可控硅移相触发器KJ004的典型应用电路图

合集下载

可控硅交流调压器原理图及工作原理

可控硅交流调压器原理图及工作原理

可控硅交流调压器
可控硅是一种新型的半导体器件,它具有体积小、重量轻、效率高、寿命长、动作快以及使用方便等优点,目前交流调压器多采用可控硅调压器。

这里介绍一台电路简单、装置容易、控制方便的可控硅交流调压器,这可用作家用电器的调压装置,进行照明灯调光,电风扇调速、电熨斗调温等控制。

这台调压器的输出功率达100W,一般家用电器都能使用。

1:电路原理:电路图如下
可控硅交流调压器由可控整流电路和触发电路两部分组成,其电路原里图如下图所示。

从图中可知,二极管D1—D4组成桥式整流电路,双基极二极管T1构成张弛振荡器作为可控硅的同步触发电路。

当调压器接上市电后,220V交流电通过负载电阻RL经二极管D1—D4整流,在可控硅SCR的A、K两端形成一个脉动直流电压,该电压由电阻R1降压后作为触发电路的直流电源。

在交流电的正半周时,整流电压通过R4、W1对电容C充电。

当充电电压Uc达到T1管的峰值电压Up时,T1管由截止变为导通,于是电容C通过T1管的e、b1结和R2迅速放电,结果在R2上获得一个尖脉冲。

这个脉冲作为控制信号送到可控硅SCR 的控制极,使可控硅导通。

可控硅导通后的管压降很低,一般小于1V,所以张
弛振荡器停止工作。

当交流电通过零点时,可控硅自关断。

当交流电在负半周时,电容C又从新充电……如此周而复始,便可调整负载RL上的功率了。

简单实用的大功率可控硅触发电路图

简单实用的大功率可控硅触发电路图

简单实用的大功率可控硅触发电路图
文章出处: 发布时间:2010-2-19 0:00:00 | 1356 次阅读| 12次推荐| 0条留言
一般书刊介绍的大功率可控硅触发电路都比较复杂,而且有些元件难以购买。

笔者仅花几元钱制作的触发电路已成功触发100A以上的可控硅模块,用于工业淬火炉上调节380V 电压,又装一套用于大功率鼓风机作无级调速用,效果非常好。

本电路也可用作调节220V 交流供电的用电器。

电路见图。

将两只单向可控硅SCRl、SCR2反向并联.再将控制板与本触发电路连接,就组成了一个简单实用的大功率无级调速电路。

这个电路的独特之处在于可控硅控制极不需外加电源,只要将负载与本电路串联后接通电源,两个控制极与各自的阴极之间便有5V~8V 脉动直流电压产生,调节电位器R2即可改变两只可控硅的导通角,增大R2的阻值到一定程度,便可使两个主可控硅阻断,因此R2还可起开关的作用。

该电路的另一个特点是两只主可控硅交替导通,一个的正向压降就是另一个的反向压降,因此不存在反向击穿问题。

但当外加电压瞬时超过阻断电压时,SCR1、SCR2会误导通,导通程度由电位器R2决定。

SCR3与周围元件构成普通移相触发电路,其原理这里从略。

SCR1、SCR2笔者选用的是封装好的可控硅模块(110A/1000V),SCR3选用BTl36,即600V的双向可控硅。

本电路如用于感性负载,应增加R4,C3阻容吸收电路及压敏电阻RV作过压保护,防止负载断开和接通瞬间产生很高的感应电压损坏可控硅。

可控硅调压器电路图大全(八款模拟电路设计原理图详解)

可控硅调压器电路图大全(八款模拟电路设计原理图详解)

可控硅调压器电路图大全(八款模拟电路设计原理图详解)可控硅是一种新型的半导体器件,它具有体积小、重量轻、效率高、寿命长、动作快以及使用方便等优点,目前交流调压器多采用可控硅调压器。

可控硅调压器电路图(一)可控硅交流调压器由可控整流电路和触发电路两部分组成,其电路原里图如下图所示。

从图中可知,二极管D1—D4组成桥式整流电路,双基极二极管T1构成张弛振荡器作为可控硅的同步触发电路。

当调压器接上市电后,220V交流电通过负载电阻RL经二极管D1—D4整流,在可控硅SCR的A、K两端形成一个脉动直流电压,该电压由电阻R1降压后作为触发电路的直流电源。

