =,),(+∞-∞∈x ,]1,1[-∈y ,余弦函数 x y cos =,),(+∞-∞∈x ,]1,1[-∈y ,正切函数 x y tan =,2ππ+≠k x ,k Z ∈,),(+∞-∞∈y ,余切函数 x y cot =,πk x ≠,k Z ∈,),(+∞-∞∈y ;(6)反三角函数反正弦函数 x y arcsin =, ]1,1[-∈x ,]2,2[ππ-∈y ,反余弦函数 x y arccos =,]1,1[-∈x ,],0[π∈y ,反正切函数 x y arctan =,),(+∞-∞∈x ,)2,2(ππ-∈y ,反余切函数 x y cot arc =,),(+∞-∞∈x ,),0(π∈y .小结:函数名称 函数的记号函数的图形函数的性质指数函数a):不论x 为何值,y 总为正数;b):当x=0时,y=1.对数函数a):其图形总位于y 轴右侧,并过(1,0)点 b):当a >1时,在区间(0,1)的值为负;在区间(1,+∞)的值为正;在定义域内单调增.幂函数(a 为任意实数)这里只画出部分函数图形的一部分。
基本初等函数基础题汇总(解析版)
基本初等函数基础题汇总(解析版)基本初等函数基础题汇总(解析版)基本初等函数是数学中的重要概念,对于学习和理解其他数学领域,如微积分和代数等,都具有重要意义。
本文将对基本初等函数中的一些常见题目进行汇总,并提供解析,帮助读者更好地理解和掌握这些函数的性质和应用。
一、线性函数线性函数是最基本的一类函数,其表达式为y = kx + b,其中k和b为常数。
线性函数的图像为一条直线,斜率为k,截距为b。
例题1:已知直线y = 2x + 3,在x轴上的截距为多少?解析:由于直线截距在x轴上时,y坐标为0,即当y = 0时,2x +3 = 0。
解得x = -1.5,因此直线在x轴上的截距为-1.5。
例题2:已知直线过点A(2, 5)和B(4, 7),求直线的斜率。
解析:根据斜率的定义,斜率k等于直线上任意两点的纵坐标之差与横坐标之差的比值。
代入点A(2, 5)和B(4, 7),得到k = (7 - 5) / (4 - 2) = 1。
二、指数函数指数函数是以自然常数e为底的幂函数,其表达式为y = a * e^(kx),其中a和k为常数。
指数函数的图像为开口向上或向下的曲线。
例题3:已知指数函数y = 2 * e^x,求函数的值当x = 0时的值。
解析:当x = 0时,y = 2 * e^0 = 2。
例题4:已知指数函数过点A(1, 4)和B(2, 8),求函数的底数。
解析:代入点A(1, 4),得到4 = a * e^k。
代入点B(2, 8),得到8 = a * e^(2k)。
将第一个等式除以第二个等式,消去a后得到0.5 = e^(-k),即e^k = 2。
因此函数的底数为2。
三、对数函数对数函数是指以某个正数a为底的对数运算的逆运算函数,其表达式为y = logₐx,其中a为正数,且a ≠ 1。
对数函数的图像为一条曲线。
例题5:已知对数函数y = log₄16,求函数的值。
解析:对于对数函数,y的值表示底数a对应的幂次方,即4^y = 16。
幂函数、指数函数、对数函数及分段函数 Word版含解析
2.2幂函数、指数函数、对数函数及分段函数命题角度1幂、指数、对数的运算与大小比较高考真题体验·对方向1.(2018全国Ⅲ·12)设a=log0.20.3,b=log20.3,则()A.a+b<ab<0B.ab<a+b<0C.a+b<0<abD.ab<0<a+b2.(2017山东·7)若a>b>0,且ab=1,则下列不等式成立的是()A.a+<log2(a+b)B.<log2(a+b)<a+C.a+<log2(a+b)<D.log2(a+b)<a+3.(2017全国Ⅰ·11)设x,y,z为正数,且2x=3y=5z,则()A.2x<3y<5zB.5z<2x<3yC.3y<5z<2xD.3y<2x<5z4.(2017北京·8)根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080.则下列各数中与最接近的是()(参考数据:lg 3≈0.48)A.1033B.1053C.1073D.10935.(2016全国Ⅲ·6)已知a=,b=,c=2,则()A.b<a<cB.a<b<cC.b<c<aD.c<a<b新题演练提能·刷高分1.(2018四川南充二模)式子-log32×log427+2 0180等于()A.0B.C.-1D.2.(2018安徽江淮十校4月联考)若a=30.3,b=ln 2,c=log2cos ,则()A.a>b>cB.b>a>cC.c>a>bD.b>c>a3.