在交流电的正半周时,整流电压通过R4、W1对电容C充电。

当充电电压Uc达到单结晶体管T1管的峰值电压Up时,单结晶体管T1由截止变为导通,于是电容C通过T1管的e、b1结和R2迅速放电,结果在R2上获得一个尖脉冲。

这个脉冲作为控制信号送到可控硅SCR的控制极,使可控硅导通。

可控硅导通后的管压降很低,一般小于1V,所以张弛振荡器停止工作。

当交流电通过零点时,可控硅自关断。

当交流电在负半周时,电容C又从新充电……如此周而复始,便可调整负载RL上的功率了。

元器件选择调压器的调节电位器选用阻值为470KΩ的WH114-1型合成碳膜电位器,这种电位器可以直接焊在电路板上,电阻除R1要用功率为1W的金属膜电阻外,其余的都用功率为1/8W的碳膜电阻。

D1—D4选用反向击穿电压大于300V、最大整流电流大于0.3A的硅整流二极管,如2CZ21B、2CZ83E、2DP3B等。

SCR选用正向与反向电压大于300V、额定平均电流大于1A的可控硅整流器件,如国产3CT系列。

可控硅调压器电路图(二)在很多使用交流电源的负载中,需要完成调光、调温等功能,要求交流电源能平稳地调节电压。

图205所示,是一种筒单交流调压器,可代替普通交流调压器,体积小、重量轻、控制方便。

工作原理电源经电阻R,和电位器W 向电容C充电。

可控硅的工作原理(带图)

可控硅的工作原理(带图)

可控硅是可控硅整流器的简称。

它是由三个PN 结四层结构硅芯片和三个电极组成的半导体器件。

图3-29是它的结构、外形和图形符号。

可控硅的三个电极分别叫阳极(A)、阴极(K)和控制极(G)。

当器件的阳极接负电位(相对阴极而言)时,从符号图上可以看出PN 结处于反向,具有类似二极管的反向特性。

当器件的阳极上加正电位时(若控制极不接任何电压),在一定的电压范围内,器件仍处于阻抗很高的关闭状态。

但当正电压大于某个电压(称为转折电压)时,器件迅速转变到低阻通导状态。

加在可控硅阳极和阴极间的电压低于转折电压时,器件处于关闭状态。

此时如果在控制极上加有适当大小的正电压(对阴极),则可控硅可迅速被激发而变为导通状态。

可控硅一旦导通,控制极便失去其控制作用。

就是说,导通后撤去栅极电压可控硅仍导通,惟独使器件中的电流减到低于某个数值或者阴极与阳极之间电压减小到零或者负值时,器件才可恢复到关闭状态。

图3-30 是可控硅的伏安特性曲线。

);当有控制极信号时,正图中曲线I 为正向阻断特性。

无控制极信号时,可控硅正向导通电压为正向转折电压(UB0向转折电压会下降(即可以在较低正向电压下导通),转折电压随控制极电流的增大而减小。

当控制极电流大到一定程度时,就再也不浮现正向阻断状态了。

曲线Ⅱ为导通工作特性。

可控硅导通后内阻很小,管子本身压降很低,外加电压几乎全部降在外电路负载上,并流过比较大的负载电流,特性曲线与二极管正向导通特性相似。

若阳极电压减小(或者负载电阻增加),导致阳极电流小于时,可控硅从导通状态即将转为正向阻断状态,回到曲线I 状态。

维持电流IH曲线Ⅲ为反向阻断特性。

当器件的阳极加以反向电压时,尽管电压较高,但可控硅不会导通(惟独很小的漏电流)。

只有反向电压达到击穿电压时,电流才蓦地增大,若不加限制器件就会烧毁。

正常工作时,外加电压要小于反向击穿电压才干保证器件安全可靠地工作。

可控硅的重要特点是:只要控制极中通以几毫安至几十毫安的电流就可以触发器件导通,器件中就可以通过较大的电流。

可控硅调压电路图

可控硅调压电路图

可控硅调压电路图可控硅是一种新型的半导体器件,它具有体积小、重量轻、效率高、寿命长、动作快以及使用方便等优点,目前交流调压器多采用可控硅调压器.这里介绍一台电路简单、装置容易、控制方便的可控硅交流调压器,这可用作家用电器的调压装置,进行照明灯调光,电风扇调速、电熨斗调温等控制。

这台调压器的输出功率达100W,一般家用电器都能使用.1:电路原理:可控硅交流调压器由可控整流电路和触发电路两部分组成,其电路原里图如下图所示. 从图中可知,二极管D1-D4组成桥式整流电路,双基极二极管T1构成张弛振荡器作为可控硅的同步触发电路。

当调压器接上市电后,220V交流电通过负载电阻RL经二极管D1—D 4整流,在可控硅SCR的A、K两端形成一个脉动直流电压,该电压由电阻R1降压后作为触发电路的直流电源。

在交流电的正半周时,整流电压通过R4、W1对电容C充电.当充电电压Uc达到T1管的峰值电压Up时,T1管由截止变为导通,于是电容C通过T1管的e、b 1结和R2迅速放电,结果在R2上获得一个尖脉冲。

这个脉冲作为控制信号送到可控硅SCR的控制极,使可控硅导通.可控硅导通后的管压降很低,一般小于1V,所以张弛振荡器停止工作.当交流电通过零点时,可控硅自关断.当交流电在负半周时,电容C又从新充电……如此周而复始,便可调整负载RL上的功率了。

2:元器件选择调压器的调节电位器选用阻值为470KΩ的WH114—1型合成碳膜电位器,这种电位器可以直接焊在电路板上,电阻除R1要用功率为1W的金属膜电阻外,其佘的都用功率为1/8W的碳膜电阻。

D1-D4选用反向击穿电压大于300V、最大整流电流大于0.3A的硅整流二极管,如2CZ21B、2CZ83E、2DP3B等。

SCR选用正向与反向电压大于300V、额定平均电流大于1A的可控硅整流器件,如国产3CT系例。

可控硅调速电路图大全(六款可控硅调速电路设计原理图详解)

可控硅调速电路图大全(六款可控硅调速电路设计原理图详解)

可控硅调速电路图大全(六款可控硅调速电路设计原理图详解)可控硅特性1、额定通态平均电流IT在一定条件下,阳极---阴极间可以连续通过的50赫兹正弦半波电流的平均值。

2、正向阻断峰值电压VPF在控制极开路未加触发信号,阳极正向电压还未超过导能电压时,可以重复加在可控硅两端的正向峰值电压。

可控硅承受的正向电压峰值,不能超过手册给出的这个参数值。

3、反向阻断峰值电压VPR当可控硅加反向电压,处于反向关断状态时,可以重复加在可控硅两端的反向峰值电压。

使用时,不能超过手册给出的这个参数值。

4、控制极触发电流Ig1、触发电压VGT在规定的环境温度下,阳极---阴极间加有一定电压时,可控硅从关断状态转为导通状态所需要的最小控制极电流和电压。

5、维持电流IH在规定温度下,控制极断路,维持可控硅导通所必需的最小阳极正向电流。

许多新型可控硅元件相继问世,如适于高频应用的快速可控硅,可以用正或负的触发信号控制两个方向导通的双向可控硅,可以用正触发信号使其导通,用负触发信号使其关断的可控硅等等。

可控硅工作原理在分析可控硅工作原理时,我们经常将这种四层P1N1P2N2结构看作由一个PNP管和NPN管构成,如下图所示。

当阳极A端加上正向电压时,BG1和BG2管均处于放大状态,此时由控制极G端输入正向触发信号,使得BG2管有基极电流ib2通过,经过BG2管的放大后,其集电极电流为ic2=β2ib2。

而ic2沿电路流至BG1的基极,故有ib1=ic2,电流又经BG1管的放大作用后,得到BG1的集电极电流为ic1=β1ib1=β1β2ib2。

此电流又流回BG2的基极,使得BG2的基极电流ib2增大,从而形成正向反馈使电流剧增,进而使得可控硅饱和并导通。

由于在电路中形成了正反馈,所以可控硅一旦导通后无法关断,即使控制极G端的电流消失,可控硅仍能继续维持这种导通的状态。

可控硅控制电路图解

可控硅控制电路图解

可控硅控制电路图解可控硅是可控硅整流器的简称。

可控硅有单向、双向、可关断和光控几种类型。

它具有体积小、重量轻、效率高、寿命长、控制方便等优点,被广泛用于可控整流、调压、逆变以及无触点开关等各种自动控制和大功率的电能转换的场合。

单向可控硅是一种可控整流电子元件,能在外部控制信号作用下由关断变为导通,但一旦导通,外部信号就无法使其关断,只能靠去除负载或降低其两端电压使其关断。

单向可控硅是由三个PN结PNPN 组成的四层三端半导体器件与具有一个PN结的二极管相比,单向可控硅正向导通受控制极电流控制;与具有两个PN结的三极管相比,差别在于可控硅对控制极电流没有放大作用。