(2018河北衡水中学模拟)已知a=1,b=log16,c=log17,则a,b,c的大小关系为()A.a>b>cB.a>c>bC.b>a>cD.c>b>a4.(2018安徽宿州第一次质检)设a=,b=,c=,则a,b,c三个数按从大到小的排列顺序为()A.a>b>cB.b>a>cC.b>c>aD.c>a>b5.(2018广东揭阳学业水平考试)已知0<a<b<1,则()A.<1B.C.a ln a<b ln bD.a a>b b命题角度2幂函数、指数函数与对数函数的图象与性质高考真题体验·对方向1.(2014福建·4)若函数y=log a x(a>0,且a≠1)的图象如图所示,则下列函数图象正确的是()2.(2014天津·4)函数f(x)=lo(x2-4)的单调递增区间为()A.(0,+∞)B.(-∞,0)C.(2,+∞)D.(-∞,-2)新题演练提能·刷高分1.(2018湖南张家界模拟)在同一直角坐标系中,函数f(x)=2-ax,g(x)=log a(x+2)(a>0,且a≠1)的图象大致为()2.(2018安徽宿州联考)若函数y=a|x|(a>0,且a≠1)的值域为{y|0<y≤1},则函数y=log a|x|的图象大致是()3.(2018新疆二模)已知点(m,8)在幂函数f(x)=(m-1)x n的图象上,设a=f,b=f(ln π),c=f,则a,b,c的大小关系为()A.a<c<bB.a<b<cC.b<c<aD.b<a<c4.(2018河南濮阳二模)设x1,x2,x3均为实数,且=log2(x1+1),=log3x2,=log2x3,则()A.x1<x3<x2B.x3<x2<x1C.x3<x1<x2D.x2<x1<x35.(2018山东聊城检测)已知函数f(x)=e x-(x<0)与g(x)=ln(x+a)的图象上存在关于y轴对称的点,则实数a的取值范围是()A.-∞,B.-∞,C.-D.-6.(2018东北三省三校第二次模拟)函数f(x)=log3(8x+1)的值域为.命题角度3分段函数问题高考真题体验·对方向1.(2018全国Ⅰ·9)已知函数f(x)=g(x)=f(x)+x+a,若g(x)存在2个零点,则a的取值范围是()A.[-1,0)B.[0,+∞)C.[-1,+∞)D.[1,+∞)2.(2015全国Ⅱ·5)设函数f(x)=则f(-2)+f(log212)=()A.3B.6C.9D.123.(2013全国Ⅰ·11)已知函数f(x)=若|f(x)|≥ax,则a的取值范围是()A.(-∞,0]B.(-∞,1]C.[-2,1]D.[-2,0]新题演练提能·刷高分1.(2018广东肇庆模拟)f(x)是R上的奇函数,且f(x)=则f-=()A. B.-C.1D.-12.(2018陕西咸阳二模)已知函数f(x)=则f(log212)+f(1)=.3.(2018安徽马鞍山第二次监测)已知函数f(x)=若f(x)=-1,则x=.4.(2018吉林长春质量监测)已知函数f(x)=若f(a)≥2,则实数a的取值范围是.5.(2018北京理工大学附中模拟)已知函数f(x)=若直线y=m与函数f(x)的图象只有一个交点,则实数m的取值范围是.6.(2018陕西西安八校第一次联考)设函数f(x)=则满足f(x)+f(x-1)>1的x的取值范围是.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
秒杀结论: 确定对数值正负满足两个一致原理:即对数真数与底数范围一致为正,不一致为负,对应区间为: 。
1.(高考母题)已知 则 ( )
A. B. C. 或 D.
【解析】: 或 , 或 ,选C。
2.(2010年新课标全国卷11)已知函数 ,若 、 、 互不相等,且
A. B. C. D.
【解析】: ,由秒杀结论一致性原理知 , ,选C。
10.(高考题)如果 则 ( )
A. B. C. D.
【解析】:由秒杀结论一致性原理知 ,由底数越小则对数越大知 ,选A。
11.(高考题)若点 在 的图象上, ,则下列点也在此图象上的是 ( )
A. B. C. D.
【解析】: ,代入知选D。
秒杀高考数学题型之必考的几类初等函数(对数函数、幂函数、对勾函数与双刀函数)
【秒杀题型四】:对数及对数函数。
【题型1】:对数的性质。
『秒杀策略』:①两个同底的恒等式:ⅰ. ; ⅱ. ;
换底公式: ; 。
传递性质: 。
1.(高考题) 的值是_______。
【解析】:原式= 。
2.(高考题) 等于 ( )
,则 的取值范围是 ( )