可控硅导通条件:一是可控硅阳极与阴极间必须加正向电压,二是控制极也要加正向电压。

以上两个条件必须同时具备,可控硅才会处于导通状态。

另外,可控硅一旦导通后,即使降低控制极电压或去掉控制极电压,可控硅仍然导通。

可控硅关断条件:降低或去掉加在可控硅阳极至阴极之间的正向电压,使阳极电流小于最小维持电流以下。

简易单向可控硅12V触摸开关电路触摸一下金属片开,SCR1导通,负载得电工作。

触摸一下金属片关,SCR2导通,继电器J得电工作,K断开,负载失电,SCR2关断后,电容对继电器J放电,维持继电器吸合约4秒钟,故电路动作较为准确。

如果将负载换为继电器,即可控制大电流工作的负载。

可控硅是一种新型的半导体器件,它具有体积小、重量轻、效率高、寿命长、动作快以及使用方便等优点,活动导入以可控硅实际应用案例的展示,以激发学生的活动兴趣。

可控硅控制电路的制作13例1:可调电压插座电路如图,可用于调温(电烙铁)、调光(灯)、调速(电机),使用时只要把用电器的插头插入插座即可,十分方便。

V1为双向二极管2CTS,V2为3CTSI双向可控硅,调节RP可使插座上的电压发生变化。

2:简易混合调光器根据电学原理可知,电容器接入正弦交流电路中,电压与电流的最大值在相位上相差90°。

双向可控硅工作原理图解

双向可控硅工作原理图解

双向可控硅工作原理图解一、引言双向可控硅(Bilateral Switch Diode,简称BSD)是一种特殊的半导体器件,具有双向导通的特性。

它可以在正向和反向电压下都能够可控导通,具有可靠的开关性能和较大的耐压能力。

本文旨在通过深入解析双向可控硅的工作原理,向读者展示其内部结构及关键组成部分,并详细说明其在电路中的应用。

二、双向可控硅的结构与特性2.1 结构双向可控硅由四个半导体元件组成:两个PNP型晶体管和两个NPN型晶体管。

这四个晶体管被连接在一起,形成了双向可控硅的结构。

双向可控硅的结构概览如下图所示:-> NPN|-> PNP|-> NPN|-> PNP2.2 特性双向可控硅具有以下几个主要特性:1.双向导通:双向可控硅能够在正向和反向电压下都能够可控导通,可以用于交流电路中的开关控制。

2.双向触发:双向可控硅在正向和反向触发电压下都可以工作,触发脉冲的极性可以根据不同应用需求选取。

3.可靠性高:双向可控硅具有较高的耐压能力和可靠的开关性能,能够承受较大的电流和电压。

4.响应速度快:双向可控硅具有快速的响应速度,可以迅速实现导通或截止状态的切换。

三、双向可控硅的工作原理3.1 正向电压下的工作原理当正向电压施加在双向可控硅的主电极之间时,两个PNP型晶体管之间的base-emitter结区会被偏置,使得P区中的少数载流子开始注入到N区,形成PN结。

此时,双向可控硅处于导通状态。

3.2 反向电压下的工作原理当反向电压施加在双向可控硅的主电极之间时,两个NPN型晶体管之间的base-emitter结区会被偏置,使得N区中的少数载流子开始注入到P区,形成PN结。

此时,双向可控硅也处于导通状态。

3.3 触发与导通控制双向可控硅的导通状态由触发电压控制。

通过施加一个触发电压脉冲来激活双向可控硅,使其从截止状态切换到导通状态。

触发脉冲的极性可以根据需要选择。

四、双向可控硅的应用4.1 交流电路的开关控制双向可控硅广泛应用于交流电路的开关控制领域。

可控硅调压器电路图大全(八款模拟电路设计原理图详解)

可控硅调压器电路图大全(八款模拟电路设计原理图详解)

可控硅调压器电路图大全(八款模拟电路设计原理图详解)可控硅是一种新型的半导体器件,它具有体积小、重量轻、效率高、寿命长、动作快以及使用方便等优点,目前交流调压器多采用可控硅调压器。

可控硅调压器电路图(一)可控硅交流调压器由可控整流电路和触发电路两部分组成,其电路原里图如下图所示。

从图中可知,二极管D1—D4组成桥式整流电路,双基极二极管T1构成张弛振荡器作为可控硅的同步触发电路。

当调压器接上市电后,220V交流电通过负载电阻RL经二极管D1—D4整流,在可控硅SCR的A、K两端形成一个脉动直流电压,该电压由电阻R1降压后作为触发电路的直流电源。

在交流电的正半周时,整流电压通过R4、W1对电容C充电。

当充电电压Uc达到单结晶体管T1管的峰值电压Up时,单结晶体管T1由截止变为导通,于是电容C通过T1管的e、b1结和R2迅速放电,结果在R2上获得一个尖脉冲。

这个脉冲作为控制信号送到可控硅SCR的控制极,使可控硅导通。

可控硅导通后的管压降很低,一般小于1V,所以张弛振荡器停止工作。

当交流电通过零点时,可控硅自关断。

当交流电在负半周时,电容C又从新充电……如此周而复始,便可调整负载RL上的功率了。

元器件选择调压器的调节电位器选用阻值为470KΩ的WH114-1型合成碳膜电位器,这种电位器可以直接焊在电路板上,电阻除R1要用功率为1W的金属膜电阻外,其余的都用功率为1/8W的碳膜电阻。

D1—D4选用反向击穿电压大于300V、最大整流电流大于0.3A的硅整流二极管,如2CZ21B、2CZ83E、2DP3B等。

SCR选用正向与反向电压大于300V、额定平均电流大于1A的可控硅整流器件,如国产3CT系列。

可控硅调压器电路图(二)在很多使用交流电源的负载中,需要完成调光、调温等功能,要求交流电源能平稳地调节电压。

图205所示,是一种筒单交流调压器,可代替普通交流调压器,体积小、重量轻、控制方便。

工作原理电源经电阻R,和电位器W 向电容C充电。

KJ004自我总结

KJ004自我总结

KJ004可控硅移相电路关于KJ004的使用,我最近只是通过参与了部分电路的调试,加上中间有同学过来看我不能不陪啊,所以我对KJ004的理解大多数还是通过资料获得的,而且内部工作原理并不是很熟悉,对于其外围电路还算较为了解吧。

首先如果想正确的理解KJ004的使用,必须掌握的基本信息是关于锯齿波、移相电压和偏移电压如何在综合脚(KJ009的9脚)进行合成进而对输出脉冲进行控制的,这一部分是关键,如果不能理解信号的合成作用,那么就无法获知最后如何通过改变移相和偏移电压从而控制信号的初始相位的。

而且这里还有一个信号同步的实现(8脚),其实内部的详细原理看懂就好,具体就可以理解为我们通过变压器取到一个30V的正弦信号,这个信号是来自我们所要进行整流控制的交流电通过变压器经过电压变换得来,也就是说这个参考信号能够反映我们所要控制的交流电的频率和相位,这也就是我们采用这个参考信号的具体意义。

这方面的内容请读者详细参考王兆安老师编写的《电力电子技术》的90页至96页,一定要搞懂里面的几个波形图,电路的工作流程多读咬牙几遍,学过模电和电路都能读懂的。

8脚连接的电阻一般资料都给出了计算方法,R4=同步电压/2~3×103(Ω),这个公式是一个经验公式,并不是说连个电阻就能实现同步,不是的!能否实现同步需要进行实验调试,选择合适得同步电阻是关键。

同步电压加上后,在芯片的4脚就形成了与参考信号相同步的锯齿波,锯齿波电压、移相电压Vy和偏移电压Vp在综合脚使能。

在锯齿波固定时,如果移相电压Vy至零,那么改变偏移电压Vp就是在改变所发脉冲的起始位置,也就是在我们在外的控制移相电压Vy 为0V时的初始α角。

将偏移电压Vp固定后,我们就可以根据需要调节移相电压Vy进而输出我们所需要的α角了。

如果仅仅通过改变移相电压Vy和偏移电压Vp无法输出理想的脉冲或者感觉这两个电压的控制作用不理想,那么我们可以通过改变锯齿波的斜率,我们改变了锯齿波斜率之后在重新通过移相电压Vy和偏移电压Vp对触发脉冲进行调节,如此反复的进行调试,直到移相电压Vy和偏移电压Vp的控制作用比较理想为止。

作可控硅的双路脉冲移相触发

作可控硅的双路脉冲移相触发

KJ001可控硅移相触发电路KJ001单片可控硅移相触发电路主要用于单相、三相半控桥式供电装置中作移相触发之用。

具有温漂小、移相线性好、宽脉冲触发等优点。

KJ001电路工作原理:KJ001可控硅移相电路由锯齿波形成电路、移相电压、偏移电压和锯齿波电压综合比较放大电路及移相触发脉宽调节电路三部分组成。

KJ001可控硅移相电路原理和应用实例见图,当同步电压送至同步端,电路由t1-t6形成锯齿波,t7-t9将移相电压、偏移电压和锯齿波电压综合比较放大,t10-t14形成一定宽度的移相触发脉冲。