A. B. C. D.
【解析】:可知 , , ,即 ,选C。
3.(高考题)已知 ,函数 ,若实数 、 满足 ,则 、 的大小关系为。
【解析】: , 单调递减, 。(本题考查了黄金分割点。)
4.(高考题)设 ,函数 在区间 上的最大值与最小值之差为 ,则 ( )
A. B.2 Leabharlann . D.4( )A. 或4 B. 或 C. 或8 D. 或16
【解析】: ,①当 时, ,有 ,得 ,解得 ,由 ,解得 ;
②当 时, ,有 ,得 ,解 ,代入 ,解得 ,选B。
8.(高考题)若 , ,则 ( )
A. , B. , C. , D. ,
【解析】:由秒杀结论一致性原理知 , ,选D。
9.(高考题)若定义在区间 内的函数 满足 ,则 的取值范围是 ( )
A.0 B.1 C.2 D.4
【解析】:原式= ,选C。
3.(高考题)计算 。
【解析】:原式= 。
4.(高考母题) 的值是 ( )
A. B.1 C. D.2
【解析】:原式= ,选A。
5.(高考题) ( )
A. B. C. D.
【解析】:原式= ,选D。
6.(高考母题)若 则 。
【解析】: , , 。
7.(高考母题)设 都是正数,且 ,那么 ( )
A. B. C. D.
【解析】:设 , , , , ,选B。
8.(高考题)已知 则 ( )
A.1 B.2 C.3 D.4
【解析】: =1,选A。
9.(高考题)设 ,且 ,则 ( )
A. B.10 C.20 D.100
【解析】: , , ,选A。
10.(高考母题)证明: 。
【解析】: , ,选D。
5.(高考题)函数 在 上的最大值和最小值之和为 ,则 的值为 ( )
A. B. C.2 D.4
【解析】: 与 增减性一致, , ,选B。
6.(2020年新课标全国卷 12)若 ,则 ( )
A. B. C. D.
【解析】:构造函数 ,为增函数, ,
, , 。
7.(2021年模拟题精选)若函数 ( ,且 )的定义域和值域均为 ,则 的值为
【解析】: ,选B。
16.(高考母题)若 求 的值。
【解析】:法一:化为指数式, ,原式= 。
法二: ,由对数恒等式知原式= 。
17.(高考题)若 ,则 。
【解析】:法一:化为指数式, ,原式= 。
法二:由对数恒等式知原式= 。
18.(2020年新课标全国卷 8)设 ,则 = ( )
A. B. C. D.
其中K为最大确诊病例数.当I( )=0.95K时,标志着已初步遏制疫情,则 约为(ln19≈3) ( )
A.60B.63C.66D.69
【解析】:代入得 ,两边取对数得: ,选C。
【题型2】:对数函数及其性质。
『秒杀策略』: 且 ( ),恒过点 ,图象恒在 轴右边。
当 时, 是增函数;当 时, 是减函数;
【秒杀题型六】:对勾函数(因其图象类似于耐克标志,所以也称耐克函数。)、双刀函数。
『秒杀策略』:对勾函数:一般式: ( 、 )。
【解析】:分别代入到三个幂函数中得 。
2.(高考题)给定函数① ,② ,③ ,④ ,其中在区间 上单调递
减的函数序号是 ( )
A.①② B.②③ C.③④ D.①④
【解析】:分别画出图象可知选B。
3.(高考题)若函数 在 上的最大值为4,最小值为 ,且函数 在 上是增函数,则 =。
【解析】:当 时, , , 为减函数;当 时, , ,符合题意。
【解析】: , , ,选B。
19.(高考题)已知 ,若 , ,则 =, =。
【解析】:设 , ,得 , ,代入得 。
20.(2021年模拟题精选) ________。
【解析】:原式= 。
21.(2020年新课标全国卷 4)Logistic模型是常用数学模型之一,可应用于流行病学领城,有学者根据公
布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t的单位:天)的Logistic模型: ,
【解析】:由对数传递性,原式左= =右。
推广: 。当前一个对数的真数是后一个对数的底数连续相乘时,结果是以第一个对数的底数为底数,最后一个对数的真数为真数的对数。在对数相乘时,尽量找前一个对数的真数是后一个对数的底数相乘。
11.(高考题)设 均为不等于1的正实数,则下列等式中恒成立的是 ( )
A. B.
12.(高考题)已知 ,且 ,若 ,则 ( )
A. B.
C. D.
【解析】:从图象可得 或 ,选D。
【秒杀题型五】:幂函数。
『秒杀策略』:高考只考查当 时的五种函数,其中 是我们初中非常熟悉的三个函数,所以我们只需熟记 两个函数即可,我们要熟练掌握其图象、单调性、奇偶性。
1.(高考题)设函数 则 。
C. D.
【解析】:由对数传递性知选B。
12.(高考题)已知 为正实数,则 ( )
A. B.
C. D.
【解析】: ,选D.
13.(高考题)已知 则 =。
【解析】: , 。
14.(高考题)已知 ,则 。
【解析】: ,原式=4。
15.(高考题)已知 , , , ,则下列等式一定成立的是 ( )
A. B. C. D.