触发脉宽由外接电容Cs决定,加大Cs电容可以获得大于60度的宽脉冲,触发电路为正极性型,即移相控制电压Vy增加,输出导通角增大。

对不同的移相控制电压Vy,只要改变权电阻r1、r2的比例,调节相应的偏移电压Vp,同时调整锯齿波斜率电位器rw1,可以得到整个移相范围内的触发脉冲。

各点波形见下图。

KJ001封装形式:KJ001可控硅移相电路采用双列直插C一18线、C一14线白瓷、黑瓷两种外壳封装。

外形尺寸按电子工业部部颁标准《半导体集成电路外形尺寸》SJll00-76。

KJ001典型接线图及各点波形:KJ001电参数:1. 电源电压:直流+15v、-15V,允许波动土5%(±10%时功能正常)2. 电源电流:正电流≤15mA,负电流≤10mA。

3. 同步电压:交流10V(有效值)。

4. 移相范围:(1)KJ001≥50° C(同步电压10V时)。

(2)*KJ001≥210° C(二相同步电压10V分别输入时)。

5. 锯齿波幅度:≥10V(幅度以锯齿波平顶为准)。

6. 输出脉冲:(1)脉冲宽度:100μS~3.3mS(改变脉宽电容达到)。

(2)脉冲幅度:≥13V(输出接1KΩ电阻负载)。

(3)最大输出能力:15mA(吸收电流)。

(4)输出反压:BVceo≥18~(测试条件Ie≤20μA)。

7. *移相线性误差:≤土1%。

电路电子——晶闸管的触发电路设计

电路电子——晶闸管的触发电路设计

二、同步电压为锯齿波的触发电路
4) 双窄脉冲形成环节 内双脉冲电路
V5、V6构成“或”门
当V5、V6都导通时,V7、V8都截止,没有脉冲输出。 只要V5、V6有一个截止,都会使V7、V8导通,有脉冲输出。
第一个脉冲由本相触发单元的uco对应的控制角 产生。
隔60的第二个脉冲是由滞后60相位的后一相触发单元产生 (通过V6)。
双窄脉冲形成
由V5、V6形成门电路产生间隔60的双窄脉冲。 (如三相全桥触发电路)
1
2
3
4
5
6
X YX YX YX YX YX Y
只要V5、V6 中有一个截止,V7、V8就导通, 有脉冲输出。
各点电压波形如图9所示。
图8 同步电压为锯齿波的触发电路
图9 锯齿波触发电路各点电压波形
注意问题
注意:
每周期中电容C的充放电不
止一次,晶闸管由第一个脉 冲触发导通,后面的脉冲不 起作用。
改充电变速Re度的,大达小到,调可节改α变角电的容目
的。 削波的目的:增大移相范围,
使输出的触发脉冲的幅度基本 一样。
一、 单结晶体管触发电路
实际应用中,常用晶体管V2代替电位器Re,以便实现
自动移相。 TP:脉冲变压器,实现触发电路与主电路的电气隔离。
C7 + C6
+15V
220V 36V
VD15
B VD7 TP
VD8 +15V
V4、V5 —脉冲形成
RP2
VS
R3
R9
R11
A C3
R12
R14 R13
R18 VD9
V7、V8 — 脉冲放大
V1
VD4

简单实用的大功率可控硅触发电路图

简单实用的大功率可控硅触发电路图

简单实用的大功率可控硅触发电路图
文章出处: 发布时间:2010-2-19 0:00:00 | 1356 次阅读| 12次推荐| 0条留言
一般书刊介绍的大功率可控硅触发电路都比较复杂,而且有些元件难以购买。

笔者仅花几元钱制作的触发电路已成功触发100A以上的可控硅模块,用于工业淬火炉上调节380V 电压,又装一套用于大功率鼓风机作无级调速用,效果非常好。

本电路也可用作调节220V 交流供电的用电器。

电路见图。

将两只单向可控硅SCRl、SCR2反向并联.再将控制板与本触发电路连接,就组成了一个简单实用的大功率无级调速电路。

这个电路的独特之处在于可控硅控制极不需外加电源,只要将负载与本电路串联后接通电源,两个控制极与各自的阴极之间便有5V~8V 脉动直流电压产生,调节电位器R2即可改变两只可控硅的导通角,增大R2的阻值到一定程度,便可使两个主可控硅阻断,因此R2还可起开关的作用。

该电路的另一个特点是两只主可控硅交替导通,一个的正向压降就是另一个的反向压降,因此不存在反向击穿问题。

但当外加电压瞬时超过阻断电压时,SCR1、SCR2会误导通,导通程度由电位器R2决定。

SCR3与周围元件构成普通移相触发电路,其原理这里从略。

SCR1、SCR2笔者选用的是封装好的可控硅模块(110A/1000V),SCR3选用BTl36,即600V的双向可控硅。

本电路如用于感性负载,应增加R4,C3阻容吸收电路及压敏电阻RV作过压保护,防止负载断开和接通瞬间产生很高的感应电压损坏可控硅。

可控硅移相触发器KJ004的典型应用电路图

可控硅移相触发器KJ004的典型应用电路图

可控硅移相触发器KJ004的典型应用电路图可控硅移相触发器KJ004电路适用于单相、三相全控桥式供电装置中,作可控硅的双路脉冲移相触发。

电参数如下:电源电压:直流+15V,-l5V,允许波动±5%(±10%功能正常)。

电源电流:正电流≤15mA,负电流≤10mA。

同步电压:任意值。

同步输入端允许最大同步电流:6mA(有效值)。

移相范围:≥l70°(同步电压30V,同步输人电阻15kΩ)。

锯齿波幅度:≥1OV(幅度以锯齿波出现平顶为准)。

输出脉冲:a.脉冲宽度:10μs~2ms(改变脉宽电容达到)。

b.脉冲幅度:>13V。

C.最大输出能力:KJ004为lOOmA(流出脉冲电流)。

KJ004A为10mA。

d.输ttl反压:BVceo≥l8V(测试条件:Ie≤l00μA)。

正负半周脉冲相位不均衡度≤±3°。

使用环境温度为四级:C:0~70℃ R:-55~85℃ E:-40~85℃ M:-55~125℃ KJ004(KJ004A)采用双列直插l6脚封装,如下图所示其引脚图。

KJ004的典型应用电路如下图所示。

该芯片由同步检波电路,锯齿波形成电路,移相电压、偏移电压和锯齿波电压综合比较放大电路及功率放大电路四部分组成。

同步串联电阻值可以按率郊扑?。

可控硅应用电路图

可控硅应用电路图

单向可控硅PCR606应用电路图:用PCR406制作调光电路:单向晶闸管调光灯电路板:电路原理:由灯泡、开关S、整流管D1-D4:1N4007、可控硅100-6与电源构成主电路:由电位器PR1A:500K、电容C1:1U、电阻R1:1K;R2:1K构成触发电路。

接通220v后,经过D1-D4全桥整流得到的脉动直流电压加至RP1A,给电容C1充电,当C1两端电压上升到一定的程度时,就会触发可控硅Q1,灯泡点亮。

同样的,调节RP1A变C1充/放电时间常数,因而改变触发脉冲的长短,改变了Q1的导电角(导通程度),达到调节灯牌亮度的目的。

电路中,由电源插头XP、灯泡EL、电源开关S、整流管VD1~VD4、单相晶闸管VS与电源构成主电路;由电位器RP、电容C、电阻R1与R2构成触发电路。

将XP插入市电插座,闭合S,接通220V交流电源,VD1~VD4全桥整流得到脉动直流电压加至RP,调节RP的阻值,就能改变C的充/放电时间常数,即改变VS控制触发角,从而改变VS的导通程度,使EL获得0~220V电压。

RP的阻值调得越大,则EL越暗,反之越亮,达到无级调光的目的。

双向可控硅调光电路及线路板图工作原理,图1:R、RP、C、D组成脉冲形成网络触发双向可控硅vT,使VT在市电正负半周均保持相应正反向导通。

调节RP阻值,即可改变VT的导通角,达到调节负载RL上电压的目的。

可用于家庭台灯调光、电熨斗、电热毯的调温等。

此双向可控硅在加散热器的情况下,控制的负载功率可达500w左右。

图2为印板图。

最简单的双向晶闸管调光灯电路图如图是一个最简单的双向晶闸管调光灯电路,双向晶闸管的特点是只要在其控制极上加上适当的触发脉冲或控制电流,无论在交流的正半周还是负半周,均可导通,导通时间与所加的脉冲宽度及门极电流大小有关。

调节RP可改变灯泡E的亮度大小。

调光台灯电路:调光台灯的电路非常简单,仅仅是一个可控硅调压电路而已。

市场上见到的电路大多是第二个图所示的电路,工作原理是:当交流电的正半周或副半周到来是,经过全桥整流,加到可控硅上的电源是单向的。

作可控硅的双路脉冲移相触发

作可控硅的双路脉冲移相触发

KJ001可控硅移相触发电路KJ001单片可控硅移相触发电路主要用于单相、三相半控桥式供电装置中作移相触发之用。

具有温漂小、移相线性好、宽脉冲触发等优点。

KJ001电路工作原理:KJ001可控硅移相电路由锯齿波形成电路、移相电压、偏移电压和锯齿波电压综合比较放大电路及移相触发脉宽调节电路三部分组成。

KJ001可控硅移相电路原理和应用实例见图,当同步电压送至同步端,电路由t1-t6形成锯齿波,t7-t9将移相电压、偏移电压和锯齿波电压综合比较放大,t10-t14形成一定宽度的移相触发脉冲。

触发脉宽由外接电容Cs决定,加大Cs电容可以获得大于60度的宽脉冲,触发电路为正极性型,即移相控制电压Vy增加,输出导通角增大。

对不同的移相控制电压Vy,只要改变权电阻r1、r2的比例,调节相应的偏移电压Vp,同时调整锯齿波斜率电位器rw1,可以得到整个移相范围内的触发脉冲。

各点波形见下图。

KJ001封装形式:KJ001可控硅移相电路采用双列直插C一18线、C一14线白瓷、黑瓷两种外壳封装。

外形尺寸按电子工业部部颁标准《半导体集成电路外形尺寸》SJll00-76。

KJ001典型接线图及各点波形:KJ001电参数:1. 电源电压:直流+15v、-15V,允许波动土5%(±10%时功能正常)2. 电源电流:正电流≤15mA,负电流≤10mA。

3. 同步电压:交流10V(有效值)。

4. 移相范围:(1)KJ001≥50° C(同步电压10V时)。

(2)*KJ001≥210° C(二相同步电压10V分别输入时)。

5. 锯齿波幅度:≥10V(幅度以锯齿波平顶为准)。

6. 输出脉冲:(1)脉冲宽度:100μS~3.3mS(改变脉宽电容达到)。

(2)脉冲幅度:≥13V(输出接1KΩ电阻负载)。

(3)最大输出能力:15mA(吸收电流)。

(4)输出反压:BVceo≥18~(测试条件Ie≤20μA)。

7. *移相线性误差:≤土1%。

可控硅工作原理及应用90页PPT

可控硅工作原理及应用90页PPT


可控硅工作原理及应用
16、自己选择的路、跪着也要把它走 完。 17、一般情况下)不想三年以后的事, 只想现 在的事 。现在 有成就 ,以后 才能更 辉煌。
18、敢于向黑暗宣战的人,心里必须 充满光 明。 19、学习的关键--重复。
20、懦弱的人只会裹足不前,莽撞的 人只能 引为烧 身,只 有真正 勇敢的 人才能 所向披 靡。
46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

可控硅移相触发器KJ004的典型应用电路图可控硅移相触发器KJ004电路适用于单相、三相全控桥式供电装置中,作可控硅的双路脉冲移相触发。

电参数如下:电源电压:直流+15V,-l5V,允许波动±5%(±10%功能正常)。

电源电流:正电流≤15mA,负电流≤10mA。

同步电压:任意值。

同步输入端允许最大同步电流:6mA(有效值)。

移相范围:≥l70°(同步电压30V,同步输人电阻15kΩ)。

锯齿波幅度:≥1OV(幅度以锯齿波出现平顶为准)。

输出脉冲:a.脉冲宽度:10μs~2ms(改变脉宽电容达到)。

b.脉冲幅度:>13V。

C.最大输出能力:KJ004为lOOmA(流出脉冲电流)。

KJ004A为10mA。

d.输ttl反压:BVceo≥l8V(测试条件:Ie≤l00μA)。

正负半周脉冲相位不均衡度≤±3°。

使用环境温度为四级:C:0~70℃ R:-55~85℃ E:-40~85℃ M:-55~125℃ KJ004(KJ004A)采用双列直插l6脚封装,如下图所示其引脚图。

KJ004的典型应用电路如下图所示。

该芯片由同步检波电路,锯齿波形成电路,移相电压、偏移电压和锯齿波电压综合比较放大电路及功率放大电路四部分组成。

同步串联电阻值可以按率郊扑?。

相关文档
最新文档